DIGITAL

SYSTEMS

D E SI G N

Charles H. Roth, Jr.

DIGITAL SYSTEMS DESIGN
UsiNG VHDL®

Charles H. Roth, Jr

The University of Texas at Austin

%@ PWS Publishing Company

1 @P An International Thomson Publishing Company

Boston ¢ Albany ¢ Bonn e Cincinnati * London ¢ Madrid ¢« Melbourne
Mexico City * New York Paris ® San Francisco ® Tokyo * Toronto * Washington

PWS Publishing Company
20 Park Plaza, Boston, MA 02116-4324

.0

Copyright @ 1998 by PWS Publishing Company, a division of Intemational Thomson Publishing Inc.
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transcribed
in any form or by any means — electronic, mechanical, photocopying, recording, or otherwise —
without the prior written permission of PWS Publishing Company.

? ' ST " T =gponsoring Editor: Bill Barter
I@P ™ e " Market Development Manager: Nathan Wilbur
LodwarS e e EPTGe L ireET R . ;
. N ssistant Editor; Suzanne Jeans
International Thomson P}bhshmg. .- . ditorial Assistant: Tricia Kelly
The trademark ITP is usT under license. 5, ;0. -3’y roduction Editor: Pamela Rockwell
. . anufacturing Manager: Andrew Christensen

For more information, iontact: ext Printer: Quebecor-Fairfield

PWS Publishing Comp- .ph “C’L‘Z% L Lover Printer: Phoenix Color Corp.

20 Park Plaza ' V7 ;-

Boston, MA 02116-4324 ./ - D FIS0 B S

International Thomson Publishing Europe International Thomson Editores

Berkshire House 168-173 Campos Eliseos 385, Piso 7

High Holborn Col. Polanco

Londen WCIV TAA 11560 Mexico C.F., Mexico

England
International Thomscn Publishing GmbH

Thomas Nelson Australia Konigswinterer Strasse 418

102 Dodds Street 53227 Bonn, Germany

South Melbourne, 3205

Victoria, Australia International Thomson Publishing Asia
221 Henderson Road

Nelson Canada #05-10 Henderson Building

1120 Birchmount Road Singapore 0315

Scarborough, Ontario

Canada M1K 5G4 International Thomson Publishing Japan
Hirakawacho Kyowa Building, 31

Printed and bound in the United States of America. 2-2-1 Hirakawacho
Chiyoda-ku, Tokyo 102

9899 0001—1098765432 Japan

Library of Congress Cataloging-in-Publication Data
Roth, Charles H.

Digital system design using VHDL / by Charles H. Roth.

p. cm.

ISBN 0-534-95099-X (alk. paper)

1. Electronic digital computers—Circuits—Design and construc-
tion—Data processing. 2. VHDL (Hardware description language) 3.
Systern design—Data processing. [Title.

TK7888.4.R667 1997
621.39'2—dc21 97-24246
CIP

CONTENTS

 CHAPTER 2

1.1 Combinational Logic

1.2 Boolean Algebra and Algebraic Simplification
1.3 Karnaugh Maps

1.4 Designing with NAND and NOR Gates

1.5 Hazards in Combinational Networks

1.6 Flip-flops and Latches

1.7 Mealy Sequential Network Design

1.8 Design of a Moore Sequential Network

1.9 Equivalent States and Reduction of State Tables
1.10 Sequential Network Timing

1.11 Setup and Hold Times

1.12 Synchronous Design

1.13 Tristate Logic and Busses

INTRODUCTION TO VHDL

2.1 VHDL Description of Combinational Networks
2.2 Modeling Flip-flops using VHDL Processes

2.3 VHDL Models for a Multiplexer

......V"

NOW =2

10

14
17
23
25
28
29
31
35

43

44
50
54

v CONTENTS

CHAPTER 3

'CHAPTER 4.

' CHAPTER 5

2.4 Compilation and Simulation of VHDL Code
2.5 Modeling a Sequential Machine

2.6 Variables, Signals, and Constants

2.7 Arrays

2.8 VHDL Operators

2.9 VHDL Functions

2.10 VHDL Procedures

2.11 Packages and Libraries

2.12 VHDL Model for a 74163 Counter

DESIGNING WITH PROGRAMMABLE LOGIC DEVICES

3.1 Read-only Memories

3.2 Programmable Logic Arrays (PLAS)

3.3 Programmable Array Logic (PALs)

3.4 Other Sequential Programmable Logic Devices (PLDs)
3.5 Design of a Keypad Scanner

DESIGN OF NETWORKS FOR ARITHMETIC OPERATIONS

4.1 Design of a Serial Adder with Accumulator
4.2 State Graphs for Control Networks

4.3 Design of a Binary Multiplier

4.4 Multiplication of Signed Binary Numbers
4.5 Design of a Binary Divider

DIGITAL DESIGN WITH SM CHARTS
5.1 State Machine Charts

5.2 Derivation of SM Charts

5.3 Realization of SM Charts

5.4 Implementation of the Dice Game

56
58
65
68
70
72
74
76
78

85

161
161
167
178
180

CONTENTS

CHAPTER 6

'CHAPTER 7

'CHAPTER 8

5.5 Alternative Realizations for SM Charts Using
Microprogramming

5.6 Linked State Machines

COMPLEX PROGRAMMABLE LOGIC DEVICES

6.1 XILINX 3000 Series FPGAs

6.2 Designing with FPGAs

6.3 XILINX 4000 Series FPGAs

6.4 Using a One-Hot State Assignment

6.5 Altera Complex Programmable Logic Devices (CPLDs)
6.6 Altera FLEX 10K Series CPLDs

FLOATING-POINT ARITHMETIC

7.1 Representation of Floating-Point Numbers
7.2 Floating-Point Multiplication

7.3 Other Floating-Point Operations

184
190

DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND
201

20
21
219
229
231
236

243

243
244
259

8.1 Attributes

8.2 Transport and Inertial Delays

8.3 Operator Overloading

8.4 Multivalued Logic and Signal Resolution
8.5 |EEE-1164 Standard Logic

8.6 Generics

8.7 Generate Statements

8.8 Synthesis of VHDL Code

8.9 Synthesis Examples

8.10 Files and TEXTIO

265

265
269
270
272
276
280
282
283
289
295

|VI

CONTENTS

'CHAPTER 9 VHDL MODELS FOR MEMORIES AND BUSSES

'CHAPTER 10 HARDWARE TESTING AND DESIGN FOR TESTABILITY

9.1 Static RAM Memory
9.2 A Simplified 486 Bus Model
9.3 Interfacing Memory to a Microprocessor Bus

10.1 Testing Combinational Logic
10.2 Testing Sequential Logic
10.3 Scan Testing

10.4 Boundary Scan

10.5 Built-In Self-Test

'CHAPTER 11 DESIGN EXAMPLES

11.1 UART Design

11.2 Description of the MC68HCC5 Microcontrolier
11.3 Design of Microcontroller CPU

11.4 Completion of the Microcontroller Design

- APPENDIX B BIT PACKAGE
-APPENDIX C TEXTIO PACKAGE

' INDEX

_APPENDIX D BEHAVIORAL VHDL CODE FOR Mé6805 CPU
' APPENDIX E M6805 CPU VHDL CODE FOR SYNTHESIS
 APPENDIX F PROJECTS

303
316
325

339

339
344
347
351
361

373
387
394
411

425
435
437
443
453

459

463

PREFACE

This textbook is intended for a senior-level course in digital systems design. The book
covers both basic principles of digital system design and the use of a hardware description
language, VHDL, in the design process. After basic principles have been covered, design
is best taught by using examples. For this reason, many digital system design examples,
ranging in complexity from a simple binary adder to a complete microcontroller, are included
in the text.

Students using this textbook should have completed a course in the fundamentals of
logic design, including both combinational and sequential networks. Although no previous
knowledge of VHDL is assumed, students should have programming experience using a
modern higher-level language such as Pascal or C. A course in assembly language
programming and basic computer organization is also very helpful, especially for Chapters
9 and 11.

Because students typically take their first course in logic design two years before this
course, most students need a review of the basics, For this reason, Chapter 1 includes a
review of logic design fundamentals. Most students can review this material on their own,
so it is unnecessary to devote much lecture time to this chapter. However, a good
understanding of timing in sequential networks and the principles of synchronous design
is essential to the digital system design process.

Chapter 2 introduces the basics of VHDL, and this hardware description language is
used throughout the rest of the book. Additional features of VHDL are introduced on an
as-needed basis, and more advanced features are covered in Chapter 8. From the start, we
relate the constructs of VHDL to the corresponding hardware. Some textbooks teach VHDL
as a programming language and devote many pages to teaching the language syntax. Instead,
our emphasis is on how to use VHDL in the digital design process. The language is very
complex, so we do not attempt to cover all its features. We emphasize the basic features
that are necessary for digital design and omit some of the less-used features.

VHDL is very useful in teaching top-down design. We can design a system at a high
level and express the algorithms in VHDL. We can then simulate and debug the designs at
this level before proceeding with the detailed logic design. However, no design is complete
until it has actually been implemented in hardware and the hardware has been tested. For
this reason, we recommend that the course include some lab exercises in which designs
are implemented in hardware. We introduce simple programmable logic devices (PLDs)
in Chapter 3 so that real hardware can be used early in the course if desired. The first part

Vi

PREFACE

of this chapter will be review for some students, but the second part of the chapter contains
some important design examples. These examples illustrate the concept of fitting a design
to a particular type of hardware. Chapter 3 also introduces the use of a test bench written in
VHDL, which tests a design described in VHDL, The material in this chapter also serves
as an introduction to more complex PLDs, which are discussed in Chapter 6.

Chapter 4 has two purposes. First, it presents some of the techniques used for computer
arithmetic, including the design of systems for multiplication and division of signed binary
numbers. Second, it shows how VHDL can be used to describe and simulate these systems.
Use of a state machine for sequencing the operations in digital systems is an important
concept presented in this chapter.

Use of sequential machine charts (SM charts) as an alternative to state graphs is
presented in Chapter 5. We show how to write VHDL code based on SM charts and how to
use programmable logic arrays for hardware implementation of SM charts. Transformation
of SM charts leads to alternative hardware realizations of digital systems, and use of linked
state machines facilitates the decomposition of complex systems into simpler ones. The
design of a dice-game simulator is used to illustrate these techniques.

Chapter 6 describes two types of hardware devices that are widely used to implement
digital system designs. First, field-programmable gate arrays (FPGAs) manufactured by
XILINX are described, and techniques for designing with FPGAs are discussed. The dice-
game simulator design from Chapter 5 is completed using FPGAs. We conclude the chapter
with a description of Altera CPLDs, Use of FPGAs and CPLDs allows rapid prototyping
of digital designs. Students can implement their designs in hardware without spending a
lot of time in lab wiring up ICs.

Basic techniques for floating-point arithmetic are described in Chapter 7. A floating-
point multiplier provides a complete design example, which is carried through starting
with development of the basic algorithm, then simulating the system using VHDL, and
finally implementing the system using an FPGA.

By the time students reach Chapter 8, they should be thoroughly familiar with the
basics of VHDL. At this point we introduce some of the more advanced features of VHDL
and illustrate their use. The use of multivalued logic, including the IEEE-1164 standard
logic, is one of the important topics covered. In this chapter we also introduce the use of
CAD tools for automatic synthesis of digital hardware from a VHDL description. We have
deliberately delayed introduction of synthesis tools to this point, because we feel that it is
very important for students to understand the basic principles of digital system design
before they start using synthesis tools. Intelligent use of synthesis tools requires an good
understanding of the underlying hardware because the way in which the VHDL code is
written influences the efficiency of the resuiting hardware implementation.

Chapter 9 describes the use of VHDL to model RAM memories and bus interfaces.
Many of the VHDL features introduced in Chapter § are used in the examples in this
chapter. This chapter emphasizes the use of VHDL simulation for checking to see that
timing specifications for the memory and bus interface are satisfied. A system composed
of static RAM chips interfaced to a 486 microprocessor bus is designed and tested to
illustrate these techniques.

The important topics of hardware testing and design for testability are covered in
Chapter 10. This chapter introduces the basic techniques for testing combinational and
sequential logic. Then scan design and boundary-scan techniques, which facilitate the

PreFACE X

testing of digital systems, are described. The chapter concludes with a discussion of built-
in self-test (BIST). VHDL code for a boundary-scan example and for a BIST example is
included. The topics in this chapter play an important role in digital system design, and we
recommend that they be included in any course on this subject. Chapter 10 can be covered
any time after the completion of Chapter 8.

Chapter 11 presents two complete design examples that illustrate the use of VHDL
synthesis tools. The first example, a serial communications receiver-transmitter, should
easily be understood by any student who has completed the material through Chapter 8.
The final example is the complete design of a microcontroller, including the CPU and
input-output interfaces. This example is fairly complex and requires some understanding
of the basics of assembly language programming and computer organization.

This book is the result of many years of teaching a senior course in digital systems
design at the University of Texas at Austin. Throughout the years, the technology for
hardware implementation of digital systems has kept changing, but many of the same
design principles are still applicable. In the early years of the course, we handwired modules
consisting of discrete transistors to implement our designs. Then integrated circuits were
introduced, and we were able to implement our designs using breadboards and TTL logic.
Now we are able to use FPGAs and CPLDs to realize very complex designs. We originally
used our own hardware description language together with a simulator running on a
mainframe computer. When PCs came along, we wrote an improved hardware description
language and implemented a simulator that ran on PCs. When VHDL was adopted as an
IEEE standard and became widely used in industry, we switched to VHDL.. The widespread
availability of high-quality commercial CAD tools now enables us to synthesize complex
designs directly from the VHDL. code.

All of the VHDL code in this textbook, including the bit library from Appendix B, is
available on the world-wide web. The URL is http://www.pws.com/ee/roth html.

ACKNOWLEDGMENTS

I would like to thank the many individuals who have contributed their time and effort to
the development of this textbook. Over many years 1 have received valuable feedback
from the students in my digital systems design courses. I would especially like to thank the
faculty members who reviewed earlier versions of the manuscript and offered many
suggestions for its improvement. These faculty include:

Fredrick M. Cady, Montana State University

Tri Caohuu, Sar Jose State University

Gabriel Castelino, GMI Engineering and Management Institute

Maciej Ciesielski, University of Massachusetts—Amherst

Mike D. Ciletti, University of Colorado at Colorado Springs

Sura Lekhakul, St. Cloud State University

Figures 6-2, 6-3, 6-4, 6-8, 6-10, 6-11, 6-12, 6-13, 6-20, 6-21, 6-22, 6-24, and 6-25 are
reprinted in this textbook with permission of Xilinx, Inc. Copyright ©1994 by Xilinx, Inc.
All rights reserved. Xilinx, XACT, all XC-prefix product designations, LCA, and Logic
Cell are trademarks of Xilinx.

Prerace

Figures 6-29, 6-30, 6-31, 6-32, 6-33, 6-34, 6-35, 6-36, 6-37, and 6-38 are reprinted in
this textbook with permission from Altera Corporation. Copyright © 1996 by Altera
Corporation. All rights reserved. Altera is a trademark and service mark of Altera
Corporation in the United States and other countries. Altera products are the intellectual
property of Altera Corporation and are protected by copyright law and one or more U.S.
and foreign patents and patent applications.

C. H. Roth, Jr.

CHAPTER

Review ofF Locic DEesiGN FUNDAMENTALS

This chapter reviews many of the logic design topics normally taught in a first course in
logic design. Some of the review examples that follow are referenced in later chapters of
this text. For more details on any of the topics discussed in this chapter, the reader should
refer to a standard logic design textbook such as Fundamentals of Logic Design, 4th ed.
(Boston: PWS Publishing Company, 1995).

First, we review combinational logic and then sequential logic. Combinational logic
has no memory, so the present output depends only on the present input. Sequential logic
has memory, so the present output depends not only on the present input but also on the
past sequence of inputs, The sections on sequential network timing and synchronous design
are particularly important, since a good understanding of timing issues is essential to the
successful design of digital systems.

9.1 COMBINATIONAL LOGIC

Some of the basic gates used in logic networks are shown in Figure 1-1. Unless otherwise
specified, all the variables that we use to represent logic signals will be two-valued, and
the two values will be designated O and 1. We will normally use positive logic, for which
a low voltage corresponds to a logic 0 and a high voltage corresponds to a logic 1. When
negative logic is used, a low voltage corresponds to a logic 1 and a high voltage corresponds
to a logic 0.

For the AND gate of Figure 1-1, the output C = 1 if and only if the input A = 1 and the
input B = 1. We will use a raised dot or simply write the variables side by side to indicate
the AND operation; thus C = A - B = AB. For the OR gate, the output C =1 if and only if the
input A = 1 or the input B = 1 (inclusive OR). We will use + to indicate the OR operation;
thus C = A + B. The NOT gate, or inverter, forms the complement of the input; that is, if
A=]1,C=0,andifA=0, C= 1. We will use a prime (') to indicate the complement (NOT)
operation, so C = A'. The exclusive-OR (XOR) gate has anoutput C=1ifA=1and B=0
or if A=0and B = 1. The symbol @ represents exclusive OR, so we write

C=AB +AB=A®B (1-1)

2 CHAPTER 1 ® REViEw OF LoGIC DESIGN FUNDAMENTALS

Figure 1-1 Basic Gates

NOT:C=A’ EXCLUSIVEOR: C=A @B

The behavior of a combinational logic network can be specified by a truth table that
gives the network outputs for each cormbination of input values. As an example, consider
the full adder of Figure 1-2, which adds two binary digits (X and Y) and a carry (Cin) to
give a sum (Sum) and a carry out (Cout). The truth table specifies the adder outputs as a
function of the adder inputs. For example, when the inputs are X =0, ¥ =0 and Cin =1,
adding the three inputs gives 0+ 0+ 1 =01, so the sum is 1 and the carry outis 0. When the
inputs are 011, 0 + 1 + 1 = 10, so Sum =0 and Cour = 1. When the inputs are X = ¥ =
Cin=1,1+1+1=11,so8um=1and Cout=1.

Figure 1-2 Full Adder

XY Cin]Cout Sum
00 O 0 0
X — —— Cout 00 1 0 1
FULL 01 0O 0 1
Y—" ADDER 01 1] 1 0
T I 10 O 0 1
Cin Sum 1o 1 1 0
11 0 1 0
11 1 1 1

(a) Full adder module {b) Truth table

We will derive algebraic expressions for Sumn and Cout from the truth table. From the
table, Sum =1 when X =0, Y = 0, and Cin = 1. The term X'Y'Cin equals 1 only for this
combination of inputs. The term X'YCin'=1 only when X =0, ¥ = 1, and Cin =0. The term
XY 'Cin' is 1 only for the input combination X =1, ¥=0, and Cin = Q. The term XYCinis 1
only when X = Y = Cin = 1. Therefore, Sum is formed by ORing these four terms together:

Sum = X'Y'Cin + X'YCin' + XY'Cin' + XYCin (1-2)

Each of the terms in this expression is 1 for exactly one combination of input values. In a
similar manner, Cout is formed by ORing four terms together:

1.2 #» Boolean Algebra and Algebraic Simplification 3 |

Cout = X'YCin + XY'Cin + XYCin' + XYCin (1-3)

Each term in equations (1-2) and (1-3) is referred to as a minterm, and these equations
are referred to as minterm expansions. These minterm expansions can also be written in m-
notation or decimal notation as follows: '

Sum=m, +m,+m, +m;=Em(l,2,4,7)

Cout=my+ms+m,+m;,=Im(3,5,6,7)

The decimal numbers designate the rows of the truth table for which the corresponding
function is 1. Thus Sum = 1 in rows 001, 010, 100, and 111 (rows 1, 2, 4, 7).

A logic function can also be represented in terms of the inputs for which the function
value is 0. Referring to the truth table for the full adder, Cour = 0 when X =¥ =Cin =0.
The term (X + ¥ + Cin) is 0 only for this combination of inputs. The term (X + ¥ + Cin") is
O conly when X = ¥Y=0and Cin= 1. The term (X + Y" + Cir) is 0 only when X = Cin =0 and
Y=1.Theterm (X' + Y + Cin) is O only when X = 1 and ¥ = Cin = 0. Cout is formed by
ANDing these four terms together:

Cout=X+Y+Cin}X+ Y+ Cin') X + Y+ Cin)(X'+ Y + Cin) (14)

Cout is 0 only for the 000, 001, 010, and 100 rows of the truth table and therefore must be
1 for the remaining four rows. Each of the terms in (1-4) is referred to as a maxterm, and
(1-4) is called a maxterm expansion. This maxterm expansion can also be written in decimal
notation as

Cout=M,-M,-M,-M,=TIM(©, 1,2,4)

where the decimal numbers correspond to the truth table rows for which Cout = 0.

4.2 BOOLEAN ALGEBRA AND
ALGEBRAIC SIMPLIFICATION

The basic mathematics used for logic design is Boolean algebra. Table 1-1 summarizes the
laws and theorems of Boolean algebra. They are listed in dual pairs and can easily be
verified for two-valued logic by using truth tables. These laws and theorems can be used
to simplify logic functions so they can be realized with a reduced number of components.

DeMorgan’s laws (1-16, 1-16D) can be used to form the complement of an expression
on a step-by-step basis. The generalized form of DeMorgan’s law (1-17) can be used to
form the complement of a complex expression in one step. Equation (1-17} can be interpreted
as follows: To form the complement of a Boolean expression, replace each variable by its
complement; also replace 1 with 0, 0 with 1, OR with AND, and AND with OR. Add
parentheses as required to assure the proper hierarchy of operations. If AND is performed
before OR in F, then parentheses may.be required to assure that OR is performed before
ANDin F.

4 CHAPTER 1 ® Review of LoGic DesiaN FUNDAMENTALS

Example
F =X+EK(C@AB+D)- 1+ WZ'(GH+0))
Fr=X(E+K+({C'+A@+B)D+0) (W +Z+(G+H")-1))

The boldface parentheses in ' were added when an AND operation in F was replaced
with an OR. The dual of an expression is the same as its complement, except that the
variables are not complemented.

Table 1-1 Laws and Theorems of Boolean Algebra

Operations with 0 and 1:

X+0=X (1-5) X-1=X (1-5D)

X+1=1 (1-6) X-0=0 (1-6D)

Idempotent laws:

X+X=X 1-7n X-X=X (1-7D)

Involution law:

X)y=X (1-8)

Laws of complementarity

X+X'=1 (1-9) X-X'=0 (1-9D)

Commutative laws:

X+¥Y=Y+X (1-10) Xy=YX (1-10D)

Associative laws:

X+N+Z=X+(Y+2) (1-11) XVYZ=X(YZ)=XYZ (1-11D)
=X+Y+Z

Distributive laws:

XY+2)=XY+XZ (1-12) X+YZ=X+YV(X+2) (1-12D)

Simplification theorems:

XY+XY'=X (1-13) X+ X+Y) =X (1-13D)

X+XyY =X (1-14) XX+7Y) =X (1-14D)

X+Y)Y=XY (1-15) XY'+7Y =X+Y (1-15D)

DeMorgan’s laws:

X+Y+Z+-)=XYZ"- (1-16) XYZ)y=X"+Y'+2Z"+ - (1-16D)

AX, X, .., X0, 1L, +9I'=AX" X, ..., X, 1,0, +) a-17)

Duality:

X+Y+Z+)Y =XYZ- (1-18) XYZ- =X+ Y+Z+ (1-18D)

[f(X11X27~ -"Xnv Ov 1!+; ')]D=ﬂX1,X2y--'9an 1’ 0)) +) ’ (1'19)

Theorem for multiplying out and factoring:

X+NX'+7) =XZ+X'Y (1-20) XY+XZ=(X+2Z)X'+Y) (1-20D)

Consensus theorem:
XY+YZ+XZ=XY+XZ (1-21) X+NY+2DHX' +2) (1-21D)
=X+NX'+2)

1.2 # Boolean Algebra and Algebraic Simplification 5

Four ways of simplifying a logic expression using the theorems in Table 1-1 are as
follows:

1. Combining terms. Use the theorem XY + XY' = X to combine two terms. For example,
ABC'D'+ ABCD'=ABD' [X=ABD',Y=C]

When combining terms by this theorem, the two terms to be combined should contain
exactly the same variables, and exactly one of the variables should appear
complemented in one term and not in the other. Since X + X = X, a given term may be
duplicated and combined with two or more other terms. For example, the expression
for Cout (Equation 1-3) can be simplified by combining the first and fourth terms,
the second and fourth terms, and the third and fourth terms:

Cout= (X'YCin + XYCin) + (XY 'Cin + XYCin) + (XYCin' + XYCin)

= YCin + XCin + XY (1-22)
Note that the fourth term in (1-3) was used three times.
The theorem can still be used, of course, when X and Y are replaced with more

complicated expressions. For example,

(A+BOWDW+EY+AB+CYD+EY=D+E'

[X=D+E,Y=A+BC,Y'=A(B +C]

2. Eliminating terms. Use the theorem X + XY = X to eliminate redundant terms if
possible; then try to apply the consensus theorem (XY + X'Z + YZ=XY + X'Z) to
eliminate any consensus terms. For example,

A'B+A'BC =A'B [X=A'B]

ABC'+BCD+ABD =A'BC'+BCD [X=C,Y=BD,Z=A'B]

3. Eliminating literais. Use the theorem X + X'Y = X + Y to eliminate redundant literals.
Simple factoring may be necessary before the theorem is applied. For example,

AB+AB'C'D +ABCD' =A(B+B'C'D)+ABCD' {by (1-12))

= A(B + C'D') + ABCD' (by (1-15D))
=B(A'+ ACD) + AC'D' (by (1-10))
=B(A'+ CD) +A'C'D' (by (1-15D))

=A'B+BCD' +AC'D' (by (1-12))

CHaPTER 1 ® Review of Locic DeSIGN FUNDAMENTALS

The expression obtained after applying 1, 2, and 3 will not necessarily have a
minimum number of terms or a minimum number of literals. If it does not and no
further simplification can be made using 1, 2, and 3, deliberate introduction of
redundant terms may be necessary before further simplification can be made.

