
1

Basics of Verilog HDL

In this tutorial, different programming styles in Verilog coding will be discussed. Various online

tutorials on programming syntax, operators, different commands, assignment strategies and other

important topics are already available. Readers can find the references useful for basics. In going

through the different tutorials, more on Verilog coding will be explored.

A Verilog code can be written in the following styles:

1. Dataflow style

2. Behavioral style

3. Structural style

4. Mixed style

Each of the programming styles is described below with realization of a simple 2:1 mux.

Dataflow style

In data flow style of modeling, logic blocks are realized by writing their Boolean expressions.

The basic 2:1 mux for 1-bit data width can be realized in this style as

module mux_df(

 input a,b,s,

 output y

);

wire sbar;

assign y = (a&sbar)|(s&b);

assign sbar = ~s;

endmodule

Behavioral style

In the behavioral style of modeling instead of writing Boolean expressions, the behavior of the

logic block is described. The same mux can be realized in this style of coding as

module mux_bh(

 input a,b,s,

 output y

);

reg y;

wire s;

always @(s or a or b)

begin

2

 if(s == 0)

 y = a;

 else

 y = b;

end

endmodule

Structural style

The structural style is a hierarchical design style in which a logic block is realized in terms of its

basic sub-blocks. A sub-block can be a logic gate or any complex logic block. In two ways it can

be described which are

1. Gate Level Modeling

2. Module Instantiation

Gate Level Modeling

module mux_gl(

 input a,b,s,

 output y

);

wire q1,q2,sbar;

not n1(sbar,s);

and a1(q1, sbar, a);

and a2(q2, s, b);

or o1(y, q1, q2);

endmodule

Module Instantiation

A 4:1 mux for 1-bit data is realized using basic 2:1 mux in this style. Basic block 2:1 mux can be

designed in any of the above mentioned styles.

module mux_4_1(

 input a1,a2,a3,a4,

 input [1:0]s,

 output y

);

wire t1,t2;

3

mux_df m1(a1,a2,s[0],t1);

mux_df m2(a3,a4,s[0],t2);

mux_df m3(t1,t2,s[1],y);

endmodule

Mixed style

In mixed style, one can mix up the design styles in their program. Consider the same 4:1 mux. In

this style one mux is design in gate level modeling, one mux is designed in data flow modeling

and the 2
nd

 stage mux is designed using behavioral modeling.

module mux_4_1_mix(

 input a1,a2,a3,a4,

 input [1:0] s,

 output y

);

reg y;

wire t1,t2;

mux_df m1(a1,a2,s[0],t1);

mux_gl m2(a3,a4,s[0],t2);

always @(s[1] or t1 or t2)

begin

 if(s[1] == 0)

 y = t1;

 else

 y = t2;

end

endmodule

A simple 2:1 mux can be designed in other ways also.

Using Conditional statement

module mux_cs(

 input a,b,s,

 output y

);

4

wire s;

assign y = (s == 0)? a : b;

endmodule

Using Case statement

module mux_case(

 input a,b,s,

 output y

);

reg y;

always @(s or a or b)

begin

 case(s)

 0 : y = a;

 1 : y = b;

 endcase

end

endmodule

It is observed in this tutorial that a logic block can be designed in various programming style. A

general question arises that which programming style is better to follow. For simpler logic blocks

any design style can be suitable. If only the system behavior is known then behavioral strategy

suits better. The behavioral style is time-saving because in that case, a designer need not know

what inside that logic block. But for a complete system when optimization is required at every

level of design, behavioral style failed to perform. On the other hand, hierarchical design style

gives a designer the flexibility to access every node of a design. Optimization and verification

can be performed easily.

In the upcoming tutorials, it will be assumed that the basic logic blocks are designed in data flow

or behavioral style. Complete system design will be carried out in structural modeling. Readers

are encouraged to use structural modeling in designing logic blocks.

5

