
Verilog:
Frequently
Asked
Questions

Shivakumar Chonnad
Needamangalam Balachander

Verilog:
Frequently
Asked
Questions

Language, Applications and
Extensions

Springer

eBook ISBN: 0-387-22899-3
Print ISBN: 0-387-22834-9

Print ©2004 Springer Science + Business Media, Inc.

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

©2004 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://www.ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

To our wives, Manjula Chonnad
and jayanthi Balachander

To our children, Akshata Chonnad,
Puja Balachander, and Manya Balachander

Contents

Dedication

Contributing Authors

Foreword

Preface

Acknowledgments

1

v

xvii

xix

xxi

xxvii

BASIC VERILOG 1

1.1 Assignments 1
1.1.1

1.1.2

1.1.3

1.1.4

What are the differences between continuous and procedural
assignments?
What are the differences between assignments in initial and
always constructs?
What are the differences between blocking and nonblocking
assignments?
How can I model a bi-directional net with assignments
influencing both source and destination?

1

2

3

4

viii Verilog FAQs : Language, Extensions and Applications

1.2
1.2.1
1.2.2

1.2.3
1.2.4
1.2.5

1.2.6

1.3
1.3.1

1.3.2
1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.4
1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

Tasks and Functions
What are the differences between a task and a function?
Are tasks and functions re-entrant, and how are they different
from static task and function calls? Illustrate with an
example
How can I override variables in an automatic task?
What are the restrictions of using automatic tasks?
How can I call a function like a task, that is, not have a return
value assigned to a variable?
What are the rules governing usage of a Verilog function?

Parameters
How can I override a module’s parameter values during
instantiation?
What are the rules governing parameter assignments?
How do I prevent selected parameters of a module from
being overridden during instantiation?
What are the differences between using ‘define, and using
either parameter or defparam for specifying variables?
What are the pros and cons of specifying the parameters using
the defparam construct vs. specifying during instantiation?
What is the difference between the specparam and parameter
constructs?
What are derived parameters? When are derived parameters
useful, and what are their limitations?

Ports
What are the different approaches of connecting ports in a
hierarchical design? What are the pros and cons of each?
Can there be full or partial no-connects to a multi-bit port of a
module during its instantiation?
What happens to the logic after synthesis, that is driving an
unconnected output port that is left open (that is, no-
connect) during its module instantiation?
What value is sampled by the logic from an input port that is
left open (that is, no-connect) during its module
instantiation?
How is the connectivity established in Verilog when
connecting wires of different widths?
Can I use a Verilog function to define the width of a multi-bit
port, wire, or reg type?

5
5

6
9

10

11
12

13

13
17

18

19

20

21

22

22

28

29

31

33

33

21

ix

2 RTL DESIGN

2.1
2.1.1

2.1.2
2.1.3

2.1.4

2.1.5

2.2
2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

2.3
2.3.1
2.3.2
2.3.3

2.3.4

2.3.5

2.4
2.4.1

2.4.2

Assignments
What logic is inferred when there are multiple assign
statements targeting the same wire? 35
What do conditional assignments get inferred into? 36
What is the logic that gets synthesized when conditional
operators in a single continuous assignment are nested? 36
What value is inferred when multiple procedural assignments
made to the same reg variable in an always block? 37
Why should a nonblocking assignment be used for sequential
logic, and what would happen if a blocking assignment were
used? Compare it with the same code in a combinatorial
block. 39

Tasks and Functions
What does the logic in a function get synthesized into? What
are the area and timing implications of calling functions in
RTL? 42
What are a few important considerations while writing a
Verilog function? 44
What does the logic in a task get synthesized into? Explain
with an example 48
What are the differences between using a task, and defining a
module for implementing reusable logic? 50
Can tasks and functions be declared external to the scope of
module-endmodule? 50

Storage Elements
Summary of RTL templates for different flip-flops types 51
Summary of RTL templates for different Latch types 55
What are the considerations to be taken choosing between
flop-flops vs. latches in a design? 59
Which one is better, asynchronous or synchronous reset for
the storage elements? 61
What logic gets synthesized when I use an integer instead of a
reg variable as a storage element? Is use of integer
recommended? 62

Flow-control Constructs
How do I choose between a case statement and a multi-way
if-else statement? 63
How do I avoid a priority encoder in an if-else tree? 64

35

35

42

51

63

x Verilog FAQs : Language, Extensions and Applications

2.4.3

2.4.4

2.4.5

2.4.6

2.4.7

2.4.8

What are the differences between if-else and the (“?:”)
conditional operator? 65
What is the importance of a default clause in a case
construct? 66
What is the difference between full_case and parallel_case
synthesis directive? 66
What is the difference in implementation with sequential and
combinatorial processes, when the final else clause in a multi-
way if-else construct is missing? 67
What is the difference in using (== or !=) vs. (=== or !==) in
decision making of a flow control construct in a synthesizable
code? 69
Explain the differences and advantages of casex and casez
over the case statement? 69

2.5 Finite State Machines
2.5.1

2.5.2

2.5.3

2.5.4

2.6 Memories
2.6.1
2.6.2

2.6.3

2.7 General Design Considerations
2.7.1
2.7.2
2.7.3

2.8 Multiple clock Design Considerations
2.8.1

2.8.2

What are the differences between synchronous and
asynchronous state machines? 71
Illustrate the differences between Mealy and Moore state
machines. 71
Illustrate the differences between binary encoding and one-
hot encoding mechanisms state machines. 73
Explain a reversed case statement, and how it can be useful to
infer a one-hot state machine? 74

Illustrate how a multi-dimensional array is implemented. 75
What are the considerations in instantiating technology-
specific memories? 78
What are the factors that dictate the choice between
synchronous and asynchronous memories? 79

What are some reusable coding practices for RTL Design? . 80
What are “snake” paths, and why should they be avoided? . 81
What are a few considerations while partitioning large
designs? 81

How can I reliably convey control information across clock
domains? 82
What is a safe strategy to transfer data of different bus-widths
and across different clock domains? 84

70

75

80

82

xi

2.8.3 What are a few considerations while using FIFOs for posted
writes or prefetched reads that influence the speed of the
design? 84

2.9 Common “Gotchas” in Synthesizable RTL
2.9.1

2.9.2
2.9.3

2.9.4

What will be synthesized of a module with only inputs and no
outputs? 86
Why do I see latches in my synthesized logic? 86
What are “combinatorial timing loops”? Why should they be
avoided? 86
How does the sensitivity list of a combinatorial always block
affect pre- and post- synthesis simulation? Is this still an issue
lately? 87

2.10 Coding techniques for Area Minimization 89
2.10.1

2.10.2

2.10.3

2.10.4
2.10.5

2.10.6

How do the `ifdef, `ifndef, `elsif, `endif constructs aid in
minimizing area? 89
What is “constant propagation”? How can I use constant
propagation to minimize area? 90
What happens to the bits of a reg which are declared, but not
assigned or used? 92
How does the generate construct help in optimal area? 93
What is the difference between using `ifdef and generate for
the purpose of area minimization? 96
Can the generate construct be nested? 97

2.11 Coding for Better Static Timing Optimization 97
2.11.1

2.11.2

2.11.3

2.11.4

What is a critical path in a design? What is the importance of
understanding the critical path? 97
How does proper partitioning of design help in achieving
static timing? 98
What does it mean to “retime” logic between registers? How
does it effect functionality? 100
Why is one-hot encoding preferred for FSMs designed for
high-speed designs? 100

2.12 Design for Testability (DFT) considerations 100
What are the main factors that affect testability of a
design? 101
My chip has on-chip tri-state buses. What are the testability
implications, and how do I take care of it? 101

2.12.1

2.12.2

85

xii Verilog FAQs : Language, Extensions and Applications

2.12.3

2.12.4

2.12.5

2.12.6

2.12.7

Some Flip-Flops in my chip have their resets driven by other
Flip-Flops within the chip. How will this affect the testability,
and what’s the workaround? 102
I have derived clocks in my chip. What are the testability
implications, and what is the workaround for it? 102
My chip is power sensitive, and, hence, there are gated clocks
in it. What are its testability implications and
workaround? 103
What is the implication of a combinatorial feedback loops in
design testability? 103
How does the presence of latches affect the testability, and
what’s the workaround? 104

2.13 Power Reduction considerations
2.13.1

2.13.2

2.13.3

2.13.4

2.13.5

2.13.6

2.13.7

2.13.8

2.13.9

2.13.10

3 VERIFICATION

3.1 Messaging
3.1.1

3.1.2

What are the various methods to contain power during RTL
coding? 104
Illustrate how the switching of data input to the Flip-Flops
helps in power reduction. 105
What is the drawback of using the enable flip-flop to reduce
the power consumption? 106
Illustrate an example of clock gating to help in reduction of
power. 107
What are the side effects of latched clock gating logic, and
how is it fixed? 109
What are a few other techniques of power saving that can be
achieved during the RTL design stage? 111
What are a few system level techniques, apart from RTL, that
can influence in the reduction of power for the chip? 112
What are a few power reduction techniques that can be
achieved through static timing? 113
What are a few power reduction techniques that can be
implemented during the backend analysis? 113
What are a few power reduction techniques that can be
implemented during board design? 114

What are a few considerations while implementing messaging
in a model? 116
What are the different kinds of message severity levels? 117

104

115

115

xiii

3.1.3 Illustrate an example of how message levels are implemented
in a BFM . 118

3.2 Behavioral Functional Models (BFMs) 120
3.2.1
3.2.2

3.2.3
3.2.4

What is a Bus Functional Model (BFM)? 120
What are a few considerations that go into designing a
BFM? 121
What is a typical flow in designing a BFM? 125
How can BFMs be used to inject intentional errors in the
stimulus? 127

3.3 Bus Monitors 128
3.3.1
3.3.2
3.3.3

What are the main responsibilities of a bus monitor? 128
Illustrate with an example, the design of a bus monitor. 130
What other considerations go into designing a Monitor? 138

3.4 Random stimulus generation 138
3.4.1

3.4.2

3.4.3

3.4.4

3.4.5

3.4.6

3.4.7

Explain with an example, how do I generate random numbers
inVerilog? 139
Explain with an example, how do I generate random
stimulus? 140
How do I generate constrained random stimulus using
Verilog? 144
How can I be sure that the constrained random stimulus has
covered all the values in the range without repetition in a
cyclic random fashion? Illustrate this with an example 146
How can I change the sequence of constrained random
stimulus? Illustrate this with an example 150
What is weighted random stimulus? Illustrate this with an
example 151
What metrics help in defining the completeness of the random
simulations? 158

3.5 Stimulus generation 159
3.5.1 What are some stimulus generation techniques when the

stimulus is not reproducible using BFMs? Illustrate these with
specific examples using Verilog 160

3.6 Gate level simulations 164
3.6.1

3.6.2

What is SDF back-annotation, and how is it implemented in
Verilog testbench? 164
What are a few pre-requisites before running gate level
simulations? 165

xiv Verilog FAQs : Language, Extensions and Applications

3.6.3

3.6.4

What is the difference between unit delay and full timing
simulations? 166
My gate simulation is not passing, and some tests hang. What
are the key points to look for? 168

4 MISCELLANEOUS 171

4.1.1

4.1.2

4.1.3

4.1.4
4.1.5

4.1.6

4.1.7

4.1.8

4.1.9

4.1.10

4.1.11
4.1.12

4.1.13

4.1.14
4.1.15

4.1.16
4.1.17

4.1.18
4.1.19
4.1.20

4.1.21

What is the difference between a vectored and a scalared
net? 171
What is the difference between assign-deassign and force-
release? 172
What is the order of precedence when both assign-deassign
and force-release are used on the same variable? 172

How can I abort execution of a task or a block of code? 173
What are the differences between the looping constructs
forever, repeat, while, for, and do-while? 175
What is the difference between based and unbased
numbers? 178

What does it mean to “short-circuit” the evaluation of an
expression? 178

What is the difference between the logical (= =) and the case
(===) equality operators? 179

What are the differences and similarities between the logical
(<<, >>) and the arithmetic (<<<, >>>) shift operators? 180

What is the difference between a constant part-select and an
indexed part-select of a vectored net? 181
Illustrate how memory indirection is achieved in Verilog. 182
What is the logic synthesized when a non-constant is used as
an index in a bit-select? 183
How are string operands stored as constant numbers in a reg
variable? 184
How can I typecast an expression to control its sign? 185
What are the pros and cons of using hierarchical names to
refer to Verilog objects? 185
Does Verilog support an operator? 186
What is the main limitation of fork-join in Verilog, and how
is this overcome in SystemVerilog? 186
Can I return from a function without having it disabled? 188
What is strobing? How do I selectively strobe a net? 189
Summarize the main differences between $strobe and
$monitor. 191
How can I selectively enable or disable monitoring? 191

xv

4.1.22

4.1.23

How can I specify arguments on the Verilog simulator’s
command line? 191
Can the `define be used for text substitution through
variable instead of literal substitution only? 193

5 COMMON MISTAKES 195

5.1 Some common errors that are not detected at compile-time 195
5.1.1

5.1.2

5.1.3

5.1.4

5.1.5
5.1.6

5.1.7

5.1.8

5.1.9

5.1.10

5.1.11

5.1.12

5.1.13

5.1.14
5.1.15

5.1.16

What are some ways a race condition can get created, and
how can these race conditions be avoided? 195
Illustrate how the infinite loops get created in the looping
constructs like forever, while and for. 197
Illustrate the side-effects of specifying a function without a
range. 198
Illustrate how the errors of passing arguments to a function in
incorrect order is eliminated in SystemVerilog. 199
Using tri-state logic inside a chip 200
Illustrate the side effects of not having a final else clause in
an if-else construct. 200
What is the side effect of not having a default clause in a case
construct 201
Illustrate example of how unintentional deadlocked situations
can happen during simulation. 202
Having a programmed loop that does not move simulation-
time 203
Illustrate the side effect of leaving an input port unconnected
that influences a logic to an output port. 204
Illustrate the side effect of not connecting all the ports during
instantiation 205
Illustrate the side effect of forgetting to increase the width of
state registers as more states get added in a state machine. 207
Illustrate the side effect of an implicit 1 bit wire declaration of
a multi-bit port during instantiation 209
Same variable used in two loops running simultaneously 210
Illustrate the side effects of multiple processes writing to the
same variable. 213
Illustrate the side effect of specifying delays in
assignment’s. 213

xvi Verilog FAQs : Language, Extensions and Applications

6 VERILOG DURING SIMULATION REGRESSIONS 215

6.1.1

6.1.2

Illustrate a few important considerations on simulation
regressions, and how Verilog can be useful for achieving the
same. 216
What coding constructs of Verilog can be used during the
various stages of designing a regression environment for
simulations? 227

References

Index

233

235

Contributing Authors

Shivakumar Chonnad is a Staff Engineer at Synopsys Inc. He has been
working in the industry for over 15 years, covering the various stages of
ASIC Design & Verification, from specification to hardware validation.
Shiv currently deals with IP based design and Verification. Shiv has a
Bachelor’s degree in Electronics and Communications Engineering from the
Karnatak University, India. Shiv’s areas of professional interest include
Design and Verification of IPs.

Needamangalam Balachander is a CAE Manager at Synopsys Inc. He has
been working in the industry for over 15 years, covering the areas of
system/board-level design & diagnostics, ASIC Design and Verification, and
currently deals with mixed-signal IP design and support issues. Bala has a
Bachelor’s degree in Electronics and Communications Engineering from the
Indian Institute of Science in Bangalore, India. He also holds a B.S degree in
Physics. Bala’s areas of professional interest include Formal Verification
methodologies, timing abstractions of mixed-signal IPs, and ATPG issues in
mixed-signal IPs.

Foreword

The Verilog Hardware Description Language was first introduced in
1984. Over the 20 year history of Verilog, every Verilog engineer has
developed his own personal “bag of tricks” for coding with Verilog. These
tricks enable modeling or verifying designs more easily and more accurately.
Developing this bag of tricks is often based on years of trial and error.
Through experience, engineers learn that one specific coding style works
best in some circumstances, while in another situation, a different coding
style is best.

As with any high-level language, Verilog often provides engineers
several ways to accomplish a specific task. Wouldn’t it be wonderful if an
engineer first learning Verilog could start with another engineer’s bag of
tricks, without having to go through years of trial and error to decide which
style is best for which circumstance? That is where this book becomes an
invaluable resource. The book presents dozens of Verilog tricks of the trade
on how to best use the Verilog HDL for modeling designs at various level of
abstraction, and for writing test benches to verify designs. The book not only
shows the correct ways of using Verilog for different situations, it also
presents alternate styles, and discusses the pros and cons of these styles.

When I first received a draft of this book to look over, I expected to read
a book that would only be of interest to the beginning Verilog user. I quickly
discovered that the tricks of the trade presented in this book are not just for
the novice. Even engineers with many years of experience with Verilog will
likely find insights on using Verilog, and additional tidbits that they can add

xx Verilog FAQs : Language, Extensions and Applications

to their own bag of tricks. Both novice and experienced Verilog engineers
will also benefit from the many references in the book on using the newest
generation of Verilog, SystemVerilog.

The authors of this book have done a great job of making it easier for all
engineers to become masters of Verilog.

Stuart Sutherland
Verilog, System Verilog and PLI Consultant

Sutherland HDL, Inc.
www.sutherland-hdl.com

Preface

Verilog has been a popular Hardware Description Language (HDL) since
the mid 80’s. Its popularity has increased with the addition of many new
enhancements into it. Some key reasons for the adoption of Verilog as the
language of choice for designers are the simplicity of the language usage and
the availability of high-performance simulators from multiple EDA vendors,
which results in reduced execution time for large regression simulations.

Like any other programming language, experienced users of Verilog are
fully aware of the language’s capabilities, and have amassed a “bag of
tricks”, gathered in the course of execution of multiple projects. Beginners to
the language are often consumed by questions relating to the implications of
coding styles on synthesis, static timing, power etc. It is important to factor
in these functional and environmental implications as part of the RTL coding
stage of the ASIC design process. Not doing so could result in expensive
iteration cycles.

This book is for digital designers who use Verilog as the HDL for their
design and verification. This book will also be useful to those who have
learned Verilog, and would like to use the various language-constructs, but
have questions on the capabilities of these constructs. Although the same
functionality can be implemented by coding in many different styles, some
of the questions that arise during coding would be:

Is this the right construct to infer the required logic?
Is this the best way to implement the required functionality?
Does this approach help in meeting the design constraint?

xxii

By reading this book, the user is presented with:

Multiple coding styles that are appropriate to specific design constraints
such as area, timing, power, etc.
Examples of logic inferred for different constructs or coding styles
Illustrations of commonly encountered problems, so that the user can
incorporate the style or approach that helps eliminate the problem aprior
Implications of particular approaches or styles on design constraints.

We assume that the user has a very basic familiarity with the Verilog
HDL. Readers who have a basic or intermediate level of expertise in the
language can also refer to this book to know more implementation details of
using the HDL in the different contexts of design, verification and
implications to synthesis, static timing, etc.

In this book, the authors have delved into many different front end topics
of RTL such as synthesis, area, power, testability, etc. Most issues typically
encountered during these stages have been presented in the form of FAQs.
Whenever there is more than one approach to meet a requirement, the pros
and cons of each approach are presented.

We hope the book will also interest students who are learning Verilog for
the first time. We believe that this book provides answers to many questions
that normally pop up as students begin to use the language.

This book deals only with the front end issues, i.e., until completion of
functional verification and synthesis with estimated wiring information. The
book does not discuss any back-end issues like placement, floor-planning, or
routing. The back-end processes are highly customized to the tools that
implement them. Wherever appropriate, the implications of the coding style
that would have an effect on the back-end steps are illustrated. This helps
avoid expensive iterations in revisiting the golden code, in order to eliminate
these back-end gotchas.

This book does not aim to teach the Verilog language for a novice user.
Instead, we endeavour to address the various issues that typically arise in
Verilog based chip design projects. Users who wish to learn Verilog from
scratch may also refer to the Verilog Language Reference Manual (LRM), or
some of the excellent books already available like “The Verilog Hardware
Description Language” by Thomas & Moorby, and “SystemVerilog for
Design” by Suart Sutherland, et al. The details of the syntax and the
constructs, etc. are not explained within the book, and readers can refer to

xxiii

the LRM for this. In case of any contradiction of the contents in this book
with the LRM, the content in the LRM is the final authority.

Throughout the book, we have tried to use simple examples that illustrate
the point that is being made regarding the capability of the language. In
certain examples where the illustrated RTL might not have been the most
optimal way to code, we have deliberately illustrated it sub-optimally, to
show what functionality or logic gets inferred out of that style of code. These
simple working examples can be extrapolated and used in larger designs. A
few times, only a snippet of the full RTL is presented, without the obligatory
declarations (such as module, endmodule, input, output) etc. These are
assumed predefined by the users. Wherever appropriate, we have also
included simplified schematics of the outcome of the synthesized results.

We have verified every RTL example with a simulator and a synthesis
tool. In order to illustrate some of the capabilities or the limitations in the
language, we have coded some RTL examples in particular styles, or using
particular constructs. For the most part however, we have coded RTL
examples in the most timing and area optimal approach.