Adding redundant terms. Redundant terms can be introduced in several ways, such
as adding XX, multiplying by (X + X"), adding YZ to XY + X'Z (consensus theorem),
or adding XY to X. When possible, the terms added should be chosen so that they will
combine with or eliminate other terms. For example,

WX+XY+X'Z'+WY'Z' (Add WZ' by the consensus theorem.)

WX+ XY+XZ'+ WY'Z'+ WZ' (eliminate WY'Z")

WX+ XY+X'Z'+WZ' {eliminate W)

il

=WX+XY+X'Z

When multiplying out or factoring an expression, in addition to using the ordinary
distributive law (1-12), the second distributive law (1-12D) and theorem (1-20) are
particularly useful. The following is an example of multiplying out to convert from a
product of sums to a sum of products:

A+B+D)A+B'+CYA'+B+DYA'+B+C")

=(A+(B+D)B +CYA +B+CD) (by (1-12D))
=(A+BC'+BDYA' +B+C'D) (by (1-20))
=A(B + C'D") + A(BC' + BD) (by (1-20))
=AB+AC'D' +A'BC' + ABD (by (1-12))

Note that the second distributive law and theorem (1-20) were applied before the
ordinary distributive law. Any Boolean expression can be factored by using the two
distributive laws and theorem (1-20D). As an example of factoring, read the steps in
the preceding example in the reverse order.

The following theorems apply to exclusive-OR:

X®0 =X (1-23)
X®1 =X (1-24)
X®X=0 {1-25)

X®X'=1 (1-26)

1.3 e Karnaugh Maps 7 l

X®Y=YDX (commutative law) (1-27)

XOYBPZ=XDYDPZ)=XDYDZ (associative law) (1-28)

\ XYDPZ)=XYDXZ (distributive law) (1-29)
i Xe=X®eY=X'0Y=XY+X'Y' (1-30)

The expression for Sum (equation (1-2)) can be rewritten in terms of exclusive-OR by
| using (1-1) and (1-30):

Sum = X'(Y'Cin + YCin') + X(Y'Cin' + YCin)

=X'(Y® Cin) +X(Y® Cin) =X ® Y ® Cin (1-31)

1.3 KARNAUGH MAPS

Karnaugh maps provide a convenient way to simplify logic functions of three to five
variables. Figure 1-3 shows a four-variable Karnaugh map. Each square in the map
represents one of the 16 possible minterms of four variables. A 1 in a square indicates that
the minterm is present in the function, and a O (or blank) indicates that the minterm is
absent. An X in a square indicates that we don’t care whether the minterm is present or not.
Don’t cares arise under two conditions: (1) The input combination corresponding to the
don’t care can never occur, and (2) the input combination can occur, but the network
output is not specified for this input condition.

The variable values along the edge of the map are ordered so that adjacent squares on
the map differ in only one variable. The first and last columns and the top and bottom rows
of the map are considered to be adjacent. Two 1s in adjacent squares can be combined by
eliminating one variable using xy + xy' = x. Figure 1-3 shows a four-variable function with
nine minterms and two don’t cares. Minterms A'BC'D and A'BCD differ only in the variable
C, so they can be combined to form A'BD, as indicated by a loop on the map. Four 1s in a
symmetrical pattern can be combined to eliminate two variables. The 1s in the four corners
of the map can be combined as follows:

(A'BC'D'+AB'C'D'")+(A'BCD'+ AB'CD")=B'C'D'+ BCD'=B'D'
as indicated by the loop. Similarly, the six 1s and two Xs in the bottom half of the map

combine to eliminate three variables and form the term C. The resulting simplified function
is

F=A'BD+BD'+C

8 CHAPTER 1 ® ReviEw OF LoGIC DESIGN FUNDAMENTALS

Figure 1-3 Four-Variable Karnaugh Maps

AB AB
CDN_00 01 11 10 CDX_00 01 11 10 four corner terms

0] o014 l1z2] 8 00 -1) !’9-_[_0, . b / combine to give B' D
01 01| 01 ‘g
15139 0(M] o’ ABD
{37 /15|11 11 ™ (1) x
10/ 2|6 [14]10 TN 1 | x AT
F=2m(0,2,3,5,6,7,8,10,11) + 2d(14,15)

=C+B'D'+A'BD

{a) Location of minterms (b) Looping terms

The minimum sum-of-products representation of a function consists of a sum of
prime implicants. A group of one, two, four, or eight adjacent 1s on a map represents a
prime implicant if it cannot be combined with another group of 1s to eliminate a variable.
A prime implicant is essential if it contains a 1 that is not contained in any other prime
implicant. When finding a minimum sum of products from a map, essential prime implicants
should be looped first, and then a minimum number of prime implicants to cover the
remaining 1s should be looped. The Karnaugh map shown in Figure 1-4 has three essential
prime implicants. A'C" is essential because minterm 1, is not covered by any other prime
implicant. Similarly, ACD is essential because of m,,, and A'B'D' is essential because of
m,. After looping the essential prime implicants, all 1s are covered except m,. Since m,
can be covered by either prime implicant A'BD or BCD, F has two minimum forms:

F=AC'+A'BD +ACD +A'BD

and F=A'C'+A'BD +ACD + BCD

Figure 1-4 Selection of Prime Implicants

AB
CD 00 01 11 10

00

Kl
>

A’C‘ /’_
01 1

1
P
.\1 : (1 : 1 }+——ACD
3| Ve elyd o= 11
10 1 X
2 8 14 10

AlBrD!

11

1.3 » Karnaugh Maps 9

When don’t cares (Xs) are present on the map, the don’t cares are treated like 1s
when forming prime implicants, but the Xs are ignored when finding a minimum set of
prime implicants to cover all the 1s. The following procedure can be used to obtain a
minimum sum of products from a Karnaugh map:

1. Choose a minterm {a 1) that has not yet been covered.
Find all 1s and Xs adjacent to that minterm. (Check the » adjacent squares on an n-
variable map.)

3. Ifasingle term covers the minterm and all the adjacent 1s and Xs, then that term is an
essential prime implicant, so select that term. (Note that don’t cares are treated like
Isin steps 2 and 3 but not in step 1.)

4. Repeat steps 1, 2, and 3 until all essential prime implicants have been chosen.

5. Find a minimum set of prime implicants that cover the remaining 1s on the map. (If
there is more than one such set, choose a set with a minimum number of literals.)

To find minimum product of sums from a Karnaugh map, loop the Os instead of the
1s. Since the Os of F are the 1s of F', looping the Os in the proper way gives the minimum
sum of products for F', and the complement is the minimum product of sums for F. For
Figure 1-3, we can first loop the essential prime implicants of F' (BC'D' and B'C"D, indicated
by dashed loops), and then cover the remaining O with ABC' or AC'D. Thus one minimum
sum for F' is

F'=BC'D'+ BC'D+ ABC'
from which the minimum product of sums for F is
F=B+C+D)YB+C+DYA'+B + ()

By using map-entered variables, Karnaugh map techniques can be extended to simplify
functions with more than four or five variables. Figure 1-5 shows a 4-variable map with
two additional variables entered in the squares in the map. When E appears in a square,
this means that if £ = 1, the corresponding minterm is present in the function G, and if E' =
0, the minterm is absent. Thus, the map represents the 6-variable function

GA,B,C, D, E, Fy=my+m,+my+ Em; + Em, + Fmg +m,,
+m, (+ don’t care terms)

where the minterms are minterms of the variables A, B, C, D. Note that m, is present in G
only when F = 1.

10 CHAPTER 1 ® Review oF LoGic DesiaN FUNDAMENTALS

Figure 1-5 Simplification Using Map-Entered Variables

AB AB AB AB

CDN, 00 01 11 10 CDMN_00 01 11 10 CDN_ 00 01 11 10 CDN 00 01 11 10
00| 1 00 | M 00| x 00| X
Ol X[E|X|F 01 [1x X 01 (i—ﬂ X o1l X ri(_ q
1 fel1] i [D) IR nfx & | x
101 X 10) X 10} x X 10| x X

G E=F=0 E=1,F=0 E=0,F=1
MSg = AB'+ ACD MS;=AD MS7 = AD

Next we will discuss a general method of simplifying functions using map-entered
variables. In general, if a variable P, is placed in square m; of a map of function F, this
means that F =1 when P, =1 and the variables are chosen so that m, = 1. Given a map with
variables P, P,, .. .entered into some of the squares, the minimum sum-of-products form
of F can be found as follows: Find a sum-of-products expression for F of the form

F=MSy+ PMS, +P,MS, +-- - (1-32)

where

* MS, is the minimum sum obtained by setting P, =P, = ---=0.

* MS, is the minimum sum obtained by setting P, =1, P= 0 (j # 1), and replacing

all 1s on the map with don’t cares.

* MS, is the minimum sum obtained by setting P, = 1, P.= 0 (# 2), and replacing

all Is on the map with don’t cares.
Corresponding minimum sums can be found in a similar way for any remaining map-
entered variables,

The resulting expression for F will always be a correct representation of F. This
expression will be a minimum provided that the values of the map-entered variables can
be assigned independently. On the other hand, the expression will not generally be a
minimum if the variables are not independent (for example, if P, = P).

For the example of Figure 1-5, maps for finding MS,, MS|, and MS, are shown,
where E corresponds to P, and F corresponds to P,. The resulting expression is a minimum
sum of products for G:

G=AB'+ACD+ EA'D + FAD

After some practice, it should be possible to write the minimum expression directly from
the original map without first plotting individual maps for each of the minimum sums.

4.4 DESIGNING WITH NAND AND NOR GATES

In many technologies, implementation of NAND gates or NOR gates is easier than that of
AND and OR gates. Figure 1-6 shows the symbols used for NAND and NOR gates. The
bubble at a gate input or output indicates a complement. Any logic function can be realized
using only NAND gates or only NOR gates.

1.4 « Designing with NAND and NOR Gates 11

Figure 1-6 NAND and NOR Gates

NAND:

A
B—

A:ch = A‘°___>— c C = (A+B) = AB'
B B—O

Conversion from networks of OR and AND gates to networks of all NOR gates or all
NAND gates is straightforward. To design a network of NOR gates, start with a product-
of-sums representation of the function (circle Os on the Karnaugh map). Then find a network
of OR and AND gates that has an AND gate at the cutput. If an AND gate output does not
drive an AND gate input and an OR gate output does not connect to an OR gate input, then
conversion is accomplished by replacing all gates with NOR gates and complementing
inputs if necessary. Figure 1-7 illustrates the conversion procedure for

Z=GE+F)Y A+ B +D)YC+D)=G(E+ P)[(A+B)YC + D]

C=(AB)y=A"+B'

Y

Conversion to a network of NAND gates is similar, except the starting point should be a
sum-of-products form for the function (circle 1s on the map), and the output gate of the
AND-OR network should be an OR gate.

Figure 1-7 Conversion to NOR Gates

Q'DZD—PED'Z

(a) AND-OR network

Double inversion cancels

AT > \
v e d DT ot
- D G—q)(z
Complemented input — P
cancels inversion E
F

(b) Equivalent NOR-gate network

12 CHAPTER 1 @ Review of Logic DEesiGN FUNDAMENTALS

Even if AND and OR gates do not alternate, we can still convert a network of AND

and OR gates to a NAND or NOR network, but it may be necessary to add extra inverters
so that each added inversion is canceled by another inversion. The following procedure
may be used to convert to a NAND (or NOR) network:

1.

Convert all AND gates to NAND gates by adding an inversion bubble at the output.
Convert OR gates to NAND gates by adding inversion bubbles at the inputs. (To
convert to NOR, add inversion bubbles at all OR gate outputs and all AND gate
inputs.)

Whenever an inverted output drives an inverted input, no further action is needed,
since the two inversions cancel.

Whenever a non-inverted gate output drives an inverted gate input or vice versa,
insert an inverter so that the bubbles will cancel. (Choose an inverter with the bubble
at the input or output, as required.)

Whenever a variable drives an inverted input, complement the variable (or add an
inverter) so the complementation cancels the inversion at the input.

In other words, if we always add bubbles (or inversions) in pairs, the function realized

by the network will be unchanged. To illustrate the procedure, we will convert Figure
1-8(a) to NANDs. First, we add bubbles to change all gates to NAND gates (Figure 1-

8(b))

. The highlighted lines indicate four places where we have added only a single

inversion. This is corrected in Figure 1-8(c) by adding two inverters and complementing
two variables.

Figure 1-8 Conversion of AND-OR Network to NAND Gates

AT

B R
E

A —)o G|>)
B' — c |

(a) AND-OR network

Bubbles cancel

{b) First step in NAND conversion

dded inverter .
dded inverter

D’ F

{c) Completed conversion

1.5 » Hazards in Combinational Networks 13

1.5 HAZARDS IN COMBINATIONAL NETWORKS

When the input to a combinational network changes, unwanted switching transients
may appear in the output. These transients occur when different paths from input to
output have different propagation delays. If, in response to an input change and for
some combination of propagation delays, a network output may momentarily go to
0 when it should remain a constant 1, we say that the network has a static 1-hazard.
Similarly, if the output may momentarily go to 1 when it should remain a 0, we say
that the network has a static 0-hazard. If, when the output is supposed to change
from 0 to 1 (or 1 to 0), the output may change three or more times, we say that the
network has a dynamic hazard.

Figure 1-9(a) illustrates a network with a static 1-hazard. If A = C = 1, the
output should remain a constant 1 when B changes from 1 to 0. However, as shown
in Figure 1-9(b), if each gate has a propagation delay of 10 ns, £ will go to 0 before
D goes to 1, resulting in a momentary O (a 1-hazard appearing in the output F). As
seen on the Karnaugh map, there is no loop that covers both minterm ABC and AB'C.
Soif A= C =1 and B changes, both terms can momentarily go to 0, resulting in a
glitchin F. If we add a loop to the map and add the corresponding gate to the network
(Figure 1-9(c}), this eliminates the hazard. The term AC remains 1 while B is changing,
so no glitch can appear in the output.

Figure 1-9 Elimination of 1-Hazard

A— A
BT_D: RS e
00| o m
C— F=AB' +BC o1 | o |[14
10| o 0
(a) Network with 1-hazard
[[I
B | | I
D | 1 []
t i [|
E | B | |
Il]
F 1 l I L
1 1 1

Ons 10ns 20ns 30ns 40ns 50ns 60ns

(b) Timing chart

14 CHAPTER 1 ® Review oF Loaic DesiGn FUNDAMENTALS

A) A

DA ok
F N

C —
‘ 01| o 1)
11 | (1 {1
A —~} F=AB'+BC+ AC (]
10l o o

(c) Network with hazard removed

To design a network that is free of static and dynamic hazards, the following procedure
may be used:

1. Find a sum-of-products expression (F*) for the output in which every pair of adjacent
Is is covered by a 1-term. (The sum of all prime implicants will always satisfy this
condition.) A two-level AND-OR network based on this F* will be free of 1-, 0-, and
dynamic hazards.

2. Ifadifferent form of network is desired, manipulate F! to the desired form by simple
factoring, DeMorgan’s laws, etc. Treat each x, and x| as independent variables to
prevent introduction of hazards.

Alternatively, you can start with a product-of-sums expression in which every pair of

adjacent Os is covered by a O-term.

1.% FLIP-FLOPS AND LATCHES

Sequential networks commonly use flip-flops as storage devices. Figure 1-10 shows a
clocked D flip-flop. This flip-flop can change state in response to the rising edge of the
clock input. The next state of the flip-flop after the rising edge of the clock is equal to the
D input before the rising edge. The characteristic equation of the flip-flop is therefore O*
= D, where Q% represents the next state of the Q output after the active edge of the clock
and D is the input before the active edge.

Figure 1-10 Clocked D Flip-flop with Rising-edge Trigger

Q Q
L | D Q|Qt
DFF 0 0f0
0 1]0
A 1 01
| | 111

1.6 ¢ Flip-flops and Latches 15 I

Figure 1-11

Figure 1-11 shows a clocked J-K flip-flop and its truth table. Since there is a bubble
at the clock input, all state changes occur following the falling edge of the clock input. If
J =K =0, no state change occurs. If J = 1 and K = 0, the flip-flop is set to 1, independent
of the present state. If J = 0 and K = 1, the flip-flop is always reset to 0. If /= K =1, the
flip-flop changes state. The characteristic equation, derived from the truth table in Figure
1-11, using a Karnaugh map is

Or=J0+K'Q. (1-33)
Clocked J-K Flip-flop

I K Q Qt
| | 0%
1 0 0 1 1
Q Q 0 1 0 0

FF

0 1 1 0
CK 1 0 0 1
K A J 1 0 1 1
l ? I 1 1 0 1
1 1 1 0

A clocked T flip-flop (Figure 1-12) changes state following the active edge of the
clock if 7= 1, and no state change occurs if 7= 0. T flip-flops are particularly useful for
designing counters. The characteristic equation for the T flip-flop is

gr=0T'+QT=QeT (1-34)

A J-K flip-flop is easily converted to a T flip-flop by connecting 7 to both J and K.
Substituting 7 for J and K in (1-33) yields (1-34).

Figure 1-12 Clocked T Flip-flop

Q Q
| T Q |Qt
FF 0 0|0
0 111
A 1 011
| | 1 110

16 CHAPTER 1 ® Review oF LoGIC DEsSIGN FUNDAMENTALS

Two NOR gates can be connected to form an unclocked S-R (set-reset) flip-flop, as
shown in Figure 1-13. An unclocked flip-flop of this type is often referred to as an S-R
latch. If §=1 and R =0, the Q output becomes 1 and P= Q. If S=0and R =1, @ becomes
0 and P= Q' If § = R = ;i change of state occurs. If R =5 =1, P = Q = 0, which is not
a proper flip-flop state, since the two outputs should always be complements. If R = § =1
and these inputs are simultaneously changed to 0, oscillation may occur. For this reason, §
and R are not allowed to be 1 at the same time. For purposes of deriving the characteristic
equation, we assume the § = R = 1 never occurs, in which case @* = 5§+ R'Q. In this case,
Q" represents the state after any input changes have propagated to the @ output.

Figure 1-13 S-R Latch

S S R Q Q+
P 0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
R Q | 1 0 -
1 1 1 -

A gated D latch (Figure 1-14), also called a transparent D latch, behaves as follows:
If G = 1, then the Q output follows the D input (g = D). If G =0, then the latch holds the
previous value of Q (Q* = Q). The characteristic equation for the D latch is * = GD +
G'Q. Figure 1-15 shows an implementation of the D latch using gates. Since the O equation
has a 1-hazard, an extra AND gate has been added to eliminate the hazard.

Figure 1-14 Transparent D Latch

+

_——— OO Q2
—-_—0 o~ = o oly
—_—Oo=Oo = o~ 20

'—'—‘OO—O'—OO

1.7 » Mealy Sequential Network Design 17

Figure 1-15 Implementation of D Latch

21;—}
|)——3 >+—Q Q+=DG+G'Q+(DQ)
D _D— |

‘1.7 MEALY SEQUENTIAL NETWORK DESIGN

The two basic types of sequential networks are Mealy and Moore. In a Mealy network, the
outputs depend on both the present state and the present inputs. In a Moore network, the
outputs depend only on the present state. A general model of a Mealy sequential network
consists of a combinational network, which generates the outputs and the next state, and a
state register, which holds the present state (see Figure 1-16). The state register normally
consists of D flip-flops. The normal sequence of events is (1) the X inputs are changed to
a new value, (2) after a delay, the corresponding Z outputs and next state appear at the
output of the combinational network, and (3) the next state is clocked into the state register
and the state changes. The new state feeds back into the combinational network, and the
process is repeated.

Figure 1-16 General Model of Mealy Sequential Machine

Inputs (X) see— =g Outputs (Z)
Combinational
Network Next state State

E— | State

Reg

clock—»

18 CHAPTER 1 ® Review OF Locic DesiIGN FUNDAMENTALS

As an example of a Mealy sequential network, we will design a code converter that
converts an 8-4-2-1 binary-coded-decimal (BCD) digit to an excess-3-coded decimal digit.
The input (X) and output (Z) will be serial with the least significant bit first. Table 1-2 lists
the desired inputs and outputs at times 1, ,, #,, and r,. After receiving four inputs, the
network should reset to its initial state, ready to receive another BCD digit.

Table 1-2 Code Converter

X Input Z Output
_(BCD) (excess -3)
Iy) h &y & f 1 %
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 \ 1 0 1 0 0 1
0 1) 1 1 1 0 1 0
1 0 - 0 0 1 0 1 1
1 0 0 1 1 1] 0

We now construct a state graph for the code converter (Figure 1-17(a)). The excess-
3 code is formed by adding 0011 to the BCD digit. For example,

0100 0101
+0011 +0011
0111 1000

At t,, we add 1 to the least significant bit, soif X =0, Z=1 (no carry), andif X=1,Z=0
(carry = 1). This leads to the following partial state graph:

Reset

OO

NC = No carry C = Carry

S0 is the reset state, S1 indicates no carry after the first addition, and S2 indicates a carry of
1. At ¢}, we add 1 to the next bit, so if there is no cairy from the first addition (state S1),
X=0gives Z=0+ 1 +0=1 and no carry (state S3),and X=1givesZ=1+1+0=0and
a carry (state S4). If there is a carry from the first addition (state S2), then X = 0 gives
Z=0+1+1=0andacarry (S4),and X=1givesZ=1+1+ 1= 1and a carry (S4). At ¢,,
0 is added to X, and transitions to S5 (no carry) and S6 are determined in a similar manner.
Atr, 0 is again added to X, and the network resets to SO.

1.7 » Mealy Sequential Network Design 19 J

Figure 1-17 State Graph and Table for Code Converter

0/1

NS zZ
PS | X=0 X= X=0 X=1
SO Sl S2 1 0
S1 S3 S4 1 0
S2 S4 S4 0 1
S3 S5 S5 0 1
S4 S5 S6 1 0
S5 SO S0 0 1
S6 S0 - 1 -

(b) State table

Figure 1-17(b) gives the corresponding state table. (Fundamentals of Logic Design,
pp- 429-430 gives an alternative way of deriving this state table.) At this point, we should
verify that the table has a minimum number of states before proceeding (see Section 1-9).
Since the state table has seven states, three flip-flops will be required to realize the table.
The next step is to make a state assignment that relates the flip-flop states to the states in
the table. The best state assignment to use depends on a number of factors. In many cases,
we should try to find an assignment that will reduce the amount of required logic. For
some types of programmable logic, a straight binary state assignment will work just as
well as any other, For programmable gate arrays, a one-hot assignment (see Section 6.4)
may be preferred.

In order to reduce the amount of logic required, we will make a state assignment
using the following guidelines (see Fundamentals of Logic Design, p. 412):

20 CHAPTER 1 @ Review of Locic DesiaN FUNDAMENTALS

I. States that have the same next state (NS) for a given input should be given adjacent
assignments (look at the columns of the state table).
II. States that are the next states of the same state should be given adjacent assignments

(look at the rows).

IMI. States that have the same output for a given input should be given adjacent
assignments.

