
CORDIC Algorithm and its Implementation

January 5, 2019

1 Introduction
COordinate Rotation Digital Computer (CORDIC) is a simple and efficient algorithm to com-
pute arithmetic, trigonometric and hyperbolic functions. In many fields such as DSP, image
processing, communication or in industrial sectors, researchers are using CORDIC algorithm
to optimize design performance. CORDIC was conceived in 1956 by Jack E. Volder thus it
sometimes called as Volder’s algorithm. Invention of CORDIC paved the way for computing
several functions by same hardware in an iterative fashion. Later CORDIC algorithm is pol-
ished and optimized by several researchers. In this tutorial we will discuss about basic theory
and its hardware implementation.

2 Theoretical Background
In this section the basic theory behind the CORDIC algorithm is discussed. At the end of this
discussion we will formulate the basic equations of CORDIC algorithm. The diagram in Figure
1 shows three points (x, y), (x1, y1) and (x2, y2) on a circular path in the x-y co-ordinate system.
As the points are on the circular path, distance of all the points from the origin is the same
which is r here. Let us define our objective,which is to rotate the point (x, y) anticlockwise
towards the point (x2, y2).

For the point (x, y) following equations can be written

x

y

θ

φ0

φ1 (x, y)

(x1, y1)

(x2, y2)

r

r

r

0

Figure 1: Rotation on Circular path

x = rcosθ and y = rsinθ (1)

and for the point (x1, y1) following equations can be written

x1 = rcos(θ + φ0) and y1 = rsin(θ + φ0) (2)

1

To rotate the point (x, y) to the point (x2, y2) total angle to be rotated anticlockwise is (φ0+φ1).
At the first step, point (x, y) will be rotated by angle φ0 in anticlockwise direction to reach
the point (x1, y1). The expression of x1 and y1 in terms of points x and y can be expressed as
follows.

x1 = rcos(θ + φ0) (3)
= rcosθcosφ0 − rsinθsinφ0 (4)
= xcosφ0 − ysinφ0 (5)
= cosφ0(x− ytanφ0) (6)

Similar equations can be written for y also

y1 = rsin(θ + φ0) (7)
= rsinθcosφ0 + rcosθsinφ0 (8)
= ycosφ0 + xsinφ0 (9)
= cosφ0(y + xtanφ0) (10)

Initial angle to be rotated in anticlockwise direction was (φ0 + φ1) which is equal to z0. The
next angle to be rotated can be expressed as

z1 = z0 − φ0 = φ1 (11)

In the next, we will rotate the point (x1, y1) to the point (x2, y2). The expressions for x2 and
y2 in terms of x and y is expressed as follows

x2 = rcos(θ + φ0 + φ1) (12)
= rcos(θ + φ0)cosφ1 − rsin(θ + φ0)sinφ1 (13)
= x1cosφ1 − y1sinφ1 (14)
= cosφ1(x1 − y1tanφ1) (15)

Similar equations can be written for y also

y2 = rsin(θ + φ0 + φ1) (16)
= rsin(θ + φ0)cosφ1 + rcos(θ + φ0)sinφ1 (17)
= y1cosφ1 + x1sinφ1 (18)
= cosφ1(y1 + x1tanφ1) (19)

and the equation for the remaining angle is

z2 = z1 − φ1 = 0 (20)

Now we are able to formulate the general expression of xi and yi after rotation by certain angle
in anticlockwise direction. The general expressions are

xi = cosφi−1(xi−1 − yi−1tanφi−1) (21)
yi = cosφi−1(yi−1 + xi−1tanφi−1) (22)
zi = zi−1 − φi−1 (23)

If the above expressions of xi and yi is written in terms of initial point x and y then the
expressions will be

xi =
i−1∏
j=0

cosφj(......) (24)

yi =
i−1∏
j=0

cosφj(......) (25)

2

In every iteration i, a constant term is associated with the equation of xi and yi. For the shake
of easy implementation, the computation of xi and yi is done without the constant term. The
final values at the output stage xf and yf are divided by a constant term kn to obtain the
actual results. The expression of kn is derived below.

The term
i−1∏
j=0

cosφj is a constant and need not be evaluated at each iteration. The value of

this constant can be evaluated as follows
i−1∏
j=0

cosφj =
i−1∏
j=0

cosφj√
cos2φj + sin2φj

(26)

=
1∏i−1

j=0

√
1 + tan2φj

(27)

=
1∏i−1

j=0

√
1 + 2−2j

=
1

kn
(28)

Angle representation is very important in this case as every iteration corresponds to an
incremental rotation. The most used angle rotation for data width of m is

−π π

20
π

21
π

22
π

23
π

24
......