Although this book does not provide the answers to all the possible
questions that can arise, we hope it will address the most commonly
encountered problems. We believe that this book will help readers make
more informed choices between approaches in achieving functionality and
constraints in their VLSI projects. Based on the feedbacks we receive, and
more findings of interesting issues, we hope to keep this as an ongoing
activity of incorporating more FAQs and their answers in the future editions.

This book is unique, because it addresses complex language issues, along
with guidelines to address the coding, timing and synthesis issues, reliability
of designs, and verification in the form of FAQs. It captures many scenarios
and issues that have been encountered while dealing with complex pieces of
IP during various stages of the project cycle. It also addresses the three
versions of Verilog that current users must contend with:

Verilog ‘95
Verilog 2001
SystemVerilog 3.1a

Wherever applicable, we have also compared the coding semantics
between the different Verilog versions from Verilog-95 to SystemVerilog.

xxiv

The general organization of these topics have been categorized into different
chapters as follows:

Chapter 1 : Basic Verilog discusses a few important constructs of
Verilog and comparisons of what their implications mean in a Verilog based
environment.

Chapter 2 : RTL Design discusses the various RTL design and
synthesis related FAQs. This chapter will be of real interest to the RTL
designers as it discusses the comparison of different coding constructs and
styles. The chapter also discusses issues seen during design for area, timing,
testability and power.

Chapter 3 : Verification emphasizes using Verilog constructs for
Verification. The various issues and considerations for design of Bus
Functional Model’s and Bus Monitors are discussed in this chapter. This
chapter will be of special interest to readers with verification responsibilities.
It also discusses the various mechanisms of random stimulus generation and
examples of the different mechanisms.

Chapter 4 : Miscellaneous has all the FAQs that do not explicitly fall in
any of the above chapters of RTL and Verification. It discusses the subtle
and interesting scenarios of using Verilog at a system level.

Chapter 5 : Common Mistakes illustrates most of the commonly made
mistakes in the use of Verilog for design or verification. The chapter
discusses how the functional issues go undetected, even though it goes
through the compile stage without any errors. Any workaround’s to prevent
or detect these mistakes have also been illustrated appropriately.

Chapter 6 : Verilog during Simulation Regressions illustrates the
different requirements seen during simulation regression, and how different
constructs of Verilog can be incorporated within the testbench that will help
during regressions.

Verilog is a registered trademark of Cadence Design Systems. Since the
above chapters have been categorized to address the different topics like
design and verification separately, some readers may find it suitable to
directly begin with these chapters. The authors, however, recommend
reading from Chapter 1 onwards until the end, to understand different issues
presented through out the design cycle.

Also, the Table of Contents consists directly of the FAQs themselves.
Therefore, by simply browsing through the Table of Contents, readers can
determine if their particular questions or topics have been dealt with in the
book.

xxv

Acknowledgments

This book would not have been possible without the help and support of
the management of Synopsys Inc. Access to Synopsys’ tools has been
instrumental in verifying the concepts and examples in this book.

We have been extremely fortunate that this book was reviewed by Stuart
Sutherland of Sutherland HDL Inc. His detailed review of the manuscript
provided expert confirmation of our understanding of the Verilog language
and the new System Verilog extensions to Verilog.

We gratefully acknowledge the following people who despite their work
schedules, reviewed the drafts of this book throughout its development and
providing valuable feedback and suggestions.

Warren Savage, Phil Dworsky, Arulmani Krishnan, Vijay
Coimbatore, Kiran Kavoori, Haidar Ahmad, Sourabh Tandon,
Manickam Kandaswamy, Bill Rogers, Veeresh Hullatti

Finally, we would like to express our gratitude to Michael Hackett, Carl
Harris and the staff of Kluwer Academic Publishers, for their
encouragement and support throughout the development of this book.

Chapter 1

BASIC VERILOG

INTRODUCTION

This chapter addresses frequently asked questions on the basics of the
Verilog hardware description language. This chapter deals with FAQs on
Verilog assignments, tasks, functions, parameters, and ports. These
constructs form a large section of the Verilog code and interconnection in
designs.

1.1 Assignments

The following section discusses the different kinds of assignments that
are possible in Verilog, and what their features are.

1.1.1 What are the differences between continuous and procedural
assignments?

The following table captures the differences between continuous and
procedural assignments:

2 Basic Verilog

1.1.2 What are the differences between assignments in initial and
always constructs?

While both initial and always constructs are procedural assignments,
they differ in the following ways:

Basic Verilog 3

1.1.3 What are the differences between blocking and nonblocking
assignments?

While both blocking and nonblocking assignments are procedural
assignments, they differ in behaviour with respect to simulation and logic
synthesis as follows:

4 Basic Verilog

1.1.4 How can I model a bi-directional net with assignments
influencing both source and destination?

The assign statement constitutes a continuous assignment. The changes
on the RHS of the statement immediately reflect on the LHS net. However,
any changes on the LHS don't get reflected on the RHS. For example, in the
following statement, changes to the rhs net will update the lhs net, but not
vice versa.

System Verilog has introduced a keyword alias, which can be used only
on nets to have a two-way assignment. For example, in the following code,
any changes to the rhs is reflected to the lhs , and vice versa.

Basic Verilog 5

Had the above alias command been assign, the outputs of the above
display outputs would be as follows:

However, with the alias command as it is, the outputs are as follows:

In the above example, any change to either side of the net gets reflected
on the other side.

1.2 Tasks and Functions

This section discusses the different FAQs on task and function in
Verilog. The section also discusses a few advancements on these constructs
in System Verilog.

1.2.1 What are the differences between a task and a function?

Both tasks and functions in Verilog help in executing common
procedures from different places in a module. They help in writing cleaner
and maintainable code, by avoiding replication at different places in a
module. Essentially, functions and tasks provide a “subroutine” mechanism
of reusing the same section of code at different places in a module. This
allows for easier maintenance of the code.

However, the tasks and functions differ in the following aspects:

6 Basic Verilog

1.2.2 Are tasks and functions re-entrant, and how are they different
from static task and function calls? Illustrate with an
example.

In Verilog-95, tasks and functions were not re-entrant. From Verilog
version 2001 onwards, the tasks and functions are reentrant. The reentrant
tasks have a keyword automatic between the keyword task and the name of
the task. The presence of the keyword automatic replicates and allocates the
variables within a task dynamically for each task entry during concurrent
task calls, i.e., the values don’t get overwritten for each task call. Without
the keyword, the variables are allocated statically, which means these
variables are shared across different task calls, and can hence get overwritten
by each task call.

The following example illustrates the effect of the keyword automatic
for re-entrant tasks. This is a non-synthesizable code for the purpose of
illustration only.

Basic Verilog 7

In the above example, my_value is a local variable in the task
modify_value. Whenever this task is called, the input in_value is
assigned to the local variable after 5 simulation timeunits. Within the initial-
begin, there is a fork-join, which launches two parallel processes. One starts
after simulation timeunit #1, and other after #2. The first process assigns a
value of 2 to the output of the task, and the second one assigns a value of 3
to the output of the task. Running the simulation with the above code, but
without the automatic keyword, provides the following display:

The sequence of events without the keyword automatic is as follows:

8 Basic Verilog

1. The launch of the two processes from the fork-join happens from time 0.
2. The first process calls modify_value after #1, and the local variable
my_value is assigned the value 2. This happens at t=1.

3. The second process calls modify_value after #2 and the local variable
my_value is assigned the value 3. This happens at t=2. Note that the
earlier value of 2 assigned to the local variable my_value is now
overwritten with the value 3.

4. After 4 more time units i.e., at t = 1+5=6, the display of the first task call
becomes active. Since the latest value is now “3”, based on the previous
step, the value of “3” is displayed for my_value, instead of what was
passed as “2”.

5. Similarly, for the second process i.e., 2+5=7, the display of the second
task call becomes active. Since the latest value is still “3”, the value of
“3” is displayed for my_value here too.

The critical replacement happened in step 3 above, wherein the launch of
the process actually overwrote the value of the first process before its
turn to display. This occurred because without the automatic keyword, the
variables within the task were static, and shared by all calls to the task.

Now, with the keyword automatic between the task and task name, the
following is the output:

Following the same steps as above, this time, due to the presence of the
keyword automatic, the unique values of the variables are preserved in each
call, and not overwritten by the subsequent task calls before the variable is
being used.

The same explanation holds true for recursive function calls where a
function calls itsef, with the placement of keyword automatic between
function and the function name.

Note that the keyword automatic has influence only within the current
hierarchy of the concurrent task calls. The same task called within separate
module hierarchy doesn’t overlap, and hence the need for automatic
construct doesn’t exist for that scenario.

Basic Verilog

The following table summarizes the differences between a reentrant task
from a static task call:

1.2.3 How can I override variables in an automatic task?

By default, all variables in a module are static, i.e., these variables will
be replicated for all instances of a module. However, in the case of task and
function, either the task/function itself or the variables within them can be
defined as static or automatic. The following explains the inferences
through different combinations of the task/function and/or its variables,
declared either as static or automatic:

No automatic definition of task/function or its variables

This is the Verilog-1995 format, wherein the task/function and its
variables were implicitly static. The variables are allocated only once.
Without the mention of the automatic keyword, multiple calls to
task/function will override their variables.

9

1.

10 Basic Verilog

static task/function definition

System Verilog introduced the keyword static. When a task/function is
explicitly defined as static, then its variables are allocated only once, and can
be overridden. This scenario is exactly the same scenario as before.

automatic task/function definition

From Verilog-2001 onwards, and included within SystemVerilog, when
the task/function is declared as automatic, its variables are also implicitly
automatic. Hence, during multiple calls of the task/function, the variables
are allocated each time and replicated without any overwrites.

static task/function and automatic variables

SystemVerilog also allows the use of automatic variables in a static
task/function. Those without any changes to automatic variables will
remain implicitly static. This will be useful in scenarios wherein the implicit
static variables need to be initialised before the task call, and the automatic
variables can be allocated each time.

automatic task/function and static variables

SystemVerilog also allows the use of static variables in an automatic
task/function. Those without any changes to static variables will remain
implicitly automatic. This will be useful in scenarios wherein the static
variables need to be updated for each call, whereas the rest can be allocated
each time.

1.2.4 What are the restrictions of using automatic tasks?

The following are the restrictions of using automatic tasks:

Only blocking assignments can be used on automatic variables. Refer to
the earlier FAQ 1.2.2 for an example on this.

The variables in an automatic task shall not be referenced by procedural
continuous assignments or procedural force statements. In the following
code, the variable my_value in the task cannot be referenced by an
assign statement.

2.

3.

4.

5.

Basic Verilog 11

They shall not be traced by system calls like $monitor and $dumpvars
as illustrated in the above example.

1.2.5 How can I call a function like a task, that is, not have a
return value assigned to a variable?

Until Verilog 2001, any function call must return a value to the type reg,
integer, real, time or realtime and the code calling the function must receive
the return value. For example, the following is a syntax error:

The line in the above example is a syntax error, since the call of
my_funct does not have a destination. Only a task can be called without a
destination value.

SystemVerilog has introduced a construct void to facilitate a voided
function call, that is, there is no destination for the function call. This would
make a function call similar to a task call. With System Verilog, functions
can also have output and inout arguments. The following example illustrates
a voided function call:

12 Basic Verilog

The above example displays the result of int_result = 7. Some key
observations in the above example are:

The assignment to the function my_func was not required, since its
return value is void.
The 32 bit return range between the keyword function and my_func
was also not required, since it is now a void return.
The call of the function my_func within the initial-begin-end does not
require a destination, since the return has been voided.
Some other intermediate variable like int_result declared in the
above example at the scope of that module can still be modified within
the voided function.
SystemVerilog also allows functions with a return to be called as a task
by casting the function call to void. For example:

1.2.6 What are the rules governing usage of a Verilog function?

The following rules govern the usage of a Verilog function construct:

A function cannot advance simulation-time, using constructs like #, @.
etc.
A function shall not have nonblocking assignments.
A function without a range defaults to a one bit reg for the return value.

Basic Verilog 13

It is illegal to declare another object with the same name as the function
in the scope where the function is declared.

1.3 Parameters

The following section discusses a few questions about the usage of
parameters, pros and cons of the different approaches and what’s new in
System Verilog regarding parameters.

1.3.1 How can I override a module’s parameter values during
instantiation?

If a Verilog module uses parameters, there are two ways to override its
values. Note that only parameters can be overridden. The localparam and
specparam parameters cannot be overridden.

1.3.1.1 During instantiation

In this method, the new values are assigned inline during module
instantiation. There are two ways to override during instantiation.

1.3.1.1.1 Assignment by ordered list

In this method, the order in which the parameters are assigned follow the
order in which they are declared within the module. For example, the
module parameter_list contains two parameters, that is, width and
depth, that have been assigned default values within the module. It is
instantiated in the following module, example_parameter_list, with
examples of these parameters overridden with different values in different
instantiations.

14 Basic Verilog

The same example above can be represented in the Verilog 2001 in the
following format, in which the parameter declarations between the module
and input/output declaration are now declared before the module port list.

The restriction of using the above method is:

The parameter override values have to be contiguous, that is, any
parameter cannot be skipped during override. For example, in the above
code with U2 instantiation, the parameter width and depth cannot be
skipped while trying to override width and num_buses only.

Basic Verilog 15

Two methods to overcome this restriction are:

Precede the order of declaring the parameters within the module with the
ones that will change, placing the subset that doesn’t change later in the
order. For example, in the above code with U0 and U1 instantiations, the
num_buses was not required to be changed, and was last in the
priority. The default value of 4, assigned to it within the module, will
hold true in these two instantiations.

Assign values to ALL the parameters, including the ones that don’t need
to be changed. In instantiation U2, although only the num_buses
parameter needed to be changed, but the width and depth
parameter’s still required to be assigned with the same default value as
in the module definition.

Assignment by name

This is a new feature, available from Verilog-2001 onwards. This is a
better approach of overriding the module parameter by which the parameters
are overridden by explicitly specifying the parameter name and its
overriding value. This way, the parameter value is linked to its name, and
not position of declaration.

Using the same module parameter_list as defined above, the
following example shows the same parameter overriding, this time
specifying by name.

1.3.1.1.2

16 Basic Verilog

Note that explicit parameter names were followed by their overriding
values in the parenthesis. In the case of U2, just specifying the depth was
sufficient, without having to specify anything for width parameter.

1.3.1.2 Using defparam

In this method, the parameter within a module is accessed by its
hierarchical name from anywhere within the scope of the hierarchy. In the
following example, the lower level module parameter_list gets
instantiated in the example_defparam module. But the values of width
and depth are overridden using the defparam construct.

Basic Verilog 17

The following bullet items summarize the advantages of using the
defparam approach:

The ordered sequence need not be maintained in overriding the
parameter values.
A specific parameter can be overridden rather than re-specifying all the
parameters prior to the one that’s being overridden.
Can help with code maintenance by grouping all the defparam’s
collectively in a single place, which can be compiled with the rest of the
code.

Parameter redefinition at instantiation is the recommended style by most
expert Verilog users. There are several reasons to avoid using defparam for
parameter redefinition. Some of the reasons are:

The defparam statements if not collectively present in one place,
can be buried in any module, anywhere in the design hierarchy,
making code difficult to maintain or reuse (a form of spaghetti
code, which should always be avoided).
Since the defparam statements can be buried anywhere in the
hierarchy, they can prevent the Verilog language compilers from
being able to do true independent compilation of the modules.
Since multiple defparam statements can be made to the same
parameter instance, the final value of the parameter in this
situation can (and probably will be) different with different tools.
The defparam statements are not supported in the official IEEE
1364.1-2002 synthesis subset for Verilog
The IEEE 1364 standards committee is considering a proposal to
deprecate defparam in the next version of the Verilog standard,
making the defparam an obsolete construct.

1.

2.

3.

4.

5.

1.3.2 What are the rules governing parameter assignments?

The rules governing the parameter assignments are as follows:

The parameter override at instantiation can be done either by specifying
an ordered list or by name, but not a mix of both. For example, the
following is an incorrect way of specifying both width and depth.

18 Basic Verilog

While assigning the parameter during instantiation, once a parameter
has been assigned a value, there cannot be another assignment to the
same parameter. For example, specifying the width parameter twice
within the same instantiation is illegal.

If a parameter is assigned both by a defparam and in the module’s
instantiation, the defparam’s assignment takes precedence. In the
following example, the width parameter is instantiated with value 128,
but a defparam to the same parameter with the value 64 also follows it,
then the defparam gets precedence, and width will finally have the
value 64.

1.3.3 How do I prevent selected parameters of a module from being
overridden during instantiation?

If a particular parameter within a module should be prevented from
being overridden, then it should be declared using the localparam construct,
rather than the parameter construct. The localparam construct has been
introduced from Verilog-2001. Note that a localparam variable is fully
identical to being defined as a parameter, too. In the following example, the
localparam construct is used to specify num_bits, and hence trying to
override it directly gives an error message.

Basic Verilog 19

Note, however, that, since the width and depth are specified using the
parameter construct, they can be overridden during instantiation or using
defparam, and hence will indirectly override the num_bits values.

In general, localparam constructs are useful in defining new and
localized identifiers whose values are derived from regular parameters.

1.3.4 What are the differences between using `define, and using
either parameter or defparam for specifying variables?

Both ̀ define and parameter constructs can be used to specify constants
in the design. For example, the width parameter can be specified either as
a `define or parameter, as:

However, the following are a few differences in using the two constructs:

20 Basic Verilog

1.3.5 What are the pros and cons of specifying the parameters
using the defparam construct vs. specifying during
instantiation?

The advantages of specifying parameters during instantiation method are:

All the values to all the parameters don’t need to be specified. Only
those parameters that are assigned the new values need to be specified.
The unspecified parameters will retain their default values specified
within its module definition.

The order of specifying the parameter is not relevant anymore, since the
parameters are directly specified and linked by their name.

The disadvantage of specifying parameter during instantiation are:

This has a lower precedence when compared to assigning using
defparam.

The advantages of specifying parameter assignments using defparam
are:

This method always has precedence over specifying parameters during
instantiation.

All the parameter value override assignments can be grouped inside one
module and together in one place, typically in the top-level testbench
itself.

When multiple defparams for a single parameter are specified, the
parameter takes the value of the last defparam statement encountered in
the source if, and only if, the multiple defparam’s are in the same file. If
there are defparam’s in different files that override the same parameter,
the final value of the parameter is indeterminate.

The disadvantages of specifying parameter assignments using defparam
are:

The parameter is typically specified by the scope of the hierarchies
underneath which it exists. If a particular module gets ungrouped in its
hierarchy, [sometimes necessary during synthesis], then the scope to
specify the parameter is lost, and is unspecified.

Basic Verilog 21

For example, if a module is instantiated in a simulation testbench, and its
internal parameters are then overridden using hierarchical defparam
constructs (For example, defparam U1.U_fifo.width = 32;).
Later, when this module is synthesized, the internal hierarchy within U1
may no longer exist in the gate-level netlist, depending upon the
synthesis strategy chosen. Therefore post-synthesis simulation will fail
on the hierarchical defparam override.

See the earlier FAQ 1.3.1.2 for additional disadvantages of defparam and
why this construct should not be used.

1.3.6 What is the difference between the specparam and parameter
constructs?

The specparam is a special kind of parameter that is intended to specify
only timing and the delay values. The key differences in using the
specparam and the parameter constructs are:

1.3.7 What are derived parameters? When are derived parameters
useful, and what are their limitations?

When one or more parameters are used to define another parameter, then
the result is a derived parameter. The derived parameter can be either of the
type parameter or localparam. In the following example, two parameters,
width and depth, can be used to define a third parameter, num_bits. In
this case, the num_bits takes a value of 32.

22 Basic Verilog

The advantages of using derived parameters are:

Makes the RTL code reusable
Enables use of the shorter name of num_bits instead of completely
specifying (width * depth)

The consequence of using derived parameters is that derived parameters
can be indirectly overridden by overriding their dependent parameters
through defparam constructs. So, localparam constructs should be used with
care when defining derived parameters.

1.4 Ports

The following section discusses a few questions about the usage of ports,
pros and cons of the different approaches of port connections, and what’s
new in System Verilog regarding ports.

1.4.1 What are the different approaches of connecting ports in a
hierarchical design? What are the pros and cons of each?

While instantiating the sub-modules in a given hierarchy, the port
connections to those modules can be done in one of five ways:

1.4.1.1 Ordered port connection

In this method, the port expressions listed for module instance shall be in
the same order as the ports listed in the module declaration, that is, the first
element in the list is connected to the first port declared, the second element
to the second port and so on. For example, in the code below, the upper
module instantiates a lower module, and the ports are implicitly connected,
that is, the connection is based on order and position.

Basic Verilog 23

1.4.1.2 Named port connection

In this method, the connection between the ports can be done explicitly
by linking the two names for each side of the connection, that is, the port
declaration name from the module declaration can be linked to the name
used in the instantiating module. The same example as above would be
connected using the named port connection as follows. Note that the order of
port connection is changed. However, it is recommended to keep the same
order for reusability and readability.