Using these guidelines tends to clump 1s together on the Karnaugh maps for the next state
and output functions. The guidelines indicate that the following states should be given

adjacent assignments:

L (1,2),3,4),065,6)

I (1,2),(3,4),(5,6)

L. (0,1,4,6),(2,3,5)

(in the X = 1 column, S, and S, both have NS S,;
in the X = 0 column, S; and S, have NS S,

and S, and S have NS S)

(S,and S, are NS of S; S; and S, are NS of S;

and S; and S are NS of S)

Figure 1-18(a) gives an assignment map, which satisfies the guidelines, and the
corresponding transition table. Since state 001 is not used, the next state and outputs for
this state are don’t cares. The next state and output equations are derived from this table in
Figure 1-19. Figure 1-20 shows the realization of the code converter using NAND gates
and D flip-flops.

Figure 1-18

Qi
QQ3

00
01
11

10

(a) Assignment map

0 1
S0 | S1
S2
S5 | S3
S6 | S4

Q/Q; Q3 v4
QY| X=0 X=1[X=0 X=1
000 100 101 1 0
100 111 110 1 0
101 110 110 0 1
111 011 011 0 1
110 011 010 1 0
011 000 000 0 1
010 000 XXX 1 X
001 XXX XXX X X

(b) Transition table

If J-K flip-flops are used instead of D flip-flops, the input equations for the J-K flip-
flops can be derived from the next state maps. Given the present state flip-flop (Q) and the
desired next state (Q7), the J and K inputs can be determined from the following table,
which was derived from the truth table in Figure 1-11:

1.7 ¢ Mealy Sequential Network Design 21
o o J K
0 0 0 X (No change in Q; J must be 0, K may be 1 to reset 0 to 0.)
0 1 1 X (Change to O = 1; J must be 1 to set or toggle.)
1 0 X 1 (Change to @ = 0; K must be 1 to reset or toggle.)
1 1 X 0 (No change in Q; K must be 0, J may be 1 to set Q to 1.)
Figure 1-19 Karnaugh Maps for Figure 1-17
XQp XQp
QxQ3 00 01 11 10 QQ3 00 01 11 10
00 F 111 ﬂ 00| o |@A] 1) o
or [[1]1 [x ot | x|+ [1] x
11|jofofo o Immjojf1|1] 0
10lojo}o | X 1003 |1)] X
D1 =Q1*=Q2 Dy =Q*=Q
XQ1 XQq
QyQ3 00 01 11 10 QQ3\ 00 01 11 10
00 o ((1]} o M 00 |la|1J]o]o
o1 x|o|o|lx 01| x| ol W
1o | D)o 11fofo|\ _y
10| o [(1)| o | X 10 | (1 ﬂ 0 | X
D3 =Q3t=Q1QQ3 + X'Q1Q3' +XQ1'Qy’ Z=XQ3'+XQ3
Figure 1-20 Realization of Code Converter
QI
o
—Q2
X
P
N cs pA&
® A6 G7 Z
g X G6
CLK Q Q

22 CHAPTER 1 ® Review OF LoGIC DESIGN FUNDAMENTALS

Figure 1-21 shows derivation of J-K flip-flops for the state table of Figure 1-17 using
the state assignment of Figure 1-18. First, we derive the J-K input equations for flip-flop
Q, using the Q7 map as the starting point. From the preceding table, whenever Q, is 0,
J=Q7 and K =X, So, we can fill in the Q, = 0 half of the J, map the same as Q} and the
Q, =0 half of the K, map as all Xs. When @, is 1,J, =X and K, =(Q7)". So, we can fill in
the @, =1 half of the /| map with Xs and the @, = 1 half of the K, map with the complement
of the Q7. Since half of every J and K map is don’t cares, we can avoid drawing separate
J and K maps and read the Js and Ks directly from the 0" maps, as illustrated in Figure
1-21(b). This shortcut method is based on the following: If Q =0, then J = Q7, so loop the
1s on the Q =0 half of the map to get J. If @ = 1, then K= (Q*)', soloopthe Os onthe O =1
half of the map to get K. The J and K equations will be independent of Q, since Q is set to
a constant value (0 or 1) when reading J and K. To make reading the Js and Ks off the map
easier, we cross off the Q values on each map. In effect, using the shortcut method is
equivalent to splitting the four-variable Q* map into two three-variable maps, one for
Q=0andone forQ=1.

Figure 1-21 Derivation of J-K Input Equations

XQy XQp XQj
QQX 00 01 11 10 QuQN 00 01 11 10 QuQn 00 01 11 10

00 F 11 ﬁ 00 ﬁ X | X ?\ 00| X|o0ojo| X
ot |11 [% on|x|x|[x]|x o1 x|olo|x
11jojofo]|oO 1o x|[x|o 11 rX 1 [?}
10{o0]ofo]x 10] 0] x|x| x 10(x[1]1] %

Q* I1=Q2 Ki=Q

(a) Derivation using separate J-K maps

XQ1 XQq XQj
QQ3 00 Of 1Y 16 QuQ3 00 01 11 10 QuQy 00 01 11 10,

00'_1w 1(1_' Ooﬁ_1 0010UJ3
01] X 1 |l | 1] x] ol |xY o [o

2

>

1 0
1 X X]
£ Ky’

11| oj|fe oy o I{oy1}1 |/ 1 o/ 1|1 \O_J

[) e
IOOQJ__yx 0_(911@_ 1 omo mJ3

—— T T T T

IOK; N Q* Q3"

Q1* Ih=Q J3=X'Qp +XQy'

J1=Q2 K1=Q Ky =Qy’ K3=Q)'+Q’

(b) Derivation using the shortcut method

1.8 » Design of a Moore Sequential Network 23

The following summarizes the steps required to design a sequential network:
1. Given the design specifications, determine the required relationship between the input
and output sequences. Then find a state graph and state table.

2. Reduce the table to a minimum number of states. First eliminate duplicate rows by

row matching; then form an implication table and follow the procedure in Section
1.9.

3. If the reduced table has m states (2%} < m < 2™), n flip-flops are required. Assign a
unique combination of flip-flop states to correspond to each state in the reduced
table.

4. Form the transition table by substituting the assigned flip-flop states for each state in

the reduced state tables. The resulting transition table specifies the next states of the
flip-flops and the output in terms of the present states of the flip-flops and the input.

5. Plot next-state maps and input maps for each flip-flop and derive the flip-flop input

equations. Derive the output functions.

6. Realize the flip-flop input equations and the output equations using the available

logic gates.

7. Check your design using computer simulation or another method.

Steps 2 through 7 may be carried out using a suitable CAD program.

1.8 DESIGN OF A MOORE SEQUENTIAL NETWORK

As an example of designing a Moore sequential machine, we will design a converter for
serial data. Binary data is frequently transmitted between computers as a serial stream of
bits. Figure 1-22 shows four different coding schemes for serial data. The example shows
transmission of the bit sequence 0, 1, 1, 1, 0, 0, 1, 0. With the NRZ (nonreturn-to-zero)
code, each bit is transmitted for one bit time without any change. With the NRZI (nonreturn-
to-zero-inverted) code, data is encoded by the presence or absence of transitions in the
data signal. For each 0 in the original sequence, the bit transmitted is the same as the
previous bit transmitted. For each 1 in the original sequence, the bit transmitted is the
complement of the previous bit transmitted. For the RZ (return-to-zero) code, a 0 is
transmitted as 0 for one full bit time, but a 1 is transmitted as a 1 for the first half of the bit
time, and then the signal returns to O for the second half. For the Manchester code, a 0 is
transmitted as O for the first half of the bit time and a 1 for the second half, but a 1 is
transmitted as a 1 for the first half and a O for the second half. Thus, the Manchester
encoded bit always changes in the middle of the bit time.

We will design a Moore sequential network that converts an NRZ-coded bit stream
to a Manchester-coded bit stream (Figure 1-23). In order to do this, we will use a clock
(CLOCK?2) that is twice the frequency of the basic bit clock. If the NRZ bit is 0, it will be
0 for two CLOCK2 periods, and if it is 1, it will be 1 for two CLOCK2 periods. Thus,
starting in the reset state (S), the only two possible input sequences are 00 and 11, and the
corresponding output sequences are 01 and 10. When a 0 is received, the network goes to
S, and outputs a 0; when the second 0 is received, it goes to S, and outputs a 1. Starting in
Sys if a 1 is received, the network goes to S, and outputs a 1, and when the second 1 is
received, it must go to a state with a 0 output. Going back to S, is appropriate since S, has

24

CHAPTER 1 ® ReVIEW OF LoGIC DESIGN FUNDAMENTALS

Figure 1-22 Coding Schemes for Serial Data Transmission

bit sequence| 0 E 1 E 1 E 1 E 0 i 0 E i 0 E
N] |]

NRZI : : : :

: L L I

RZ — '[—— — ! | — | |

! ! I I

Manchester| | i—— — i I_i E E '_i

1 bit
time

e

a0 output and the network is ready to receive another 00 or 11 sequence. When in S,, if a
00 sequence is received, the network can go to S, and back to S,. If a 11 sequence is
received in S,, the network can go to S, and then back to S;. The corresponding Moore
state table has two don’t cares, which correspond to input sequences that cannot occur.

Figure 1-23 Moore network for NRZ-to-Manchester Conversion

NRZ data—X> Conversion
CLOCK2 —_ Network

Z

(a) Conversion network

——— Manchester data

0 Present Next State Present
% % State [X=0 X=1 Output (Z)
So St S3 0
1 l l 0 St So - 0
So St S3 1
% 1 % 53 | - 50 !
(b) State graph (c) State table

1.9 » Equivalent States and Reduction of State Tables 25 J

Figure 1-24 shows the timing chart for the Moore network. Note that the Manchester
output is shifted one clock time with respect to the NRZ input. This shift occurs because a
Moore network cannot respond to an input until the active edge of the clock occurs. This
is in contrast to a Mealy network, for which the output can change after the input changes
and before the next clock.

Figure 1-24 Timing for Moore Network

1 bit
— ime |<—
| l | 1 | | | | { | | [

X (NRZ) 0.0.|1|1|1|1‘1|1 |0|0|0|0||1.1||0|01

cvoce | [TN O AR

State SO|51|52|S3|SO|S3JSO|S3|SO|SI|SQ|SI\52|S3| SO'SI'
[e T Tt S Sy T N R S R S TS Rl

Z (i | | | | I |)) | |
(Manchester) O:O 1:1 OIII'OIIIO:OIIIO 1:1 0:0:
1 bit
"ltimel"*

1.9 EQUIVALENT STATES AND REDUCTION OF STATE TABLES

The concept of equivalent states is important for the design and testing of sequential
networks. Two states in a sequential network are said to be equivalent if we cannot tell
them apart by observing input and output sequences. Consider two sequential networks,
N, and N, (see Figure 1-25). N, and N, could be copies of the same network. N, is started
in state s, and N, is started in state S;: We apply the same input sequence, X, to both
networks and observe the output sequences, Z and Z,. (The underscore notation indicates
a sequence.) If Z, and Z, are the same, we reset the networks to states 5 and S;s apply a
different input sequence, and observe Z, and Z,. If the output sequences are the same for
all possible input sequences, we say the s;and s. ; are equivalent (s; = s) Formally, we can
define equivalent states as follows: s, = =S if and only if, for every 1nput sequence X, the
output sequences Z, =A,(s,, X) and Z, = 7»2(5 X) are the same. This is not a very practical
way to test for state equlvalence since, at least in theory, it requires input sequences of
infinite length. In practice, if we have a bound on number of states, then we can limit the
length of the test sequences.

Figure 1-25 Sequential Networks

— @ Ni o Zy=A(s. X)

T

)

—) M2 [Zy=y(5.X)

26

CHAPTER 1 ® ReviEw OF Locic DesiGN FUNDAMENTALS

A more practical way to determine state equivalence uses the state equivalence
theorem: s, =s, if and only if for every single input X, the outputs are the same and the next
states are equivalent. When using the definition of equivalence, we must consider all input
sequences, but we do not need any information about the internal state of the system.
When using the state equivalence theorem, we must look at both the output and next state,
but we need to consider only single inputs rather than input sequences.

The table of Figure 1-26(a) can be reduced by eliminating equivalent states. First,
observe that states a and h have the same next states and outputs when X =0 and also when
X = 1. Therefore, a = h so we can eliminate row h and replace h with a in the table. To
determine if any of the remaining states are equivalent, we will use the state equivalence
theorem. From the table, since the outputs for states a and b are the same, a =b if and only
if c=d and e =f. We say that c—d and e—f are implied pairs for a-b. To keep track of the
implied pairs, we make an implication chart, as shown in Figure 1-26(b). We place c—d
and e—f in the square at the intersection of row a and column b to indicate the implication.
Since states d and e have different outputs, we place an X in the d—e square to indicate that
d = e. After completing the implication chart in this way, we make another pass through
the chart. The e—g square contains c—e and b—g. Since the c— square has an X, c #e, which
implies e # g, so we X out the e—g square. Similarly, since e 2 f, we X out the f-g square. On
the next pass through the chart, we x out all the squares that contain e—f or f—g as implied
pairs (shown on the chart with dashed xs). In the next pass, no additional squares are xed
out, so the process terminates. Since all the squares corresponding to non-equivalent states
have been xed out, the coordinates of the remaining squares indicate equivalent state pairs.
From the first column, a = b; from third column, ¢ = d; and from the fifth column, e ={.

The implication table method of determining state equivalence can be summarized
as follows:

Construct a chart that contains a square for each pair of states.

Compare each pair of rows in the state table. If the outputs associated with states i

and j are different, place an x in square i—j to indicate that i #]. If the outputs are the

same, place the implied pairs in square i—j. (If the next states of i and j are m and n for

some input x, then m—n is an implied pair.) If the outputs and next states are the same

(or if i~j implies only itself), place a check (V) in square i—j to indicate that i = j.

3. Go through the table square by square. If square i—j contains the implied pair m-n,
and square m-n contains an X, then i # j, and an x should be placed in square i—j.

4. If any xs were added in step 3, repeat step 3 until no more xs are added.

5. For each square i—j that does not contain an X, i =j.

.

If desired, row matching can be used to partially reduce the state table before constructing
the implication table. Although we have illustrated this procedure for a Mealy table, the
same procedure applies to a Moore table.

Two sequential networks are said to be equivalent if every state in the first network
has an equivalent state in the second network, and vice versa.

1.9 = Equivalent States and Reduction of State Tables

27

Figure 1-26 State Table Reduction

Present Next State Present Output
State X=0 1 X=0 1
a c f 0 0

b d e 0 0

c Ha g 0 0

d b g 0 0

e e b 0 1

f f a 0 1

g c g 0 1
-+ ——f -6—30

b Z:: a=b iff c=dande=f . Zt:
Lol e
d ?_-g e-g| a-b p ?}:g: :er@: b
) e
f a-b £ b
c-e| e-f - -
; b-g | a-g g ’ <
a b c d e f a b c d e
(b) Implication chart (first pass) (¢) After second and third passes
X= X=

oG 0O O ®

(eI ¢ I - B ol el

e & 0Q O

[« el oo fol
—_—_ 0 o~

(d) Final reduced table

|28

CHAPTER 1 @ REVIEW OF LoGIC DESIGN FUNDAMENTALS

41.40 SEQUENTIAL NETWORK TIMING

If the state table of Figure 1-17(b) is implemented in the form of Figure 1-16, the timing
waveforms are as shown in Figure 1-27. Propagation delays in the network have been
neglected. In this c.-ample, the input sequence is 00101001, and X is assumed to change in
the middle of the clock pulse. At any given time, the next state and Z output can be read
from the next state table. For example, at time t,, State = S; and X = 0, so Next State = S
and Z = 0. At time ¢, following the rising edge of the clock, State = S; and X is still 0, so
Next State = S, and Z = 1. Then X changes to 1, and at time 7, Next State = S, and Z = 0.
Note that there is a glitch (sometimes called a false output) at ¢,. The Z output momentarily
has an incorrect value at ¢,, because the change in X is not exactly synchronized with the
active edge of the clock. The correct output sequence, as indicated on the waveform, is 1
110001 1. Several glitches appear between the correct outputs; however, these are of no
consequence if Zis read at the right time. The glitch in the next state at ¢, (S,) also does not
cause a problem, because the next state has the correct value at the active edge of the
clock.

Figure 1-27 Timing Diagram for Code Converter

Clock | |

State SOX Sq X S3 X Ss XﬁSO X ;
Isqt:t 515 S3 Ss X 50)®<52)L S4 X Ss X So
: 1 : ,

The timing waveforms derived from the network of Figure 1-20 are shown in Figure
1-28. They are similar to the general timing waveforms given in Figure 1-27 except that
State has been replaced with the states of the three flip-flops, and a propagation delay of
10 ns has been assumed for each gate and flip-flop.

1.11 o Setup and Hold Times 29

Figure 1-28 Timing Diagram for Figure 1-20

] e Y Y B

o T 1 1 [
@ [T i
o [0]
A] o o[w][]

‘.%4 SETUP AND HOLD TIMES

For an ideal D flip-flop, if the D input changed at exactly the same time as the active edge of
the clock, the flip-flop would operate correctly. However, for a real flip-flop, the D input
must be stable for a certain amount of time before the active edge of the clock (called the
setup time). Furthermore, D must be stable for a certain amount of time after the active edge
of the clock (called the hold time). Figure 1-29 illustrates setup and hold times for a D flip-
flop that changes state on the rising edge of the ciock. D can change at any time during the
shaded region on the diagram, but it must be stable during the time interval ¢, before the
active edge and for #, after the active edge. If D changes at any time during the forbidden
interval, it cannot be determined whether the flip-flop will change state. Even worse, the
flip-flop may malfunction and output a short pulse or even go into oscillation.

Figure 1-29 Setup and Hold Times for D Flip-flop

'
0
'
i
'
'
'
|
'

Clock +————' f——_l +———

Q : tplh —» — — | tphl

The propagation delay from the time the clock changes to the time the Q output
changes is also indicated in Figure 1-29. The propagation delay for a low-to-high change
in Q is Lo and for a high-to-low change it is Lot Minimum values for ¢, and ¢, and
maximum values for Loth and L, €an be read from manufacturers’ data sheets.

|30

CHAPTER 1 ® RevieEw OF Locic DesiGN FUNDAMENTALS

The maximum clock frequency for a sequential network depends on several factors.
For a network of the form of Figure 1-16, assume that the maximum propagation delay
through the combinational network is 7, and the maximum propagation delay from the
time the clock changes to the flip-flop output changes is Lymax? where ¢ pmax is the maximum
of Lo and Lonr Then the maximum time from the active edge of the clock to the time the
change in Q propagates back to the D flip-flop inputsisz _ +¢ . If the clock period is

t,» the D inputs must be stable 7 before the end of the clock period. Therefore,

tpmax * Lemax < L= ts

and

t, 2t +1 +1

ck ‘pmax cmax Su

For example, for the network of Figure 1-20, if the maximum gate delay is 15 ns, ¢ pmax for
the flip-flops is 15 ns, and L, is 5 ns, then

1,22x15+15+5 =50ns.

The maximum clock frequency is then 1/z,, = 20 MHz. Note that the inverter is not in the
feedback loop.

A hold-time violation could occur if the change in Q fed back through the
combinational network and caused D to change too soon after the clock edge. The hold
time is satisfied if

tpmin
When checking for hold-time violations, the worst case occurs when the timing parameters
have their minimum values. Since Lomin > T for normal flip-flops, a hold-time violation
due to Q changing does not occur. However, a setup or hold-time violation could occur if
the X input to the network changes too close to the active edge of the clock.

When the X input to a sequential network changes, we must make sure that the input
change propagates to the flip-flop inputs such that the setup time is satisfied before the
active edge of the clock. If X changes at time ¢_before the active edge of the clock (see
Figure 1-30), then the setup time is satisfied if

+lmin = U

t 2t +1,

X cxmax

where ¢ is the maximum propagation delay from X to the flip-flop input. In order to

satisfy the hold time, we must make sure that X does not change too soon after the clock.

If X changes at time 1, after the active edge of the clock, then the hold time is satisfied if
ty 2 U= L rmin

where ¢, . is the minimum propagation delay from X to the flip-flop input. If 1, is negative,

X can change before the active clock edge and still satisfy the hold time.

1.12 * Synchronous Design 31

Figure 1-30 Setup and Hold Timing for Changes in X

CLK

1 1

x| "t tem
: tx Py CXmin
: ! 'ty o th :
! 1oe— toxmax ——8—0
1 1

D 1 1

1.92 SYNCHRONOUS DESIGN

One of the most commonly used digital design techniques is synchronous design. This
type of design uses a clock to synchronize the operation of all flip-flops, registers, and
counters in the system. All state changes will occur immediately following the active edge
of the clock. The clock period must be long enough so that all flip-flop and register inputs
will have time to stabilize before the next active edge of the clock.

Figure 1-31 Synchronous Digital System

Clock Data
In
Control
Control Signals
Inputs | CONTROL » DATA
™ SECTION - SECTION
Condition
Signals
Data
Out

A typical digital system can be divided into a control section and a data section, as
shown in Figure 1-31. A common clock synchronizes the operation of the control and data
sections. The data section may contain data registers, arithmetic units, counters, etc. The
control section is a sequential machine that generates control signals to control the operation
of the data section. For example, if the data section contains a shift register, the control
section may generate signals Ld and Sk, which determine when the register is to be loaded
and when it’is to be shifted. The data section may generate condition signals that effect the
control sequence. For example, if a data operation produces an arithmetic overflow, then
the data section might generate a condition signal V to indicate an overflow.

32 CHAPTER 1 @ Review oOf LoaGic DESIGN FUNDAMENTALS

Figure 1-32 Timing Chart for System with Falling-Edge Devices

State Change Initiated Here)

Clock
| Uncertain
Switching T
_H
I

I |
Transients | \
[[I |
| |]
Control | _ |

Signal
| I I ! | |

Clock-CS ___'_—| | | I——-—|—

Figure 1-32 illustrates the operation of a digital system, which uses devices that change
state on the falling edge of the clock. Several flip-flops may change state in response to
this falling edge. The time at which each flip-flop changes state is determined by the
propagation delay for that flip-flop. The changes in flip-flop states in the control section
will propagate through the combinational network that generates the control signals, and
some of the control signals may change as a result. The exact times at which the control
signals change depend on the propagation delays in the gate networks that generate the
signals as well as the flip-flop delays. Thus, after the falling edge of the clock, there is a
period of uncertainty during which control signals may change. Glitches and spikes may
occur in the control signals due to hazards. Furthermore, when signals are changing in one
part of the circuit, noise may be induced in another part of the circuit. As indicated by the
cross-hatching in Figure 1-32, there is a time interval after each falling edge of the clock in
which there may be noise in a control signal (CS), and the exact time at which the control
signal changes is not known.

If we want a device in the data section to change state on the falling edge of the clock
only if the control signal CS = 1, we can AND the clock with CS, as shown in Figure 1-33(a).
The CLK input to the device will be a clean signal, and except for a small delay in the AND
gate, the transitions will occur in synchronization with the clock. The CLK signal is clean
because the clock is 0 during the time interval in which the switching transients occur in CS.

Figure 1-33 Gated Control Signal

— - Clock — —
Clock DD__B CK
F———-O>CK CS
S — CLK —

(a) Falling-edge device (b) Rising-edge device

1.12 » Synchronous Design 33

Figure 1-34 illustrates the operation of a digital system that uses devices that change
state on the rising edge of the clock. In this case, the switching transients that result in
noise and uncertainty will occur following the rising edge of the clock. The cross-hatching
indicates the time interval in which the control signal CS may be noisy. If we want a
device to change state on the rising edge of the clock when CS = 1, it is tempting to AND
the clock with CS, as shown in Figure 1-35. The resulting signal, which goes to the CK
input of the device, may be noisy and timed incorrectly. In particular, the CLK! pulse at
(a) will be short and noisy. It may be too short to trigger the device, or it may be noisy and
trigger the device more than once. In general, it will be out of synch with the clock, because
the control signal does not change until after some of the flip-flops in the control network
have changed state. The rising edge of the pulse at (b) again will be out of synch with the
clock, and it may be noisy. But even worse, the device will trigger near point (b) when it
should not trigger there at all. Since CS = 0 at the time of the rising edge of the clock,
triggering should not occur until the next rising edge, when CS = 1.

Figure 1-34 Timing Chart for System with Rising-Edge Devices

State Change Initiated Here

Clock

Switching
Transients

|
Control !
Signal (CS) ,_E
CLKl1 = E
Clock - CS (a)

I

CS- l

CLK2 = 1

Clock + CS |

Figure 1-35 Incorrect Design for Rising-Edge Device

Clock __3 I L cKk
CS —J CLK1 ¥~ "Rising Edge"

Device

|34

CHAPTER 1 @ Review oF LOGIC DeSIGN FUNDAMENTALS

If we move the bubble in Figure 1-33(a) from the device input to the gate output (see
Figure 1-33(b)), the timing will be the same as in Figure 1-32. We now have a rising-edge
device, but it will trigger on the falling edge of the system clock. To get around this problem,
we can invert the clock, as indicated by the added bubble in Figure 1-36(a). The CK input
to the device is then

CLK2 = (CS - clock"y = CS'+ clock

As shown in Figure 1-34, the CLK2 signal will be free of noise, and when CS = 1, CLK2
will change from O to 1 at the same time as the clock.