π

2m
(29)

This format is suitable to represent any angle. The two MSB bits represents the location of
the co-ordinate in any quadrant. For example, angle of 45 degree can be represented in 16 bit
data format as 16’b0010000000000000, which is in the first quadrant.

So the angles are represented in terms of power of 2. Let’s put tanφi−1 = 2i−1 and the above
equations become

xi = xi−1 − yi−12
i−1 (30)

zi = yi−1 + xi−12
i−1 (31)

zi = zi−1 − tan−12i−1 (32)

The computation of the above equations become easy now as it involves division by power of 2
and addition or subtraction. Division by power of 2 is performed by wired shift method which
is hardware less. Only hardware is required is an adder or a subtractor.

The above example is based on the fact that rotation is done only in anticlockwise direction.
Actually the target angle rotation is achieved by successive incremental rotations until the
difference between the target angle and achieved angle becomes zero. They are called micro
rotations and can be anticlockwise or clockwise. These situation is described Figure 2.

The sign of angle difference (zi), decides the direction of the next micro rotation and a new
parameter σ is introduced.

σi =

{
1, if zi ≥ 0

−1, otherwise
(33)

Another point is that these micro rotations do not exactly follow the circular path as the
constant term cosφi−1 is associated with each micro rotation. For the simplicity of calculation,
the constant term is not calculated in each iteration. Computation is done without the constant
term and after the final iteration, computed results are divided by the constant term. Thus the
modified equations are.

xi = xi−1 − σiyi−12
i−1 (34)

zi = yi−1 + σixi−12
i−1 (35)

zi = zi−1 − σitan−12i−1 (36)

3

x

y

(x, y)

0

(x2, y2)
(x2

∗, y2
∗)

Figure 2: CORDIC Micro-rotations

After the above discussion we have formulated the equations for rotating a point (x, y) by any
angle on circular path. Thus CORDIC can be used to rotate a point (x, y) in any direction.

We have discussed rotation by maximum 90 degree in any direction. But if the rotation by
more than 90 degree is to be achieved then what will be the technique. Actually by trigonometric
rules, rotation by other angles can be realized in terms of rotation by 90 degree. This is explained
below in Table 1. If a point lies in 2nd or 3rd co-ordinate, rotation is achieved by assuming
that it lies in the 1st or 4th co-ordinate. Actual result is obtained by conditional sign change at
the output. This is explained with Figure 3. To rotate a point lies in the 2nd quadrant, (initial
angle θ lies between π/2 ≤ α<π) the point is assumed to be in 4th quadrant and rotation is
done as if the point lies in 4th quadrant. At the output stage, output is inverted to obtain
actual result.

00

1110

01

+π

−π

−π/2

+π/2

0

Figure 3: Quadrant transformation for rotation on circular path

Table 1: Quadrant transformation and sign change for CORDIC

Before Transformation After Transformation
θ[15]θ[14] Range Quadrant θ[15]θ[14] Quadrant Sign Change at O/P
00 0 ≤ θ<π/2 1st 00 1st no
01 π/2 ≤ θ<π 2nd 11 4th yes
10 −π ≤ θ<−π/2 3rd 00 1st yes
11 −π/2 ≤ θ < 0 4th 11 4th no

4

x = +ve

y = +ve

x = +ve

y = −ve

x = −ve

y = +ve

x = −ve

y = −ve

0

+π/2

+π

−π

−π/2

Figure 4: Vectoring Operation

3 Vectoring Mode
Another situation may arrive where a co-ordinate is given and we have to find the angle. This
situation is simply the opposite of the above mentioned Rotation mode. This is called the
Vectoring mode, In this mode, one of the co-ordinate is nullified and we get the angle between
them at the output. The general equations for this mode is described below.

xi = xi−1 + σiyi−12
i−1 (37)

zi = yi−1 − σixi−12
i−1 (38)

zi = zi−1 + σitan
−12i−1 (39)

Generally the co-ordinate y is nullified the final expressions are xf = Kf

√
x2 + y2 and zf =

tan−1(y/x). So at the output we get the magnitude and phase. This mode is very useful to
compute the absolute of (x,y) or to nullify one of the co-ordinate. The value of the constant
term is same as mentioned above. The equation of σ is different here and it is mentioned below.

σi =

{
1, if yi ≤ 0

−1, otherwise
(40)

The co-ordinates x and y, can be +ve or -ve and depending on their sign, the sign of the final
output and computed angle is needed to be modified accordingly at the output. This situation
is explained below with Figure 4 and Table 3.