The two main advantages of this method are:

It improves readability of the connections without having to refer to the
port list of the instantiated module as the names from both sides are
explicitly specified.

The order of port connections is not relevant anymore since they are
explicitly connected.

Note that the two types of module port connections cannot be mixed,,
that is, all the connections to the ports of a particular module instance shall
be either by order or by name. For example, the following is incorrect:

24 Basic Verilog

1.4.1.3 Implicit .* port connection

This is a feature available from System Verilog only. A new construct of
specifying “.*” during module instantiation implicitly connects the ports of
the instantiated module with the wires in the instantiating module. The
precondition being the fact that the names and sizes need to be matched
exactly. For example, in the following code, the upper module instantiates
two lower modules. U1 and U2 The “.*” is equivalent to specifying three
connections of in1, in2, and in3 between the lower and upper
modules.

Basic Verilog 25

The synthesized logic of the above code instantiates the two lower
modules, U1 and U2. The correct port connections are also established for
the ports in1, in2, and in3.

The advantage of the above method is that there is less chance of errors
during instantiation, and it avoids repetition of names that implicitly match.
Wherever exceptions and deviations exist, it needs to be explicitly specified.
In the above, the connection to u_out11, u_out12, u_out21, and
u_out22 were made explicit.

The issue in the above method is that the user will not be able to
physically “see” the connections.

1.4.1.4 Implicit .name port connection

This is a feature available from SystemVerilog only. A new construct of
specifying the port name only once with the “.name” convention, where the
“name” is the port name. This avoids specifying the port name twice when
the port name and signal name are the same. The instance port name and size
should match the connecting variable port name and size during module
instantiation. In the following example, the ports in1, in2 and in3 of both
the instances of lower module don’t have any connecting variable port name.

26 Basic Verilog

The synthesized logic of the above code instantiates the two lower
modules, U1 and U2. The correct port connections are also established for
the ports in1, in2, and in3.

The advantage of the above method is that there is less chance of errors
during instantiation, and it avoids repetition of names that implicitly match.
Wherever exceptions and deviations exist, it needs to be explicitly specified.
In the above, the connection to u_out11, u_out12, u_out21, and
u_out22 were made explicit.

1.4.1.5 Interface port connection

SystemVerilog has introduced a construct interface, which basically
encapsulates a bundle of nets and variables into one group. When there are
numerous ports that need to be connected to each other, it is easier to make
the connections through the interface construct. This helps create less
verbose and more maintainable code by grouping all common connections in
just one place. Any future changes to the interfaces can be modified in the
interface definition, and this will propagate to all the instances where this is
being used. The above example is illustrated using the interface construct as
follows:

Basic Verilog 27

28 Basic Verilog

In the above example, the top_ins is the interface instantiation that
sufficed the purpose of specifying the port connection of the in1 to in3 ports.
Some of the salient points of the above example are:

The above example could also be extended to connect inter-module
connections, that is, connections to-from U1 and U2.
The interface specification and the explicit port connections could be
mixed during one instantiation itself.

1.4.2 Can there be full or partial no-connects to a multi-bit port of
a module during its instantiation?

No. There cannot be full or partial no-connects to a multi-bit port of a
module during instantiation. For example, the following instantiation with an
intermediate bit left to float is illegal, and gives a syntax error:

In the case where there is a genuine situation to not connect a particular
output, then it must be connected to an unused wire, and continue the
concatenation with the appropriate bits to be connected. For example, in the
above situation, the following two additional declarations, and the
connections shown following it is a legal syntax:

Basic Verilog 29

Note that a floating input or an unused wire on an output will cause a “z”
propagation into the logic. The outputs will drive values onto the unused
wires, but these wires do not fanout to other logic, and will be optimized
away by synthesis tools.

1.4.3 What happens to the logic after synthesis, that is driving an
unconnected output port that is left open (, that is, no-
connect) during its module instantiation?

An unconnected output port in simulation will drive a value, but this
value does not propagate to any other logic. In synthesis, the cone of any
combinatorial logic that drives the unconnected output will get optimized
away during boundary optimisation, that is, optimization by synthesis tools
across hierarchical boundaries.

 In the module lower1 is instantiated into an upper1 module, and the
same pins are connected all the way to the top level. When this code is
synthesized, it will produce the logic as shown in figure 1-1.

30 Basic Verilog

Figure 1-1. No unconnected ports

When out1 is left unconnected during the instantiation of the lower
module, (this port is not going all the way to the top level of u_out 1) as
shown in this figure, then the logic gets optimized with only the AND gate
remaining, and the OR gate getting optimized away.

Similarly, when out2 is left unconnected during the instantiation of the
lower module, the OR gate remains driving out1 all the way to the top
level, and the AND gate gets optimized away.

Basic Verilog 31

Figure 1-2. Gate eating behind an unconnected output port

1.4.4 What value is sampled by the logic from an input port that is
left open (that is, no-connect) during its module
instantiation?

By default, an unconnected input port is a floating port, and hence shows
“z” during simulation. The logic following it will also propagate the “z”,
until gated off by an AND gate. The following figure shows the in1
floating in lower instantiation.

Since in1 was used as logic input to both the gates, and is no more
driving both of them, the logic gets optimized and simplified into a simple
wire connection between in2 and out2. This connection still maintains the
AND’ing logic required between these two ports, as per its design.

During synthesis, it is recommended to remove the unconnected ports
using the synthesis tool commands, as it could potentially be undesirable
during back-end processing.

32 Basic Verilog

Figure 1-3. When one of the inputs is floating

The default value of z for unconnected input ports can be changed using
the compiler directives:

The first directive causes all unconnected input ports to be pulled down
to a logic 0. The second directive causes all unconnected input ports to be
pulled up to logic 1. The effect of the `unconnected_drive directives
can be turned off with the compiler directive `unconnected_drive. For
example:

and

Basic Verilog 33

1.4.5 How is the connectivity established in Verilog when
connecting wires of different widths?

When connecting wires or ports of different widths, the connections are
right-justified, that is, the rightmost bit on the RHS gets connected to the
rightmost bit of the LHS and so on, until the MSB of either of the net is
reached. For example,

Note, however, that some simulation and synthesis tools will give a
Warning when connecting nets or ports of dissimilar widths.

1.4.6 Can I use a Verilog function to define the width of a multi-bit
port, wire, or reg type?

The width elements of ports, wire or reg declarations require a constant
in both MSB and LSB. Before Verilog 2001, it is a syntax error to specify a
function call to evaluate the value of these widths. For example, the
following code is erroneous before Verilog 2001 version.

In the above example, get_high and get_low are both function calls
of evaluating a constant result for MSB and LSB respectively.

However, Verilog-2001 allows the use of a function call to evaluate the
MSB or LSB of a width declaration.

34 Basic Verilog

SUMMARY

The chapter discussed a few basic questions on the usage of Verilog
constructs during assignments and usage in task, function, port, and
parameter. The chapter discusses the different approach of parameter and
port specifications. A few SystemVerilog enhancements to the task and
function have also been discussed. The next chapter discusses how the
Verilog constructs are useful under the synthesis context.

Chapter 2

RTL DESIGN

INTRODUCTION

The chapter aims to address issues of the Verilog HDL that pertain to
RTL design and logic synthesis. The focus is, in particular, on questions of
logic inferences during synthesis, and static timing implications. The chapter
concludes with explorations of power and DFT issues.

2.1 Assignments

This section discusses how the different assignments in Verilog are done,
and what their implications are. The logic inferences of these different
assignments are also discussed in this section.

2.1.1 What logic is inferred when there are multiple assign
statements targeting the same wire?

It is illegal to specify multiple assign statements to the same wire in a
synthesizable code that will become an output port of the module. The
synthesis tools give a syntax error that a net is being driven by more than
one source. For example, the following is illegal:

36 RTL Design

However, it is legal to drive a three-state wire by multiple assign
statements, as shown in the following example:

2.1.2 What do conditional assignments get inferred into?

Conditionals in a continuous assignment are specified through the “?:”
operator. Conditionals get inferred into a multiplexor. For example, the
following is the code for a simple multiplexor:

Figure 2-1. Conditionals infer into a multiplexor

2.1.3 What is the logic that gets synthesized when conditional
operators in a single continuous assignment are nested?

Conditional operators in a single continuous assignment can be nested as
shown in the following example. The logic gets elaborated into a tree of
multiplexors.

RTL Design 37

In the multiplexor units shown, it follows the logic that when sel is
high, the output Z selects A, else selects B.

Figure 2-2. Tree of multiplexors inferred from nested conditionals

2.1.4 What value is inferred when multiple procedural assignments
made to the same reg variable in an always block?

When there are multiple nonblocking assignments made to the same reg
variable in a sequential always block, then the last assignment is picked up
for logic synthesis. For example,

38 RTL Design

Figure 2-3. Multiple assignments to the same reg variable

In the example just shown, it is the OR logic that is the last assignment.
Hence, the logic synthesized was indeed the OR gate. Had the last
assignment been the “&” operator, it would have synthesized an AND gate.

Note that the optimised synthesis results match the simulation behaviour.
The IEEE Verilog standard defines that nonblocking assignments in a
begin…end will be assigned in the order listed. Hence, in simulation only,
the value of the last assignment is seen.

Note, also, that the rules discussed and shown in this section apply when
the variable on the LHS is not used on the RHS of subsequent assignments.
The behaviour and synthesis implication for when a variable is used on both
the LHS and RHS is discussed in the next FAQ.

The same would be the case for a combinatorial always block, too. For
example,

Since multiple assignments to the same variable is legal, the user has to
keep track of the statements, as to what is the final assignment required. If
only one among the multiple assignments was to be selected, it would
typically be in an if-else tree or a case statement. For example, the above
always block would be represented typically as follows, in which case only
one unique assignment is executed at each clock cycle.

RTL Design 39

In the above example, there is no ambiguity as to which statement gets
selected, as the branching controls are clearly defined.

2.1.5 Why should a nonblocking assignment be used for sequential
logic, and what would happen if a blocking assignment were
used? Compare it with the same code in a combinatorial
block.

As discussed in chapter 1, the main difference between the blocking and
nonblocking assignment is that, in the blocking assignment, the RHS
immediately gets assigned to the LHS, whereas for the nonblocking
assignment, the assignment to the LHS is scheduled after the RHS is
evaluated.

The following illustrate the different scenarios of using blocking and
nonblocking in a sequential code.

2.1.5.1 Using blocking statements in a sequential logic

The following is an example of a Verilog module in which the blocking
assignments have been used in the sequential block.

40 RTL Design

In the above example, the assignments to the reg1, reg2, reg3,
out1 have been made as blocking assignments. The synthesized result is a
single FF, with the d input of in1, and q output of reg3, as shown in the
following figure:

Figure 2-4. Logic inference with blocking assignments in sequential block

This is because the intermediate results between in1 and out1 were
stored in reg1, reg2, and reg3 in a blocking format. As a result, the
evaluation of the final result to out1 didn’t require waiting for all the events
of the RHS to be completed. Rather, they were immediately assigned to the
LHS in the order specified. Observe that the signals reg1, reg2, and
reg3 have been optimised away by synthesis.

2.1.5.2 Using nonblocking statements in a sequential logic

The following illustration of code uses the nonblocking assignments in a
sequential block:

In the above example, the assignments to the reg1, reg2, reg3,
out1 have been made as nonblocking assignments. The synthesized result

RTL Design 41

is the inference of as many FFs as specified in the always block [in this case,
4 FFs].

Figure 2-5. Using nonblocking assignments in sequential logic

This is because the intermediate results between in1 and out1 were
stored in reg1, reg2, and reg3 in a nonblocking format. As a result,
the evaluation of the result to each individual reg required waiting for all the
events of the RHS to be completed. In this case, it was the output of the
previous register controlled by the clk event. As a result, the output is a
shift register.

2.1.5.3 Using blocking statements in a combinatorial logic

The following example illustrates the use of blocking statements in
combinatorial logic:

In the above example, the blocking assignments are made in a
combinatorial block. Note the absence of posedge and “<=”, being replaced

42 RTL Design

with “=”, in the assignments. The logic synthesized out of this is a simple
wire between in1 to out1.

Figure 2-6. Blocking statements in combinatorial block

This is because all the assignments have been immediate, and there is no
event to wait upon.

2.2 Tasks and Functions

Tasks and functions are primarily constructs that help in reusability of
code that is being used in multiple places. Similar to the advantages seen in
software programming, tasks and functions help in grouping statements
with a particular intent in one code segment, and, hence, helps in better
readability and maintenance.

2.2.1 What does the logic in a function get synthesized into? What
are the area and timing implications of calling functions in
RTL?

Since a function does not have any construct in it that advances time, a
function basically infers combinatorial logic. If the logic falls into the
critical path of a design, it is important to write the function in a timing
optimal fashion.

For example, the following function does an arithmetic operation using
two inputs and a control. Its result is used in another expression, that calls
the function.

RTL Design 43

Whether the repeated calls to a function replicate the logic within the
function or it multiplexes the logic within function, depends upon the path
where the function is used. If the calls to a function are used in different
paths, the logic gets replicated. In the above example, all the outputs had
different use of the same function, and, hence, independent logic for each
function call implemented different logic. If out1 and out1 both required
the OR gate functionality, then it would use the common logic of the two
function calls for both the outputs, that is, in effect, the out1 and out2
would be connected to the same OR gate. However, any constant
propagation techniques (see area optimisation techniques later this chapter
for what constant propagation is) used within the function could influence
the area.

Note that the above function call can be declared in the Verilog-2001
format, with the keyword input being part of function declaration, as
follows:

44 RTL Design

Just like any other combinatorial logic, when the endpoint of the
function is used as a D input to the flip-flop, then the function gets used to
synthesize the sequential logic, too. For example, in the above code, the
output out1 was a combinatorial output. If it is made a registered output,
then the function output is used to derive the flip-flop, as illustrated in the
following example:

2.2.2 What are a few important considerations while writing a
Verilog function?

The following are a few considerations while writing a Verilog function:

Local variables within a function and the function return value should
be assigned values each time the function is called. Non initialization
will cause a latch to be formed, as these variables are assigned every
time upon entry of the function. For example, the if condition within the
following example does not have an else clause. Because the function is
static in simulation, it will behave as latched logic. That is, if sel is
false, the function will return the value of its previous call, as if the
result were latched. Synthesis, however, still does not infer a latch. It
simply infers a gated function.

RTL Design 45

In the above function calls, there are no variables to be initialized, and
the logic inferred is the gating function, as illustrated in this figure:

Figure 2-7. Function variables need to be assigned

Ensure that the width of the return value from a function is specified
fully, else it will end up with a default of one bit. For example:

46 RTL Design

In the above example, the desired output was actually 8 bits, but since the
width of [7:0] was not specified between the keyword function and the
function-name, the value returned by the function call is only the last bit,
that is, bit [0] of the actual intended result.

Functions are basically used to synthesize only combinatorial logic,
however, the end result of this function can be used as a data input to
the flip-flops, too.

Functions should not include the delay(#) or event control (@, wait)
statements.

Functions may call other functions, but not other tasks.

A function returns a value when it is called. For more than one return
item, there are two ways to deal with it. Before SystemVerilog, this
could be achieved by concatenating the multiple values into the single
return. In the previous example, the output arith is a concatenation of
multiple outputs that need to be driven by a single function call. The
desired output fields from the result are then derived to drive the
required signals. For example,

RTL Design 47

In the above example, the different outputs out1 to out4 were all
concatenated and assigned to the function name. The different fields can be
then extracted out of the wire to which the function drives.

With SystemVerilog, it is possible to have a formal output and inout
declaration. The same example in SystemVerilog is as follows:

48 RTL Design

Parameters and integers can be declared within a function, but they
become local only to that function, and cannot be used outside the scope
of the function. In the following example, the width1 parameter
defined within the function double_width is not visible outside its
scope for the $display statement that follows later.

2.2.3 What does the logic in a task get synthesized into? Explain
with an example.

Although it is legal to have time advancing or controlling constructs like
@ within a task, it works only for simulations. The synthesis tools ignore all
timing constructs within a task. Hence, a simulation and synthesis mismatch
can occur if the functionality depends upon presence of timing control
constructs within a task. Thus, a task can be used to synthesize basic
combinatorial logic. However, if the destination of the task call is a storage
element used within a sequential block, then a sequential element gets
synthesized. Whether the logic within the task will keep replicating
whenever it is called or reused depends upon the path where the task is used.
If the task call is for independent paths that can be used concurrently, then
independent logic will be synthesized for each path, and the area grows
linear to the number of tasks called. If the task is used among common
paths, then the logic in its inputs or outputs could be reused, depending upon
the path from which the task is called.

RTL Design 49

The following is an example of a combinatorial task, namely,
combtask, which performs the task of unary OR’ing the input in1, and
producing it in the output of the task. Note that an intermediate reg
declaration of int_out1 and int_out2 was required, because the output
of a task can be received only by a reg and not a wire.

Many synthesis tools give a compilation error if sequential constructs are
present within a task.

50 RTL Design

2.2.4 What are the differences between using a task, and defining a
module for implementing reusable logic?

We have already seen in the previous question, that a task can be used to
call same logic multiple times. Similarly, a module can also be defined, and
the logic within it will get replicated as many times as it is instantiated. The
following table summarizes the differences between the two approaches:

2.2.5 Can tasks and functions be declared external to the scope of
module-endmodule?

Yes. With SystemVerilog, it is possible to declare the task and function
definitions external to the scope of module-endmodule. This is not possible
with Verilog-1995 or Verilog-2001, and will give a compilation error. For
example, in the following code, the task modify_value is declared
outside the scope of the module-endmodule.

RTL Design 51

Similarly, with SystemVerilog, a function-endfunction can also be
declared outside the scope of module-endmodule within the same file. If
these contents are defined in a separate file, it needs to be part of the same
compilation command.

2.3 Storage Elements

There are primarily two kinds of storage elements inferred in logic
synthesis, that is, Flip-flops and latches. This section describes the
implementation and comparison between the two elements.

2.3.1 Summary of RTL templates for different flip-flops types

The storage element of flip-flop or latch inferred from RTL depends
upon the style in which it is written. The following is a quick summary of a
few templates of different register and latch inferences. In the flip-flop
templates, they infer a positive edge triggered flip-flop. If the keyword
posedge clk is replaced with negedge clk, then a negative edge
triggered flip-flop is inferred.

1. Simple D Flip-flop

Positive edge triggered, no set or reset, value of Q is unknown at power
on

52 RTL Design

In SystemVerilog, the same code would be implemented with always_ff
in place of the always keyword, as follows:

The advantage of always_ff over always is that, always_ff indicates that
the designers intent is to model clocked sequential logic. Software tools can
then verify that the blocks sensitivity list and functionality correctly
represent the type of logic intended.

2. Asynchronous set FF

Positive edge triggered, active high asynchronous set

Replacing the always keyword with always_ff above would implement
the asynchronous FF in SystemVerilog.

RTL Design 53

3. Asynchronous reset FF

Positive edge triggered, active high asynchronous reset

Replacing the always keyword with always_ff above would implement
the asynchronous FF in SystemVerilog.

4. Asynchronous set and reset FF

Positive edge triggered, active high asynchronous set and reset

54 RTL Design

Replacing the always keyword with always_ff above would implement
the asynchronous FF in SystemVerilog.

5. Synchronous set FF

Positive edge triggered, active high synchronous set

Replacing the always keyword with always_ff above would implement
the asynchronous FF in SystemVerilog.

6. Synchronous reset FF

Positive edge triggered, active high synchronous reset

Replacing the always keyword with always_ff above would implement
the asynchronous FF in SystemVerilog.

RTL Design 55

7. Synchronous set and reset FF

Positive edge triggered, active high synchronous set and reset

Replacing the always keyword with always_ff above would implement
the asynchronous FF in SystemVerilog.

2.3.2 Summary of RTL templates for different Latch types

1. Simple D Latch

In Verilog-2001, the same latch can be implemented as:

56 RTL Design

In SystemVerilog, the same latch can be implemented using the keyword
always_latch, as:

Note that it was not required to specify anything in the sensitivity list of
the always_latch block, as this procedure determines its sensitivity
automatically. One advantage of the always_latch keyword is that, it
explicitly shows the designer intends to model a latch. Software tools can
then check that the functionality within the procedural block correctly
represents latched logic. Another important advantage of always_latch is
that, it is automatically evaluated once at simulation time 0, even if the sel
input did not change at time 0. This ensures that at the start of simulation,
the latch output is correctly reflecting the latch inputs.

2. Asynchronous set latch

In SystemVerilog, the same always procedure above can be implemented
using the always_latch, instead of the always keyword, without any
sensitivity list.

RTL Design 57

3. Asynchronous reset latch

In SystemVerilog, the same always procedure above can be implemented
using the always_latch, instead of always keyword, without any sensitivity
list.

4. Asynchronous set and reset latch

In SystemVerilog, the same always procedure above can be implemented
using the always_latch, instead of always keyword, without any sensitivity
list.