Figure 1-36 Correct Design for Rising-Edge Device

] Enabl
Clock —d - s nable
cS | > CK
CLK2 Clock—>CK
(a) With gated clock (b) With enable

Many registers, counters, and other devices used in synchronous systems have an
enable input (see Figure 1-36(b)). When enable = 1, the device changes state in response
to the clock, and when enable = 0, no state change occurs. Use of the enable input eliminates
the need for a gate on the clock input, and the associated timing problems are avoided.

In summary, synchronous design is based on the following principles:

* Method: All clock inputs to flip-flops, registers, counters, etc., are
driven directly from the system clock or from the clock
ANDed with a control signal.

* Result: All state changes occur immediately following the active
edge of the clock signal.

¢ Advantage: All switching transients, switching noise, etc., occur
between clock pulses and have no effect on system
performance.

Asynchronous design (see Fundamentals of Logic Design, Chapters 23-27) is
generally more difficult than synchronous design. Since there is no clock to synchronize
the state changes, problems may arise when several state variables must change at the
same time. A race occurs if the final state depends on the order in which the variables
change. Asynchronous design requires special techniques to eliminate problems with races
and hazards. On the other hand, synchronous design has several disadvantages: In high-
speed circuits where the propagation delay in the wiring is significant, the clock signal
must be carefully routed so that it reaches all the clock inputs at essentially the same time.
The maximum clock rate is determined by the worst-case delay of the longest path. The
system inputs may not be synchronized with the clock, so use of synchronizers may be
required.

1.13 o Tristate Logic and Busses 35

41.13 TRISTATE LOGIC AND BUSSES

In digital systems, transferring data back and forth between several system components is
often necessary. In this section, we introduce the concept of tristate buffers and show how
tristate busses can be used to facilitate data transfers between registers.

Figure 1-37 shows four kinds of tristate buffers. B is a control input used to enable or
disable the buffer output. When a buffer is enabled, the output (C) is equal to the input (A)
or its complement. When a buffer is disabled, the output is in a high-impedance, or hi-Z,
state, which is equivalent to an open circuit. Normally, if we connect the outputs of two
gates or flip-flops together, the circuit will not operate properly. However, we can connect
two tristate buffer outputs, provided that only one output is enabled at a time.

Figure 1-37 Four Kinds of Tristate Buffers

B B B B
BA| C BA| C BA| C BA| C
00[H-Z O0O[H-Z oO0O0] O 00 1
0 1|HZ 0 1|H-Z 01] 1 01| 0
10| 0 1 0] 1 1 0|Hi-Z 1 0 |Hi-Z
1 1] 1 1110 1 1IH-Z 1 1 |Hi-Z
(a) (b) (c) (d)

Figure 1-38 shows a system with three registers connected to a tristate bus. Each
register is 8 bits wide, and the bus consists of 8 wires connected in parallel. Each tristate
buffer symbol in the figure represents 8 buffers operating in parallel with a common enable
input. Only one group of buffers is enabled at a time. For example, if Enb = 1, the register
B output is driven onto the bus. The data on the bus is routed to the inputs of register A,
register B, and register C. However, data is loaded into a register only when its load input
is 1 and the register is clocked. Thus, if Enb = Ldc = 1, the data in register B will be copied
into register C when the active edge of the clock occurs. If Eni = Lda = Ldb = 1, the input
data will be loaded in registers A and B when the registers are clocked.

Figure 1-38 Data Transfer Using Tristate Bus

Enmi
Input _& 8, TRI-STATE BUS
Data -
Ena £ 8y Enb A Enc A
Lda— Reg. A Ldb— Reg.B Ldc— Reg.C
T T T

Clock

|3G CHAPTER 1 @ RevieEw OF LoGIc DEesIGN FUNDAMENTALS

Problems

1.1 Write out the truth table for the following equation.
F=(A®B)-C+A"-(B® O

1.2 A full subtracter computes the difference of three inputs X, ¥, and B, , where
Diff =X - Y - B,. When X < (¥ + B,), the borrow output B, is set. Fill in the truth table for the
subtracter and derive the sum-of-products and product-of-sums equations for Diff and B,

1.3 Simplify Z using a 4-variable map with map-entered variables. ABCD represents the state of a
control network. Assume that the network can never be in state 0100, 0001, or 1001.

Z=BC'DE+ACDF'+ ABCD'F' + ABC'D'G + B'CD + ABC'D'H'

1.4 For the following functions, find the minimum sum of products using 4-variable maps with
map-entered variables. In (a) and (b), m, represents a minterm of variables A, B, C, and D.

(@) F(A,B,C,D,E)=Em(0,4,6,13, 14) + £d(2,9) + E(m, + m,,)

(b) Z(A,B,C,D,E.F,G) =¥m(2,5,6,9) +Zd(1,3,4, 13, 14) + E(m,, + m ;)
+ F(m,g) + G(my)

(¢) H=ABCDF'+A'CD+A'B'CD'E + BCDF'

(d G=CEF+DEF+ADE'F' +BC'E'F+ADEF'

Hint: Which variables should be used for the map sides and which variables should be entered into
the map?

1.5

(a) Find all the static hazards in the following network. For each hazard, specify the values of the
input variables and which variable is changing when the hazard occurs. For one of the hazards,
specify the order in which the gate outputs must change.

(b) Design a NAND-gate network that is free of static hazards to realize the same function.

a
b
DD
a

1.6

(a) Find all the static hazards in the following network. State the condition under which each
hazard can occur.

Problems 37J

(b) Redesign the network so that it is free of static hazards. Use gates with at most three inputs.

D

1

C

1.7 Construct a clocked D flip-flop, triggered on the rising edge of CLK, using two transparent D
latches and any necessary gates. Complete the following timing diagram, where Q, and Q, are latch
outputs. Verify that the flip-flop output changes to D after the rising edge of the clock.

CLK

Q1

|
|
|
—
.
|
|
|
|
|
|
|
|

—
1
|
|
i
!
t
|
|

Q2

1.8 A synchronous sequential network has one input and one output. If the input sequence 0101 or
0110 occurs, an output of two successive 1s will occur. The first of these 1s should occur coincident
with the last input of the 0101 or 0110 sequence. The network should reset when the second 1 output
occurs. For example,

input sequence: X = 010011101010 101101 ...
output sequence: Z = 000000000011 000011 ...

(a) Derive a Mealy state graph and table with a minimum number of states (6 states).

(b) Try to choose a good state assignment. Realize the network using J-K flip-flops and NAND
gates. Repeat using NOR gates. (Work this part by hand.)

(¢) Check your answer to (b) using the LogicAid program. Also use the program to find the NAND
solution for two other state assignments.

1.9 A sequential network has one input (X) and two outputs (Z; and Z,). An output Z, = 1 occurs
every time the input sequence 010 is completed provided that the sequence 100 has never occurred.
An output Z, = 1 occurs every time the input sequence 100 is completed. Note that once a Z, = 1
output has occurred, Z, = 1 can never occur, but not vice versa.

(a) Derive a Mealy state graph and table with a minimum number of states (8 states).

(b) Try to choose a good state assignment. Realize the network using J-K flip-flops and NAND
gates. Repeat using NOR gates. (Work this part by hand.)

(¢) Check your answer to (b) using the LogicAid program. Also use the program to find the NAND
solution for two other state assignments.

38

CHAPTER 1 @ ReviEw OF LoGIC DesiGN FUNDAMENTALS

1.10 A sequential network has one input (X) and two outputs (S and V). X represents a 4-bit binary
number N, which is input least significant bit first. S represents a 4-bit binary number equal to N + 2,
which is output least significant bit first. At the time the fourth input occurs, V= 1if N + 2 is too large
to be represented by 4 bits; otherwise, V = 0. The value of S should be the proper value, not a don’t
care, in both cases. The network always resets after the fourth bit of X is received.

(a) Derive a Mealy state graph and table with a minimum number of states (6 states).

(b) Try to choose a good state assignment. Realize the network using J-K flip-flops and NAND
gates. Repeat using NOR gates. (Work this part by hand.)

(¢) Check your answer to (b) using the LogicAid program. Also use the program to find the NAND
solution for two other state assignments.

1.11 A sequential network has one input (X) and two outputs (D and B). X represents a 4-bit binary
number N, which is input least significant bit first. D represents a 4-bit binary number equal to N —
2, which is output least significant bit first. At the time the fourth input occurs, B=1if N -2 is
negative; otherwise, B = 0. The network always resets after the fourth bit of X is received.

(a) Derive a Mealy state graph and table with a minimum number of states (6 states).

(b) Try to choose a good state assignment. Realize the network using J-K flip-flops and NAND
gates. Repeat using NOR gates. (Work this part by hand.)

(¢) Check your answer to (b) using the LogicAid program. Also use the program to find the NAND
solution for two other state assignments.

1.12 A sequential network has the following form. The delay through the combinational network is
in the range 5 <1, <20 ns. The propagation delay from the rising edge of the clock to the change in
the flip-flop output is in the range 5<¢ S 10 ns. The required setup and hold times for the flip-flop
are t, = 10 ns and #, = 5 ns. Indicate on the diagram the times at which X is allowed to change.

X
PLA

Z
B Q
0
1

_CL>

CLK l—l E_—

Problems 39

1.13 A Mealy sequential network is implemented using the network shown below. Assume that if
the input X changes, it changes at the same time as the falling edge of the clock. Assume the following
delays: XOR gate, 5 to 15 ns; flip-flop propagation delay, 5 to 15 ns; setup time, 10 ns; hold time, 5
ns. Initially assume that the “delay” is O ns.

X ﬁ P1 Q D,

[>CK S CK Q

(a) Determine the maximum clock rate for proper synchronous operation.

>

(b) Assume a clock period of 100 ns. What is the maximum value that “delay” can have and still
achieve proper synchronous operation? :

(¢) Complete the following timing diagram. Indicate the proper times to read the output (Z). Assume
that “delay” is O ns and that the propagation delay for the flip-flop and XOR gate has a nominal
value of 10 ns.

Clock I

l
i
I
|
|
|
I
|

-
o
o
| |
B
|
T
_

—] — — — — — -3

|
|
|
I
l
l

|
—L S N

1.14 A sequential network consists of a PLA and a D flip-flop, as shown.

(a) Complete the timing diagram assuming that the propagation delay for the PLA is in the range
5 to 10 ns, and the propagation delay from clock to output of the D flip-flop is 5 to 10 ns. Use cross-
hatching on your timing diagram to indicate the intervals in which Q and Z can change, taking the
range of propagation delays into account.

40

CHAPTER 1 @ Review oF Locic DesiGN FUNDAMENTALS

(b) Assuming that X always changes at the same time as the falling edge of the clock, what is the
maximum setup and hold time specification that the flip-flop can have and still maintain proper

operation of the network?
Qlo 1|0 1
FLA > 010 1[0 1
1{00f10
Clk +

'—_ Q“ Q

5 i | 5
2(l) 4t|) 6i) 8b 1£0 ns

1.15 A D flip-flop has a setup time of 4 ns, a hold time of 2 ns, and a propagation delay from the
rising edge of the clock to the change in flip-flop output in the range of 6 to 12 ns. The XOR gate
delay is in the range of 1 to 8 ns.

(@) What is the minimum clock period for proper operation of the following network?

(b). What is the earliest time after the rising clock edge that X is allowed to change?

T

CLK

116
(@ Do the following two networks have essentially the same timing?
(b) Draw the timing for @, and Q, given the timing diagram.

(¢) If your answer to (a) is no, show what change(s) should be made in the second network so that
the two networks have essentially the same timing (do not change the flip-flop).

D Q, D—D Q}—
CLK —p CLK —
—1{EC EC — > g
CLK | L 1 1 | A
EC 1 1
D | [

Problems 41

1.17
Assume that CS (and also CS) change 2 ns after the rising edge of the clock.

(@ Plot CK and Q on the timing diagram. A precise plot is not required; just show the relative
times at which the signals change.

(b) If X changes at the falling edge of Clock, as shown, what is the maximum clock frequency?

(c) With respect to the rising edge of Clock, what is the earliest that X can change and still satisfy
the hold-time requirement?

D Q J flip-flop propagation delay = 10 to 15 ns
X setup time =4 ns
hold time = 2 ns

Cs XOR gate delay =4 to 8 ns

Clock D— cK QR gate delay =2 to 6 ns
Clock l L I I

o s 1

| l |

x| | | | | | |

T T T I] I

: t | I i |

X] | I | I ! | |]

1 1 T T LN 1

| | I l | l

Q | 1 1] | !

| | l | | |

CHAPTER 2

INTRODUCTION TO VHDL

As integrated circuit technology has improved to allow more and more components on a
chip, digital systems have continued to grow in complexity. As digital systems have become
more complex, detailed design of the systems at the gate and flip-flop level has become
very tedious and time consuming. For this reason, use of hardware description languages
in the digital design process continues to grow in importance. A hardware description
language allows a digital system to be designed and debugged at a higher level before
conversion to the gate and flip-flop level. Use of synthesis computer-aided design tools to
do this conversion is becoming more widespread. This is analogous to writing software
programs in a high-level language such as C and then using a compiler to convert the
programs to machine language. The two most popular hardware description languages are
VHDL and Verilog.

VHDL is a hardware description language used to describe the behavior and structure
of digital systems. The acronym VHDL stands for VHSIC Hardware Description Language,
and VHSIC in turn stands for Very High Speed Integrated Circuit. However, VHDL is a
general-purpose hardware description language that can be used to describe and simulate
the operation of a wide variety of digital systems, ranging in complexity from a few gates
to an interconnection of many complex integrated circuits. VHDL was originally developed
for the military to allow a uniform method for specifying digital systems. The VHDL
language has since become an IEEE standard, and it is widely used in industry.

VHDL can describe a digital system at several different levels—behavioral, data
flow, and structural. For example, a binary adder could be described at the behavioral level
in terms of its function of adding two binary numbers, without giving any implementation
details. The same adder could be described at the data flow level by giving the logic
equations for the adder. Finally, the adder could be described at the structural level by
specifying the interconnections of the gates that comprise the adder.

VHDL leads naturally to a top-down design methodology, in which the system is
first specified at a high level and tested using a simulator. After the system is debugged at
this level, the design can gradually be refined, eventually leading to a structural description
closely related to the actual hardware implementation. VHDL was designed to be technology
independent. If a design is described in VHDL and implemented in today’s technology,
the same VHDL description could be used as a starting point for a design in some future
technology.

44 CHAPTER 2 ® INTRODUCTION TO VHDL

In this chapter, we describe the basic features of VHDL and illustrate how we can
describe simple combinational and sequential networks using VHDL. We will use VHDL
in later chapters to design more complex digital systems. In Chapter 8, we introduce some
of the more advanced features of VHDL, and we discuss the use of CAD software tools for
automatic synthesis from VHDL descriptions.

2.9 VHDL DESCRIPTION OF COMBINATIONAL NETWORKS

We start by describing a simple gate network in VHDL. If each gate in the network of
Figure 2-1 has a 5-ns propagation delay, the network can be described as follows:

C «= A and B after 5 ns;
E <= Cor D after 5 ns;

where A, B, C, D, and E are signals. A signal in VHDL usually corresponds to a signalin a
physical system. The symbol "<=" is the signal assignment operator, which indicates the
value computed on the right side is assigned to the signal on the left side. When these
statements are simulated, the first statement will be evaluated any time A or B changes,
and the second statement will be evaluated any time C or D changes. Suppose that initially
A=1,and B=C=D=E=0.1If Bchanges to 1 at time 0, C will change to 1 at time =5 ns.
Then E will change to 1 at time = 10 ns.

A— C
— E

B : D j >

VHDL signal assignment statements, like the ones in the preceding example, are
called concurrent statements when they are not contained in a VHDL process or block.
The VHDL simulator monitors the right-hand side of each concurrent statement, and any
time a signal changes, the expression on the right-hand side is immediately re-evaluated.
The new value is assigned to the signal on the left-hand side after an appropriate delay.

When we initially describe a network, we may not be concerned about propagation
delays. If we write

Figure 2-1 Gate Network

C <= A and B;
E <= C or D;

this implies that the propagation delays are O ns. In this case, the simulator will assume an
infinitesimal delay referred to as A (delta). For this example, if B is changed to 1 at time =
0, then C will change at time 0 + A and E will change at time 0 + 2A.

Unlike a sequential program, the order of the preceding statements is unimportant. If
we write

2.1 » VHDL Description of Combinational Networks 45

E «= C or D;
C <= A and B;

the simulation results would be exactly the same as before. Even if a VHDL program has
no explicit loops, concurrent statements may execute repeatedly as if they were in a loop.
The VHDL statement

CLK <= not CLK after 10 ns;

will generate a clock waveform with a half-period of 10 ns. If CLK is initially '0', it will
change to '1" after 10 ns. When CLK changes to 'l’, the statement will be executed again,
and CLK will change back to '0' after another 10 ns. This process will continue indefinitely.
On the other hand, the concurrent statement

CLK <= not CLK;

will cause a run-time error during simulation. Since there is 0 delay, the value of CLK will
change at times O + A, 0 + 2A, 0 + 3A, etc., and real time will never advance.

In general, VHDL is not case sensitive; that is, capital and lowercase letters are treated
the same by the compiler and simulator. Thus the statements

Clk <= NOT clk After 10 NS;
and CLK <= not CLK after 10 ns;

are treated exactly the same. Signal names and other VHDL identifiers may contain letters,
numbers, and the underscore character (). An identifier must start with a letter, and it
cannot end with an underscore. Thus C123, and ab_23 are legal identifiers, but LABC and
ABC_ are not. Every VHDL statement must be terminated with a semicolon.

Entity-Architecture Pairs

To write a complete VHDL program, we must declare all the input and output signals and
specify the type of each signal. As an example, we will describe the full adder of Figure
1-2(a). A complete description must include an entity declaration and an architecture
declaration. The entity declaration specifies the inputs and outputs of the adder module:

entity FullaAdder is
port (X, Y, Cin: in bit; -- Inputs
Cout, Sum: out bkit); -- OQutputs
end Fulladder;

The words entity, is, port, in, out, and end are reserved words (or keywords), which
have a special meaning to the VHDL compiler. In this text, we will put all reserved words
in boldface type. Anything that follows a double dash (--) is a VHDL comment. The port
declaration specifies that X, ¥, and Cin are input signals of type bit and that Cout and Sum
are output signals of type bit. Each signal in this example is of type bit, which means it can
assume only values of '0' or '1".

46

CHAPTER 2 @ INTRODUCTION TO VHDL

The operation of the full adder is specified by an architecture declaration:

architecture Equations of Fulladder is
begin -- Concurrent Assignments
Sum <= X xor Y xor Cin after 10 ns;
Cout <= (X and Y) or (X and Cin) or (Y and Cin) after 10 ns;
end Equations;

In this example, the architecture name (Equations) is arbitrary, but the entity name
(FullAdder) must match the name used in the associated entity declaration. The VHDL
assignment statements for Sum and Cout represent the logic equations for the full adder
(Equations 1-31 and 1-22). Several other architectural descriptions, such as a truth table or
an interconnection of gates, could have been used instead. In the Cour equation, parentheses
are required around (X and Y), since VHDL does not specify an order of precedence for
the logic operators.

When we describe a system in VHDL, we must specify an entity and an architecture
at the top level, and also specify an entity and architecture for each of the component
modules that are part of the system (see Figure 2-2). Each entity declaration includes a list
of interface signals that can be used to connect to other modules or to the outside world.
We will use entity declarations of the form

entity entity-name is
[port {interface-signal-declaration) ;]
end [entity] [entity-name];

The items enclosed in brackets are optional. The interface-signal-declaration normally has
the following form:

list-of-interface-signals: mode type [:= initial-value]
{; list-of-interface-signals: mode type [:= initial-value]}

The curly brackets indicate zero or more repetitions of the enclosed clause. Input signals
are of mode in, output signals are of mode out, and bidirectional signals are of mode
inout. So far, we have used only type bit; other types are described in Sections 2.6 and 2.7.
The optional initial value is used to initialize the signals on the associated list; otherwise,
the default initial value is used for the specified type. For example, the port declaration

port (A, B: 1in integer := 2; C, D: out bit);

indicates that A and B are input signals of type integer, which are initially set to 2, and C
and D are output signals of type bit, which are initialized by default to '0'.

2.1 ¢ VHDL Description of Combinational Networks a7

Figure 2-2 VHDL Program Structure

Entity
Architecture
Entity Entity Entity
Architecture | | Architecture Architecture
eeoe
Module 1 Module 2 Module N

Associated with each entity is one or more architecture declarations of the form

architecture architecture-name of entity-name is
[declarations]

begin
architecture body

end [architecture] [architecture-name];

Four-bit Full Adder

Next we will show how to use the FullAdder module defined earlier as a component in a
system that consists of four full adders connected to form a 4-bit binary adder (see Figure
2-3). We first declare the 4-bit adder as an entity (see Figure 2-4). Since the inputs and the
sum output are 4 bits wide, we declare them as bit_vectors, which are dimensioned 3
downto 0. (We could have used the range 1 to 4 instead).

Figure 2-3 Four-bit Binary Adder

S(3) S(2) S(1) 3(0)

i I I !

Coe | Full | CO | Fut | C@ | Fun | _CA | Ful
“7| Adder Adder Adder [Adder

T T 11 T

A(3) B(3) A(2) B(2) A1) B(1) A(0) B(0)

«— Ci

48

CHAPTER 2 ® INTRODUCTION TO VHDL

i
f
|
|

Next we specify the FullAdder as a component within the architecture of Adder4
(Figure 2-4). The component specification is very similar to the entity declaration for the
full adder, and the input and output port signals correspond to those declared for the full
adder. Following the component statement, we declare a 3-bit internal carry signal C.

In the body of the architecture, we create several instances of the FullAdder
.component. (In CAD jargon, we “instantiate” four copies of the FullAdder.) Each copy of

" FullAdder has a name (such as FAQ) and a port map. The signal names following the port
map correspond one-to-one with the signals in the component port. Thus, A(0), B(0), and
Ci correspond to the inputs X, Y, and Cin, respectively. C(1) and S(0) correspond to the
Cout and Sum outputs.

Figure 2-4 Structural Description of 4-bit Adder

Eentity Adder4 is

port (A, B: in bit_vector(3 downto 0); Ci: in bit; -- Inputs
: S: out bit_vector(3 downto 0); Co: out bit); -- Outputs
| end Adder4;
|

garchitecture Structure of Adder4d is
. component FullAdder

port

(X, Y, Cin: in bit; -- Inputs
Cout, Sum: out bit); -- Qutputs

%end component ;
:signal C: bit_vector(3 downto 1);

: begin
. FAO:
FAl:
FA2:
FA3:

--instantiate four copies of the FullAdder
FullAdder port map (A(0)}, B(0), Ci, C(1), S(0));
FullAdder port map (A(1l), B(1l), C(l), C(2), S(1));
FullAdder port map (A(2), B(2), C(2), C(3), S(2));
Fulladder port map (A(3), B(3), C(3), Co, S(3));

%end Structure;

In preparation for simulation, we can place the entity and architecture for the FullAdder
and for Adder4 together in one file and compile. Alternatively, we could compile the
FullAdder separately and place the resulting code in a library that is linked in when we
compile Adder4.