3.1 Computation of Sine and Cosine

The general expression of the CORDIC algorithm can be expressed as

xi = kn(xi−1cosφi−1 − yi−1sinφi−1) (41)
yi = kn(yi−1cosφi−1 + xi−1sinφi−1) (42)
zi = zi−1 + σitan

−12i−1 (43)

5

Table 2: Sign change for vectoring operation

x[15]y[15] Rotation Sign Change (O/P)
00 clockwise no
01 anticlockwise no
10 anticlockwise yes
11 clockwise yes

In rotation mode, if the initial value of input y is set to zero and the initial value of input x is

set to
1

kn
then

x1 = cosφ0 (44)
y1 = sinφ0 (45)
z1 = zin + σitan

−120 (46)

In the second iteration

x2 = cosφ0cosφ1 − sinφ0sinφ1 = cos(φ0 + φ1) (47)
y2 = sinφ0sinφ1 + cosφ0sinφ1 = sin(φ0 + φ1) (48)
z2 = z1 + σitan

−121 (49)

This way The final outputs of CORDIC xf and yf holds the value coszin and sinzin respec-
tively.The initial angle is zin. The value σ is computed as per value of z.

4 Linear Mode
Rotation of the co-ordinates can also be done in linear path. Rotation on linear path is described
in Figure 5. Final equation of the co-ordinates can be obtained by the same way as it is done

x

y

θ

(x, y)
r

0

(x1, y1)
r1

φ0

Figure 5: Rotation on linear path

above. The final equations for the linear mode are

xi = xin (50)
yi = yi−1 + σixi−12

i−1 (51)
zi = zi−1 − σi2i−1 (52)

One of the benefit of the linear mode is that the scaling factor kn = 1. Thus error due to
scaling factor is eliminated. Two important operations can be performed in this mode which
are multiplication and division.

6

4.1 Multiplication

Multiplication is performed in rotation mode. The value of σ is determined by the same
equation as mentioned above. The CORDIC evaluates produces final result as

yf = yin + zin ∗ xin (53)

Initially yin is set to zero and yf holds the final result. Multiplication result is bound by the data
width of x,y and z. This is the disadvantage of this method. For 18 bit data-width,multiplication
result will also be limited by 18-bit.

4.2 Division

Division is performed in vector mode. The value of σ is determined by the same equation as
mentioned above for vectoring mode. The CORDIC evaluates produces final result as

zf = zin + yin/xin (54)

Initially Zin is set to zero and zf holds the division output. The major limitation of the division
operation is that the final result is bound to be fit in the data width of input operands. But on
the advantage side, CORDIC divider has low latency and consumes less hardware compared to
the other fast dividers. Accuracy is also is a concern where high accuracy is needed.

5 Hyperbolic Mode
Similar to circular and linear, rotation of co-ordinates can also be done along a hyperbola.
This is an extension of the CORDIC algorithm. Several more functions can be computed using
this type of rotation mechanism. The equations can be derived same way as in rotation mode.
Rotation on hyperbolic path is explained in the Figure 6. The general expressions for mode are

x

y

0

r1

r

φ0

(x, y)

(x1, y1)

Figure 6: Rotation on hyperbolic path

xi = xi−1 + σiyi−12
i−1 (55)

zi = yi−1 + σixi−12
i−1 (56)

zi = zi−1 − σitanh−12i−1 (57)

The operation in hyperbolic mode is slightly different from the other two modes. In hyperbolic
mode, computation starts from iteration 1 as the value tanh−120 = ∞. In hyperbolic mode
convergence is an issue. To make sure that output will converge, some iterations are repeated.
The repetition of the iterations are done by repeating iterations 4, 13, 40, ..., i, 3i + 1, The
scale factor in an iteration i is

kh(i) = (1− 2−2i)1/2 (58)

7

+ -

ph1

+/-
- +

+/-
+ -

+/-

rsh1

rsh1

+ -

ph1

+/-
- +

+/-
+ -

+/-

rsh15

rsh15

+ -

ph1

+/-
+-

+/-
+ -

+/-

Scale
Block

Scale
Block

+ -
+/-

- +
+/-

+ -
+/-

ph2

xin yin zin

xin[15]

zin[14]

zin[15]

rot/vec

rot/vec

rot/vec

rot/vec

xf yf zf

zro

z0

z1

z15

Figure 7: Parallel architecture of CORDIC

5.1 Square Root Computation

To compute square root hyperbolic mode of CORDIC is used. In hyperbolic co-ordinates, the
final equation of x and y in vectoring mode are

xf = kh
√
(x2 − y2) (59)

In the above equation,if initial value of x = a+ 1/4 and y = a− 1/4 then it converges to

xf = kh
√

(4.a.1/4) = kh.
√
a (60)

6 Implementation of CORDIC
Invention of CORDIC algorithm opens many scopes of optimization in implementation of digital
systems. CORDIC algorithm can compute several functions without any change in hardware.
Most direct application of CORDIC is CORDIC based calculator. Nowadays CORDIC is used
in many implementations to compute several functions. There are two types of architectures of
CORDIC, which are serial and parallel. Implementation of both the architectures are described
below.