58 RTL Design

A few salient points to be noted in the above inferences:

In asynchronous set or reset storage elements, the asynchronous input
has higher priority than the data input (hence, it is in the top of the if-
else tree). Therefore, when an asynchronous input and the data inputs
arrive at the same time, the effect of the asynchronous input prevails at
the output.
All the above examples show a single bit implementation of the defined
storage element. By increasing the bit width of the reg declaration, the
number of flip-flops or latches will be equal to the width of the reg
declaration. For example,
reg [3:0] out1;
This will create 4 of the out1 flip-flops or latches.
There need not be one always block for each flip-flop. Many flip-flops
can be inferred within an always block. But the restriction in this
approach is that ALL of the FF definitions within that always block will
infer the same type of flip-flop as defined in the sensitivity list of the
always block.
Although normally all the bits of the storage elements are either set or
reset, it is not uncommon to assign values of 1’b1 and 1’b0 to the
different bits of the same register during the set or reset condition. For
example, in this 4 bit FF, the reset values of the flops are 4’b1010.

RTL Design 59

A common coding practice is to use only nonblocking assignments for
inferring flip-flops and latches, and only blocking for inferring
combinatorial logic.
Using SystemVerilog frees the user from specifying the elements of the
sensitivity list for the latch inferences. It also ensures that the latch
output values are correct at the start of simulation. These features would
reduce the possibility of simulation and synthesis mismatches.

2.3.3 What are the considerations to be taken choosing between
flop-flops vs. latches in a design?

Both latches and FFs have their relative advantages and disadvantages in
their implications, as summarized in the table below:

(*) Time borrowing is a mechanism in which a latch based design takes
advantage of the transparency between two back to back latches that are
enabled in order to meet the propagation delay between the two latches. This
is best illustrated by a simple analysis as follows:

60 RTL Design

Consider two latches L1 and L2. While both of them have the same
clock frequency, the enables for L1 and L2 are opposite in polarity. The L1
is enabled in the high phase of the clock, while L2 is enabled in the low
phase of the clock. This connection is shown in the following figure:

Figure 2-8. Illustration of time borrowing in latches

For the purpose of simplifying the analysis, the delay or
delay of L1 and L2 is assumed to be 0ns. The propagation delay of the
combinatorial logic is 7.5ns. If it were a flip-flop based design with the same
rising edge clock in place of c1k1 and clk2, this would be clearly a setup
violation. However, in a latch based design above, since the delay through
latch is 0ns, the input in1 is latched immediately at the output of L1, and
begins to propagate. The propagation delay enters into the ON time of the
second latch L2, and settles at some point during its ON time. The
propagation delay has caused the logic to borrow time from the second latch,
in order to settle its outputs, and hence is called time borrowing.

RTL Design 61

2.3.4 Which one is better, asynchronous or synchronous reset for
the storage elements?

The following table summarizes the comparison between using
synchronous and asynchronous reset logic for a design:

62 RTL Design

2.3.5 What logic gets synthesized when I use an integer instead of a
reg variable as a storage element? Is use of integer
recommended?

An integer can take the place of a reg as a storage element. An example
to illustrate this is as follows:

In this example, the variable int_tmp is defined as an integer, instead
of the reg that it would normally be (the reg declaration is commented in the

RTL Design 63

example for illustration). Note that, although the default width of the integer
declaration is 32 bits, the final result of the int_tmp registers synthesis
yield is only 4 bits. This is because the optimiser in the synthesis tool
removes the unnecessary higher order bits, in order to minimize the area.

Although the use of integer as shown above is a legal construct, it is not
recommended for the synthesis of storage elements.

2.4 Flow-control Constructs

Verilog has primarily three kinds of flow control constructs, that is, case,
if-else and “?:” conditionals. The “?:” construct has already been discussed
earlier FAQ 2.1.2 and 2.1.3. This section primarily illustrates the
implementation details and questions about case and if-else constructs.

2.4.1 How do I choose between a case statement and a multi-way
if-else statement?

Both case and if-else are flow control constructs. Functionally in
simulation they yield similar results. While both these constructs get
elaborated into combinatorial logic, the usage scenarios for these constructs
are different.

A case statement is typically chosen for the following scenarios:

When the conditionals are mutually exclusive and only one variable
controls the flow in the case statement. The case variable itself could be
a concatenation of different signals.
To specify the various state transitions of a finite state machine
Use of casex and casez allows use of x and z to represent don’t-care bits
in the control expression

A multi way if statement is typically chosen in the following scenarios:

Synthesizing priority encoded logic
When the conditionals are not mutually exclusive and more general in
using multiple expressions for the condition expression.

The advantages of using the case over if-else is as follows:
case statements are more readable than if-else
When used for state machines, there is a direct mapping between the
state machine’s “bubble diagram” and the case description.

64 RTL Design

In a case construct, if all the possible cases are not specified, and the
default clause is missing, a latch is inferred. Likewise, for an if-else
construct, if a final else clause is missing, a latch is inferred.

2.4.2 How do I avoid a priority encoder in an if-else tree?

An if-else tree may synthesize to a priority encoded logic. For example,
the following code produces a priority encoder:

In simulation, the if-else-if series is evaluated in the order listed. If in0
and in1 were both true, the in0 branch would be taken, because in0 is
evaluated first. Synthesis tools will create a priority encoded logic in this
example, so that the logic generated will behave the same as the RTL
simulation.

If a priority encoder is not the intention, the logic needs to be synthesized
in parallel. The keyword unique that is introduced in the SystemVerilog can
be used for this purpose. The unique keyword indicates that the order of
decisions is not important. The if statement would be the same, with the
unique keyword prepending the first if, as follows:

RTL Design 65

This would synthesize into a parallel logic, that is, a multiplexor.

The SystemVerilog standard requires that simulation (or other tools)
report a Warning if they detect that more than one branch could be executed
at the same time. In the preceeding example with unique if, if both in0 and
in1 were both true at the same time, a run-time Warning would be reported.

On a related note, SystemVerilog has also introduced the keyword
priority, which functions opposite to unique, by enforcing priority encoded
logic. When the priority construct is used, it indicates that the order of
decision making is important. If the unique statement in the above is
replaced by priority, then the same priority select logic tree will be
regenerated.

2.4.3 What are the differences between if-else and the (“?:”)
conditional operator?

The following table summarizes the differences between the two flow
control constructs, that is, conditional “?:” and the if-else.

66 RTL Design

2.4.4 What is the importance of a default clause in a case
construct?

The default clause in a case statement indicates that when all other cases
are not met, then the flow can branch to the statements in the default clause.

This gives the synthesis tool an option to pick a branch when no other
condition is satisfied. If the default clause is missing, the logic will have to
remember what the output was earlier, and hence a latch will get
synthesized. For example, the following case statement will generate a latch:

In the above, with the two lines commented, a latch gets synthesized for
out1 register. Un-commenting either the default clause or the last condition
of 2’b11, or both, will result in the combinatorial logic of a multiplexor to be
synthesized.

2.4.5 What is the difference between full_case and parallel_case
synthesis directive?

The difference between full case and parallel case synthesis directives is
summarized in the table below:

RTL Design 67

2.4.6 What is the difference in implementation with sequential and
combinatorial processes, when the final else clause in a multi-
way if-else construct is missing?

The results are different, depending upon whether the if statement is a
part of a sequential always block or a combinatorial always block.

68 RTL Design

In a combinatorial always block, when the final else clause in a multi-
way if-else statement is missing, it will infer a latch. The latch is inferred
because the register has to remember the value until it is reloaded again. For
example,

In a sequential always block, if the final else clause in a multi-way if-else
statement is missing, it will still go ahead and infer the flip-flop, with the
combinatorial inference of the logic in the D input of the flop. For example,

The above code will infer logic, as shown below. The D input to the flop
is now a simple gated function of the inputs.

Figure 2-9. Logic inference of if statement without final else in a FF

RTL Design 69

2.4.7 What is the difference in using (== or !=) vs. (===or !==) in
decision making of a flow control construct in a synthesizable
code?

In Verilog, the (==) operator is called logical equality, and (!=) is called
logical inequality operator. The (===) operator is called case equality, and
(!==) is called case inequality. The following are the differences in using
these constructs in synthesizable code.

2.4.8 Explain the differences and advantages of casex and casez
over the case statement?

The casex operator has to be used when both the high impedance value
(z) and unknown (x) in any bit has to be treated as a don’t-care during case

70 RTL Design

comparisons. The casez operator treats the (z) operator as a don’t-care
during case comparisons.

In both cases, the bits which that are treated as don’t-care will not be
considered for comparison, that is, only bit values other than don’t care bits
are used in the comparison. The wildcard character “?” can be used in place
of “z” for literal numbers.

The following is an example of a casex statement

The same example, if written with an if-else tree, would look like:

Using casex or casez has the following coding advantages:
it reduces the number of lines, especially if the number of bits had been

more
makes code look more clear and less cluttered
Simplifies the optimization, as it is clear that the bits with x are to be
ignored.

2.5 Finite State Machines

Finite State Machines or FSMs form an important part of the control
logic in the designs. This section also discusses the differences among the
various types of the FSM coding styles.

RTL Design 71

2.5.1 What are the differences between synchronous and
asynchronous state machines?

Synchronous and asynchronous are two fundamental types of state
machines. They differ in the following ways:

2.5.2 Illustrate the differences between Mealy and Moore state
machines.

Both Mealy machine and Moore machine are two commonly used coding
styles of state machines. The basic block diagram of these two state
machines are shown as follows:

72 RTL Design

Figure 2-10. Block diagram of a Mealy machine

Figure 2-11. Block diagram of a Moore machine

The state machines differ in the following ways:

RTL Design 73

2.5.3 Illustrate the differences between binary encoding and one-
hot encoding mechanisms state machines.

The encoding in state machines are primarily either binary [sometimes
called sequential] encoding or the one-hot encoding. Both mechanisms
eventually lead to decoding of the states, but their logic implementation,
timing and area implications differ. The differences are summarized in the
table as follows:

74 RTL Design

2.5.4 Explain a reversed case statement, and how it can be useful
to infer a one-hot state machine?

The case expression need not necessarily be a variable. When a constant
is used in a case expression, the value of the constant expression will be
compared against each of the case item expressions. This is called a reversed
case statement. This coding style fits the one-hot state machine scenario very
well.

In the following code, a one-hot state-machine is illustrated, using
reversed case statement. Since the case statement expression will cause entry
into the case statements for any value, the first case item that matches will
cause the exit from the case statement.

RTL Design 75

2.6 Memories

Memories form an important part of the chip design. The memories can
be small enough to form a simple register array or as a cache. The presence
of memories is increasing in the chips as the size of the area grows. This
section discusses the implications of inferring multi-dimensional arrays as
memories in the designs and a few considerations in choosing the memories
from technology vendors.

2.6.1 Illustrate how a multi-dimensional array is implemented.

Static memories can be synthesized by the synthesis tools implementing
the storage element inferred within the array construct. The following is an

76 RTL Design

example code for synthesizing small synchronous static memories that can
be used like a simple register file within the larger design.

The above code effectively synthesizes 64 FFs whose inputs and outputs
will be tapped based on the address values.

Verilog-2001 has introduced multi-dimensional memories. The same
example above can be extended for three dimensions of the memory, that is,
x, y and z, as follows:

RTL Design 77

The multi-dimensional arrays above would eventually get synthesized
into (x*y*z*width) = (4*4*4*4) = 256 individual FFs. Placing the
appropriate multiplexes from the Q output of these FFs and gating logics for
the D inputs decide the data in and data out.

Using a hardmacro of memory from a semiconductor vendor has better
timing, area, and power, as its logic is optimally placed, rather than
synthesizing it using discrete logic.

Note that instantiating a technology specific memory will make the
design non-reusable with a different technology. One of the
recommendations in this inevitable situation is to bring the pins of the
memory all the way to the top level of the module, and instantiate the design
and the memory in a wrapper, and not within the core of the design. Since
most vendors have similar pin-outs of memory design, the user can also have
a choice to instantiate the memory from any vendor in the wrapper. The
wrapper can then be instantiated in the top-level netlist.

Check with your semiconductor vendor for the availability of the type of
memory that you are interfacing into your system design.

78 RTL Design

2.6.2 What are the considerations in instantiating technology-
specific memories?

Instantiating technology specific memories are required in many
applications. Depending upon the application, the choice of memory is based
on the following performance variables:

Area: If the area is the prime concern on the die, then a high-density
memory is required. This is typically targeted for high volume
applications or chips with large on chip memory blocks. The overall
area will also depend upon the process technology of the memory
block.
Frequency: If the speed is the prime concern, then high-speed
memories are required which operate at high frequencies. Note that
these memories could potentially be larger in area.
Power: This is one of the critical concerns for low voltage and low
power applications of chips in cellular phones, hand held devices,
etc. Also, if the power dissipation becomes high, then the operating
conditions begin to be de-rated, to the extent that the performance of
the overall system becomes lower. It also increases the cost of final
packaging of the chip for dissipation purposes. Note that power
dissipation is tightly coupled with the frequency at which the
memory will be used.

The other design variables in considering the memories are:

Capacity: The capacity of the memory is typically specified in
the resolution of bits. For example, a memory is specified as
512Kbits.
Voltage: Since some memories are designed for specific voltage
ranges, it is important to pick the memory meeting the desired
voltage ranges.
Synchronous or asynchronous: This variable specifies whether
the memory will have a synchronous read/write or an
asynchronous read/write. Which one is to be used primarily
depends upon the presence of a clock element, and the matching
of timing requirements of the memory and the design.
Single port or multi port: This variable determines whether the
storage within the memory is accessed by a single read/write port
or multiple ports. One of the critical issues during the use of a
multi-port memory is the resolution on what happens when

RTL Design 79

multiple ports are trying to do a write to the same memory
location.
Flip-flop or latch based: This variable determines if the storage
element within the memory is based on a flip-flop or the latch.
The important considerations for this memory are the testability
and power. Note that a FF based design is more testable than a
latch based design.
Scannable or not: With the size of the memory increasing
nowadays, the scannability of the memory is an important
criteria. Many manufacturers and vendors are providing the BIST
logic for making the memory scannable.

Just like any other electronic component, the following manufacturing
variables also need to be considered in choice of memories for a mass
production application:

Unit cost: This variable will eventually drive the overall cost of
the chip, board, and the system itself. It matters a lot in a mass
production scenario.
Availability: Availability of the memories will impact the time
to market for the end-product success.
Failure rate: The yield of the memory must be high, and the
failure rate must be low. BIST circuits will be required to be
added within the chip, along with the memories to test them.

The choice of memory will depend upon what the end application is, and
hence requires a good balance in all the above considerations.

2.6.3 What are the factors that dictate the choice between
synchronous and asynchronous memories?

Synchronous memories, as the name suggests, have a clock as one of the
primary inputs. All the writes happen, based on the rising or falling edge of
this clock, when the data meets the setup time requirements. All reads
happen from the Q output of the flops, after the data ready time.

Asynchronous memories don’t have a clock interface. The data writes
and reads typically happen with an enable pin.

The main differences between the two memories are as follows:

80 RTL Design

2.7 General Design Considerations

This section briefly discusses the general design considerations like
reusability and other factors that need to be considered early in the design
cycle. Reusability of a design is not something that should be deferred until
the end of an implementation. This needs to be considered early and all the
way during the implementation of the design.

2.7.1 What are some reusable coding practices for RTL Design?

A reusable design mainly helps in reducing the design time of larger
implementations using IPs. The topic of reusability has been very well
discussed in the Reuse Methodology Manual (see References at the end of
this book for details of the book). The following key points summarize the
main considerations during the implementation phase:

Register all the outputs of crucial design blocks. This will make the
timing interface easy during system level integration
If an IP is being developed in both Verilog and VHDL, try to use the
constructs that will be translatable later into VHDL.
Avoid snake paths, as it will make both debugging tedious and
synthesis inefficient.

RTL Design 81

Partition the design considering the clock domains and the functional
goals.
Follow lexical and naming conventions that are self-descriptive and
facilitate future product maintenance.
Avoid instantiation of technology specific gates
Use parameters instead of hard-coded values in the design
Avoid clocks and resets that are generated internal to the design
Avoid glue logic during top level inter-module instantiations

2.7.2 What are “snake” paths, and why should they be avoided?

A snake path, as the name suggests is a path that traverses through a
number of hierarchies, and may eventually return back to the same hierarchy
from which it originated.

Snake paths must be avoided in a design for the following reasons:

It will constitute a long timing path, and hence, be the surprise
critical path when static timing analysis is done at the top level. It
may not show up during the timing analysis of the unit level blocks if
it is poorly constrained.
The synthesis tools need to put more effort in characterizing the
constraints of the path across the hierarchies, and the compile time
can get higher.

Some tips that can be followed to avoid the snake paths are:

Register the outputs of modules with different functional objectives.
Partition the design functionally, to avoid long paths across different

hierarchies.

Keep checking for the presence of the snake paths by periodically
running synthesis on the fully integrated RTL, even if it is not fully verified
functionally. This will give early feedback through the timing reports for the
presence of a path traversing across multiple hierarchies.

2.7.3 What are a few considerations while partitioning large
designs?

A large design needs to be approached in a hierarchical fashion. The
following considerations need to be taken while partitioning these designs:

82 RTL Design

Functionality: The functional grouping of the logic within a hierarchy
is the prime criteria during partitioning the design. Typical partitioning
of hierarchies are:

Address and data paths: This module typically contains the
address and data path registers, which drive the address and data
buses of the primary outputs.
Control logic: This module typically contains Finite State
Machines (FSMs), and the module gets the inputs for the FSMs,
whose outputs drive the controls for the rest of the logic.

Clock domains: In a multiple clock design, it is recommended to group
the logic connected in the same clock domain in a single module. When
signals need to interact with another module with a different clock, it is
recommended to go through a synchronizer module, which takes in the
input from the source clock domain and synchronizes it to the clock
domain of the destination module.
Area: Having too little logic in a module will create too many
hierarchies, and too much logic within a single module will create issue
of not being able to do fine tune control during floorplanning later
during the backend process.

Verilog doesn’t constitute any limit on the number of hierarchies, but it is
a good practice to not have too many (lots of leaf level hierarchies of FFs) or
too few (just one huge module!) hierarchies.

2.8 Multiple clock Design Considerations

While each module works well at its unit levels, it is important to
consider the perspective of reliability when the signals from the design unit
communicate to/from the signals of the other design units. The approach to a
synchronous design is quite helpful, but the presence of multiple clock
domains in a circuit is getting common. The reliability becomes especially
challenging when the signals are communicated across clock domains. This
section discusses a few issues to be considered when signals cross the clock
domains, and how the reliability can be improved.

2.8.1 How can I reliably convey control information across clock
domains?

When control signals are traversing across clock domains, the signal
appears as an asynchronous input at the destination clock domain. Hence,
this signal needs to be synchronized to meet the setup and hold requirements
of the destination clock domain, so that the downstream logic can have valid

RTL Design 83

logic levels. Otherwise, the FF will enter into meta-stable state, in which
case it will not be able to arrive at a valid state in a given amount of time.
The output of a meta-stable FF can be at an intermediate voltage level, or
may oscillate invalidating logic down the signal path.

One of the common methods is to have a two-stage synchronizer FFs
between the source and destination clocks. If the first FF enters into a meta-
stable state, due to any race condition between the clk and D inputs, then the
Q value captured in the first flip-flop is an unknown, that is, either a 1 or a 0
(“x” in simulation), depending upon the resolution of the changes in the
inputs.

By having two flip-flops in series, the second flip-flop is always sure to
capture the resolved state of the first flip-flop as a stable data, even if the
first one is meta-stable for a time after the rising edge of the clock.

The following is a 2-stage synchronizer. Note that the data is coming
from source clk1 while the two FFs are driven by clk2.

Figure 2-12. 2 FF synchronizer

Some chip and IP vendors even have a special optimised cell just for the
synchronization purpose. Although these cells have lesser setup and hold
time requirements, these cells may be larger in area than normal FFs and
also consume more power. Note that instantiating such technology specific
cells could make the design non-reusable with a different library vendor. In
such a case, it is recommended to have a module defined with the two
synchronizing flip-flops and instantiate them in the design.

The above synchronizer only takes care of the level signals long enough
to be sampled by the next rising edge of the destination clock. In the case of
a pulsed signal transmission, with widths that could be less than the
destination clock frequency, the above synchronizer logic is not helpful. The

84 RTL Design

readers are encouraged to read about good design implementation in the
following reference, titled, “Crossing the abyss: asynchronous signals in
synchronous world”, that can be found in the following URL
http://www.reed-
electronics.com/ednmag/article/CA310388?pubdate=7%2F24%2F2003

2.8.2 What is a safe strategy to transfer data of different bus-
widths and across different clock domains?

When data is to be transferred across different bus width and different
clock domains, a FIFO (First In First Out) is an ideal component. If the bus
width between the write (the side which pushes the data into the FIFO) and
read (the side which pops the data from the FIFO) sides are different, then it
becomes an asymmetrical FIFO. Many IP and chip vendors have
asymmetrical and dual clock FIFOs in their libraries. An entity diagram of a
typical asymmetrical and dual clock FIFO is shown in the following figure:

Figure 2-13. Assymmetrical width FIFO

The flags in the FIFO above are typically the full, empty, almost-full and
almost-empty. The thresholds for these FIFOs can either be set as an input
signal or as an instantiating parameter. The widths of the wr_data and
rd_data busses are different, but are usually related by an integral
multiple (that is, one width is an integral multiple of the other).