All the simulation examples in this text use the V-System/Windows simulator from
Model Tech. Most other VHDL simulators use similar command files and can produce
output in a similar format. We use the following simulator commands to test Adder4:

list A B Co C Ci S -- put these signals on the output list
force A 1111 -- set the A inputs to 1111

force B 0001 -- set the B inputs to 0001

force Ci 1 -- set Ci to 1 ,
run 50 -- run the simulation for 50 ns /

force Ci 0
force A 0101
force B 1110
run 50

2.1 ¢ VHDL Description of Combinational Networks 49

‘We have chosen to run the simulation for 50 ns, since this is long enough for the carry to
propagate through all the full adders. The simulation results for the above command list
are

ns delta a b co c ci s
0 +0 0000 0000 O 000 0 0000
0 +1 1111 0001 0O 000 1 0000

10 +0 1111 0001 0 001 1 1111

20 +0 1111 0001 0 011 1 1101

30 +0 1111 0001 0 111 1 1001

40 +0 1111 0001 1 111 1 oo0o01

50 +0 0101 1110 1 111 O 0001

60 +0 0101 1110 1 110 O 0101

70 +0 0101 1110 1 100 0 0111

80 +0 0101 1110 1 100 0 0011

The listing shows how the carry propagates one position every 10 ns. The full adder inputs
change at time = A: ‘

) 0 0
time = A T J

0+ FA3] FA2 [~ FAl [~ FAO0 +~—1

rrorr ot
1

1 0 1 0 0 1 1
The sum and carry are computed by each FA and appear at the FA outputs 10 ns later:
1 1 1 1
time = 10 t I 1

0 «<—| FA3 1~ FA2 | FAl [~ FAO [~1

P ! i

1 O 1 0 1 0 1 1
Since the inputs to FA1 have changed, the outputs change 10 ns later:

1 1 0 1
time = 20 t t t ¢
0+ FA3 X FA2 [~ FAI [FAO f—l

i ! Pt
0 1 1

1 1 o 1 0

The final simulation results are

1111 + 0001 + 1 = 0001 with a carry of 1 (at time = 40 ns) and

0101 + 1110 + 0 = 0011 with a carry of 1 (at time = 80 ns)

The simulation stops at 80 ns, since no further changes occur after that time.

|50 CHarTeR 2 @ INTRODUCTION TO VHDL

2.2 MODELING FLIP-FLOPS USING VHDL PROCESSES

A common way of modeling sequential logic in VHDL uses a process. A process may have
the form

process (sensitivity-list)
begin

sequential-statements
end process;

Whenever one of the signals in the sensitivity list changes, the sequential statements in the
process body are executed in sequence one time.

The following example illustrates the difference in the way sequential and concurrent
statements are executed. A VHDL program has signals A, B, C, and D of type integer. The
signals are initialized to A = 1, B=2, C=3, and D =0. The program contains the following
concurrent statements:

A <= B; -- statement 1
B <= C; -~ statement 2
C <= D; -- statement 3

Assume that D changes to 4 at time = 10. The following sequence of events then occurs:
Since D has changed, statement 3 executes, and C is changed to 4 at time 10 + A. Next,
since C has changed, statement 2 executes, and B is updated at time 10 + 2A. Then the
change in B triggers execution of statement 1, and A is updated at time 10 + 3A. Since A
does not appear on the right-hand side of any statement, no further execution is triggered.

time delta A B C D
0 +0 1 2 3 0
10 +0 1 2 3 4 (statement 3 executes first)
10 +1 1L 2 4 4 (then statement 2 executes)
10 +2 1 4 4 4 (then statement 1 executes)
10 +3 4 4 4 4 (no further execution occurs)

Now consider a program with the same statements placed in a process:

process (B, C, D)

begin
A <= B; -- statement 1
B <= C; -- statement 2
C <= D; -- statement 3

end process;

Assume that A, B, C, and D are initialized as before and D changes to 4 at time = 10. Since
D has changed, and D is on the sensitivity list, the process begins execution. Statements 1,
2, and 3 are executed in sequence; then the process goes back to the top and waits until a
signal on the sensitivity list changes. Execution of the three statements takes place

2.2 » Modeling Flip-flops Using VHDL Processes 51

instantaneously at time = 10; not even delta time is required to execute the statements.
However, since A, B, and C are signals, their values are not updated until time 10 + A.
Therefore, the old values of B, C, and D are used when the statements are executed. Signals
A, B, and C will change value at time 10 + A, so the process will execute again. As a result,
A and B will change at time 10 + 2A, and the process will execute a third time. The
sequence of events is summarized as follows:

time delta A B C D
1

0 +0 2 3 0

10 +0 1 2 3 4 (statements 1,2,3 execute; then
update A,B,C)

10 +1 2 3 4 4 (statements 1,2,3 execute; then
update A,B,C)

10 +2 3 4 4 4 (statements 1,2,3 execute; then
update A,B,C)

10 +3 4 4 4 4 (no further execution occurs) .

This example shows how signal assignment statements can be used as sequential
statements in a process. Another commonly used sequential statement is the if statement.
The basic if statement has the form

if condition then
sequential statementsl
else sequential statements?2
end if;

The condition is a Boolean expression, which evaluates to TRUE or FALSE. If itis TRUE,
sequential statements] are executed; otherwise, sequential statements2 are executed.

Next we use a VHDL process to model a simple D flip-flop (Figure 1-10), which
changes state on the rising edge of the clock input. The signal QN represents the Q' output
of the flip-flop. In the entity declaration (see Figure 2-5), QN is explicitly initialized to '1",
since it must be the complement of Q, and bit signals are initialized to '0' by default.
VHDL requires that bit values such as '0' and '1' be enclosed in single quotes. The architecture
name, SIMPLE, is an arbitrary choice. Since the flip-flop can change state only when the
clock changes, we define a process that is executed only when CLK changes. Thus CLK is
the only signal in the sensitivity list. The clock signal is also tested within the process, and
if CLK ='1", this means that a rising edge has just occurred on CLK. In this case, Q is set
equal to D, and QN is set to the complement of D. The 10-ns delay represents the propagation
delay between the time the clock changes and the flip-flop outputs change.

52

CHAPTER 2 @ |NTRODUCTION TOo VHDL

Figure 2-5 D Flip-flop Model

end DFF;

begin
begin

Q
ON

entity DFF is
port (D, CLK: in bit;
Q: out bit; OQN: out bit := '1');
-- initialize QN to 'l' since bit signals are initialized to '0' by default

architecture SIMPLE of DFF is

process (CLK) -- process isgs executed when CLK changes

if CLK = '1l' then -- rising edge of clock

<= D after 10 ns;
<= not D after 10 ns;

end if;
end process;
end SIMPLE;

Next, we model a J-K flip-flop (Figure 2-6) that has active-low direct set (SN) and
reset (RN) inputs and changes state on the falling edge of the clock. In this chapter, we
have used a suffix N to indicate an active-low (negative-logic) signal. For simplicity, we
assume that the condition SN = RN = 0 does not occur. Later, we discuss a more complete
model that takes this case into account. The VHDL code for the J-K flip-flop is given in
Figure 2-7. The next state of the flip-flop is determined by its characteristic equation:

0*=JQ +K'Q

Figure 2-6 J-K Flip-flop

RN—(Q JKFF O— SN

K CLKJ

Since the process is executed whenever SN, RN, or CLK changes, we must determine
when the falling edge of CLK has occurred. Simply checking for CLK = '0’ would not
work if the process were activated by a change in SN or RN. Instead, we have used (elsif
CLK = '0' and CLK'event).CLK'event (read as CLK tick event) evaluates to
TRUE if CLK has just changed value. Thus, (CLK = '0' and CLK'event) is
TRUE only if a falling edge of CLK has just occurred. CLK'event is an example of a signal
attribute, and attributes are discussed in detail in Section 8.1.

2.2 » Modeling Flip-flops Using VHDL Processes 53

Figure 2-7 J-K Flip-flop Model

entity JKFF is
port (SN, RN, J, K, CLK: in bit; -- inputs
Q: inout bit; QN: out bit := '1'"); -- see Note 1
end JKFF;
architecture JKFF1 of JKFF is
begin
process (SN, RN, CLK) - -- see Note 2
begin
if RN = '0' then Q<= '0' after 10 ns; -- RN=0 will
clear the FF
elsif SN = '0' then Q<= 'l' after 10 ns; -- 8N=0 will
set the FF
elsif CILK = '0' and CLK'event then -- see Note 3
Q <= (J and not Q) or (mot K and Q) after 10 ns; -- see Note 4
end if;
end process;
ON <= not Q; -- see Note 5
! end JKFF1;

§Note 1: Q is declared as inout {(rather than out) because it appears on

! both the left and right sides of an assignment within the

: architecture.

Note 2: The flip-flop can change state in response to changes in SN, RN,
and CLK, so these 3 signals are in the sensitivity list.

Note 3: The condition (CLK = '0' and CLK'event) is TRUE only if CLK has
just changed from '1' to '0'.

Note 4: Characteristic equation that describes behavior of J-K flip-
flop.

Note 5: Every time Q changes, ON will be updated. If this statement were
placed within the process, the old value of Q would be used
instead of the new value.

The preceding example introduces the use of elsif, which is an alternative way of
writing nested if statements. The most general form of the if statement is

if condition then
sequential statements
{elsif condition then sequential statements }
-- 0 or more elsif clauses may be included
[else seguential statements]
end if;

The curly brackets indicate that any number of elsif clauses may be included, and the
square brackets indicate that the else clause is optional. The example of Figure 2-8 shows
how a flowchart can be represented using nested ifs or the equivalent using elsifs. In this

54 CHAPTER 2 @ INTRODUCTION TO VHDL

example, C1, C2, and C3 represent conditions that can be true or false, and S1, S2, .. ., S8
represent sequential statements. Each if requires a corresponding end if, but elsif does not.

Figure 2-8 Equivalent Representations of a Flowchart Using Nested Ifs and Elsifs

if (Cl) then S1; S2; if (Cl) then S1; S2;
else if (C2) then S3; S4; elsif (C2) then S3; S4;
else if (C3) themn S5; S6; elsif (C3) then S5; S6;
else S7; S8; else S7; S8;
end if; end if;
end if;
end if;

2.3 VHDL MODELS FOR A MULTIPLEXER

Figure 2-9 shows a4-to-1 multiplexer (MUX) with four data inputs and two control inputs,
A and B. The control inputs select which one of the data inputs is transmitted to the output.
The logic equation for the 4-to-1 MUX is

F=ABl,+A'BI, + AB'l, + ABI,
Thus, one way to model the MUX is with the VHDL statement

F <= (not A and not B and I0) or (not A and B and Il) or
(A and not B and I2) or (A and B and I3);

2.3 » VHDL Models for a Multiplexer 55

Figure 2-9 4-to-1 Multiplexer

Ip——
I1——
MUX
Ip—— F
I3—
A B

To model the MUX at the behavioral level, we can use a conditional assignment
statement. This statement has the form

signal_name <= expressionl when conditionl
else expression2 when condition2

[else expressionN];

This concurrent statement is executed whenever an event occurs on a signal used in one of
the expressions or conditions. If condition] is true, signal_name is set equal to the value of
expressionl, else if condition?2 is true, signal_name is set equal to the value of expression2,
etc.

We can also model the 4-to-1 MUX of Figure 2-9 using a selected signal assignment
Statement:

F <= I0 when Sel = 0
else I1 when Sel
else 12 when Sel = 2
else I3;

1l
=

In the above concurrent statement, Sel represents the integer equivalent of a 2-bit binary
number with bits A and B.

If a MUX model is used inside a process, a concurrent statement cannot be used. As
an alternative, the MUX can be modeled using a case statement:

case Sel is

when 0 => F <= I0;
when 1 => I <= Il;
when 2 => T <= I2;
when 3 => F <= I3;

end case;

L56 CHAPTER 2 ® INTRODUCTION TO VHDL

The case statement has the general form

case expression is
when choicel => sequential statementsl
when choice2 => sequential statements?2

[when othere => sequential statements]
end case;

The “expression” is evaluated first. If it is equal to “choicel”, then “sequential statements1”
are executed; if it is equal to “choice2”, then *“sequential statements2” are executed; etc.
All possible values of the expression must be included in the choices. If all values are not
explicitly given, a “when others” clause is required in the case statement.

2.4 COMPILATION AND SIMULATION OF VHDL CODE

After describing a digital system in VHDL, simulation of the VHDL code is important for
two reasons. First, we need to verify the VHDL code correctly implements the intended
design; second, we need to verify that the design meets its specifications. Before the VHDL
model of a digital system can be simulated, the VHDL code must first be compiled (see
Figure 2-10). The VHDL compiler, also called an analyzer, first checks the VHDL source
code to see that it conforms to the syntax and semantic rules of VHDL. If there is a syntax
error such as a missing semicolon, or if there is a semantic error such as trying to add two
signals of incompatible types, the compiler will output an appropriate error message. The
compiler also checks to see that references to libraries are correct. If the VHDL code
conforms to all the rules, the compiler generates intermediate code, which can be used by
a simulator or by a synthesizer. (Synthesis of digital logic from VHDL code is discussed in
Chapter 8.)

Figure 2-10 Compilation, Elaboration, and Simulation of VHDL Code

Resource Simulator
Libraries Commands
VHDL Inter-
Source i mediate ; Simulation
Compiler wo rking !] 2borator e—— Simulator
Code (Analyzer)[code library Data
Structure

Simulator
Output

In preparation for simulation, the VHDL intermediate code must be converted to a
form that can be used by the simulator. This step is referred to as elaboration. During
elaboration, ports are created for each instance of a component, memory storage is allocated

2.4 « Compilation and Simulation of VHDL Code 57

for the required signals, the interconnections among the port signals are specified, and a
mechanism is established for executing the VHDL processes in the proper sequence. The
resulting data structure represents the digital system being simulated. After an initialization
phase, the simulator enters the execution phase. The simulator accepts simulation
commands, which control the simulation of the digital system and specify the desired
simulator output.

As an example of simulation, we trace execution of the VHDL code shown in Figure
2-11. The keyword transport specifies the type of delay, as discussed in Section 8.2.
During elaboration, a driver is created for each signal. Each driver holds the current value
of a signal and a queue of future signal values. Each time a signal is scheduled to change
in the future, the new value is placed in the queue along with the time at which the change
is scheduled.

Figure 2-11 VHDL Code for Simulation Example

H

i
i

i

entity simulation_example is

end simulation_example;

rarchitecture testl of simulation_example is

signal A,B: bit;

begin
Pl: process(B)
begin
A<= "1';

A <= transport '0' after 5 ns;
end process Pl;

P2: process(A)

begin
if A = '1' then B <= not B after 10 ns; end if;
(end process P2;
;end testl;

Figure 2-12 shows the drivers for the signals A and B as the simulation progresses.
After elaboration is finished, each driver holds '0', since this is the default initial value for
a bit. When simulation begins, initialization takes place. Both processes are executed
simultaneously one time through, and then the processes wait until a signal on the sensitivity
list changes. When process P/ executes in zero time, two changes in A are scheduled (A
changes to '1" at time A and back to '0’ at time = 5 ns). Meanwhile, process P2 executes, but
no change in B occurs, since A is still '0' during execution at time 0 ns. Time advances to A,
and A changes to '1'. The change in A causes process P2 to execute, and since A ='1', B is
scheduled to change to '1' at time 10 ns. The next scheduled change occurs at time = 5 ns,
when A changes to '0'. This change causes P2 to execute, but B does not change. B changes
to '1" at time = 10 ns. The change in B causes P/ to execute, and two changes in A are
scheduled. When A changes to '1" at time 10 + A, process P2 executes, and B is scheduled
to change at time 20 ns. Then A changes at time 15 ns, and the simulation continues in this
manner until the run time limit is reached.

58 CHAPTER 2 ® INTRODUCTION TO VHDL

VHDL simulators use event-driven simulation, as illustrated in the preceding example.
A change in a signal is referred to as an event. Each time an event occurs, any processes
that have been waiting on the event are executed in zero time, and any resulting signal
changes are queued up to occur at some future time. When all the active processes are
finished executing, simulation time is advanced to the time for which the next event is
scheduled, and the simulator processes that event. This continues until either no more
events have been scheduled or the simulation time limit is reached.

Figure 2-12 Signal Drivers for Simulation Example

Queued Current
values vallue

After elaboration: 0 f—— A
time =0 0" f—u B
After initialization: (g @ 5 " '@ A I ——}
time = 0 0 » B
Simulation step: 0@s ' | A
time = A T @10 () [B
VOV ﬁ A
time =5 1'@ 10 0 | > B

0@15 |'T@10+A] '0' = A

time = 10 T] B
e = 10 4 A 0@1s |1 —eA
e = 0 @20 |1 B
time = 15 0 f—>A

0 @20 1" f—— B

2.5 MODELING A SEQUENTIAL MACHINE

In this section we discuss several ways of writing VHDL descriptions for sequential
machines. First, we write a behavioral model for a Mealy sequential network based on the
state table of Figure 1-17. As shown in Figure 1-16, the Mealy machine consists of a
combinational network and a state register. The VHDL model of Figure 2-13 uses two
processes to represent these two parts of the network. At the behavioral level, we will
represent the state and next state of the network by integer signals initialized to 0. The first

2.5 « Modeling a Sequential Machine 59

process represents the combinational network. Since the network outputs, Z and Nextstate,
can change when either the State or X changes, the sensitivity list includes both State and
X. The case statement tests the value of State, and depending on the value of X, Z and
Nextstate are assigned new values. The second process represents the state register.
Whenever the rising edge of the clock occurs, State is updated to the value of Nextstate, so
CLK appears in the sensitivity list.

InFigure 2-13, State is an integer. Since only seven integer values of State are exphclt
choices, the statement when others => null is included. The null implies no
action, which is appropriate, since the other values of State should never occur.

Figure 2-13 Behavioral Model for Figure 1-17

-- This is a behavioral model of a Mealy state machlne (Figure 1-17)
i -- based on its state table. The output (Z) and next state are

E—— computed before the active edge of the clock. The state change

| —— occurs on the riging edge of the clock.

‘entity SM1_2 is

. port(X, CLK: im bit;

; 7Z: out bit);

‘end SM1_2;

architecture Table of SM1_2 is

signal State, Nextstate: integer := 0;

begin
process (State, X) --Combinational Network
begin

case State is
when 0 =>
if X='0' then Z<='l'; Nextstate<=1; end if;
if X='1' then Z<='0'; Nextstate<=2; end if;
when 1 =>
if X='0' then Z<='l'; Nextstate<=3; end if;
if X='1l' then Z<='0'; Nextstate<=4; end if;
when 2 =>
if X='0' then Z<='0'; Nextstate<=4; end if;
if X='1' then Z<='1l'; Nextstate<=4; end if;
when 3 =>
if X='0' then Z<='(0'; Nextstate<=5; end if;
if X='1' then Z<='1l'; Nextstate<=5; end if;
when 4 =»>
if X='0' then Z<='l'; Nextstate<=5; end if;
if X='1' then Z<='0'; Nextstate<=6; end if;
when 5 =>
if X='0' then Z<='0'; Nextstate<=0; end if;
if X='1' then Z<='l'; Nextstate<=0; end if;
when 6 =>)
if X='0' then Z<='1l'; Nextstate<=0; end if;
when others => null; -- should not occur
end case;
end process;

LGO CHAPTER 2 ® INTRODUCTION TO VHDL

process (CLK) -- State Register
begin
if CLK='1l"' then -- rising edge of clock
State <= Nextstate;
end if;
end process;
| end Table;

i
:
i
H

A simulator command file that can be used to test Figure 2-13 is as follows:

wave CLK X State NextState Z

force CLK 0 0, 1 100 -repeat 200

force X 0 0, 1 350, 0 550, 1 750, 0 950, 1 1350
run 1600

The first command specifies the signals that are to be included in the waveform output.
The next command defines a clock with period of 200 ns. CLK is '0’" at time O ns, is '1" at
time 100 ns, and repeats every 200 ns. In a command of the form

force signal_name v1 tl, v2 t2,

signal_name gets the value v1 at time t1, the value v2 at time t2, etc. X is '0' at time O ns,
changes to '1’ at time 350 ns, changes to '0' at time 550 ns, etc. The X input corresponds to
the sequence 0010 1001, and only the times at which X changes are specified. These changes
occur at the same times relative to the clock, as shown in Figure 1-27. Execution of the
preceding command file produces the waveforms shown in Figure 2-14, which are similar
to those in Figure 1-27.

Figure 2-14 Waveforms for Figure 2-13

ekt LT L1 LT 1L I I LI 11

s I R N N R — 1

Jstate}0 X1 X3 {5 X0 X2 Xa_ XS5 j@
fextstatetl X3 X3 0 X0z X4 X5 Xo 2_)
Iz L] 1 11 | N I

2.5 » Modeling a Sequential Machine 61

Figure 2-15 Sequential Machine Model Using Equations

The data-flow VHDL model of Figure 2-15 is based on the next-state and output
equations, which are derived in Figure 1-19. The flip-flops are updated in a process that is
sensitive to CLK. When the rising edge of the clock occurs, Q1, 02, and O3 are all assigned
new values. A 10-ns delay is included to represent the propagation delay between the
active edge of the clock and the change of the flip-flop outputs. Even though the assignment
statements in the process are executed sequentially, 01, 02, and O3 are all scheduled to be
updated at the same time, T + A, where T is the time at which the rising edge of the clock
occurred. Thus, the old value of Q1 is used to compute Q2*, and the old values of @1, 02,
and Q3 are used to compute 3*. The concurrent assignment statement for Z causes Z to
be updated whenever a change in X or Q3 occurs. The 20-ns delay represents two gate
delays.

f~~ The following is a description of the sequential machine of
-~ Figure 1-17 in terms of its next state equations.

-~ The following state assignment was used:

.-~ 80-->0; Sl-->4; S2-->5; 83-->7; S4-->6; S5-->3; S6-->2

 entity SM1_2 is
port (X,CLK: in bit;

! Z:
‘end SM1_2;

out bit);

architecture Equationsl_4 of SM1_2 is

. signal Q1,02,Q3: bit;

i begin
process (CLK)

i

i

begin

if CLK='1l' then -- rising edge of clock
Ql<=not Q2 after 10 ns;
Q2<=Q1 after 10 ns;
03<=(Q1 and Q2 and Q3) or ((mot X) and Q1 and (mot Q3)) or

(X and (not Q1) and (not QZ)) after 10 ns;

end if;
end process;
Z<={{(not X) and (mot Q3)) or (X and Q3) after 20 ns;
end Equationsl_4;

Figure 2-16 shows a structural VHDL representation of the network of Figure 1-20.
Seven NAND gates, three D flip-flops, and one inverter are used. All these elements are
defined in a library named BITLIB. The element definitions are contained in a package
called bit_pack. (See Appendix B for a listing of bit_pack.) The library and use statements
are explained in Section 2.11. Since Q1, 02, and Q3 are initialized to '0', the complementary
flip-flop outputs (QIN, Q2N, and Q3N) are initialized to '1'. GI is a 3-input NAND gate
with inputs Q1, 02, 03, and output Al. FF1 is a D flip-flop (see Figure 2-5) with the D
input connected to Q2N. All the gates and flip-flops in bit_pack have a default delay of

62 CHAPTER 2 @ INTRODUCTION TO VHDL

10 ns. Executing the simulator command file given below produces the waveforms of
Figure 2-17, which are very similar to Figure 1-28.

wave CLK X Q1 Q2 Q3 Z

force CLK 0 0, 1 100 -repeat 200

force X 0 0, 1 350, 0 550, 1 750, 0 950, 1 1350
run 1600

Figure 2-16 Structural Model of Sequential Machine
-- The following is a STRUCTURAL VHDL description of
-- the network of Figure 1-20.

library BITLIB;
use BITLIB.bit_pack.all;

entity SM1_2 is
port(X,CLK: in bit;
Z: out bit);
end SM1_2;

architecture Structure of SM1_2 is
signal Al,A2,A3,A5,A6,D3: bit:='0"';
signal Q1,0Q02,Q3: bit:='0"';
signal QIN,Q2N,Q3N, XN: bit:='1l"';

begin
I1: Inverter port map (X,XN);
Gl: Nand3 port map (Ql,Q2,Q3,Al);
G2: Nand3 port map (Ql,Q3N,XN,AZ2);
G3: Nand3 port map (X,Q1N,Q2N,A3);
G4: Nand3 port map (Al,A2,A3,D3)

FF1l: DFF port map (Q2N,CLK,Ql,QIN);
FF2: DFF port map (Ql,CLK,Q2,Q2N);
FF3: DFF port map (D3,CLK,Q3,Q3N);

G5: Nand2 port map (X,Q3,A5);
G6: Nand2 port map (XN,Q3N,A6);
G7: Nand2 port map (A5,A6,Z); .

end Structure;

Figure 2-17 Waveforms for Figure 2-16

/clk I 1 I] 3] I] I I 1 [1
/x | G A S — —
fQle I gl I | N S
Q24 3 1 I |
g3 1 . f 4+ fl__
/2401 LI T 1 1 1 T | I

0 500 1000 1500

2.5 » Modeling a Sequential Machine 63

An alternative form for a process uses wait statements instead of a sensitivity list. A
process cannot have both wait statement(s) and a sensitivity list. A process with wait
statements may have the form

process

begin
sequential-statements
walt-statement
sequential-statements
wait-statement

end process;

This process will execute the sequential-statements until a wait statement is encountered.
Then it will wait until the specified wait condition is satisfied. It will then execute the next
set of sequential-statements until another wait is encountered. It will continue in this manner
until the end of the process is reached. Then it will start over again at the beginning of the
process.
Wait statements can be of three different forms:

wait on sensitivity-list;

wait for time-expression;

wait until boolean-expression;

The first form waits until one of the signals or the sensitivity list changes. The second
form waits until the time specified by time expression has lapsed. If wait for 5 ns is used,
the process waits for 5 ns before continuing. If wait for O ns is used, the wait is for one
delta time. For the third form, the boolean-expression is evaluated whenever one of the
signals in the expression changes, and the process continues execution when the expression
evaluates to TRUE. For example,

wait until A = B;

will wait until either A or B changes. Then A = B is evaluated, and if the result is TRUE, the
process will continue; else the process will continue to wait until A or B changes again and
A=Bis TRUE.