6.1 Parallel Architecture

The parallel architecture is shown in Figure 7. The architecture is designed by considering
16-bit fixed point data width. The architecture supports both rotation and vector modes. In

8

Delay

Delay

Delay

rot/vec rot/vec

z[15]

y[15]

x[15]

z[14]

z[15]

x[15]

σ
1

0 0

1

Sub block : ph1 Sub block : ph2

Figure 8: Architecture of phase blocks

Table 3: Iteration wise CORDIC for computation of absolute of x and y

xi yi zi i σ

8 -2 45 0 1
9 2 18.4349 1 -1
9.5 -0.25 32.4712 2 1

9.5313 0.9375 25.3462 3 -1
9.5898 0.3418 28.9225 4 -1
9.6005 0.0421 30.7124 5 -1
9.6012 -0.1079 31.6076 6 1
9.6020 -0.0329 31.1600 7 1
9.6022 0.0046 30.9362 8 -1
9.6022 -0.0141 31.0481 9 1
9.6022 -0.0048 30.9921 10 1
9.6022 0 30.9641 11 1

the parallel architecture, each iteration corresponds to a stage. Each stage has 3 add/sub units
which does addition or subtraction depending on value of signal σ. The value of σ is computed
by the ph1 block which is shown Figure 8. When σ is 1, add/sub blocks performs subtraction.
Different angles for micro rotation are fed to the each stage. The rsh blocks are there for
shifting data to the right. These blocks performs wired shifting which is described in detail in
Combinational Curcuits post. For examples, rsh1 block shifts the data to the right by 1 bit.
The scale factor compensation is achieved by using a scale factor. The scale block divides the
output of the last stage by kn by constant multiplication technique. This block is also described
in Combinational Curcuits post. At the last, a inversion stage is added to invert the outputs of
the scale block conditionally. The control signal for the add/sub units at the inversion stage is
generated by the ph2 block which is shown in Figure 8.

6.2 Serial Architecture

The serial architecture is described in Figure 9. The serial architecture is similar to one stage
of parallel CORDIC architecture. The scaling and inversion stage is similar to the parallel
CORDIC. The architecture is of 16-bit. The different rotational angles are pre-stored in an
LUT. Total 16 angles are stored in that LUT and a 4-bit counter is used to fetch those angles.
The VRSH block is variable right shift block to shift the input operands. This block is described
in detail in the Combinational Curcuit post. The fdc block is a controlled register block which
stores a data when enable signal is asserted. The control signal add/sub is similar to the parallel
CORDIC. Total number of iterations required to evaluate a function depends on the data-width
and data precision.

9

VRSH
i

VRSH
i

+ -

+/-

- +

+/-

4-bit
counter

Angle
Decoder

- +

+/-

add/sub

Scalling and Inversion Stage (Similar to Parallel CORDIC)

xf yf zf

10 01 01

xin yin zin

Start

1

4
1616

fdc fdc fdc

16

Figure 9: Serial architecture of CORDIC

6.3 Example of CORDIC iteration

An example is given below to understand the evaluation of the final result through iterations.
Let’s take an example of computing absolute value of x and y. This operation can be done in
vectoring mode of circular co-ordinates. The iteration wise evaluation is given below in Table
3. Initially xin = 5, yin = 3, zin = 0 and thus σ = −1. The value of the scale factor (kn) is
1.64676. The final output (xf) is obtained by dividing 9.6022 by kn. So the absolute of x and
y is 5.8310 and angle between them is 30.9641.

7 Application
There exists numerous research works where CORDIC is used. Some of the major application
areas are mentioned below

• Most direct application of CORDIC is in making calculator where same hardware can be
used to calculate several functions.

• In implementations of many complex systems or algorithms CORDIC may be used to
evaluate arithmetic functions. Popular use of CORDIC is to find reciprocal of a number
or to evaluate division.

• The property,rotation of co-ordinates is used to generate transform domains such as FFT,
Wavelet, Curvelet, DCT etc.

• The CORDIC can find magnitude or absolute of two numbers easily in vectoring mode
in circular co-ordinates. This property is used in many applications like to matrix using
factorization QR decomposition.

10

• CORDIC can find sine or cosine of an angle by same hardware. This property is used in
many DSP applications.

11