2.8.3 What are a few considerations while using FIFOs for posted
writes or prefetched reads that influence the speed of the
design?

FIFOs are typically used in numerous data transfer applications for
performance and sustenance reasons. One of the main applications of FIFOs
is to post write transactions and to prefetch the data reads.

RTL Design 85

The advantages of using the FIFOs for posted writes or prefetched reads
are:

FIFOs in general help as a temporary storage buffer, which stores the
data written from the write path until it is popped out by the consumer.
Thus, in an application like a bridge across two protocol buses with
different frequencies, FIFOs help in completing the bus cycles of a faster
host sooner. This allows other masters in the host bus to use the bus
more efficiently.
The performance of write data transfer from a bridge that is faster is a lot
better when it stores the data in the FIFO, as it doesn’t have to be held
up by a slower slave through wait states during the individual beats of
the data transfer.

The disadvantage of using the FIFOs for posted writes or prefetched
reads are:

Suppose the originating master posts the data into the FIFO, and
assumes the data transfer to have happened to the destination slave, and
the slave now issues an ERROR. It has to be communicated back to the
master, since it assumes the data transfer to have taken place. Typically,
in SoC environments, it is taken care of by issuing a high priority
interrupt to the host or the originating master.
If the originating master aborts a read transaction late in the cycle when
the read prefetch has already taken place, there is a possibility of a stale
data remaining in the read FIFO. When such a condition occurs, the read
FIFO may need to be flushed before a new read transaction.
In order to ensure data coherency between a read followed by write
situation, all reads to the same slave address space must be blocked until
the previous write transaction is completed. This is typically monitored
by watching the empty signal of the FIFO.

In general, FIFOs are very useful to reduce bus latencies and functionally
necessary when the bus widths are asymmetrical.

2.9 Common “Gotchas” in Synthesizable RTL

This section explains how and why certain unintentional “gotchas” occur
after coding.

86 RTL Design

2.9.1 What will be synthesized of a module with only inputs and no
outputs?

A module with only inputs and no outputs will synthesize into a module
with no logic, since there is nothing to be synthesized as an output.

2.9.2 Why do I see latches in my synthesized logic?

There is more than one reason why latches could be seen in synthesized
logic. This information is typically present in the elaboration log file of the
synthesis tool.

The if-else clause in the always block to which the latch is
associated doesn’t have a final else clause.
The reg declaration of the variable doesn’t have any value
assigned upon entry to the combinatorial always block if the
variable is used in an if statement without the else clause.
There could be no default clause of a case construct that is not
complete or the variables assigned within the case were not
assigned a default value before entering the case statement.

2.9.3 What are “combinatorial timing loops”? Why should they be
avoided?

Combinatorial timing loops are hardware loops in which the output of
either a gate or a long combinatorial path is fed back as an input to the same
gate or to another gate earlier in the combinatorial path. These paths are
generally created unintentionally when a variable from one combinatorial
block is used to drive a signal that is used in the same combinatorial block
from which the variable was derived. This typically happens in large size
combinatorial blocks, wherein it is difficult to visually track that a loop is
getting created.

These combinatorial feedback loops are undesirable for the following
reasons:

Since there is no clock edge in between to break the path, the
combinatorial loops will infinitely keep oscillating and triggering a
square waveform, whose duty cycle is dependent upon the sum of
ON delays and OFF delays across the combinatorial path. For
example, the following code is a combinatorial loop:

RTL Design 87

This will cause the out1 to feed in combinatorially back as one of
the inputs.

These loops cause a problem in testability, since they can inhibit the
propagation of the logic forward.

Combinatorial loops can be caught quite early by one of the following
means:

Periodic use of linting tools throughout the development process.
This is by far the best and easiest way to catch and fix loops early in
the design cycle.
During functional simulation, the desired output behavior doesn’t
appear in the output, or the simulation doesn’t proceed ahead at all,
because the simulator is hung.
If the loop is undetected during simulation, many synthesis tools have
suitable reporting commands, which detect the presence of a loop.
Note that synthesis tools proceed with the static timing analysis by
breaking the timing arc of the loop for critical path analysis.

2.9.4 How does the sensitivity list of a combinatorial always block
affect pre- and post- synthesis simulation? Is this still an issue
lately?

With Verilog-1995, between synthesis and simulation, it is important to
have all elements that are in the RHS of the statements, or used within
conditional statements, to be part of the sensitivity list of a combinatorial
always block.

While the synthesis tools go ahead and make use of the nets that are not
in the sensitivity list, simulation will ignore change on those nets during
logic evaluation. As a result, the behavior seen during functional simulation
and post synthesis is different.

Typically, text editors like emacs with a Verilog language mode have
been able to automatically infer the right nets, and automatically add it into
the sensitivity list. Linting tools will provide error messages during parsing
of the RTL code.

From Verilog-2001 onwards, this is not an issue anymore. The language
now has an implicit event_expression list, which adds all nets and variables

88 RTL Design

read by procedural and timing control statements into the sensitivity list. The
event_expression is indicated by @(*). For example, in the following
combinatorial block, all elements of the RHS are in the sensitivity list, as
required by Verilog-1995.

The same in Verilog-2001 can be written in two ways, as:

or

The same code in SystemVerilog can be represented using the
always_comb procedure, as follows:

Note that the code is now simpler, relinquishing the user from keeping
track of the sensitivity list. It is much more maintainable and readable, too.
The key advantage of using the always_comb procedure over the implicit
sensitivity list of @(*) is that the former is executed right from time 0 like an
assign statement, whereas the latter waits for an event to trigger its
activation. The simulation and synthesis tools figure out the elements of
sensitivity list automatically. Check with your simulation and synthesis tool
vendor for the support of SystemVerilog and this construct.

RTL Design 89

2.10 Coding techniques for Area Minimization

This section describes some of the techniques using RTL coding and
parameterized approach for providing optimal area requirement for a soft IP.
Rather than have the entire logic, which may not be useful for all the
different users, the area optimization of unwanted logic will be useful in
large SoCs. Removing unwanted area not only reduces silicon area, but also
reduces switching activity, and, hence, the power, too.

2.10.1 How do the `ifdef, `ifndef, `elsif, `endif constructs aid in
minimizing area?

The proper use of compiler directives like `ifdef, `ifndef, etc. can help in
minimizing the area during post elaboration and during logic optimization.
Since the use of compiler directives is a compile time operation, it is a static
decision for the session of simulation and during synthesis.

The following is an example of how the compiler directives can be used
for minimizing the area of a logic design.

Note that the use of compiler directives is legal to pick instantiations of
modules itself, and, hence, can be helpful to pick a module with appropriate
area size. For example, in the following code, the compiler directive is used
to pick the correct type of counter, that is, ripple counter or carry lookahead,
counter depending upon the directive.

90 RTL Design

In the above example, the `ifndef was used to illustrate the absence of a
`define for CLA. Note that the `define for CLA has been commented out. If
it gets uncommented, then the carry lookahead adder instantiation gets
selected.

Hence, in this approach, the selection of the appropriate “section” of code
during parsing and elaboration decides the final area of implementation.

2.10.2 What is “constant propagation”? How can I use constant
propagation to minimize area?

Constant propagation is a very effective technique for area minimization,
since it forces the synthesis tools to optimize the logic in both forward and
backward directions. Since the area minimization is achieved using
constants, this technique is called constant propagation. An example of
constant propagation is shown below:

RTL Design 91

Note that create_logic is a parameter within the module, that controls the
logic backwards from both the outputs out1 and out2. It could also
control the logic forward from the inputs in1 and in2 by adding internal
wires to either select the direct input in1 or the 1’b0. An example of how
the forward constant propagation works is as follows:

When this parameter is 0, it forces the logic zero in the assign statements,
it results in logic zero propagation in either direction. As a result, no logic
gets enabled and the logic is optimized in synthesis. When this parameter is
1, the logic is synthesized.

Note that different techniques to override the parameter will also work,
that is, the constant propagation will be effective, even with parameter
override.

Hence, the default value of the parameter can be set to 1, and be
overridden to 0, by different parameter overriding techniques, when required
to minimize the area.

SystemVerilog has also introduced a new construct const which declares
a variable as a constant. The const construct can be used to enforce constant
propagation, just like other constants like parameter. For example, the same
example above can be applicable by replacing the parameter with const, as
follows:

92 RTL Design

The output with the const construct above is exactly the same as when a
parameter is used.

2.10.3 What happens to the bits of a reg which are declared, but not
assigned or used?

When any of the bits of a reg declaration is unused, the logic
corresponding to those bits gets optimized away. For example, in the
following code, the bits 2:1 are unused, although the int_tmp is declared
to be [3:0]. This code will synthesize the logic for bits [3] and [0], and no
logic for bits [2:1].

RTL Design 93

2.10.4 How does the generate construct help in optimal area?

Verilog-2001 generate can be useful in area optimisation techniques.
This construct must be coded within a module scope. Unlike the `define
based approach, this construct allows the use of a variable, declared using
the genvar construct, to control the logic generated.

The generate construct can be used in two ways: either with a for loop
within the generate-endgenerate scope, or using the conditional if-else
construct, or the conditional case construct within the endgenerate. The
“generate for” usage helps in precisely instantiating the right amount of logic
in a reusable design. The “generate if ”usage determines whether the logic
should get generated at all. The amount of logic is precisely controlled using
the construct and its variable.

This is best illustrated using examples, as follows. The first is the use of
an if-else clause within the generate-endgenerate constructs. The analogy is
very similar to the use of `ifdef, as discussed earlier in FAQ 2.10.1. Note that
the genvar construct is not required in this case.

94 RTL Design

In the above example, depending upon the resolution of the value of the
parameter xor_logic, either the XOR gate or the AND gate gets
generated. Although this is a very simple use of this construct, the same
analogy can be extended for multiple statements through the use of begin-
end statements. The parameter can be overridden, using defparam construct,
too. Note that even instantiations can be controlled in the if-or else clause.

The second way to use the generate construct is with for loops. The
variable used in the for loop has to be a genvar declaration. The variable is
then used in a for loop which is instantiating the exact number of modules
required.

The “AND_BLOCK” block identifier is required for any heirarchical
names generated by the concatenation of the block identifier and the variable
value as {generate_block_identifier, genvar_value}. In this case, the
hierarchical names generated were:

RTL Design 95

These generated names can be used in hierarchical path names, just as in
a hierarchical design. The above example saves a lot of code for explicit
instantiations, especially if the variable size is large. Also, it allows good
control on how many of these need to be instantiated by the parameter width.
Thus, precise area control can be achieved. Note that this simple anding
module can be extended for more complex hierarchies, too.

The third way to use the generate construct is through the case statement
within the generate-endgenerate scope. This allows selective branching to
take place through the case statement, and, hence, controlling which of the
sections of the code to be finally ‘generated’. An example of the conditional
selection of a module instantiation through a case statement is as follows:

96 RTL Design

A few important points of the above example are:

The case condition “operation” has to be a constant, or a genvar
variable in order to make a definitive decision during the conditional
instantiation. Otherwise, it is a syntax error, since the tools will
encounter this as an unknown value during elaboration. Hence, the
approach is useful in parameterised designs.
Depending upon the value of operation above, the output either gets
anded, ored, or xored. But, eventually only one of them will happen.
This is useful in scenarios where a selective implementation needs to
be instantiated, and the instantiation of that module can be selectively
controlled.

2.10.5 What is the difference between using `ifdef and generate for
the purpose of area minimization?

As discussed in the earlier questions, both `ifdef and generate constructs
can be used for the purpose of area minimization. The difference between
the two in using these constructs for area minimization is summarized in the
following table:

RTL Design 97

2.10.6 Can the generate construct be nested?

No. The generate construct cannot be nested. It is a syntax error to try to
nest the generate-endgenerate construct.

However, the if, case, and for constructs within the generate-
endgenerate can be nested. The constructs can also be used within one
another, too, that is, if within case, for within if etc.

You can also use multiple non-nested generate-endgenerate constructs
within the module.

2.11 Coding for Better Static Timing Optimization

When a design gets compiled into a netlist, the various elements of the
delays in the path, like the cell delay, routing delay, etc., contribute in
deciding the overall performance of the chip. The timing impact of the
design should be factored very early in the design process, during functional
partitioning and coding of the design. It will be too late to consider timing
impacts later in the functional verification cycle.

This section discusses a few topics on the different factors impacting the
static timing of the design.

2.11.1 What is a critical path in a design? What is the importance of
understanding the critical path?

A critical path is the path through a circuit that has the least slack. It is
not necessarily the longest path in the design. There can be more than one

98 RTL Design

critical path in a design. In fact, all paths whose difference between the
arrival time and required time at the endpoint is negative (, that is, negative
slack) is a violating path.

Understanding and identifying the critical path in a design is important
for the following reasons:

It helps fix the static timing problems, especially when the endpoint is a
D input to a flip-flop, and the critical path delay is violating the setup
time requirement for the flop.
Shortening the critical path delay obviously improves frequency and,
hence, the performance of the logic.

If the critical path is identified early in the design flow, then appropriate
functional changes can be done early on in the project to terminate the path
to the D input of a flop at an appropriate point in the path. This point has to
be carefully chosen, considering the side effects in latency and static timing
that would arise due to the staging of the path through a flop.

If the source of the critical path is from a primary input, it is
recommended to register the input. Although this could add to the latency,
this strategy will eventually help in improving the frequency of operation.

2.11.2 How does proper partitioning of design help in achieving
static timing?

Partitioning a design correctly helps in multiple stages of the design, all
the way until the backend flow. The best approach for partitioning is to plan
the partitioning of the design before writing HDL code. It is important to
keep these considerations early on, to avoid hierarchical, port, or logic
changes late in the design. The following are some of the criteria for design
partitioning:

RTL Design 99

1.

2.

3.

4.

Logical partitioning: The partitioning of the modules with close
logical associativity is a very common approach. This way, it is both
easy to debug and modular in approach. Typically, the partitioning
logic boundaries are datapaths (register’s and glue), control (FSMs),
memories and I/O. Logistically, it also helps with having multiple
team members do thorough unit level verification, and it helps with
better design management and version control. All combinatorial
logic associated with the same clock domain should also be closely
within the same module. Inter-module partitions can restrict logic
optimization by synthesis tools. Hierarchical boundaries prevent any
combining of related logic. Typically, a module size should be
around 5K gates.
For synthesis tools to consider resource sharing and freedom to
optimize, all relevant resources need to be within one level of
hierarchy. If the resources are not within one level of hierarchy,
synthesis tools cannot make tradeoffs to determine whether or not
the resources should be shared.
It is during the logical partitioning that the designer has the freedom
to decide upon the registering of the outputs between critical inter-
module hierarchies. This will immensely reduce the possibilities of
long combinatorial paths and combinatorial snake paths in the
design, and, hence, better static timing implication.
Special function logic, like the pads, I/O drivers, clock generation
and boundary scan should be at separate logical hierarchies.
Any on-chip memories, like SRAMs or DRAMs should be placed at
the top level. This will make the physical design interaction and
floorplanning tasks more effective by better timing analysis.
Goal based partitioning: Partitioning based on different design goals
of speed and area will eventually help the tools do a good job.
Modules with different goals can be specified with their respective
constraints during the synthesis for the tools to do a good job.
Clock domain partitioning: Partitioning the logic according to same
clock domain plays an important role in synthesis, static timing
analysis, and scan insertion. The inter-clock false paths can be
defined within a single synchronizer module, and the entire module
is now with a single clock domain.
Reset based partitioning: If a particular SoC has multiple resets, then
it is a good idea to consider reset based partitioning, too. This helps
all the storage elements within the module to wake up gracefully at
the same time.

100 RTL Design

2.11.3 What does it mean to “retime” logic between registers? How
does it effect functionality?

Retiming is the process of relocating registers across logic gates, without
affecting the underlying combinatorial logic structure. This process is
achieved by borrowing logic from one time frame and lending it to the other,
while maintaining the design behavior. When you have a pipelined design,
for example, in a datapath of a design, then retiming is a technique for
reducing the critical path within the pipeline.

Retiming has benefits as follows helps in balancing the paths between the
pipeline stages

Retiming also has potential restrictions as follows:
Note that, although retiming can be used to reduce the critical path
between the pipeline registers, it cannot be used to reduce the latency of
the design.
A retimed design may not be formally equivalent to the original design.

2.11.4 Why is one-hot encoding preferred for FSMs designed for
high-speed designs?

Since there is one explicit FF per stage of a one-hot encoded state
machine, there is no need of output state decoding. Hence, the only
anticipated delay is the clock to q delay of the FF. This makes the one-hot
encoding mechanism preferable for high-speed operation.

2.12 Design for Testability (DFT) considerations

Design for Testability or DFT techniques are design efforts that need to
be considered upfront during the design phase, to ensure that the design
under test is eventually testable. This process could increase the area in the
expense of increasing the fault coverage. By proper DFT considerations
upfront, the test generation/development time and the time with the tester
can be reduced. While there could be a few pins that get increased for better
fault coverage, it provides better observability and controllability, which are
the key considerations for good testability.

The following FAQs discuss a few factors that can effect the testability
and fault coverage of a design, and what the DFT techniques are.

RTL Design 101

2.12.1 What are the main factors that affect testability of a design?

The following are some of the main factors affecting the testability and
fault coverage of a design:

Presence of tri-state buses in the design
Reset of a FF driven by the output of another FF
Presence of derived clocks in the design
Presence of gated clocks in the design
Presence of latches in the design

Each of the above issues are discussed in the following FAQs.

2.12.2 My chip has on-chip tri-state buses. What are the testability
implications, and how do I take care of it?

Normally, tri-state buses shouldn’t be present within the chip, as they
consume more power. However, if the tri-state buses are present inside a
chip, care should be taken to avoid bus contention, that is, driving different
values at the same time. It affects the power, since the bus conflict will drain
huge currents, and cause damage to the chip. To avoid bus contention during
the scan testing phase, the enable to the tri-state buffer should be
controllable, that is, by AND’ing it with the scan enable signal. In normal
mode, the scan_en_n signal is de-asserted (logic 1), to allow the control
to flow through, but in test mode, the drivers are disabled to avoid
contention. The control inputs to these enables are assumed to be originated
from the outputs of FFs. This is shown in the following figure:

Figure 2-14. Tri-state and DFT

Verilog sample code for these buffers is illustrated in the following:

102 RTL Design

2.12.3 Some Flip-Flops in my chip have their resets driven by other
Flip-Flops within the chip. How will this affect the testability,
and what’s the workaround?

Normally, the asynchronous set or reset of a FF is controlled by the
primary reset input pin. Sometimes it becomes inevitable to have the output
of one FF to drive the asynchronous set/reset of another FF. In that case,
during the scan testing, if the driving FF gets a pattern such that it resets the
driven FF, it will destroy its data. To prevent this, the reset should be OR’ed
with a test_mode test mode signal. The following figure illustrates this
mechanism:

Figure 2-15. Reset and DFT

The test_mode primary input is disabled (in this case 1’b0) during
normal operations. However, during testing, the test_mode signal is
asserted to 1’b1, thus making the asynchronous reset deactivated. This will
avoid corruption of FF2 output when a predictable pattern is being sent from
FF1 to FF2.

2.12.4 I have derived clocks in my chip. What are the testability
implications, and what is the workaround for it?

Derived clocks are generated by clock dividers through Flip-Flops or
PLLs in a chip. Since these are derived from within the chip, there should be
a control input from the primary pins, to avoid the Flip-Flops capturing data
when they are not supposed to.

RTL Design 103

In this case, a multiplexor needs to be added in the clock path, with the
control being the test_mode, and the inputs to the multiplexor being the
regular clock and derived clock. That way, the final clock to the Flip-Flops
is controllable between the derived clock in the normal mode and the regular
clock in the test mode. Note that the test_mode signal doesn’t change
dynamically, and, hence, it is okay to have a multiplexor in the clock path.
Note, too, that anytime a switch in the clock is done, all the Flip-Flops need
to be reset, to have a known starting value, and avoid spurious capture of
data in their data lines.

The following diagram illustrates the implementation:

Figure 2-16. Multiplexor in clock path using derived clocks

2.12.5 My chip is power sensitive, and, hence, there are gated clocks
in it. What are its testability implications and workaround?

Gated clocks are inevitable in some designs to save power. Since the
clock now passes through combinatorial logic, the gated clock is no longer
controlled from a primary input, making it impossible to scan in the data.

The workaround is to logically OR a test_enable pin to the enabling
pin of the AND gate that gates the clock. Look into a FAQ 2.13.5 in this
chapter for more details of implementing this workaround.

2.12.6 What is the implication of a combinatorial feedback loops in
design testability?

The presence of feedback loops should be avoided at any stage of the
design, by periodically checking for it, using the lint or synthesis tools. The
presence of the feedback loop causes races and hazards in the design, and

104 RTL Design

leads to unpredictable logic behavior. Since the loops are delay-dependent,
they cannot be tested with any ATPG algorithm. Hence, combinatorial loops
should be avoided in the logic.