The following example (Figure 2-18) uses a single process with wait statements to
model the behavior of a Mealy sequential network. The case statement in this process is
the same as in Figure 2-13. After exiting the case statement, the process waits for either the
clock or X to change. If the rising edge of the clock has occurred, the state is updated.
Since updating the state requires a delta time, wait for 0 ns ensures that the state is
updated before the case statement is executed again.

For Figure 2-18, if X changes at the same time as the rising edge of the clock, the new
value of X will be used to compute the values of Nextstate and Z, and the timing waveforms
will be correct. If X changes after the rising edge of the clock, Nextstate and Z will have
already been computed using the old value of X. The change in X will cause Nextstate and
Z to be updated again, and the timing waveforms will also be correct. In general, the two-

l64 CHaprTER 2 @ InTRODUCTION TO VHDL

process model for a state machine is preferable to the one-process model, since the former
more accurately models the actual hardware. When we use CAD tools for automatic
synthesis, constructs like wait for 0 ns are not allowed.

In order to modify the code in Figure 2-18 to account for propagation delay in updating
the state register, we could replace the if statement with

if rising_edge(CLK) then
state <= Nextstate after delayl;
wait for delayl;

end if;

However, the process then would not respond to any change in X that occurred while
waiting for delayl. The state machine would still function correctly, but we might miss
some glitches that occur in the output waveform. This may not be important if the behavioral
model of the sequential machine is used by itself just to check the output sequence; however,
if the model is used as part of a larger system, correct timing may become very important.

Figure 2-18 Behavioral Model for Figure 1-17 Using a Single Process

i -- This is a behavioral model of a Mealy state machine based on

¢ -- its state table. The output (7Z) and next state are computed
-- on the rising edge of the clock OR when the input (X) changes.
-- The state change occurs on the rising edge of the clock.

library BITLIE;
use BITLIB.Bit_pack.all;

entity sM1_2 is

port (X, CLK: in bit;
! 7Z: out bit);
‘end SM1_2;

. architecture Table of SM1_2 is
g signal State, Nextstate: integer := 0;
i begin
‘ process
begin
| case State is
when 0 =>
if X='0' then Z<='1l'; Nextstate<=1l; end if;
I if X='1' then Z<='0'; Nextstate<=2; end if;
when 1 =>
if ¥='0' then Z«='1'; Nextstate<=3; end if;
if ¥='1' then Z<='0'; Nextstate<=4; end 1if;
when 2 =>
if X='0' then Z<='0'; Nextstate<=4; end if;
if X='1' then Z<='l'; Nextstate<=4; end if;

2.6 * Variables, Signals, and Constants 65J

when 3 =>
if X='0' then Z<='0'; Nextstate<=5; end if;
if X='1' then Z<='1l'; NexXtstate<=5; end if;
when 4 =>
if X='0' then Z<='l'; Nextstate<=5; end if;
if X='1' then Z<='0'; Nextstate<=6; end if;
when 5 =>
if X='0' then Z<='0'; Nextstate<=0; end if;
if X='1l' then Z<='1l'; Nextstate<=0; end if;
when 6 =>
if X='0' then Z<='l'; Nextstate<=0; end if;
when others => null; -- should not occur
end case;
wait on CLK, X;

if (rising_edge(CLK)) then -- rising_edge function is in BITLIB
State <= Nextstate;
wait for 0 ns; -- wait for State to be updated
end if;
end process;
end table;

2.6 VARIABLES, SIGNALS, AND CONSTANTS

Up to this point, we have used only signals in processes and have not used variables.
Variables may be used for local storage in processes, procedures, and functions. A variable
declaration has the form

variable list_of variable_names : type_name [:= initial_value];
Variables must be declared within the process in which they are used and are local to that
process. (An exception to this rule is shared variables, which are not discussed in this
text.) Signals, on the other hand, must be declared outside of a process. Signals declared

at the start of an architecture can be used anywhere within that architecture. A signal
declaration has the form

signal list_of_signal_names : type_name [:= initial_value];
A common form of constant declaration is
constant constant_name : type_name := constant_value;
A constant'delayl of type time having the value of 5 ns can be defined as
constant delayl : time := 5 ns;

Constants declared at the start of an architecture can be used anywhere within that
architecture, but constants declared within a process are local to that process.

66

CHAPTER 2 @ INTRODUCTION TO VHDL

Figure 2-19

Variables are updated using a variable assignment statement of the form
variable_name := expression;

When this statement is executed, the variable is instantaneously updated with no delay,
not even a delta delay. In contrast, consider a signal assignment of the form

signal_name <= expression [after delay];

The expression is evaluated when this statement is executed, and the signal is scheduled to
change after delay. If no delay is specified, then the signal is scheduled to be updated after
a delta delay.

The examples in Figures 2-19 and 2-20 illustrate the difference between using variables
and signals in a process. The variables must be declared and initialized inside the process,
whereas the signals must be declared and initialized outside the process. In Figure 2-19, if
trigger changes at time = 10, Varl, Var2, and Var3 are computed sequentially and updated
instantly, and then Sum is computed using the new variable values. The sequence is
Varl =2+ 3 =5, Var2 =5, Var3 =5. Then Sum =5 + 5 + 5 is computed. Since Sum is a
signal, it is updated A time later, so Sum = 15 at time = 10 + A. In Figure 2-20, if trigger
changes at time = 10, signals Sig 1, Sig2, Sig3, and Sum are all computed at time 10, but the
signals are not updated until time 10 + A. The old values of Sig/ and Sig2 are used to
compute Sig2 and Sig3. Therefore, at time = 10 + A, Sigl = 5, Sig2 = 1, Sig3 =2, and
Sum = 6.

Process Using Variables

signal
begin

begin
wait
varl
var2
var3

end var;

entity dummy is
end dummy;

architecture var of dummy is

trigger, sum: integer:=0;

process

variable varl: integer:=1;
variable var2: integer:=2;
variable var3: integer:=3;

on trigger;

:= var2 + var3;
= varl;

1= varl;

sum <= varl + wvar2 + var3d;
end process;

2.6 # Variables, Signals, and Constants 67]

Figure 2-20

Process Using Signals

%entity dummy is

end dummy;
architecture sig of dummy is
signal trigger, sum: integer:=0;
signal sigl: integer:=1;
signal sig2: integer:=2;
signal sig3: integer:=3;
begin
process
begin
wait on trigger;
sigl <= sig2 + sig3;
8ig2 <= sigl;
sig3 <= sgig2;
sum <= sigl + sig2 + sig3;
end process;
end sig;

Variables, signals, and constants can have any one of the predefined VHDL types or
they can have a user-defined type. Some of the predefined types are

bit ‘0'or'l’
boolean FALSE or TRUE
integer an integer in the range —(23' - 1) to +(23'~ 1)
(some implementations support a wider range)
real floating-point number in the range —1.0E38 to +1.0E38
character any legal VHDL character including upper- and lowercase

letters, digits, and special characters (each printable character
must be enclosed in single quotes; e.g., 'd','7','+)
time an integer with units fs, ps, ns, us, ms, sec, min, or hr

Note that the integer range for VHDL is symmetrical, even though the range for a 32-bit
2’s complement integer is —23! to +(231 - 1).

A common user-defined type is the enumeration type in which all of the values are
enumerated. For example, the declarations

type state_type is (S0, S1, S2, S3, S84, S5);
signal state : state_type := S1;

define a signal called state that can have any one of the vlaues SO, S1, S2, S3, S4, or S5,
and that is initialized to S1. If no initjalization is given, the default initialization is the
leftmost element in the enumeration list, SO in this example. VHDL is a strongly typed
language, so signals and variables of different types generally cannot be mixed in the same
assignment statement, and no automatic type conversion is performed. Thus the statement
A <=B or C is valid only if A, B, and C all have the same type or closely related types.

|es

CHAPTER 2 @ |NTRODUCTION TO VHDL

2.7 ARRAYS

In order to use an array in VHDL, we must first declare an array type and then declare an
array object. For example, the following declaration defines a one-dimensional array type
named SHORT_WORD: ‘

type SHORT WORD is array (15 downto 0) of Dbit;
An array of this type has an integer index with arange from 15 downto 0, and each element

of the array is of type bit.
Next, we declare array objects of type SHORT _WORD:

signal DATA_WORD: SHORT_WORD;
variable ALT_WORD: SHORT_WORD := "0101010101010101";
constant ONE_WORD: SHORT_WORD := (others => '1');

DATA_WORD is a signal array of 16 bits, indexed 15 downto 0, which is initialized (by
default) to all '0' bits. ALT_WORD is a variable array of 16 bits, which is initialized to
alternating Os and 1s. ONE_WORD is a constant array of 16 bits; all bits are set to 1 by
(others => '1').We canreference individual elements of the array by specifying an
index value. For example, ALT_WORD(0) accesses the rightmost bit of ALT_WORD. We
can also specify a portion of the array by specifying an index range: ALT_WORD(S downto
0) accesses the low-order 6 bits of ALT_WORD, which have an initial value of 010101.
The array type and array object declarations illustrated here have the general forms

type array_type_name is array index_range of element_type:;
gsignal array_name: array_type_name [:= initial_wvalues 1;

In the preceding declaration, signal may be replaced with variable or constant.

Multidimensional array types may also be defined with two or more dimensions.
The following example defines a two-dimensional array variable, which is a matrix of
integers with four rows and three columns:

type matrix4x3 is array (1 to 4, 1 to 3) of integer;
variable matrixA: matrixdx3 := ((1, 2, 3), (4, 5, 6),
(7, 8, 9), {10, 11, 12));

The variable matrixA, will be initialized to

1 23
4 56
7 89
10 11 12

The array element matrixA(3, 2) references the element in the third row and second column,
which has a value of 8.
When an array type is declared, the dimensions of the array may be left undefined.

2.7 = Arrays 69

Figure 2-21 Sequential Machine Model Using State Table

This is referred to as an unconstrained array type. For example,
type intvec is array (natural range <>) of integer;

declares intvec as an array type that defines a one-dimensional array of integers with an
unconstrained index range of natural numbers. The default type for array indices is integer,
but another type may be specified. Since the index range is not specified in the unconstrained
array type, the range must be specified when the array object is declared. For example,

signal intvec5: intvec(l to 5) := (3,2,6,8,1);

defines a signal array named intvec5 with an index range of 1 to 5 that is initialized to 3, 2,
6, 8, 1. The following declaration defines matrix as a two-dimensional array type with
unconstrained row and column index ranges:

type matrix is array (natural range <>, natural range <>) of
integer; ’

The VHDL code in Figure 2-21 is a behavioral model for the sequential machine of
Figure 1-17(a) using arrays to represent the state and output tables. Two two-dimensional
array types are defined—an integer array for the state table and a bit array for the output
table. In both cases, the first index is an integer of unconstrained range, and the second
index is a bit of unconstrained range. When the actual state and output tables are declared
as constants, the actual index ranges are specified as 0 to 6 for the rows and '0" to '1" for the
two columns. Every time X or State changes, the state and output tables are read by the
concurrent statements to determine the NextStare and Z values. The State is updated on the
rising edge of the clock by the process.

¢
i

port

Z:

gentity SM1_2 is

(X, CLK: in bit;
out bit);

end SM1_2;

architecture Table of SM1_2 is
type StateTable is array (integer range <>, bit range <>) of integer;
type OutTable is array (integer range <>, bit range <>) of bit;
signal State, NextState: integer := 0;
constant ST: StateTable (0 to 6, '0' to '1l') :=

{

(1,2), (3,4), (4,4), (5,5), (5,6), (0,0}, (0,0));

constant OT: OutTable (0 to 6, '0' to '1l') :=

begin

NextState <= ST(State,X);

(
(

(*17,70")y, (1,00, (O, 1), (O, t'1t), (r1t, 'O0T), ('O, 1v),
1,0

-- concurrent statements

-- read next state from state table

7Z <= OT(State,X); -- read output from output table

70 CrHaPTER 2 ¢ INTRODUCTION TO VHDL

i process (CLK)

i

begin
if CLK = '1l' then -—- riging edge of CLK
State «= NextState;
end if;
| end process;
tend Table;

Predefined unconstrained array types in VHDL include bit_vector and string, which
are defined as follows:

type bit_vector is array (natural range <>) of bit;
type string is array (positive range <>) of character;

The characters in a string literal must be enclosed in double quotes. For example, “This is
a string.” is a string literal. The following example declares a constant stringl of type
string:

constant stringl: string{(l to 29) :=
“This string is 29 characters.”

A bit_vector literal may be written either as a list of bits separated by commas or as a
string. For example, ('1',0,'1','1,'0") and "10110" are equivalent forms. The following
declares a constant A that is a bit_vector with a range 0 to 5.

constant A : bit_vector(0 to 5) := "101011";

After a type has been declared, a related subtype can be declared to include a subset
of the values specified by the type. For example, the type SHORT_WORD, which was
defined at the start of this section, could have been defined as a subtype of bit_vector:

gubtype SHORT_WORD is bit_vector (15 downto 0);

Two predefined subtypes of type integer are POSITIVE, which includes all positive integers,
and NATURAL, which includes all positive integers and 0.

2.8 VHDL OPERATORS

Predefined VHDL operators can be grouped into seven classes:
1. Binary logical operators: and or nand nor xor xnor

2. Relational operators: = /= < <= > >=

3. Shift operators: sll srl sla sra rol ror

4. Adding operators: + — & (concatenation)

5. Unary sign operators: + —

6. Multiplying operators: * / mod rem

7. Miscellaneous operators: not abs **

2.8 ¢« VHDL Operators 71

When parentheses are not used, operators in class 7 have highest precedence and are
applied first, followed by class 6, then class 5, etc. Class 1 operators have lowest precedence
and are applied last. Operators in the same class have the same precedence and are applied
from left to right in an expression. The precedence order can be changed by using
parentheses. In the following expression, A, B, C, and D are bit_vectors:

(A & not Bor C ror 2 and D) = "110010"

The operators are applied in the order:

not, &, ror, or, and, =
If A="110", B="111", C = "011000", and D = "111011", the computation proceeds as
follows:

not B = "000" (bit-by-bit complement)

A & not B ="110000" (concatenation)

C ror 2 ="000110" (rotate right 2 places)

(A & notB) or (Cror 2) ="110110 (bit-by-bit or)

(A & not B or C ror 2) and D = "110010" (bit-by-bit and)

[(A & not Bor Cror2and D)="110010"] = TRUE (the parentheses force the

equality test to be done last and the result is TRUE)

The binary logical operators (class 1) as well as not can be applied to bits, booleans,
bit_vectors, and boolean_vectors. The class 1 operators require two operands of the same
type, and the result is of that type.

The result of applying a relational operator (class 2) is always a boolean (FALSE or
TRUE). Equals (=) and not equals (/=) can be applied to almost any type. The other relational
operators can be applied to any numeric or enumerated type as well as to some array types.
For example, if A =5, B=4, and C = 3, the expression (A >= B) and (B <= C)
evaluates to FALSE.

The shift operators can be applied to any bit_vector or boolean_vector. In the following
examples, A is a bit_vector equal to "10010101":

Asll2 is "01010100" (shift left logical, filled with '0")

Asrl3 is "00010010" (shift right logical, filled with '0')

Asla3 is "10101111" (shift left arithmetic, filled with right bit)

Asra?2 is "11100101" (shift right arithmetic, filled with left bit)

Arol3 is "10101100" (rotate left)

Aror 5 is "10101100" (rotate right)

The + and - operators can be applied to integer or real numeric operands. The &
operator can be used to concatenate two vectors (or an element and a vector, or two elements)
to form a longer vector. For example, "010" & '1' is "0101" and "ABC" & "DEF" is
"ABCDEF".

The * and / operators perform multiplication and division on integer or floating-
point operands. The rem and mod operators calculate the remainder and modulus for
integer operands. The ** operator raises an integer or floating-point number to an integer
power, and abs finds the absolute value of a numeric operand.

|72

CHAPTER 2 @ InTRODUCTION TO VHDL

2.9 VHDL FUNCTIONS

A function executes a sequential algorithm and returns a single value to the calling program.
When the following function is called, it returns a bit vector equal to the input bit vector
(reg) rotated one position to the right:

function rotate_right (reg: bit_vector)
return bit_vector is

begin
return reg ror 1;

end rotate_right;

A function call can be used anywhere that an expression can be used. For example, if A=
"10010101", the statement

B <= rotate_right (A);

would set B equal to "11001010", and leave A unchanged.
The general form of a function declaration is

function function-name (formal-parameter-list)
return return-type is
[declarations]
begin
sequential statements -- must include return return-value;
end function-name;

The general form of a function call is
function_name ({(actual-parameter-list)

The number and type of parameters on the actual-parameter-list must match the formal-
parameter-list in the function declaration. The parameters are treated as input values and
cannot be changed during execution of the function.

The function defined in Figure 2-22 uses a for loop. The general form of a for loop
is

[loop-label:] for loop-index in range loop
sequential statements
end loop [loop-labell];

The loop-index is automatically defined when the loop is entered, and it should not explicitly
be declared. It is initialized to the first value in the range and then the sequential statements
are executed. The loop-index can be used within the sequential statements, but it cannot be
changed within the loop. When the end of the loop is reached, the loop-index is set to the
next value in the range and the sequential statements are executed again. This process
continues until the loop has been executed for every value in the range, and then the loop

2.9 ¢ VHDL Functions 73 |

terminates. After the loop terminates, the loop-index is no longer available. In Figure 2-
22, the loop index (i) will be initialized to 0 when thefor loop is entered, and the sequential
statements will be executed. Execution will be repeated fori=1,i =2, and i = 3; then the
loop will terminate.

An exit statement of the form

exit; or exit when condition;

may be included in the loop. The loop will terminate when the exit statement is executed,
provided that in the second case, the condition is TRUE.

Figure 2-22 Add Function

-- This function adds 2 4-bit vectors and a carry.
-—- It returns a 5-bit sum

function add4 (a,B: bit_vector(3 downto 0); carry: bit)
return bit_vector is

variable cout: bit;
variable cin: bit := carry;
variable sum: bit_vector (4 downto 0):="00000";
begin
loopl: for i in 0 to 3 loop
cout := (A(i) and B(i)) or (A(i) and cin) or (B(i) and cin);
sum(i) := A(i) xor B(i) xor cin;
cin := cout:;
end loop loopl;
sum(4) := cout;
return sum; .
end add4;

If A, B, and C are integers, the statement C <=A + B will set C equal to the sum of
A and B. However, if A, B, and C are bit_vectors, this statement will not work, since the
“4” operation is not defined for bit_vectors. However, we can write a function to perform
bit_vector addition. The function given in Figure 2-22 adds two 4-bit vectors plus a carry
and returns a 5-bit vector as the sum. The function name is add4, the formal parameters
are A, B, and carry, and the return-type is bit_vector. Variables cout and cin are defined to
hold intermediate values during the calculation. The variable sum is used to store the value
to be returned. When the function is called, cin will be initialized to the value of the carry.
The for loop adds the bits of A and B serially in the same manner as a serial adder. The first
time through the loop, cout and sum(0) are computed using A(0), B(0), and cin. Then the
cin value is updated to the new cout value, and execution of the loop is repeated. The
second time through the loop, cout and sum(1) are computed using A(1), B(1), and the new
cin. After four times through the loop, all values of sum(i) have been computed and sum is
returned. The total simulation time required to execute the add4 function is zero. Not even

L74 CHAPTER 2 ® INTRODUCTION TO VHDL

delta time is required, since all the computations are done using variables, and variables
are updated instantaneously.
The function call is of the form

addd (A, B, carry)

A and B may be replaced with any expressions that evaluate to bit_vectors with dimensions
3 downto 0, and carry may be replaced with any expression that evaluates to a bit. For
example, the statement

Z <= add4 (X, not Y, ‘'1');

calls the function add4. Parameters A, B, and carry are set equal to the values of X, not Y,
and '1', respectively. X and Y must be bit_vectors dimensioned 3 downto 0. The function
computes

Sum=A+B+carry=X+mnotY+'l'

and returns this value. Since Sum is a variable, computation of Sum requires zero time.
After delta time, Zis set equal to the returned value of Sum. Since not Y+ '1' equals the 2’s
complement of ¥, the computation is equivalent to subtracting by adding the 2’s complement.
If we ignore the carry stored in Z(4), the result is Z(3 downto 0) =X - Y.

Functions are frequently used to do type conversions. The function vec2int(bitvec)
accepts a bit_vector as input and returns the corresponding integer value. The function
int2vec(int,N) accepts two positive integers as inputs and converts int to a bit_vector of
length N. We have written these functions in a general manner so that the bit_vector can be
of any length (see Chapter 8) and placed them in the bit_pack package in the BITLIB

library,

2.10 VHDL PROCEDURES

Procedures facilitate decomposition of VHDL. code into modules. Unlike functions, which
return only a single value through a return statement, procedures can return any number of
values using output parameters. The form of a procedure declaration is

procedure procedure_name (formal-parameter-list) is
[declarations]

begin
sequential statements

end procedure-name;

The fonnal-parameter-lisf specifies the inputs and outputs to the procedure and their types.
A procedure call is a sequential or concurrent statement of the form

procedure_name (actual-parameter-list});

2.10 » VHDL Procedures 75

As an example we will write a procedure Addvec,which will add two N-bit vectors
and a carry, and return an N-bit sum and a carry. We will use a procedure call of the form

Addvec (A, B, Cin, Sum, Cout, N);

where A, B, and Sum are N-bit vectors, Cin and Cout are bits, and N is an integer.

Figure 2-23 gives the procedure definition. Add!, Add2, and Cin are input parameters,
and Sum and Cout are output parameters. N is a positive integer that specifies the number
of bits in the bit_vectors. The addition algorithm is essentially the same as the one used in
the add4 function. C must be a variable, since the new value of C is needed each time
through the loop; however, Sum can be a signal since Sum is not used within the loop.
After N times through the loop, all the values of the signal Sum have been computed, but
Sum is not updated until delta time after exiting from the loop.

Figure 2-23 Procedure for Adding Bit_vectors

begin
C :=

C

Cout

-- This procedure adds two n-bit bit_vectors and a carry and
-—- returns an n-bit sum and a carry. Addl and Add2 are assumed
-- to be of the same length and dimensioned n-1 downto O.
procedure Addvec

(AQd1,2dd2: in bit_vector;

Cin:

signal Sum: out bit_vector;

signal Cout: out bit;

n:in positive) is

variable C: bit;

in bit;

Cin;

for i in 0 to n-1 loop
Sum(i) <= Addl(i) xor Add2(i) xor C;

:= (Add1(i) and Add2(i)) or (Addl(i) amnd C) or (Add2(i) amnd C);

end loop;

<= C;

end Addvec;

Within the procedure declaration, the class, mode, and type of each parameter must
be specified in the formal-parameter-list. The class of each parameter can be signal,
variable, or constant. If the class is omitted, constant is used as the default. If the class is
a signal, then the actual parameter in the procedure call must be a signal of the same type.
Similarly, for a formal parameter of class variable, the actual parameter must be a variable
of the same type. However, for a constant formal parameter, the actual parameter can be
any expression that evaluates to a constant of the proper type. This constant value is used
inside the procedure and cannot be changed; thus a constant formal parameter is always
of mode in. Signals and variables can be of mode in, out, or inout. Parameters of mode
out and inout can be changed in the procedure, so they are used to return values to the
caller.

|76

CHAPTER 2 * INTRODUCTION TO VHDL

In procedure Addvec, parameters Addl, Add2, and Cin are, by default, of class constant.
Therefore, in the procedure call, Add!, Add2, and Cin can be replaced with any expressions
that evaluate to constants of the proper type and dimension. Since Sum and Cout change
within the procedure and are used to return values, they have been declared as class signal.
Thus, in the proceuare call, Sum and Cout can be replaced only with signals of the proper
type and dimension. .

The formal-parameter-list in a function declaration is similar to that of a procedure,
except parameters of class variable are not allowed. Furthermore, all parameters must be
of mode in, which is the default mode. Parameters of mode out or inout are not allowed,
since a function returns only a single value, and this value cannot be returned through a
parameter. Table 2-1 summarizes the modes and classes that may be used for procedure
and function parameters.