2.12.7 How does the presence of latches affect the testability, and
what’s the workaround?

Since the enable to a latch isn’t the regular clock going to the rest of the
Flip-Flops in the design, its output is not controllable directly from a primary
input. In order to bring controllability to the latch, the enable to the latch
needs to be OR’ed with a primary input pin like test_mode, as shown in
the following figure.

Figure 2-17. Latch with OR’ed test enable

This way, the latch can be forced to become transparent when the test
data needs to be forced into it.

2.13 Power Reduction considerations

Power reduction is a critical requirement in design of chips that are used
in battery-operated devices. The more power a chip uses, the hotter it
operates, slower it runs. The reliability of the chip decreases at higher
temperatures. This section discusses how RTL can be used to influence the
power dissipation within a chip, and what issues need to be considered when
coding for the power saving.

2.13.1 What are the various methods to contain power during RTL
coding?

Any switching activity in a CMOS circuit creates a momentary current
flow from VDD to GND during logic transition, when both N and P type
transistors are ON, and, hence, increases power consumption.

RTL Design 105

The most common storage element in the designs being the synchronous
FF, its output can change whenever its data input toggles, and the clock
triggers. Hence, if these two elements can be asserted in a controlled fashion,
so that the data is presented to the D input of the FF only when required, and
the clock is also triggered only when required, then it will reduce the
switching activity, and, automatically the power. The following bullets
summarize a few mechanisms to reduce the power consumption:

Reduce switching of the data input to the Flip-Flops.
Reduce the clock switching of the Flip-Flops.
Have area reduction techniques within the chip, since the number of
gates/Flip-Flops that toggle can be reduced.

The following FAQs discuss in depth how each of the above can be
implemented in RTL.

2.13.2 Illustrate how the switching of data input to the Flip-Flops
helps in power reduction.

In a circuit where the Flip-Flops need to be updated very rarely compared
to the frequency of the clock, then it is appropriate to update the FF only at
that time, and avoid the switching of its output all other times. This can be
achieved through an enable FF, as shown in the following figure:

Figure 2-18. Using enable FF for power saving

If the control input comes from a state machine which can track exactly
when this FF has to be enabled to capture the new input data, then the enable
to the multiplexor can switch the multiplexor towards the input data.

106 RTL Design

Otherwise, it will be feeding the previous stable output from Q into the data
input of the FF.

An illustration of Verilog RTL that implements the enable FF is
illustrated as follows:

The above style can be incorporated in the designs by following a coding
convention for the flip-flops. But, this technique alone is not sufficient as a
power reduction technique, as it has a drawback which is discussed in the
next FAQ 2.13.3.

2.13.3 What is the drawback of using the enable flip-flop to reduce
the power consumption?

Although the switching of the data is reduced using enable Flip-Flops,
the clock input to the Flip-Flops is still running to a large number of other
Flip-Flops.

One side effect of the enable FF method is that it will introduce logic into
the setup time of the D input, and possibly add to the delay, if the D input
was the endpoint of a critical path.

The other side effect is that the area increases if these Flip-Flops happen
to be the storage elements of a large bank of registers.

RTL Design 107

2.13.4 Illustrate an example of clock gating to help in reduction of
power.

Clock gating is a common mechanism to save power. This technique
reduces the switching activity of the output of the FF by:

eliminating the need for reloading the same value in the register
during multiple clock cycle.
Reducing the clock network power dissipation.

The most common method of clock gating is through the use of a latch
and a gate. The following figure illustrates the implementation of this
mechanism:

Figure 2-19. Using latch for clock gating

When the clk is in its low phase, the latch is enabled. The control input,
which actually decides whether to gate the clock or not, is now propagated
through the clock to its Q output. Here, if the control input is high, the Q of
the latch is high during the low phase, and remains so until the next low
phase of the clk. This keeps the AND gate enabled. In the mean time, when
the clk arrives, it gets propagated to the gated clock net. This happens
cleanly, without any glitches, because the latch output is stable for sufficient
time to meet the Flip-Flops setup requirements. When the control input goes
low, it negates the AND gate and, hence, prevents the clk from being
propagated to the gated clock net. This makes the gated clock net to be at 0
without any switching activity.

A simple Verilog code that illustrates the above logic is illustrated as
follows. Note that the implementation of this strategy in large designs is best
done through the synthesis tools without having to manually implement this
strategy in the designs containing a large number of FFs.

108 RTL Design

The main reason for using a latch is to prevent the glitches on the
gated_clk net since its changes happen during the low phase of the clock.

Although the above illustration is shown for only one FF, the gated clock
can actually be driven to all the remaining Flip-Flops in its clock domain.
Also, the gating element has been an AND gate, depending upon the polarity
of the enable to the latch and the low phase of the clock for a rising edge.
This gate can change, depending upon any changes to these two polarities,
that is, the logic level to enable the latch, and the edge of the clock, whether
it is rising or falling.

The logic shown within the dashed box will require being instantiated
multiple times, depending upon how many branches the main clock tree has.
Depending upon the buffering, clock skew, and loading, many such
instances could be placed on each branch of the clock tree or at the root
level.

RTL Design 109

2.13.5 What are the side effects of latched clock gating logic, and
how is it fixed?

Although the use of clock gating through latches is a good way to save
power, it introduces the problem of testability, as illustrated. Due to the
latch, the controllability of the gated clock signal is reduced, that is, the
gated clock signal is now in the mercy of the control input only. During
testability, if this signal is low, then it disables the propagation of the clock
itself.

To resolve both the above issues, additional logic needs to be added to
enhance the testability. One way to increase the controllability of the gated
clock is to introduce a control point in the input of the latch, so that the latch
is “ON” during scan testing. This is illustrated in the following figure:

Figure 2-20. Using latch for clock gating

Based on the OR gating above, the scan enable signal will override the
control input, such that the output of the latch enables the AND gate to
propagate the clk net into the input of the Flip-Flops.

A simple Verilog code that illustrates the above implementation is as
follows. Note that synthesis tools can implement this logic illustration
automatically, for all the FFs in a large design, rather than having to do
manually.

110 RTL Design

Sometimes there have been situations that the test tools used in the
foundries don’t support the control before the latch and require it to be
present after the latch. Since such a requirement comes from the foundry, the
above circuit can be easily changed to position the OR gate after the latch, as
shown below:

Figure 2-21. Latch controllability after the output

A simple Verilog code illustrating the above is as follows:

RTL Design 111

2.13.6 What are a few other techniques of power saving that can be
achieved during the RTL design stage?

The following design considerations during RTL coding help in the
reduction of power within the logic:

Run high frequency signals through as few intermediate logic levels as
possible. This way, only those cells which need to be run at high
frequency switch, and the rest of the logic can run at a relatively lower
frequency. This would require multi clock design within the chip,
preferably where the clocks are integral multiples of each other. The safe
approach would be to route one master clock into the chip, and generate
its sub clocks within the chip.

Only use as many Flip-Flops as required to store the data values, that is,
if only 4 bits of a 32 bit register are going to be used, it is not required to

112 RTL Design

register the remaining 28 bits. Normally the additional unused FFs will
be optimized away by the synthesis tools.

Gate the inputs using a select line. For example, the address lines from a
CPU are continuously changing, and may not all the time refer to your
device. In that case, it is better to gate the rest of the logic following the
address lines with a signal like chip-select, which will hence reduce
unnecessary switching activity. The chip select can be generated from
one central address decoder. Although this decoder is switching all the
time, it helps in the unnecessary switching in lots of other logic
distributed elsewhere.

Choose Gray coding for state machines instead of binary encoding:
Since only one bit changes at any Gray transition, the number of Flip-
Flops switching, and the switching in the logic that it drives, is reduced.
Note that this would potentially require more Flip-Flops than the binary
encoded approach. Hence, for the most frequent transition arcs, use Gray
coded transitions. Focus the gray coding efforts on common return to
zero state transitions.

Choose a multiplexor instead of on chip tri-state buses: The biggest issue
of on chip tri-state buses is the bus contention. Since there is a high
possibility of one buffer beginning to drive the interconnect before the
other has finished, there is a small window in which potentially opposite
polarities are driven. This causes a transient short circuit on the internal
bus. The choice of a multiplexor avoids the bus contention, but it could
potentially add to the number of gates and logic path. Consider
registering the inputs that come from these long paths. Tri-state buses
also require internal pull up resistors and higher current signal drivers.

2.13.7 What are a few system level techniques, apart from RTL,
that can influence in the reduction of power for the chip?

Having discussed a few techniques of saving power through RTL in the
above FAQs, the following are a few system level variables that can
influence power reduction:

Reducing operating voltage: Since power consumed is directly
proportional to the square of the voltage, operating at a lower voltage is
one way of saving power. Many of the semiconductor vendors have
libraries that are designed specifically for low power. However, note that

RTL Design 113

there could be side effects in the static timing when the low power
libraries are used.

Reducing operating frequency: Since the power consumed is directly
proportional to the frequency, design technique of operating at a lower
frequency, but increased bus widths to maintain the data rate
performance requirements should be considered. For example, the rate
of data transfer of a 32 bit bus at 100MHz is the same as a 64 bit bus at
50MHz. Note that there will be additional design corners that get
introduced as the widths increase, especially in non aligned byte transfer
scenarios.

Running the I/O voltage different from the core voltage: In this
technique, the I/O ring of cells are working at a different voltage from
the rest of the core cells. This achieves interfacing to the signals external
to the chip with a different voltage requirements than the core. It also
isolates the core from output-transition noise.

Lower the capacitance of the routing network, especially for high
frequency signals.

2.13.8 What are a few power reduction techniques that can be
achievedthrough static timing?

Power reduction can be achieved in all stages of the chip process, that is,
RTL techniques of gate clock, synthesis tool optimizing away unused logic,
reducing capacitance of the routing network during backend, and also
through good static timing. The following are a few considerations on how
the power can be reduced through static timing:

Control clock skew between logic gate inputs.
Ensure that flip-flop inputs meet setup and hold time requirements, to
avoid extended output settling transitions caused by metastability.

2.13.9 What are a few power reduction techniques that can be
implemented during the backend analysis?

The following are a few parameters within the chip that can significantly
influence the overall power consumption, which can be taken care of during
the backend phase:

114 RTL Design

Have shorter routes for power and timing sensitive logic: Since the
capacitance of a routing net is a function of the length, width and
impedance of the route, a long route typically has higher capacitance
than the shorter alternative. Since dynamic power consumed is directly
proportional to the capacitance, that is, lower capacitance
means lesser power. This would mean the logic blocks need to be closer
to each other.

Reduce excessive loading: Heavily loaded nets cause higher capacitance
and higher power consumption.

2.13.10 What are a few power reduction techniques that can be
implemented during board design?

The following are a few techniques that can reduce power consumption
at a board level

Reduce the chip interconnection dynamic power by limiting the
number of I/O pins, the loading on each, pin and the average
frequency at which each pin toggles.

Minimize the trace lengths between the chips output and other
device inputs.

SUMMARY

This chapter discussed how the various Verilog constructs get inferred
during synthesis, and the static timing implications. The chapter also
discussed a few techniques on area reduction, and issues on testability and
power.

Chapter 4

MISCELLANEOUS

INTRODUCTION

This chapter lists various questions that may come up during the course
of using the Verilog HDL. These FAQs are not in any particular order or
category.

4.1.1 What is the difference between a vectored and a scalared net?

Both scalared and vectored are Verilog constructs used on multi-bit nets
to specify whether or not specifying bit and part select of the nets is
permitted. For example,

172 Miscellaneous

4.1.2 What is the difference between assign-deassign and force-
release?

The assign-deassign and force-release constructs in Verilog have similar
effects, but differ in the fact that force-release can be applicable to nets and
variables, whereas assign-deassign is applicable only to variables.

The procedural assign-deassign construct is intended to be used for
modelling hardware behaviour, but the construct is not synthesizable by
most logic synthesis tools. The force-release construct is intended for
design verification, and is not synthesizable.

4.1.3 What is the order of precedence when both assign-deassign
and force-release are used on the same variable?

The force statement overrides the value of assign statement until it is
released. The following example illustrates the same:

Miscellaneous 173

The above code produces the following output:

As evident from the above, the force command has overridden the
assigned value earlier and relinquished it back to its assigned value after the
release command.

4.1.4 How can I abort execution of a task or a block of code?

The Verilog disable statement will be able to abort the execution of a
task or block of code. Disabling a block of code would be useful in scenarios
like:

Executing a “break” command within a loop, to skip the rest of them
loop iterations, and exit the loop
Terminating a task before its completion

Note that the disable statement is used with a block name. For example,

In the above example, “block1” and “block2” are the block names. As
the statements get executed, when the disable statement is hit, the remaining

174 Miscellaneous

statements in block2, that is, statements 5 and 6 don’t get executed. They are
skipped, and the execution resumes from statement 7.

The only restriction on using the disable statement is that it cannot be
used in a function, as it would invalidate the function and its return value. It
can, however, be used in a task.

SystemVerilog also introduces the break command to exit the loop. This
is more graceful than the disable statement as illustrated in the following
example:

If the current iteration needs to be skipped on certain conditions,
SystemVerilog has added a command continue which will directly jump to
the end of the loop. For example, in the following code, the loop would be
skipped for all odd values of the variable i.

Miscellaneous 175

The output of this test program displays:

4.1.5 What are the differences between the looping constructs
forever, repeat, while, for, and do-while?

The statements forever, repeat, while, and for are the looping statements
supported in Verilog-2001 and the do-while construct is introduced in
SystemVerilog. These statements fundamentally differ in how many times
the statements within the begin-end scope of the loop is executed. The
following bullets summarize these differences:

forever: Executes the statements within its begin-end block forever,
without any variable to control it until the simulation session
terminates. For example,:

Note that a forever loop cannot be terminated via a disable statement.

repeat: Executes statements within its begin-end block a fixed
number of times that is evaluated once at the beginning of the loop.
For example:

176 Miscellaneous

Note above that the var1 has to be within brackets, as (var1).
Without the brackets, it is a syntax error. Since the variable size is a
constant that needs to be fixed a priori before entering the repeat
loop, the possibility of an infinite loop through the repeat construct
doesn’t occur. The disable statement can be used to exit the loop
prematurely.

while: Executes the statements within its begin-end block
indefinitely, until its expression becomes false. The loop expression
will also evaluate to false if it has a X or Z value in it. For example,

The above code can potentially end up being an infinite loop, if there
is no statement to falsify the expression of the while loop. The
disable statement can be used to exit the loop prematurely.

for: Executes the statements within its begin-end block, based on
the number of times its variable is modified, in steps, until the
variable evaluates to X or Z or false.

Miscellaneous 177

The above code displays the values of i as 0,1,2,3,4,5,6,7. Note that
for loop also has a potential of entering into an infinite loop, if the
expressions don’t get falsified over a period of time. The disable
statement can be used to exit the loop prematurely.

Unlike the repeat loop, the loop variable can be manipulated within
the for loop. For example, in the above code, if the statement “i = i +
1” within the begin-end block is uncommented, then the display will
be of values 0,2,4,6. This capability could, if used incorrectly, also
be a cause for entering an infinite loop. Thus, modifying the loop
variable in a for loop is not a best practice, and should be strongly
discouraged.

Another unique feature of for loop is that it is the only looping
construct supported by the many synthesis tools. The statements
within the for loop are replicated, once for each value of the looping
index. For this reason, the bounds of for loop need to be fully
deterministic when the code is read by a logic synthesis tool.

do-while: Executes the statements within its begin-end block,until
the variable within the while statement evaluates to X or Z or false.
The expression is evaluated at the end of the loop.

178 Miscellaneous

The key advantage of the do-while statement is that it guarantees the
execution of the loop statements at least once before reaching the
end of the loop. Hence, this avoids the duplication of the loop body
outside the start of the loop before checking the entry of a normal
while loop.

4.1.6 What is the difference between based and unbased numbers?

Based numbers are those which have a base identifier preceding the
actual number. For example, 4’habcd represents a number with a
hexadecimal base. An unbased number has no base specified before it, and
represents a simple integer. For example, the integer 23 is an unbased
number, since it has no base specification preceding it.

4.1.7 What does it mean to “short-circuit” the evaluation of an
expression?

Verilog supports numerous operators that have rules of associativity and
precedence. In some of the expressions, the result of the expression can be
evaluated early on, due to the precedence and influence to override the rest
of the expression. In that case, the entire expression need not be evaluated.
This is called short-circuiting and expression evaluation.

For example:

In the expression above, the result of the test (in1 > in2) is ANDed
with the result of If the result of (in1 > in2) is false
(1'b0), then tools can already determine that the result of the AND
operation will be 0. Thus, there is no need to evaluate and rest
of the equation is short-circuited.

Miscellaneous 179

4.1.8 What is the difference between the logical (==) and the case
(===) equality operators?

The “==” operator specifies logical equality and the “===” equality
represents the case equality. The “ = = ” logical equality operator is used to
model hardware, where comparisons to high-impedance or unknown values
would yield ambiguous results (an unknown or X in simulation). In other
words, if any of the operands of the “==” operator contain X or Z, then the
result is ambiguous and is an “X”. For example,

Since at least one of the operands, a, contains X in one of its bits, the
result is X and in this case, the message “reached else” is displayed. Note
that in this example, even though it appears that both a and b appear to be
equal, the presence of a X in either will result in a mismatch during the
comparison operation.

The “= = = ” case equality operator is intended for verification, where it
is important to test if a value is high-impedance or unknown. If any of the
operands of “===” contain X or Z bits, their comparison is still considered
during evaluation and a Boolean result is reached, that is, the result is a
1'b1 or a 1'b0. For example,

In the above, “reached if” is displayed. The example works the same if X
is replaced with Z.

180 Miscellaneous

4.1.9 What are the differences and similarities between the logical
(<<, >>) and the arithmetic (<<<, >>>) shift operators?

The logical shift operators are (<< and >>). The logical shift operator has
been present from Verilog-1995. The arithmetic shift operators are (<<< and
>>>), which were introduced with Verilog-2001.

Three of them, that is, logical left shift (<<), arithmetic left shift
(<<<) and logical shift right(>>) operators, shift the bits left/right by
the number of bit positions specified by the right operand, and the
vacated bits are filled with zeros.
The arithmetic right shift operator (>>>) will fill the vacated bits
with 0 if the left operand is unsigned, and the most significant bit if
the left operand is signed.

The following example illustrates all the above facts:

Miscellaneous 181

4.1.10 What is the difference between a constant part-select and an
indexed part-select of a vectored net?

The constant part-select and indexed part-select are two types of
addressing the contiguous bits of a vectored net/reg, or any multi-bit variable
declaration.

The constant part select, as the name suggests, has a constant definition
for its upper and lower bounds. For example,

where both msb and 1sb must be constant expressions, that is, they have
fixed values during compile time itself.

In the case of indexed part select, as the name suggests, the width of the
part select (the right operand) must be constant, but the starting or ending
point of the part select (the left operand)can vary. For example,:

182 Miscellaneous

Note the “+:” and “-:” syntax in the above usage. The + : indicates that
the part select bit numbers will incrementfrom the value of the left operand
up to the width specified by the right operand (which must be constant). The
- : indicates that the part select of the bit numbers will decrementfrom the
value of the left operand up to the width specified by the right operand
(which must be constant). For the purpose of understanding this better, the
general expressions used for analysis are:

variable[base +: offset] and
variable [base -: offset]

to arrive at the variable [physical_msb: physical_lsb].

The following table summarizes the context and usage scenarios:

4.1.11 Illustrate how memory indirection is achieved in Verilog.

Indirection is a mechanism where a pointer is passed as a value of an
argument to memory. This is very commonly used in software. In Verilog,
the address of a memory location can be specified as an expression, too. One

Miscellaneous 183

way to specify this is in the form of the value of another location in the same
memory. For example, in the following:

suppose the value of my_memory[10] = 16’h1a00, then the result of
new_value is as good as specifying as my_memory[16’h1a00]. Hence,
the memory indirection can be achieved.

4.1.12 What is the logic synthesized when a non-constant is used as
an index in a bit-select?

A multiplexor is synthesized when a non-constant is used as an index in a
bit-select. The following is an example:

The above RTL code will get synthesized into a multiplexor with 8 bits
of data_in and 3 bits of select, as follows. Typically, the synthesis
tools will try to pick up an 8:1 multiplexor from the target library. If it is not
available, the multiplexor gets synthesized, using logic gates.

Figure 4-1. A multiplexor generated out of non-constant bit select

184 Miscellaneous

4.1.13 How are string operands stored as constant numbers in a reg
variable?

Strings are stored as ASCII characters in 8 bit fields. For example, the
ASCII characters for lower case a-z are 8’h61 to 8’h7a. Hence, the reg
declaration that uses these fields needs to accommodate the correct number
of bits with 8 bits for each character.

Since the ascii characters are stored as 8 bit fields, modifying these bits
would change the value being displayed. The following example illustrates
this.

SystemVerilog allows the definition of variables as string. This is a very
flexible mechanism of not only initialising these variables with a
dynamically allocated array of characters, but also includes a set of
associated functions which return the length of the string, character
manipulation, case conversion etc.

Miscellaneous 185

4.1.14 How can I typecast an expression to control its sign?

The sign of an expression can be controlled by typecasting with two
system functions namely $signed and $unsigned. These functions evaluate
the expression to return the type of sign as requested. For example,

As illustrated above, casting is very beneficial in the middle of
compound operations.

4.1.15 What are the pros and cons of using hierarchical names to
refer to Verilog objects?

Verilog allows the access of variables by using hierarchical paths. For
example, the status net at the top level can be assigned directly with the
value, as seen in the hierarchy underneath:

The advantage of using hierarchical names is:

It is easy to debug the internal signals of a design, especially if they
are not a part of the top level pinout.

186 Miscellaneous

The disadvantages of using hierarchical names are:

Sometimes, during synthesis, these hierarchical names get
ungrouped or dissolved or renamed, depending upon the synthesis
strategy and switches used, and hence, will cease to exist. In that
case, special switches need to be added to the synthesis compiler
commands, in order to maintain the hierarchical naming.
If the Verilog code needs to be translated into VHDL, the
hierarchical names are not translatable.

4.1.16 Does Verilog support an operator?

Yes. Verilog supports the operation by using two astrices, back to
back. This operator was added with the Verilog-2001 release. For example,

A value of 2 would mean out1 = in1 * in1, that is, the value getting
multiplied to itself. Simulation, however, works for powers other than 2, as
well.

4.1.17 What is the main limitation of fork-join in Verilog, and how
is this overcome in SystemVerilog?

The main limitation of fork-join construct in Verilog is that it is static,
that is, the execution of the code beyond the join is suspended until all the
processes within the fork-join are completed. For example, in the following
code, the last $display statement gets executed only after 10 time units,
although the process 1 is completed in 5 time units:

Miscellaneous 187

The above code produces the following display outputs:

SystemVerilog adds two new keywords for joining parallel processes:
join_any and join_none.

When the join in the code above is replaced by join_any, then the
following display outputs are produced:

Notice that the fork-join_any exits after the first process gets completed,
that is, at 5 time units.

When the join in is replaced by join_none, then the following display
outputs are produced:

188 Miscellaneous

Notice that the fork-join_none exits after spawning both the processes
and not waiting for any of them to be completed, that is, exits at at 0 time
units.

The join_any and join_none constructs of SystemVerilog do not hold the
fork process until all of its process are necessarily completed.

4.1.18 Can I return from a function without having it disabled?

It is illegal to disable a function in Verilog-1995 and 2001. However,
SystemVerilog has introduced a keyword return, that skips the rest of the
lines of the function, and returns back to the block that called the function.
For example, in the following code, the function would return back, if in1
is greater than in2.

The above code would produce the output displays of:

Miscellaneous 189

4.1.19 What is strobing? How do I selectively strobe a net?

Strobing is a facility defined in Verilog by which simulation data on
selected nets or variables can be captured at the end of the current simulation
time instant, after all the events scheduled for this time have occurred, and
just before the simulation time is advanced. In Verilog, strobing is facilitated
by the $strobe system call. Syntactically, this system call is very similar to
the $display system call. An example of the $strobe system call follows:

Functionally, the $strobe system call creates internal monitoring events
of its arguments, which are re-enabled at every user-specified time-step.

Variants of $strobe include $strobeh (hexadecimal formatted), $strobeo
(octal formatted), $strobeb (binary formatted). All of these system calls
print their results on the standard output device. For printing the strobed
outputs to a specific file, instead of the standard output, there exist the file-
specific variants of these system calls: $fstrobe, $fstrobeb, $fstrobeh, and
$fstrobeo. The syntax of these calls takes on an additional argument for the
file-handle. For example:

In addition to $strobe, Verilog has an additional system call, called
$monitor, which is used for taking snapshots of signal changes during
simulation. Like $strobe, the $monitor system call also creates internal
monitoring-events of its arguments. However, unlike $strobe, a $monitor

190 Miscellaneous

call cannot create other simulation events. For example, we can create a
time-event (that is, simulation event) for a $strobe:

In this example, the values of the argument signals of $strobe are printed
out to the standard output at every posedge of the clock signal.

However, $monitor effectively, “stands by itself”. Example:

In this example, every change on the rx_active and rx_data
signals causes $monitor to print out the changes to the standard output
device.

From this example, it is clear that a $monitor call for a given set of
arguments should be issued only once in a simulation.If $monitor is called
more than once, then the most recent invocation overrides all previous calls.
In the following example, on the signals tx_valid and tx_data will be
monitored:

Miscellaneous 191

Finally, as with $strobe, there are variants of the $monitor system call as
well: $monitorh, $monitoro, $monitorb, $fmonitor, $fmonitorh,
$fmonitoro, and $fmonitorb, with the exact same meanings as
corresponding with $strobe.

4.1.20 Summarize the main differences between $strobe and
$monitor.

The differences between $strobe and $monitor are summarized in the
following points:

$strobe can be used to create new simulation events, simply by
encapsulating the $strobe system call within a simulation construct
that moves simulation time, such as @(posedge clock), @(negedge
clock),@(any_signal) etc.There can exist multiple $strobe system
calls at the same time, with identical or different arguments.

$monitor stands alone. A given set of arguments of $monitor form
their own unique sensitivity list. Only one $monitor call can be
active at any time. Each call to $monitor replaces any previous
call(s) to $monitor.

4.1.21 How can I selectively enable or disable monitoring?

$monitor can be selectively enabled or disabled by the $monitoron and
the $monitoroff system calls, respectively. The $monitoron and $monitoroff
system calls affect only the most recent call to $monitor.

4.1.22 How can I specify arguments on the Verilog simulator’s
command line?

User defined command line arguments to the Verilog simulator are
usually preceded by a “+”, and are generally referred to as “plusargs”. For
example, a Verilog command line may look like this:

Here, the plusargs are MYGPA and MYSCHOOL. The values assigned
to these plusargs are “4.0” for MYGPA and “geek_factory” for
MYSCHOOL.

Verilog defines system-tasks for determining

192 Miscellaneous

which plusargs are defined : $test$plusarg
what is the value assigned to each plusarg: $value$plusarg

Continuing with the above example:

Therefore, we can use $test$plusargs in a Verilog testbench to query if
particular plusargs were defined on the command line.

After knowing which plusargs were defined on the command line, the
value assigned to each plusarg can be queried as well, using the
$value$plusarg system task.

Again, continuing with the previous example:

would result in

Similarly, the following snippet of code:

would result in

In other words, $value$plusargs is analogous to the sprintf() function in C.

Miscellaneous 193

4.1.23 Can the `define be used for text substitution through
variable instead of literal substitution only?

Typically the `define text macro has been used for literal text
substitution only. For example,

In the above example, `width is literally replaced by 8 wherever it is
used. This was the usage syntax in Verilog-1995. However, from Verilog-
2001 onwards, the text substitution can also work, taking in variables, and
still do text substitution as required. For example,

In the above example, wherever the `pos_clk will be called, it will be
substituted by @(posedge clk), with the clk being the argument
passed to the text macro.

Note : During text substitution, it is important to pay attention to the white
spaces, too. For example, in the 'define in above example, if a white space
exists between pos_clk and (in1), the replacement wouldn’t work.

SUMMARY

This chapter discussed miscellaneous topics that couldn’t be allocated
into the rest of the chapters. These topics are spread across the different
sections of the Verilog language.

Chapter 5

COMMON MISTAKES

COMMON VERILOG CODING MISTAKES

This chapter describes different errors that aren’t detected during the
compile time, but show up either as functional problems or as run-time
problems during simulations. The list presented is by not exhaustive, but it
captures most of the common mistakes seen during the development phase.
Each of these mistakes is illustrated with an example, and possible
workarounds to avoid these from occurring.

5.1 Some common errors that are not detected at
compile-time

These are the mistakes that are not detected during the compile time, that
is, it is a legal syntax of Verilog, but it ends up being either functionally
incorrect, or causes hang during simulations, due to deadlock or live-lock,
etc.

5.1.1 What are some ways a race condition can get created, and
how can these race conditions be avoided?

Race condition happens when two variables are being assigned values at
the same event time. Race conditions also happen due to incorrect coding
style of using the blocking assignments in clocked processes. The
destination variables wouldn’t have been scheduled to be updated due to the
bad coding styles resulting in incorrect values being updated, hence, causing

196 Common Mistakes

a race between the source and destination variables. The receiving/retrieving
agent, which could be another variable, or a function, like $display, using
this variable, would display the value as per its scheduling resolution. In the
following example, the same variable is initialised in two blocks:

The above code displays either a 0 or 1 for the variable “a", and it
typically follows the value that was last assigned to it. In general, this is
heavily dependent on the implementation of the simulator. The value of “b"
might be shown as X or 0 or 1, depending on the event ordering of the
simulator.

One of the recommendations is to avoid driving variables from multiple
sources. If a variable needs to be a function of information from multiple
processes, then the assignment to the variable must happen in one place,
with the control variables on the RHS of the assignment.

The other recommendation is to assign the variable in-line. Beginning
with Verilog-2001, there is a convenient way to initialise the variable from
in-line during the declaration itself. For example, the variable a, above, can
be initialised in only one place as:

Common Mistakes 197

The SystemVerilog standard further enhances the above initialisation
procedure, such that all the in-line initialisations are guaranteed to happen
prior to the execution of any events before any simulations begin. See also
FAQ 5.1.15 for additional side effects related to race condition.

5.1.2 Illustrate how the infinite loops get created in the looping
constructs like forever, while and for.

Infinite loops are one of the common things that cause a hang in a
simulation. If the loops don’t have a finite end value for the looping variable,
then the loop never terminates. The following are common examples:

Note that the above while loop only exits if some other process changes
done to be 0. If this never happens, then the loop never terminates, but is
syntactically correct.

The fix for the critical loops is to add a check within the for loop for a
way to disable the loop when the loop variable exceeds a limit. Other way is
to add a watchdog timer parallel to the for loop in a fork-join. This would
stop the simulation if the loop doesn’t get terminated in a specific number of
iterations or a specific amount of time.

With SystemVerilog, an assertion statement can be used instead of
having to write a watchdog timer.

198 Common Mistakes

Note that the above for loop wouldn’t terminate since the termination
condition of i >= 0 is always met. The fix for this is similar to the
addition of watchdog timer or use of the assertion feature in SystemVerilog.

Note that the $display statement above is never reached since the forever
statement never gets completed. This makes the forever statement to be the
last statement in any procedural block. The statements after the forever loop
should be added into a different procedural block.

5.1.3 Illustrate the side-effects of specifying a function without a
range.

It is common to use the function to assign a value. A mistake can happen
if a range for the function return is not specified. If a range is not specified,
Verilog will assume a 1 bit return value. If a multi-bit return value was
calculated in the function, only the least significant bit is returned. In the
following example, the value of the correct result is 7 if the range of [31:0] is
specified in the function definition. Without a range, however, only the least
significant bit of the value is returned, which is 1.

Common Mistakes 199

There would not be any compilation errors for the function definition. It
is a runtime functional error. To correct the error, the function should be
declared with a range of sufficient size for the return value, such as:

5.1.4 Illustrate how the errors of passing arguments to a function
in incorrect order is eliminated in SystemVerilog.

The arguments to a function call have to be exactly in the same order as
the input arguments defined in the function. Passing arguments in an
incorrect order to a function call, would result in incorrect functionality,
although it is syntactically correct. For example, in a function call, two of
the inputs, say, in1 and in2 could result in incorrect functionality if the
variables that call the function were not passed in the right order.

SystemVerilog has an enhancement to function’s that eliminates this
ambiguity, by bringing in a feature to both task and function calls, wherein
the arguments to the function can be passed explicitly by name, rather than
implicitly by order. In the following code, the arguments of the function call
are connected to their right source and destinations, although the order in
which they have been passed are not in the same order the function
definition has been declared.

200 Common Mistakes

The result of the above function call, by passing arguments by name, is
the same as it was with implicit order of arguments to the function call.
Hence, this eliminates possibilities of in-advertant errors during function
calls.

5.1.5 Using tri-state logic inside a chip

The presence of internal tri-state logic is a critical consideration for
power sensitive products. Normally a multiplexor should be used in place of
tri-state logic. However, if the tri-state logic remains in the RTL, it is not an
error for compilation. Synthesis tools sometimes warn the users. The linting
tools also detect this condition, and report this to the user.

5.1.6 Illustrate the side effects of not having a final else clause in an
if-else construct.

In a combinatorial block, not having a final else clause would result in a
latch when synthesized. This is a fully legal construct in Verilog, and would
compile without error. For example,

Common Mistakes 201

In the above code, there is no else clause in the combinatorial block and
would result in a latch when synthesized. Many synthesis and linting tools
detect and report this very well. If the latch is not to be inferred, then an else
block is required.

If the intent is to produce a latch, any synthesis and lint warnings are
false. The warnings can be avoided by using the always_latch keyword in
SystemVerilog as follows:

5.1.7 What is the side effect of not having a default clause in a case
construct

This is another common reason for the cause of un-intentional latches.
The default case is necessary if all the cases are not fully specified. For
example,

202 Common Mistakes

The presence of the default statement will initialise the out1 variable
for all definitions of case items that are not be specified. Good linting tools
specify the presence of the latches, and the synthesis elaboration log file also
needs to be checked for the presence of latch inference.

5.1.8 Illustrate example of how unintentional deadlocked situations
can happen during simulation.

When there are interactions between two processes in a handshake
interface form, it is important to ensure that the implementation doesn’t
allow itself to become deadlocked. The deadlock situation is one in which
one process is waiting for the other process to enable it, which in turn will
enable the source process. The code could be a syntactically correct
implementation, and still have a deadlock situation. The scenario can happen
in both synchronous and asynchronous designs. A simple asynchronous
example has been illustrated in the following, to demonstrate how deadlock
occurs.

Common Mistakes 203

In the above example, the displays of variable a and b being detected
will never get asserted, since the variable a has been initialised to 0. In the
above example, if the variable a gets initialised to 1, then all the displays get
asserted. The above example is an illustration of the deadlock scenario,
which can be difficult to capture in a larger implementation.

SystemVerilog eliminates the race condition with always_comb, which
automatically triggers once at time 0, after all pending time 0 assignments
are executed.

5.1.9 Having a programmed loop that does not move simulation-
time

When any form of loop executes without any delay in between iterations,
the code without a defined termination criteria would make the simulator
hang at that loop. The delay can be either through a (posedge clk), or #
delay constructs. The simulation time also doesn’t move ahead, due to this
issue since there is no advancement of time. For example, in the following,
the while loop runs in 0 time delay between iterations forever, and would
cause a hang.

These kind of zero delay loop is only a problem if another process is
reading the variables assigned in the loop. In the above example, the
variables assigned in the loop might not have a chance to propagate to the
DUT. This causes a write-write .. write-read race condition. This scenario
typically occurs in a testbench.

One of the common workarounds to detect such unintentional hang
scenarios is by introducing a check in difference in time between iterations

204 Common Mistakes

just before the end of the loop. If the time didn’t advance, then the loop
should be exited. The following is an extension of the above example with
the time check between the iterations of the loops:

Having checks like the above in loops that are suspicious of being hung
will help in easy debugging.

5.1.10 Illustrate the side effect of leaving an input port unconnected
that influences a logic to an output port

Leaving an input pin floating will cause a `bz to be propagated during
functional simulation. During synthesis, it will cause the gate optimiser to
optimise away the logic that propagates beyond a floating input. For
example,

Common Mistakes 205

The above logic would get synthesized, such that the u_in1 is not
connected to any logic within its hierarchy, and in1 is directly connected to
out2 in the lower hierarchy, (since out2 is an or’ing function of in1
with ‘nothing’).

5.1.11 Illustrate the side effect of not connecting all the ports during
instantiation

Unconnected input ports evaluate to a ‘z’. If the input port is used in if
conditions with logical equality operator (==), then the condition evaluates
to a logical false. For example,

206 Common Mistakes

The above example will display “Reached else”, since there was nothing
connected to port en. Most of the simulators issue a warning message if
input ports are unconnected or left floating.

The above mis-connections can be detected through a monitor module
that would be peeking at all the inputs and outputs of the DUT. An example
snippet of code to detect the floating inputs and outputs is:

Common Mistakes 207

Note that the check for floating input is done once through an initial
block, since the state of the input is not expected to change dynamically. If
the scenario of intentionally floating the input is necessary, then the above
code needs to be placed in an always block. The above monitor module can
be instantiated within the mod1_top module as:

With the en input left floating in the testbench, the display outputs of the
above are:

5.1.12 Illustrate the side effect of forgetting to increase the width of
state registers as more states get added in a state machine.

Normally the width of the state register is the closest power of 2, that is,
for a 5 state state-machine, the state register would be [2 : 0] or 3 bits wide.
The state variables would be from 3’b000 to 3’b111.

As the number of states in the state machine increase and go past 3’b111,
the width of the state variable also needs to be increased to [3:0], etc.
Suppose the additional states were having values like 4’b1000, 4’b1001, etc.,
and the width of the state register remained at [2:0]. This would erroneously
truncate to 3’b001 for the state value of 4’b1001, and to 3’b101 for the state
value of 4’b1101.

It is syntactically correct to have a smaller width of the state variable
register and larger values of the state variables, and would not cause any
error during compilation. But, this would lead to functionally incorrect
results. Some of the good linting tools would catch this type of problem.

SystemVerilog has a new feature of enumerated state variables that will
help in resolving this issue. The keyword enum is used for this purpose,
which both assigns and increments the new variables added into this. The
following example illustrates the use of this feature:

208 Common Mistakes

Common Mistakes 209

In the above example, the state variables current_state and
next_state are declared through enum. Without any assignments, the
simulator and synthesis tools will assign the values linearly, incrementing
with value of idle=0, read=1, write=2, wait4rdy=3, etc. As more states get
added to this, the values simply increment.

5.1.13 Illustrate the side effect of an implicit 1 bit wire declaration
of a multi-bit port during instantiation.

This is a common problem seen during connecting blocks with multi-bit
port sixes. Since Verilog has the feature to define implicit 1 bit wires during
port connections, the multi-bit port will be connected to single bit wires. It is
a WARNING and not ERROR during compilation for most of the
simulators. If the WARNING messages are turned off, or if there are too
many of these WARNING messages, this issue can go undetected at the
simulator level, and become an error during functional simulation. For
example,

210 Common Mistakes

This issue is detected as an ERROR by the synthesis tools. Also, some of
the editors, like EMACS, can be commanded to declare the intermediate
wires of the correct width.

SystemVerilog provides enhancements that can prevent this implicit 1-bit
wire error. The implicit named port connection during module instantiations
will not permit connections where the net is a different size than the port.

5.1.14 Same variable used in two loops running simultaneously

Sometimes accidentally, a loop variable is used in two different blocks
(often the for loops), and would be modified in both places. Although this is
syntactically correct, it would cause functional problems. For example, in
the following code, the same variable, “i”, is being modified in two
different loops, which could be difficult to detect in large pieces of code:

Common Mistakes 211

The output of the above code produces displays as:

Note that the iteration from 0-8 is shared between the two loops. In a few
rare occasions, this could be a genuine requirement in behavioural coding, in
which case the user needs to verify that the intended functionality is
correctly met.

However, SystemVerilog has a good feature of declaring the variable
within the for loop so that the variable is local to that loop only. The same
for loop in the above example, in SystemVerilog would be:

212 Common Mistakes

The output of the above SystemVerilog code would produce all the 8
iterations from both loops as follows:

Some of the considerations in using a variable declaration within the for
loop are:

The local declarations of the variables within the for loop cause the
variable to have automatic properties, that is, will not be overwritten
when used in multiple loops, as illustrated in above example.
The loop variable is visible only within the for loop, and not outside
it. If the variable needs to be accessed outside the for loop, it must be
declared explicitly outside the loop

Common Mistakes 213

5.1.15 Illustrate the side effects of multiple processes writing to the
same variable.

When the same variable is assigned in two different processes, it not only
creates race conditions during simultaneous assignments, it becomes non-
synthesizable. Most of the simulators allow compilation to proceed, since it
is syntactically correct. For example,

Most of the linting tools are able to detect this, and is also a compilation
error seen during synthesis.

5.1.16 Illustrate the side effect of specifying delays in assignment’s.

Specifying any kind of delay before an assignment, or within an
assignment, in a blocking or nonblocking procedural assignment is ignored
by synthesis tools. If the functionality depends upon the presence of the
delay, then a mismatch in functional simulation will be seen between the
model and the synthesized netlist. For example,

214 Common Mistakes

Since the above construct is syntactically legal, the synthesis tools will
issue a WARNING and not an ERROR.

SUMMARY

This chapter discussed the common functional mistakes that happen
during the coding using Verilog. Most of these errors go undetected, as they
will be syntactically correct, and, hence, get past the compilation. While
many of these are un-intentional errors, a preview of these scenarios will
help the readers towards debugging more easily in the different stages of the
project cycle. Any workarounds that could help in avoiding these mistakes
have also been discussed.