Table 2-1 Parameters for Subprogram Calls

Actual Parameter
Mode Class Procedure Call Function Call
in! constant? expression expression
signal signal signal
variable variable n/a
out/inout signal signal n/a
variable? variable n/a

1 default mode for functions 2 default for in mode 3 default for out/inout mode

2.149 PACKAGES AND LIBRARIES

Packages and libraries provide a convenient way of referencing frequently used functions
and components. A package consists of a package declaration and an optional package
body. The package declaration contains a set of declarations, which may be shared by
several design units. For example, it may contain type, signal, component, function, and
procedure declarations. The package body usually contains the function and procedure
bodies. The package and its associated compiled VHDL models may be placed in a library
so they can be accessed as required by different VHDL designs. A package declaration has
the form

package package-name is
package declarations
end [package] [package-name];

A package body has the form
package body package-name is

package body declarations
end [package body] [package name];

2.11 ¢ Packages and Libraries 77

We have developed a package called bit_pack that is used in a number of examples
in this book. This package contains commonly used components and functions that use
signals of type bit and bit_vector. Appendix B contains a complete listing of this package
and associated component models. Most of the components in this package have a default
delay of 10 ns, but this delay can be changed by use of generics, as explained in Section
8.6. We have compiled this package and the component models and placed the result in a
library called BITLIB.

One of the components in the library is a two-input NAND gate named Nand2, which
has default delay of 10 ns. The package declaration for bit_pack includes the component
declaration

component Nand2

generic (DELAY : time := 10 ns)

port (Al, A2 : in bit; 2 : out bit);
end component;

The NAND gate is modeled using a concurrent statement. The entity-architecture
pair for this component is

-- 2-input NAND gate
entity Nand2? is
generic (DELAY : time)
port (Al, A2 : in bit; Z : out bit);

end Nand2;
architecture concur of Nand2 is
begin

7Z <= not (Al and A2) after DELAY;
end;

To access components and functions within a package requires a library statement
and a use statement. The statement

library BITLIB:

allows your design to access the BITLIB. The statement
use BITLIB.bit_pack.all;

allows your design to use the entire bit_pack package. A statement of the form
use BITLIB.bit_pack.Nand2;

may be used if you want to use a specific component or function in the package.

|78

CHAPTER 2 ® INTRODUCTION TO VHDL

2,12 VHDL MODEL FOR A 74163 COUNTER

Figure 2-24

The 74163 (Figure 2-24) is a 4-bit fully synchronous binary counter that is available in
both TTL and CMOS logic families. In addition to performing the counting function, it
can be cleared or loaded in parallel. The following table summarizes the counter operation:

Contrel Signals Next State
ClrN 1.dN P.T Q3" Q2* QL Q0"
0 X X 0 0 0 0 (clear)
1 0 X D3 D2 D1 DO (parallel load)
1 1 0 Q3 Q2 Q1 Q0 (no change)
1 1 1 present state + 1 (increment count)

All state changes occur following the rising edge of the clock. The counter generates a
carry (Cout) in state 15if T =1, so

Cout = Q3Q2Q1Q0T

The VHDL description of the counter is shown in Figure 2-25. The carry output is
computed whenever Q or T changes. The wait statement in the process waits until CK
changes and then continues execution if CK has changed to '1". Since clear overrides load
and count, CIrN is tested first in the process. Since load overrides count, LdN is tested
next. Finally, the counter is incremented if both P and T are 1. Since Q is a bit_vector, we
convert it to an integer, add 1, and then convert back to a 4-bit vector. We have named the
model ¢74163 and placed it in BITLIB.bit_pack.

Two 74163 Counters Cascaded to Form an 8-bit Counter

Qout2 Qoutl
r—’ﬁ —
Cary2 | 22U Q P ‘_Car}ryl QBQQQYQ P P
<«—| Cout 74163 T Cout 24163 T =TI
. Ldp—LdN LdP— LdN
D, D, D, D, Clrp— CtN D, D, D, D, Clr p— CItN

JIT Tt

Din2 Din1

Clk

To test the counter, we have cascaded two 74163s to form an 8-bit counter (Figure
2-24). When the counter on the right is in state 1111, Carryl = 1. If P-T =1, then on the
next clock the right counter is incremented to 0000 at the same time the left counter is
incremented. Figure 2-26 shows the VHDL code for the 8-bit counter. In this code we
have used the ¢74163 model as a component and instantiated two copies of it. For
convenience in reading the output, we have defined a signal Count, which is the integer
equivalent of the 8-bit counter value. After testing the counter, we placed it in the
BITLIB.bit_pack for future use. When this is done, the component declaration can be omitted
from the code in Figure 2-26.

2.12 » VHDL Model for a 74163 Counter 79

Figure 2-25 74163 Counter Model

I

g—- 74163 FULLY SYNCHRONOUS COUNTER

§1ibrary BITLIB; -- contains int2vec and vec2int functions
‘use BITLIB.bit_pack.all;

[entity c74163 is

i port (LAN, ClrN, P, T, CK: in bit; D: in bit_vector(3 downto 0);
: Cout: out bit; Q: inout bit_vector(3 downto 0))};

‘end c74163;

'architecture b74163 of c74163 is

|

if ClrN = '0' then Q <= ~0000";
: elgif LAN = '0' then Q <= D;

| begin

f Cout <= Q(3) and Q(2) and Q(1) and Q(0) and T;

; process

§ begin

3 wait until CK = '1'; -- change state on rising edge

g elsif (P and T) = '1' then
| Q <= int2vec(vec2int (Q)+1,4);
end if;
end process;
‘end b74163;

Figure 2-26 VHDL for 8-bit Counter

i--Test module for 74163 counter

library BITLIB;
use BITLIB.bit_pack.all;

entity c74163test is
port (ClrN,LdN,P,T1,Clk: in bit;
Dinl, Din2: im bit_vector (3 downto 0);
Qoutl, Qout2: inout bit_vector (3 downto 0);
Carry2: out bit);
end c74163test;

'architecture tester of c74163test is

E component c74163
port (LAN, ClrN, P, T, CK: in bit; D: in bit_vector{(3 downto 0);
Cout: out bit; Q: inout bit_vector(3 downto 0));

end component;

signal Carryl: bit;

gignal Count: integer;

signal temp: bit_vector(7 downto 0);

80 CHAPTER 2 ® INTRODUCTION TO VHDL

%

begin
ctl: ¢74163 port map (LAN,ClrN,P,T1,Clk,Dinl,Carryl,Qoutl);
ct2: ¢74163 port map (LdN,ClrN,P,Carryl,Clk,Din2,Carry2,Qout2);
temp <= Qout2 & Qoutl;
Count <= vec2int (temp) ;

end tester;

In this chapter, we have covered the basics of VHDL. We have shown how to use
VHDL to model combinational logic and sequential machines. Since VHDL is a hardware
description language, it differs from an ordinary programming language in several ways.
Most importantly, VHDL statements execute concurrently, since they must model real
hardware in which the components are all in operation at the same time. Statements within
a process execute sequentially, but the processes themselves operate concurrently. VHDL
signals model actual signals in the hardware, but variables may be used for internal
computation that is local to processes, procedures, and functions. After we have had
opportunities to use VHDL in the design process, we cover more advanced features of
VHDL in Chapter 8.

Problems

2.1 Write a VHDL description of the following combinational network using concurrent statements.
Each gate has a 5-ns delay, excluding the inverter, which has a 2-ns delay.

s
2

22
(@) Write VHDL code for a full subtracter using logic equations.

(b) Write VHDL code for a 4-bit subtracter using the module defined in (a) as a component.

Problems 81 J

2.3 Inthe following VHDL process A, B, C, and D are all integers that have a value of O at time =
10 ns. If E changes from '0'to '1" at time = 20 ns, specify the time(s) at which each signal will change
and the value to which it will change. List these changes in chronological order (20, 20 + A,
20 + 2A, etc.)

pl: process

begin
wait on E;
A <= 1 after 5 ns;
B <= A + 1;)
C <= B after 10 ns;
wait for 0 ns;
D <= B after 3 ns;
A <= A + 5 after 15 ns; -
B <=B + 7;

end procesg Dl;

2.4 For the following VHDL code, assume that D changes to ‘1’ at time 5 ns. Give the values of A,
B, C, D, E, and F each time a change occurs. That is, give the values at time 5 ns, 5 + A, 5 + 2A, etc.
Carry this out until either 20 steps have occurred, until no further change occurs, or until a repetitive
pattern emerges.

entity probd is
port (D: inout bit);
end prob4;
architecture gl of probd is
signal A, B, C, E, F: bit;
begin
C <= A;
A <= B or D;
Pl: process (A)
begin
B <= A;
end process Pl;
P2: process
begin
walt until A <= '1l';
wait for 0 ns;

E <= B;
D< = "'0";
F <= E;

end process P2;
end architecture gl;

82

CHAPTER 2 ® INTRODUCTION TO VHDL

2.5 Write a VHDL description of an SR latch.
(a) Use a conditional assignment statement.
(b) Use the characteristic equation.

(¢) Use two logic gates.

2.6 A gated D latch will hold its output value if G is 0, and the output follows D if G is 1. Write a
VHDL description of a gated D latch using a process.

2.7 A DD flip-flop is similar to a D flip-flop, except that the flip-flop can change state (Q* = D) on
both the rising edge and falling edge of the clock input. The flip-flop has a direct reset input R, and
R = Oresets the flip-flop to Q = 0 independent of the clock. Write a VHDL description of a DD flip-
flop.

2.8 Aninhibited toggle flip-flop has inputs /0, I1, T, and Reset, and outputs Q and QN. Reset is
active high and overrides the action of the other inputs. The flip-flop works as follows. If 10 =1, the
flip-flop changes state on the rising edge of T; if 77 = I, the flip-flop changes state on the falling
edge of T. If I0 = 11 =0, no state change occurs (except on reset). Assume the propagation delay from
T to output is 8 ns and from reset to output is S ns. -

(@) Write a complete VHDL description of this flip-flop.

(b) Write a sequence of simulator commands that will test the flip-flop for the input sequence
11 =1, toggle T twice, 11 = 0, I0 = 1, toggle T twice.

29

(a) Write a behavioral VHDL description of the state machine that you designed in Problem 1.11.
Assume that state changes occur on the falling edge of the clock pulse. Use a case statement together
with if-then-else statements to represent the state table. Compile and simulate your code using the

following test sequence: 7

""" X= 1011 0111 1000
X should change 1/4 clock period after the falling edge of the clock.

(b) Write a data flow VHDL description using the next state and output equations to describe the
state machine. Indicate on your simulation output at which times Z should be read.

{¢) Write a structural model of the state machine in VHDL that contains the interconnection of the
gates and J-K flip-flops. You may use the BITLIB library for this part.

2.10

(a) Write a behavioral VHDL description of the state machine you designed in Problem 1.12, Assume
that state changes occur on the falling edge of the clock pulse. Instead of using if-then-else statements,
represent the state table and output table by arrays. Compile and simulate your code using the following
test sequence:

X= 11011110 1111
X should change 1/4 clock period after the falling edge of the clock.

(b) Write a data flow VHDL description using the next state and output equations to describe the
state machine. Indicate on your simulation output at which times Z is to be read.

(¢) Write a structural model of the state machine in VHDL that contains the interconnection of the
gates and J-K flip-flops. You may use the BITLIB library for this part.

Problems 83

2.11 A Moore sequential machine with two inputs (X7 and X2) and one output (Z) has the following
state table:

| 00 01 10 1 | z
1 1 2 2 0
2 1 2 1 1

Write VHDL code that describes the machine at the behavioral level. Assume that state changes
occur 10 ns after the falling edge of the clock, and output changes occur 10 ns after the state changes.

2.12 Write a VHDL function that will take the 2’s complement of a n-bit vector. Use a call of the
form comp2(bit_vec, N) where N is the length of the vector. State any assumptions you make about
the range of bit_vec.

2,13 X and Y are bit-vectors of length N that represent signed binary numbers, with negative numbers
represented in 2’s complement. Write a VHDL procedure that will compute D = X Y. This procedure
should also return the borrow from the last bit position (B) and an overflow flag (V). Do not call any
other functions or procedures in your code. The procedure call should be of the form

SUBVEC (X, ¥, D, B, V, N);
2,14 Write a VHDL function that converts a 5-bit bit_vector to an integer. Note that the integer
value of the binary number a,a,a,a,a, can be computed as

(0 + a)*2 + a))*2 + a,)*2 + a)*2 + a

How much simulated time will it take for your function to execute?

2,15 Write a VHDL module that describes a 16-bit serial-in, serial-out shift register with inputs S/
(serial input), EN (enable), and CK (clock, shifts on rising edge) and a serial output (SO).

2.16 A description of a 74194 4-bit bidirectional shift register follows:

The CLRb input is asynchronous and active low and overrides all the other control inputs. All other
state changes occur following the rising edge of the clock. If the control inputs S1 =S50 = 1, the
register is loaded in parallel. If S7 = 1 and S0 = O, the register is shifted right and SDR (serial data
right) is shifted into Q3. If S1 = 0 and SO = 1, the register is shifted left and SDL is shifted into QO.
If S1 = S0 = 0, no action occurs.

Q3 Q2 QI Qo
1 l |]

SDR — —SDL
S1— 74194 - CLRb
S0— <—CLK

[I N

D3 D2 D1 DO

(a) Write a behavioral level VHDL model for the 74194.

(b) Draw a block diagram and write a VHDL description of an 8-bit bidirectional shift register
that uses two 74194s as components. The parallel inputs and outputs to the 8-bit register should be
X(7 downto 0) and Y(7 downto 0). The serial inputs should be RSD and LSD.

84

CHAPTER 2 ® INTRODUCTION TO VHDL

2.17 A synchronous (4-bit) up/down decade counter with output Q works as follows: All state
changes occur on the rising edge of the CLK input, except the asynchronous clear (CLR). When CLR
= 0, the counter is reset regardless of the values of the other inputs.

If the LOAD input is O, the data input D is loaded into the counter.

If LOAD = ENT = ENP = UP = 1, the counter is incremented.

If LOAD = ENT = ENP =1 and UP =0, the counter is decremented.

If ENT = UP = 1, the carry output (CO) = 1 when the counter is in state 9.

If ENT = 1 and UP =0, the carry output (CO) = 1 when the counter is in state 0.

(a) Write a VHDL description of the counter.

(b) Draw ablock diagram and write a VHDL description of a decimal counter that uses two of the
above counters to form a two-decade decimal up/down counter that counts up from 00 to 99 or down
from 99 to 00.

2.18 Write a VHDL model for a 74HC192 synchronous 4-bit up/down counter. Ignore all timing
data.Your code should contain a statement of the form process (DOWN, UP, CLR, LOADB).

2,19
(@) Write a VHDL module that describes the 74198 shift register. Use the following notation:

Q 8-bit output (labeled @, through Q,, in the data book)
D 8-bit input (labeled A through H in the data book)
50,81 mode control inputs

LSI left serial input

RSI right serial input

(b) Two 74198 shift registers are connected to form a 16-bit cyclic shift register, which is controlled
by signals L and R. If L = 1 and R =0, then the 16-bit register is cycled left. If L=0and R=1,the
register is cycled right. If L = R = 1, the 16-bit register is loaded from X[15...0]. Write a VHDL
description of the system using the module from part (a).

CHAPTER 3

DESIGNING WITH PROGRAMMABLE Locic DEevICES

This chapter introduces the use of programmable logic devices (PLDs) in digital design.
Read-only memories (ROMs), programmable logic arrays (PLAs), and programmable array
logic devices (PALs) are discussed, and then more complex PLDs are introduced. Use of
these devices allows us to implement complex logic functions, which require many gates
and flip-flops, with a single IC chip. More complex PLDs and programmable gate arrays
are described in Chapter 6.

This chapter contains several VHDL examples. Sequential networks using a ROM
and using a PLA are described in VHDL. Two design examples, a traffic-light controller
and a keypad scanner, also use VHDL. The latter example introduces the use of a testbench,
which is written in VHDL, to test the VHDL code for the keypad scanner design.

3.9 READ-ONLY MEMORIES

A read-only memory (ROM) consists of an array of semiconductor devices interconnected
to store an array of binary data. Once binary data is stored in the ROM, it can be read out
whenever desired, but the data that is stored cannot be changed under normal operating
conditions. A ROM that has n input lines and m output lines (Figure 3-1) contains an array
of 2" words, and each word is m bits long. The input lines serve as an address to select one
of the 2" words. Conceptually, a ROM consists of a decoder and a memory array. When a
pattern of n Os and 1s is applied to the decoder inputs, exactly one of the 2” decoder outputs
is 1. This decoder output line selects one of the words in the memory array, and the bit
pattern stored in this word is transferred to the memory output lines. A 2" x m ROM can
realize m functions of n variables, since it can store a truth table with 2” rows and m
columns.

86 CHAPTER 3 @ DESIGNING WITH PROGRAMMABLE LoGIC DEvICES

Figure 3-1 Basic ROM Structure

- - - - - - - - - - - - - - - == |
| |
I |
L ! !
—]—.> Lt
ninput) | : Decod Memory Array !
lines |+ ccoder 2N words X m bits :
: | [
! . !
! [
| [
L I N % P S % T

m output lines

Basic types of ROMs include mask-programmable ROMs and erasable programmable
ROMs (usually called EPROMs). At time of manufacture, the data array is permanently
stored in a mask-programmable ROM. This is accomplished by selectively including or
omitting the switching elements at the row-column intersections of the memory array.
This requires preparation of a special “mask,” which is used during fabrication of the
integrated circuit. Preparation of this mask is expensive, so use of mask-programmable
ROMs is economically feasible only if a large quantity (typically several thousand or
more) are required with the same data array. If only a small quantity of ROMs are required
with a given data array, EPROMs may be used.

Modification of the data stored in a ROM is often necessary during the developmental
phases of a digital system, so EPROMS are used instead of mask-programmable ROMs.
EPROMs use a special charge-storage mechanism to enable or disable the switching
elements in the memory array. A PROM programmer is used to provide appropriate voltage
pulses to store electronic charges in the memory array locations. The data stored in this
manner is generally permanent until erased using an ultraviolet light. After erasure, a new
set of data can be stored in the EPROM. The electrically erasable PROM (or EEPROM) is
amore recent development. It is similar to the EPROM, except that erasure is accomplished
using electrical pulses instead of ultraviolet light. An EEPROM can be erased and
reprogrammed only a limited number of times, typically 100 to 1000 times. Flash memories
are similar to EEPROMs, except that they use a different charge-storage mechanism. They
usually have built-in programming and erase capability so that data can be written to the
flash memory while it is in place in a circuit without the need for a separate programmer.

A sequential network can easily be designed using a ROM and flip-flops. Referring
to the general model of a Mealy sequential network given in Figure 1-16, the combinational
part of the sequential network can be realized using a ROM. The ROM can be used to
realize the output functions and the next-state functions. The state of the network can then
be stored in a register of D flip-flops and fed back to the input of the ROM. Use of D flip-

3.1 « Read-Only Memories 87

flops is preferable to J-K flip-flops, since use of 2-input flip-flops would require increasing
the number of outputs from the ROM. The fact that the D flip-flop input equations would
generally require more gates than the J-K equations is of no consequence, since the size of
the ROM depends only on the number of inputs and outputs and not on the complexity of
the equations being realized. For this reason, the state assignment used is also of little
importance, and generally a state assignment in straight binary order is as good as any.

We will realize the sequential machine of Figure 1-17 using a ROM and three D flip-
flops (see Figure 3-2). Table 3-1 gives the truth table for the ROM, which implements the
transition table of Figure 1-18(b) with the don’t cares replaced by 0s. Since the ROM has
four inputs, it contains 2* = 16 words. In general, a Mealy sequential network with i inputs,
J outputs, and & state variables can be realized using k D flip-flops and a ROM with i + k
inputs (27 words) and j + k outputs.

Figure 3-2 Realization of a Mealy Sequential Network with a ROM

X ——* >z
QF
» Dl Ql
’-—C>CK
~ ROM
16 Words Qj’
X 4 Bits D2 |
N —>CK
o
» D3 Q3
—>CK

Clock

88 CHAPTER 3 @ DESIGNING WITH PROGRAMMABLE LoGIc DevIcEs

Table 3-1 ROM Truth Table

o 9 s X o Q0 2 Z
0 0 0 0 1 0 0 1
0 0 0 1 1 0 1 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 1
0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 1 1 0 0 0 1
1 0 0 0 1 1 1 1
1 0 0 1 1 1 0 0
1 0 1 0 1 1 0 0
1 0 1 1 1 1 0 1
1 1 0 0 0 1 1 1
1 1 0 1 0 1 0 0
1 1 1 0 0 1 1 0
1 1 1 1 0 1 1 1

The VHDL code for the ROM realization (Figure 3-3) is similar to that of Figure
2-13, except the process that determines the next state and output has been replaced by
code that reads the ROM. The state register is represented by Q, which is a 3-bit vector
(0,, 0,, Q). and the next state of this register is Oplus. In VHDL, a ROM can be represented
by a constant one-dimensional array of bit vectors. In this example, a type statement is
used to declare type ROM as an array of 16 words of 4-bit vectors. A constant declaration
specifies the contents of the ROM named FSM_ROM. The input to the FSM_ROM is
concatenated with X. Since the index of an array must be an integer, the vec2int function is
called to convert Q&X to an integer. The variable ROMValue is set equal to the ROM
output, and then ROMValue is split into Oplus and Z. The state register Q is updated after
the rising edge of the clock.

3.2 » Programmable Logic Arrays (PLAs) 89

Figure 3-3 ROM Realization of Figure 1-17

library BITLIB;
uge BITLIB.bit_pack.all;

entity ROM1_2 is
port (X,CLK: in bit;
Z: out bit);

end ROM1_2;

farchitecture ROM1 of ROMI_2 is

~signal Q, Qplus: bit_vector(l to 3) := "000";

. type ROM is array (0 to 15) of bit_vector(3 downto 0);
constant FSM_ROM: ROM :=
("1001","1010","*0000","0000",
“0001","0Q000","0000", "0001",
*1111","1100","2100","1101",
*0111","0100","0110","0111");

begin
process (Q,X) -- determineg the next state and output
variable ROMValue: bit_vector (3 downto 0);
begin
ROMValue := FSM_ROM(vec2int(Q & X)); -- read ROM output

Qprlus <= ROMValue{3 downto 1);
7Z <= ROMValue(0);
end process;

process (CLK)

begin
if CLK='1' then Q <= Qplus; end if; -- update state register
{ end process;
!end ROM1;

3.2 PROGRAMMABLE LOGIC ARRAYS (PLAS)

A programmable logic array (PLA) performs the same basic function as a ROM. A PLA
with # inputs and m outputs (Figure 3-4) can realize m functions of n variables. The internal
organization of the PLA is different from that of the ROM. The decoder is replaced with an
AND array that realizes selected product terms of the input variables. The OR array ORs
together the product terms needed to form the output functions.

20 CHAPTER 3 ® DESIGNING WITH PROGRAMMABLE LoGIc Devices

Figure 3-4 Programmable Logic Array Structure

r—-r—-—-——-—-=-=-"=-=-=-"=-"=-=-====-= I
[PLA |
| ' |
o — I
. —+—

ninput} | 3 AND . OR !
lines | E Array : Array :
4 : |
' |
' |
' |
o ____H--_--_-%__J

k word —

lines m output lines

Figure 3-5 shows an nMOS PLA that realizes the following functions:
Fy= ¥m(0,1,4,6)=A'B'+ AC' (3-1)

F, = 3m(2,3,4,6,7)= B +AC"
F,= ¥m(0,1,2,6)=A'B + BC'

F,= ¥m(2,3,5,6,7)=AC+B

Internally, the PLA uses NOR-NOR logic, but the added input and output inverting buffers
make it equivalent to AND-OR logic. Logic gates are formed in the array by connecting
nMOS switching transistors between the column lines and the row lines. Figure 3-6 shows
the implementation of a two-input NOR gate. The transistors act as switches, so if the gate
input is a logic 0, the transistor is off. If the gate input is a logic 1, the transistor provides
aconducting path to ground. If X, = X, =0, both transistors are off, and the pull-up resistor
brings the Z output to a logic 1 level (+V). If either X, or X, is 1, the corresponding
transistor is turned on, and Z = 0. Thus, Z = X, + X)) = X|X,, which corresponds to a
NOR gate. The part of the PLA array that realizes F, is equivalent to the NOR-NOR gate
structure shown in Figure 3-7. After canceling the extra inversions, this reduces to an
AND-OR structure. The AND-OR array shown in Figure 3-8 is thus equivalent to the
nMOS PLA structure of Figure 3-5.