Chapter 6

VERILOG DURING SIMULATION
REGRESSIONS

INTRODUCTION

This chapter discusses using Verilog for regression. testing In particular,
we discuss the requirements for pre-release regression testing, and the issues
encountered during such regression simulations. As the design sizes continue
to grow, so does the complexity of verification and the regression runtime.
We discuss some special constructs of Verilog that help in meeting some of
the needs of pre-release regression simulations. In most cases, Verilog alone
is not sufficient in constructing the regression infrastructure. Regression
environments are typically wrapped in programming languages like C, and
scripting languages like Perl, TCL, make or csh. Scripting languages
typically constitute the control/logistical flow of the regression environment.
This chapter discusses specifically how these logistics can be aided in
implementing the release infrastructure efficiently, and how the constructs in
Verilog help in achieving the same.

The development of a good regression environment is not something that
can be deferred until the end of code development and testing. It is an
essential infrastructure that needs to be built right at the architectural
definition phase. This way, the changes done during the development phase
can also make use of this infrastructure to validate the changes.

216 Common Mistakes

6.1.1 Illustrate a few important considerations on simulation
regressions, and how Verilog can be useful for achieving the
same.

While the regression environment is quite unique to each product, the
following are a few generic requirements that are useful for a release
simulation:

1. The user must have provision to turn off the waveform dumps during
the regression. This will not only save disk space, but also improve
the overall runtime. In Verilog, this can be controlled by a variety of
ways, as illustrated in the following:

During the command invocation, the following needs to be
appended at the end:

In the above method, either the waveforms of all the
variables from/below the hierarchy from where the
$dumpvars command is invoked are recorded, or there is no
waveform recording at all. If the waveforms need to be
dumped at specific hierarchical levels, this can be controlled
by specifically mentioning the hierarchy in the first argument
of the $dumpvars command. For example,

This specifically dumps all hierarchies of U1 at and under
testtop only, and no other modules.

a. Controlling the dump operation via a command line
argument. This can be implemented through the `ifdef
compiler directive and the $dumpvars system task. An
example to illustrate the same is:

b.

Common Mistakes 217

This specifically dumps all hierarchies at testtop only,
that is, level 1, and none below level 1.

Note that more than one module can be mentioned after the
first argument, for specifying additional hierarchies to be
dumped.

The value of the depth can also be passed from the command
line argument, using the Verilog $value$plusargs construct.
An example of how to use this is explained later this chapter.

In the above method, the dumping of the waveform happens
right from time 0 onwards, until the end of simulation.
Sometimes it is necessary to capture the waveform only for a
small window of simulation. This could be the duration in
the zone of interest in the entire simulation. Verilog provides
a mechanism to capture a specific window, too, using the
$dumpon and $dumpoff commands, as illustrated in the
following example:

c.

218 Common Mistakes

If the dump file is viewed through a waveform viewer, it will
be evident that there was no dumping until time unit 50, and
after 150, until the end of simulation.

This approach is useful for one other purpose, too, as
follows:

In long simulation runs, the user is interested to see the
dump only for a few transactions/scenarios before the
erroneous time stamp. During the next iteration of
debugging, it is useful to specify the $dumpon at a
timestamp a few appropriate transactions before the
timestamp of the bug/error scenario in simulation. The
bug/error timestamp will be known during the previous
iteration. This will help in loading the dump files faster
in the waveform viewers, rather than the large dump
files.
This approach also helps in creating smaller dump files
for debugging and, hence, lessen disk space.
Many times, in order to update the product
specifications, that is, either the functional specification
or the user documentation, it is necessary to add timing
diagrams. In that case, the transactions can be run on the
DUT, and the VCD dump can be captured for the zone
of window, depicting the transaction scenario with the
signals of interest. This can capture the waveform for
that specific simulation time, and be useful for the
waveform capturing into the product specifications.

During regressions, it is necessary to store the dump files of
the runs optionally. For example, if a test PASSED in a self-
checking testbench, it is very unlikely that the dump file is
further required for debugging purposes, other than viewing
the waveform for an explicit check. In that case, it is not
required to have the dump file of a passing test, which would
unnecessarily occupy large disk space. In such a case, the
dump file can then be conditionally deleted, or retained if the
test did not pass. This feature can be made configurable

d.

Common Mistakes 219

through specially implemented configuration commands, or
by passing specific arguments from command line.

The provision to generate or not generate the log files (transcripts of
the simulation run) should be controllable at the command invocation
level, or by specifying this in as a specialized configuration
command, or as a parameter in an `include before the simulations
begin. Just like the waveform dump files scenario explained above,
the log files sometimes take a lot of disk space and runtime. These
factors will not be significant if one or two tests are run. But these
add up when there are several thousand tests to be run. The following
are a few ways to control the dumping of the log file:

2.

For command invocation, the mechanism is exactly the same
as described in the above description for the dumping of
waveform. This mechanism is usually the most convenient.

a.

b. For non-command invocation control, the facility to dump or
not dump could be controlled by a user defined configuration
command configure, which is basically a Verilog task for
the user. For example,

This can be used within the messaging commands to use
$display or $fdisplay, depending upon whether the
log_file_dumping is false or true. For example,

The provision to add/modify/delete the tests must be possible to be
done easily by the user, and preferably modifying just one file.
Typically, during the development phase, the regressions can fail on
a particular tests. In that case, the test infrastructure should have the
facility to run just a single test case, or a subset of testcases, with
ease, typically by just modifying the list of testcases from a file. The

3.

220 Common Mistakes

other way could be to specify all the subset of tests to be run in the
command line argument itself. While the latter is okay for a smaller
number of tests, with small names of the tests, it may not work in
many shells with limited capacity of the characters on the command
line. When the file approach is used for a group of tests, a special file
parser is required for this purpose, and invokes the tests mentioned in
each line.

An example of the file parser approach is discussed in FAQ 6.1.2 of
this book.

If multiple CPUs are present, then the provision to schedule these
optimally for the regression purposes should be used. This is not a
Verilog feature, but a useful functionality done by batch-scheduling
software. This way, the sessions get queued on multiple CPUs and
each CPU is used optimally, to complete a given sub-task of the full
run. Batch-scheduling software is also useful when the number of
licenses of the tools is limited, and requires the jobs to be sequential,
based on availability of the licenses.

The provision to display the results of the full regression must be
available to the user at any time during the regression. This should
not be considered a post-processing task at the end of a long
simulation. This will help in providing the user feedback early on if
there is a problem in the regression. This will help decide to
terminate the regression, if it is not worthwhile to proceed further.
The resolution of the results should be at a single test level, and can
be until the last test completed. Some of the key features to be
displayed are:

4.

5.

Hostname of the machine where the test was run
Number of tests passed
Number of tests failed
Number of tests timed out
Seed value of the test run (in case of random testing)
Date/time test started
Date/time test ends
Total number of tests run
List the tests passed/failed/timeout into separate files
If Failed, what was the string of failure, that is, data
mismatch?

a.
b.
c.
d.
e.
f.
g.
h.
i.
j.

Common Mistakes 221

Which was the source/destination that encountered the
failure, that is, whether the DUT was involved, or was the
error between agents involved in a traffic test without DUT?
Runtime taken for each test and an accumulated summary
If memory is critical, then the memory required for the tests

k.

m.

The mechanism to display the summary can be done through a Perl
script or csh script, or even through Verilog, through the file I/O
capabilities. The file parsing/interpreting mechanism discussed in the
earlier sections can be useful for this. As an extension, it would be
useful to display the result in a HTML format, which will be useful
for all interested team members for viewing the results through a web
browser.

l.

Sometimes it is useful to pass the name of the test as an argument to
the simulation session. This will be useful to print the test name
during some print messages, or to create the log file based on the
name of the test. The Verilog $value$plusargs command line inputs
can be used for this purpose. This system function searches the
command line argument for certain patterns, and assigns the value to
the pattern into a variable within the testbench. Note that you can
give multiple such command line inputs, and the unique string will
assign the destination variable. For example,

6.

When the above module is simulated with the command line input of:

the output produced is:

222 Common Mistakes

Similar to the above, multiple such arguments can be communicated
into the testbench environment. The command line arguments can be
passed from a wrapper script that launches these tests.

Note that, if the sufficient number of $value$plusargs are not defined
in the testbench, the excess arguments will be ignored. That is, if the
testbench code has implemented checks for 4 plusargs, and additional
plusargs are mentioned in the command line, they get ignored by the
testbench.

All the inputs to the regression should be checked before the launch
of the long regression. These inputs could be any or all of the
following variables:

7.

Parameter values for the regression have to be specified. These
values can be specified through $value$plusargs, as explained
earlier, or through the parameter files. If a specific parameter is
not specified, then a default value should apply.
Presence of sufficient number of tool licenses to launch single or
parallel runs. This check needs to be done by the launching
script, whether it is in PERL or TCL or csh.
Checking availability of system memory for the regression. This
check needs to be done by the launching script, whether it is in
PERL or TCL or csh.
Checking availability of disk space, considering the outputs of
the log and dump files that gets produced during the regression.
This check needs to be done by the launching script, whether it is
in PERL or TCL or csh.

Since the product could be implemented in multiple platforms too, it
is necessary to involve the scripts for multiple platforms, like Solaris,
Linux, HP-UX, etc. As a first order requirement, simulation scripts
should be platform-independent to the extent possible. If platform-
specific constructs are used in scripts, then these should be multiply
customized for all the supported platforms. The script should be
intelligent enough to detect the platform on which it is being run.
Sometimes, the version number of the Operating System (OS) also
matters, as also the necessity for certain patches. The script should
automatically detect the platform and the version number, and do
everything appropriate to the particular platform of execution.

8.

Common Mistakes 223

If the design has multiple parameters, it is required to run the
regression across multiple parameters, which influence the
functionality of the DUT dramatically. Examples of such parameters
include varying bus widths, varying clock frequency ratios between
externally accessible clock domains, endian of the data path, widths
and depths of FIFOs used, etc. The scripts should have the capability
to cycle through all legal combinations of parameters, and run
simulations for each combination.

There should be facility within the regression to switch between
automatic command generation, using random stimulus generation,
and executing specific sequences of commands, using a directed
flow. This should preferably be controlled by a single flag, through a
specialized user defined task like configure. For example,

This will cause the automatic command generation through random
command stimulus generation until all its constraints are met. The
flag can be set to `false by default. The objective of this
mechanism is that there should eventually be only one testbench that
switches between the directed and random command generation with
ease. The user shouldn’t have to maintain two testbenches, that is,
one for random stimulus generation only, and one for directed
stimulus generation flow.

During regressions when all other messages except ERROR/FATAL
are disabled during the runtime, it is useful to get some “heartbeat”
message, to know that the simulation is still in progress, and not
stuck at some point. This needn’t be for every transaction, but it is
found to be good enough if a heartbeat is seen, for example, every 10
transactions. At such instants, it would be useful to optionally display
a message like:

9.

10.

11.

A simple logic to implement the above is illustrated below:

224 Common Mistakes

Common Mistakes 225

A few salient points regarding the above example are:

The value of timeout can be changed through the parameter to
the appropriate acceptable limit.
In the above example, the heartbeat rate is 10 transactions. It can
also be easily changed to 20, or 50, or to any preferred value.

12. A constant monitoring by the various bus monitors in the testbench
should be incorporated. The monitors can communicate to the
testbench by assertion of an output port, or by setting of a flag in the
testbench, or by the testbench having access to these flags within the
monitors. In the following example, two different monitors, with
instance names U1 and U2, are monitoring the bus activity in the
testbench with their output ports status:

226 Common Mistakes

The outputs of the multiple monitors are OR’ed to assert a critical
error_det signal in the testbench. This can cause the simulation to
terminate with a $finish, as illustrated in this simple example:

The error messages should be identifiable, whether it is caused by an
intentional error, or not. Many times, post processing of the log files
is done, to search/grep for strings like ERROR. In order to
distinguish between an intentional error and a real error, there should
be suitable string displayed out before the launch of the intentional
error. This will help in isolating any false alarm during the post
processing of these error messages. The assertion of the global error
flags or signals, as explained earlier, can be gated with the
unintentional error criteria.

It is useful to inform the user, through INFO messages, as to where
these values can be changed, and which module caused the exit of
simulation. When the regressions are run during the development
phase, it is likely that some tests will hang. There should be some
kind of logic to detect this hang situation, and have a graceful exit in
the form of a TIMEOUT. This has been illustrated in the example
above.

13.

14.

15. If more than one copy of licenses of the simulation tool is present, it
is useful to plan the regression, such that the execution happens in
different directories. Typically, the launch of the simulation happens
from a common directory like the .../sim (or its equivalent directory
name in your project). Trying to run multiple runs from the same
directory could cause dump, log, or any other output files to be
overwritten. In order to avoid such potentials of overwriting to

Common Mistakes 227

happen, it is good to design the execution of the runs from different
directories. This will help in multiples simulation runs to take place
in parallel.

6.1.2 What coding constructs of Verilog can be used during the
various stages of designing a regression environment for
simulations?

Verilog has the following constructs built-in, which help in the
regressions:

$readmemh/$readmemb : These constructs help in loading memory
data from a file. These constructs will be useful during
microprocessor simulations, or in supplying vectors for a DUT, or
simply customized commands encoded into the various fields of the
line. Examples to illustrate the above have been discussed earlier in
an earlier FAQ 3.5.1 in the Verification chapter.

Sometimes, a file parsing is required, to know the arguments from
certain lines of a file. Instead of writing a PLI just for this purpose,
the Verilog language provides the $fscanf system task inbuilt. This
function scans the lines that it reads sequentially, until a carriage
return is obtained, and assigns the values of the arguments to the
destination variables. Each argument is typically separated by a white
space within the input file. This is a very easy way to specify the tests
to be run within a file, along with its associated arguments.

For example, in the following code, the infile.txt is a file
containing three fields. The arg1 is a decimal variable, arg2 is
string, and arg3 is hexadecimal. The $fscanf task scans this file, all
the way until the EOF is reached, and currently displays what it sees.
It can be modified further into the different simulation launching
sessions.

1.

2.

228 Common Mistakes

Suppose the infile.txt file contained the following:

The following would be the output of the above code:

In the same way as illustrated above, the arg1,2,3 variables can
actually be used internally for test launching and initialisation purposes.

Some environments use a “reference-file” based approach for the
vector comparison for PASS/FAIL criteria of a release regression.
This is typically useful for a multi-simulator product regression. This
method is useful, since it is HDL independent output for comparison
of the responses across the simulators of Verilog. The $fstrobe
command can be used for this purpose. An example to illustrate this
is as follows:

3.

Common Mistakes 229

230 Common Mistakes

The output of the above code produces the file out_vec_f ile,
with contents as:

The disadvantage of the vector-based approach is the fact that the
vectors do not carry information of functional correctness. It is useful
if the vectors have been inspected a priori by some other method, and
declared to be “golden”. Another disadvantage of this method is the
following: If a design is changed during the course of its life-cycle
(as for example, for bug-fixes or enhancements), then, depending on
the nature of the changes, the originally captured golden vectors may
no longer be valid. They would need to be re-captured, re-inspected
and re-certified to be “golden”. The vector doesn’t carry information
of functional correctness, except for clock cycle accurate
reproduction of response, provided it has been verified once before.

When the same testbench is being used for multiple configurations of
the DUT, that is, for running RTL simulations, Gate level
simulations, or the behavioural model simulation, the instantiation of
the DUT must be easily selectable from the command line itself. This
can be achieved by the use of the command line argument of
$value$plusarg. An example to illustrate this is as follows:

4.

Common Mistakes 231

During the simulation invocation command line, the following can be
appended:

% <simulation invocation> +define+RTL
% <simulation invocation> +define+GATE

Note that the Gate level simulations could be slow, due to the
presence of system timing check commands, like $setup or $hold,
built in within the simulation models of the cells of the technology
library. If running the gate-level simulation is a requirement, some
Verilog simulators have switches that will ignore these timing checks,
and only the functional simulations are run, to make sure the logic is
okay. The timing checks are now being done more through Static
Timing Analysis (STA).

SUMMARY

This chapter discussed how the Verilog constructs could be used for the
product simulation regression purposes. The different Verilog constructs that
influence the simulation during invocation and runtime have been illustrated.
The chapter also discussed how the simulation session can influence the log
and the dump file generation.

References

1.
2.

3.
4.

5.

6.

7.

8.

9.
10. http://www.eedesign.com/editorial/1997/test9708.html

IEEE Std 1364-2001, Language Reference Manual (LRM)
IEEE Std 1364.1-2002 Standard for Verilog Register Transfer Level
Synthesis 2002
SystemVerilog 3.1a Language Reference Manual
SystemVerilog Synthesis User Guide : Version V2003-12 Dec 2003 from
Synopsys Inc
The Verilog Hardware Description Language, Edition by Donald
Thomas and Philip Moorby
Reuse Methodology Manual by Michael Keating and Pierre Bricaud,
third edition
Verilog 2001: A Guide to the New Features of the Verilog Hardware
Description Language by Stuart Sutherland
Writing Testbenches: Functional Verification of HDL Models, Second
Edition by Janick Bergeron
Verilog HDL Synthesis : A Practical Primer by J Bhasker

Index

$display
$dumpoff
$dumpon
$dumpvars
$fscanf
$monitoroff
$monitoron
$readmemh
$sdf_annotate
$signed
$strobe
$test$plusarg
$unsigned
$value$plusarg
?:
`define
`elsif
`endif
`ifdef
`ifndef
<<<

69
48

217
217
216
227
191
191
227
164
185
189
192
185
192

63,65
19
89
89

89, 96
89

180
69
69

>>> 180

A

alias
always
always_comb
always_ff
always_latch
Area Minimization
arithmetic shift
assign
Assignment by name
Assignments
Asynchronous memories
Asynchronous reset
Asynchronous reset FF
Asynchronous reset latch
Asynchronous set and reset FF
Asynchronous set and reset latch

Asynchronous set FF
Asynchronous set latch
Asynchronous state machines

4
2

88
52

56, 57
89

180
4

15
35

79,80
61
53
57
53

57
52
56
71

!==

==
===

236 Index

automatic 6

B

Based numbers
between flop-flops vs. latches
binary encoding
Blocking assignments
blocking statements
break
bus contention
Bus Functional Model’s
bus monitor

178
59
73

3
39, 41

174
101, 112

120
128

C

case
case equality
case inequality
casex
casez
Clock domains
Clock gating
combinatorial
combinatorial loops
common mistakes
conditional assignments
connecting wires of different

widths
const
constant part-select
Constant propagation
constrained random stimulus
Continuous assignment
Critical path

63
69
69
69
69
82

107
48

104
195
36

33
92

181
90

144
1

97

D

D Flip-flop
D Latch
deadlock
deassign
default
defparam

51
55

202
172

66
16

Derived clocks
derived parameters
Design for Testability
disable
dist
do-while

102
21

100
173
158
175

E

enum 207

F

FIFO
Finite State Machines
Flip-flop
floating input
for
force
forever
full or partial no-connects
Full timing gate simulation
full_case
function

84
70
59

204
175
163
175
28

167
66

5, 42

G

gate level simulations
Gate level simulations
Gated clocks
generate
genvar
gotchas
governing parameter
Gray coding

165
164
103
93
93
85
17

112

I

if-else
Implicit .* port connection
Implicit .name port connection
indexed part-select
Indirection
Infinite loops

63
24
25

181
182
197

Index 237

initial
integer
interface
Interface port connection

2
62
26
26

L

Latch
latched clock gating
latches
localparam
logical equality
logical inequality
Logical partitioning
logical shift

59
109
86

13, 18
69
69
99

180

M

Mealy machine
Memories
Messaging
module
Moore machine
multi-dimensional array
multiple assign

71
75

115
50
71
75
35

N

Named port connection
nonblocking assignment
Nonblocking assignments
nonblocking statements

23
39
3

40

O

one-hot-encoding
ordered list
Ordered port connection
override variables

73
13
22

9

P

parallel_case
Parameters
partitioning

66
13
81

Ports
posted writes
power
Power reduction
prefetched reads
priority encoder
Procedural assignment

22
85

104
104
85
64

1

R

Race condition
randc
Random simulation
reduction of power
reentrant
Reentrant task
regression
regression environment
release
repeat
Retiming
return
reusable design
reusable logic
reversed case
RTL templates

195
150
138
111

6
9

215
215
163
175
100
188
80
50
74
55

S

scalared
sensitivity list
severity levels
snake path
specparam
state register
static
Static memories
Static task
Stimulus generation
Storage Elements
string
synchronizer
Synchronous memories

171
87

117
81

13,21
207

9
75
9

159
51

184
83

79, 80

238 Index

Synchronous reset
Synchronous reset FF
Synchronous set and reset FF
Synchronous set FF
Synchronous state machines

61
54
55
54
71

T

task
Time borrowing
timing loops

5, 48
59
86

U

unbased number
unique
unit delay simulation

178
64

166

V

vectored
void

171
11

W

weighted random stimulus
while

152
175

	front-matter
	1Basic Verilog
	2RTL Design
	4Miscellaneous
	5Miscellaneous
	6Verilog During Simulation Regressions
	back-matter