3.

2 = Programmable Logic Arrays (PLAs) 91J

Figure 3-5 PLA with 3 Inputs, 5 Product Terms, and 4 Outputs
Inputs

A

B

v

~
C

— +V +V +V +V
YV wV eV %
VA S A P P
v _’; _’—EL B L 1L
L e | g4
o o e | |2
R ' L[s

Figure 3-6 nMOS NOR Gate

—
—
_o<}ll

Fy F Fy F

“ _/
~v”
Outputs

w

+V WA }"‘5— %Q_ z = i((;:j}z

Figure 3-7 Conversion of NOR-NOR to AND-OR

ADol>o—
B-[>0{>0—d
A‘—Do—c
C—Do—Do—o

A|B|

>

—>o
— >0

w

Fo

Fo

Y

92 CHAPTER 3 ® DESIGNING WITH PROGRAMMABLE LOGIC DEVICES

Figure 3-8 AND-OR Array Equivalent to Figure 3-5

A B C

L 4
I e e b OR Array
| [N i1AB m -~ — - -~ — — — |
\ |/ ' !
| \ ! ac ! |
| *~— J 1 I |
| [' |
| IR |
| | ! |
| \ | BC' | |
, l»—___J l | '
| N | ac ! o
' L/ IR P i Pl Pl ol
y |

AND Array

The contents of a PLA can be specified by a modified truth table. Table 3-2 specifies
the PLA in Figure 3-5. The input side of the table specifies the product terms. The symbols
0, 1, and - indicate whether a variable is complemented, not complemented, or not present
in the corresponding product term. The output side of the table specifies which product
terms appear in each output function. A 1 or 0 indicates whether a given product term is
present or not present in the corresponding output function. Thus, the first row of Table
3-2 indicates that the term A'B' is present in output functions F,, and F,, and the second row
indicates that AC" is present in F; and F,.

Tabie 3-2 PLA Table for Figure 3-5

Product Inputs Outputs

Term A B C F, F, F, F,

A'B 0 0 - 1 0 1 0

AC 1 - 0 1 1 0 0

B - 1 - 0 1 0 1

BC’ - 1 0 0 0 1 0
0 0 0 1

AC 1 - 1

3.2 « Programmable Logic Arrays (PLAs) 93]

Next we will realize the following functions using a PLA:

F, = ¥m2,3,5,7,8,9, 10,11, 13, 15) (3-2)
F,= ¥m(2,3,5,6,7,10, 11, 14, 15)

F,=¥m(6,7,8,9,13,14,15)
If we minimize each function separately, the result is

F = bd+b'c+ab (3-3)
F,= c+abd

Fy= bc+ab'c'+abd

If we implement these reduced equations in a PLA, a total of eight different product terms
(including c) are required.

Instead of minimizing each function separately, we want to minimize the total number
of rows in the PLA table. In this case, the number of terms in each equation is not important,
since the size of the PLA does not depend on the number of terms. Equations (3-3) are
plotted on the Karnaugh maps shown in Figure 3-9. Since the term ab'c’ is already needed
for F,, we can use it in F, instead of ab', since the other two 1s in ab' are covered by the b'c
term. This eliminates the need to use a row of the PLA table for ab'. Since the terms a'bd
and abd are needed in F, and F, respectively, we can replace bd in F| with a'bd + abd.
This eliminates the need for a row to implement bd. Since b'c and bc are used in F| and F,,
respectively, we can replace c in F;; with b'c + bc. The resulting equations (3-4) correspond
to the reduced PLA table (Table 3-3). Instead of using Kamaugh maps to reduce the number
of rows in the PLA, the Espresso algorithm can be used. This complex algorithm is described
in Logic Minimization Algorithms for VLSI Synthesis by Brayton [10].

Figure 3-9 Multiple-Output Karnaugh Maps

abd \ ab'c’
ab ab ab

cd 00 01 11 A0/ «cd 00 01 11 10 \cd 00 01 11 \10
00 i 00 00 m
01 R L1 01 0 or [~ |[l1)

1 o L L == E ~

1nlt b(u_lj 11 N 1\l lfﬁ 11 (1)

10| 1 10(l1, ERENE 1 10 11

0[5 G) oD

F) F> F3

94 CHAPTER 3 @ DESIGNING WITH PROGRAMMABLE Locic Devices

Table 3-3 Reduced PLA Table

abc lel F, F,

01-1]11 0 F = abd+ abd + ab'c' + b'c (3-4)
11-1110 1

100~-|10 1 F,= abd+bc+bc

-01-J1 10

-11-101 1 F,= abd +ab'c' + bc

Equations (3-4) have only 5 different product terms, so the PLA table has only five
rows. This is a significant improvement over equations (3-3), which require 8 product
terms. Figure 3-10 shows the corresponding PLA structure, which has 4 inputs, 5 product
terms, and 3 outputs. A dot at the intersection of a word line and an input or output line
indicates the presence of a switching element in the array.

Figure 3-10 PLA Realization of Equations (3-4)

Inputs

A\

[~
o
Le}

[=9

a'bd
abd
ab'c’ Word
b'c Lines
be
FI b F
Outputs

A PLA table is significantly different than a truth table for a ROM. In a truth table
each row represents a minterm; therefore, exactly one row will be selected by each
combination of input values. The Os and Is of the output portion of the selected row determine
the corresponding output values. On the other hand, each row in a PLA table represents a
general product term. Therefore, zero, one, or more rows may be selected by each
combination of input values. To determine the value of F for a given input combination,
the values of F in the selected rows of the PLA table must be ORed together. The following
examples refer to the PLA table of Table 3-3. If abcd = 0001, no rows are selected; and all
F/s are 0. If abcd = 1001, only the third row is selected, and F\F,F,; = 101. If abcd = 0111,
the first and fifth rows are selected. Therefore, F,=1+0=1,F,=1+1=1, and
F,=0+1=1.

Next we realize the sequential machine of Figure 1-17 using a PLA and three D flip-
flops. The network structure is the same as Figure 3-2, except that the ROM is replaced by
a PLA. The required PLA table, based on the equations given in Figure 1-19, is Table 3-4.

3.2 ¢ Programmable Logic Arrays (PLAs) 95 l

Table 3-4 PLA Table

Product Term | O, o, 0, X oy 12y o7 Z
sz _ 0 - - 1 0 0 0
0, 1 - - - 0 1 0 0
0,0,0, 1 1 I - 0 0 ! 0
QIQ:;X' 1 - 0 0 0 0 1 0
QI'QZ'X 0 0 - 1 0 0 1 0
X' - - 0 0 0 0 0 1
0.X - - 1 1 0 0 0 1

Reading the output of a PLA in VHDL is somewhat more difficult than reading the
ROM output. Since the input to the PLA can match several rows, and the outputs from
those rows must be ORed together, a function is required to sequentially scan the PLA
array and determine the PLA output.

In Figure 3-11, we represent the PLA as a two-dimensional array of type PLAmtrx
and use a constant declaration to specify the contents of the FSM_PLA. The function
PLAout is called to determine the output of FSM_PLA when the input is Q&X, and this
output is assigned to the variable PLAValue. After splitting PLAValue into Qplus and Z, Q
is updated on the rising edge of the clock. The PLAout function is explained in Section
8.5.

Because of the —’s in the PLA table input section, multiple-valued logic is required
for the PLA computation. We could define a VHDL type with elements 0, 1, and —; however,
it is preferable to use a predefined type. We have used 1EEE std_logic type, which is
defined in the IEEE library. The std_logic type has nine values, including '0’, '1’, and 'X'.
When we inserted the PLA table into the VHDL code, we used X' to represent a dash (-).
We placed the type declaration for PLAmtrx and the function PLAout in the MVLLIB
(multivalued logic library) and also make use of the IEEE standard logic package. Details
of using the multivalued logic and the standard logic package are discussed in Chapter 8.

96 CHAPTER 3 * DESIGNING WITH PROGRAMMABLE Loaic Devices

Figure 3-11 PLA Realization of Figure 1-17

library ieee;

.use ieee.std _logic_1164.all; -- TEEE standard logic package
glibrary MVLLIB; -- includes PLAmtrx type and
‘use MVLLIB.mvl_pack.all; -~ PLAout function

entity PLA1_2 is

port (X,CLK: in std_logic;
; Z: out std_logic);
jend PLAL_2;

¢

garchitecture PLA of PLAl_2 is
gsignal Q, Oplus: std_logic_vector(l to 3) := "000";
constant FSM_PLA: PLAmtrx(0 to 6, 7 downto 0} :=
("X0XX1000",
; "1XXX0100",
: "111X0010",
"1xX000010",
"00X1001Q",
"XX000001",
"XX110001");
begin
process (Q, X)
. variable PLAValue: std_logic_vector (3 downto 0);
; begin
PLAValue := PLAout (FSM_PLA,Q & X); -- read PLA output
Qplus <= PLAValue(3 downto 1);
Z <= PLAValue(0);
end process;

process (CLK)

begin
if CLK='1' then Q <= QOplus; end if; -- update state register
end process;
i end PLA;

3.3 PROGRAMMABLE ARRAY LOGIC (PALS)

The PAL (programmable array logic) is a special case of the programmable logic array in
which the AND array is programmable and the OR array is fixed. The basic structure of
the PAL is the same as the PLA shown in Figure 3-4. Because only the AND array is
programmable, the PAL is less expensive than the more general PLA, and the PAL is
easier to program. For this reason, logic designers frequently use PALS to replace individual

logic gates when several logic functions must be realized.

3.3 « Programmabile Array Logic (PALS) 97J

Figure 3-12 Combinational PAL Segment

I

—

e

o

149

Il[?

Qutput

(a) Unprogrammed

J: LHD+I'D

|
)
L/

(b) Programmed

Figure 3-12(a) represents a segment of an unprogrammed PAL. The symbol

g 2

Non-Inverted Qutput
Inverted Output

represents an input buffer with noninverted and inverted outputs. A buffer is used, since
each PAL input must drive many AND gate inputs. When the PAL is programmed, the

fusible links (F,, F,, ..

., Fy) are selectively blown to leave the desired connections to the

AND gate inputs. Connections to the AND gate inputs in a PAL are represented by xs, as

shown here:

A

B— ABC
C—

ABC

Bt

As an example, we will use the PAL segment of Figure 3-12(a) to realize the function 7,1,
+IL,. The xs indicate that the I and I lines are connected to the first AND gate, and the
1] and I, lines are connected to the other gate (see Figure 3-12(b)).

98

CHAPTER 3 ® DESIGNING WITH PROGRAMMABLE Locic DEvICES

Figure 3-13

Typical combinational PALs have from 10 to 20 inputs and from 2 to 10 outputs,
with 2 to 8 AND gates driving each OR gate. PALs are also available that contain D flip-
flops with inputs driven from the programmable array logic. Such PALSs provide a convenient
way of realizing sequential networks. Figure 3-13 shows a segment of a sequential PAL.
The D flip-flop is driven from an OR gate, which is fed by two AND gates. The flip-flop
output is fed back to the programmable AND array through a buffer. Thus the AND gate
inputs can be connected to A, A', B, B', Q, or Q'. The xs on the diagram show the realization
of the next-state equation

0*=D=ABQ +ABQ

The flip-flop output is connected to an inverting tristate buffer, which is enabled when
EN=1.

Segment of a Sequential PAL
AI;A' B B QQ Clock EN
I D Q Q
1 > Q
A Inverting
, (3)—Statct3
utpu
_D§ Q Buffer
B
Q
N
Programmable AND Array

Figure 3-14 shows a logic diagram for a typical sequential PAL, the 16R4. This PAL
has an AND gate array with 16 input variables, and it has 4 D flip-flops. Each flip-flop
output goes through a tristate inverting buffer (output pins 14-17). One input (pin 11) is

.used to enable these buffers. The rising edge of a common clock (pin 1) causes the flip-

flops to change state. Each D flip-flop input is driven from an OR gate, and each OR gate
is fed from 8§ AND gates. The AND gate inputs can come from the external PAL inputs
(pins 2-9) or from the flip-flop outputs, which are fed back internally. In addition there are
4 input/output (I/O) terminals (pins 12, 13, 18, and 19), which can be used as either network
outputs or as inputs to the AND gates. Thus, each AND gate can have a maximum of 16
inputs (8 external inputs, 4 inputs fed back from the flip-flop outputs, and 4 inputs from
the I/O terminals). When used as an output, each I/O terminal is driven from an inverting
tristate buffer. Each of these buffers is fed from an OR gate and each OR gate is fed from
7 AND gates. An eighth AND gate is used to enable the buffer.

When the 16R4 PAL is used to realize a sequential network, the I/O terminals are
normally used for the Z outputs. Thus, a single 16R4 with no additional logic could realize
a sequential network with up to 8 inputs, 4 outputs, and 16 states. Each next-state equation
could contain up to 8§ terms, and each output equation could contain up to 7 terms. As an

3.3 e Programmabile Array Logic (PALs) 99
Figure 3-14 Logic Diagram for 16R4 PAL
ok [1TH> [20]Vee
34 78 1112 1516 1920 2324 2728 31
O)
{19]uog
7
S} 3 5:]___J
8 ™)
z [18]uvo,
1(
X uEHE 51—
16—
Q
> o]-{be{1los
2 —> 6
s g
2 %
Q2
b a[H{{>e s
b Q
3L
T [
3’)
X Q
% * 3
> ol Loe {0
1 Q
3(]
is[EHF s-J—————1
40
%} b o be{ios
- Q
4"7
THE 41————|
48 Y
}{L [B]vo,
35
nEHE 4
56
2
-
e {12]vo,
E =) _
iy >2 < L1108
GND [10] 34 07 1112 1516 1920 2324 27 98 3

100

CHAPTER 3 ® DESIGNING WITH PROGRAMMABLE LOGIC DEVICES

example, we realize the code converter of Figure 1-20. Three flip-flops are used to store
Q. @, and Q;, and the array logic that drives these flip-flops is programmed torealize D,
D,, and D,, as shown in Figure 3-14. The Xs on the diagram indicate the connections to the
AND-gate inputs. An X inside an AND gate indicates that the gate is not used. For D,,
three AND gates are used, and the function realized is

Dy=0,0,0;,+X'0,0;+ X0,0,

The flip-flop outputs are not used externally, so the output buffers are disabled. Since the
Z output comes through an inverting buffer, the array logic must realize

Z'=(X+Q)(X'+ Q) = X0+ X'0,

The Z output buffer is permanently enabled in this example, so there are no connections to
the AND gate that drives the enable input, in which case the AND gate output is a logic 1.

When designing with PALs, we must simplify our logic equations and try to fit them
into one (or more) of the available PALs. Unlike the more general PLA, the AND terms
cannot be shared among two or more OR gates; therefore, each function to be realized can
be simplified by itself without regard to common terms. For a given type of PAL, the
number of AND terms that feed each output OR gate is fixed and limited. If the number of
AND terms in a simplified function is too large, we may be forced to choose a PAL with
more OR-gate inputs and fewer outputs.

Computer-aided design programs for PALs are widely available. Such programs accept
logic equations, truth tables, state graphs, or state tables as inputs and autornatically generate
the required fuse patterns. These patterns can then be downloaded into a PLD programmer,
which will blow the required fuses and verify the operation of the PAL. Many of the newer
types of PLDs are erasable and reprogrammable in a manner similar to EPROMs and
EEPROMs.

3.4 e Other Sequential Programmable Logic Devices (PLDs) 101 J

3.4 OTHER SEQUENTIAL PROGRAMMABLE LOGIC DEVICES (PLDS)

The 16R4 is an example of a simple sequential PLD. As integrated circuit technology has
improved, a wide variety of other PLDs have become available. Some of these are based
on extensions of the PAL concept, and others are based on gate arrays. Programmable gate
arrays and other complex PLDs are discussed in Chapter 6.

The 22CEV10 (Figure 3-15) is a CMOS electrically erasable PLD that can be used to
realize both combinational and sequential networks. It has 12 dedicated input pins and 10
pins that can be programmed as either inputs or outputs. It contains 10 D flip-flops and 10
OR gates. The number of AND gates that feed each OR gate ranges from 8 through 16.
Each OR gate drives an output logic macrocell. Each macrocell contains one of the 10 D
flip-flops. The flip-flops have a common clock, a common asynchronous reset (AR) input,
and a common synchronous preset (SP) input. The name 22V 10 indicates a versatile PAL
with a total of 22 input and output pins, 10 of which are bidirectional I/O (input/output)
pins.

Figure 3-15 Block Diagram for 22v10

CLK/L,
b LTIy
1 1
Programmable AND Array
(44 x 132)
8 10 12 14 16 16 14 12 10 8
Reset
»1 Output [T Output FT~| Output | Output 1 Output [T Output |- Output 1 Ouiput [+ ©] Output
Logic i i Logic Logic Logi i i iput e
>M 5] Iy Logic b Logic b Logi b Log ogic Logic Logic Logic Logic
acto Macro [] Macro Macro || Macro [| P M. B .
o L1 Mar 1 e LI Mesee [Macro T Gt] Nt 1] NS e _1_ oy Freset
Iy 'y Iy A A I'y
0 o Vo 0 3 0 5 Vo4 o Lo ¢ o5 Lo g YO g

102 CHAPTER 3 ® DESIGNING WITH PROGRAMMABLE LoGIC DEVICES

Figure 3-16 shows the details of a 22CEV10 output macrocell. The connections to
the output pins are controlled by programming this macrocell. The output MUX control
inputs S, and S, select one of the data inputs. For example, S|S, = 10 selects data input 2.
Each macrocell has two programmable interconnect bits. S, or S, is connected to ground
(logic 0) when the corresponding bit is programmed. Erasing a bit disconnects the control
line (S, or §,) from ground and allows it to float to Vcc (logic 1). When §, = 1, the flip-flop
is bypassed, and the output is from the OR gate. The OR gate output is connected to the
/O pin through the multiplexer and the output buffer. The OR gate is also fed back so that
it can be used as an input to the AND gate array. If S| = 0, then the flip-flop output is
connected to the output pin, and it is also fed back so that it can be used for AND gate
inputs. When §; = 1, the output is not inverted, so it is active high. When S, = 0, the output
is inverted, so it is active low. The output pin is driven by a tristate inverting buffer. When
the buffer output is in the high-impedance state, the OR gate and flip-flop are disconnected
from the output pin, and the pin can be used as an input. The dashed lines on Figure
3-16(a) show the path through the output macrocell when both §, and S, are 0, and the
dashed lines on Figure 3-16(b) show the path when both §, and §,, are 1. Note that in the
first case, the flip-flop Q output is inverted by the output buffer, and in the second case the
OR gate output is inverted twice, so there is no net inversion.

Table 3-5 gives the characteristics of several PLDs that are similar to the 22V10. All
these PLDs have output macrocells, and each macrocell has one D flip-flop. The I/O pins
can be programmed so that they act as inputs or as combinational or flip-flop outputs.
Some of the PLDs have a dedicated clock input (listed as clk in the table), and the others
have a dual-purpose pin that can be used either as a clock or as an input. All of the PLDs
have tristate buffers at the outputs, and some of them have a dedicated output enable (OE).

Table 3-5 Characteristics of Simple CMOS PLDs

Type No. No. of 1/0 Macrocells AND Gates
Inputs =FFs per OR Gate
PALCE16V10 8+OE+ck 8 8 8
PALCE20V8 14 8 8 8
PALCE22V10 12 10 10 8-16
PALCE24V10 14 10 10 8
PALCE29MA16 5+clk 16 16 4-12

CY7C335 12+ OE + clk 12 12 in/12 out 9-19

3.4 ¢ Other Sequential Programmable Logic Devices (PLDs) 103J

Figure 3-16 Output Macrocell

' 1
| > - Output
'ATR 3 Select

!
: I/Oq
: ——{p of=———=fo _MX_ =
_ :CK>!Q___' »1 S; S
=i R
| _ _

— 0 programmable |
j]:t:/ MUX interconnects |
| S 1 I

—y 2
|
o]~ Qutput
s qupn
0 MUX™
1 §1 Sp
0
_Moxgy o |1
1 ad

(b) Paths with S, =S, =1

u04 CHAPTER 3 ® DESIGNING WITH PROGRAMMABLE Locic Devices

Traffic-Light Controller

As an example of using the 22V10, we design a sequential traffic-light controller for the
intersection of “A” street and “B” street. Each street has traffic sensors, which detect the
presence of vehicles approaching or stopped at the intersection. Sa = 1 means a vehicle is
approaching on “A” street, and Sb = 1 means a vehicle is approaching on “B” street. “A”
street is a main street and has a green light until a car approaches on “B”. Then the light
changes, and “B” has a green light. At the end of 50 seconds, the lights change back unless
there is a car on “B” street and none on “A”, in which case the “B” cycle is extended 10
more seconds. When “A” is green, it remains green at least 60 seconds, and then the lights
change only when a car approaches on “B”. Figure 3-17 shows the external connections to
the controller. Three of the outputs (Ga, Ya, and Ra) drive the green, yellow, and red lights
on “A” street. The other three (Gb, Yb, and Rb) drive the corresponding lights on “B”
street.

Figure 3-18 shows a Moore state graph for the controller. For timing purposes, the
sequential network is driven by a clock with a 10-second period. Thus, a state change can
occur at most once every 10 seconds. The following notation is used: GaRb in a state
means that Ga = Rb = 1 and all the other output variables are 0. Sa'Sh on an arc implies that
Sa =0 and Sb = 1 will cause a transition along that arc. An arc without a label implies that
a state transition will occur when the clock occurs, independent of the input variables.
Thus, the green “A” light will stay on for 6 clock cycles (60 seconds) and then change to
yellow if a car is waiting on “B” street.

Figure 3-17 Block Diagram of Traffic-Light Controller

CLOCK Sa Sb

} !

PAL22V10

RRNRE

Ga Ya Ra Gb Yb Rb

Figure 3-18 State Graph for Traffic-Light Controller

3.4 » Other Sequential Programmable Logic Devices (PLDs) 105

The VHDL code for the traffic-light controller (Figure 3-19) represents the state
machine by two processes. Whenever the state, Sa, or Sb changes, the first process updates
the outputs and nextstate. When the rising edge of the clock occurs, the second process
updates the state register. The case statement illustrates use of a when clause with a range.
Since states SO through S4 have the same outputs, and the next states are in numeric
sequence, we use a when clause with a range instead of five separate when clauses:

when 0 to 4 => Ga <= 'l'; Rb <= 'l'; nextstate <= state + 1;

Figure 3-19 VHDL Code for Traffic-Light Controller

entity traffic_light is

port (clk, Sa, Sb: in bit;
! Ra, Rb, Ga, Gb, Ya, Yb: out bit);
Eend traffic_light;

architecture behave of traffic_light is
signal state, nextstate: integer range 0 to 12;
type light is (R, Y, G);

signal lighta, lightB: light; -- define signals for waveform output
begin

process (state, Sa, Sb)

begin

Ra <= '0'; Rb <= '0'; Ga <= '0'; Gb <= '0'; Ya <= '0'; Yb <= '0';
cage state is
when 0 to 4 => Ga <= '1l'; Rb <= '1l'; nextstate <= state+l;
when 5 => Ga <= 'l'; Rb <= '1"';
if Sb = 'l' then nextstate <= 6; end if;
when 6 => Ya <= 'l'; Rb <= 'l'; nextstate <= 7;
when 7 to 10 => Ra <= '1l'; Gb <= '1l'; nextstate <= state+l;
when 11 => Ra <= 'l'; Gb <= '1"';
if (Sa='1l' or Sb='0') then nextstate <= 12; end if;
when 12 => Ra <= 'l'; Yb <= 'l'; nextstate <= 0;
end case;
end process;
process (clk)
begin
if ¢lk = '1l' then
state <= nextstate;
end if;
end process;
] lightA <= R when Ra='1l' else Y when Ya='l' else G when Ga='l"';
lightB <= R when Rb='1' else Y when Yb='1l' else G when Gb='1"';

| end behave;

[106

ChapPTER 3 ® DESIGNING WiTH PROGRAMMABLE Locic Devices

Figure 3-20

For each state, only the signals that are '1' are listed within the case statement. Since
in VHDL a signal will hold its value until it is changed, we should turn off each signal
when the next state is reached. In state 6 we should set Ga to '0', in state 7 we should set Ya
to '0", etc. This could be accomplished by inserting appropriate statements in the when
clauses. For example, we could insert Ga <='0'in the when 6 => clause. An easier way
to turn off the outputs is to set them all to ‘0’ before the case statement, as shown in Figure
3-19. At first, it seems that a glitch might occur in the output when we set a signal to '0' that
should remain '1'. However, this is not a problem, because the sequential statements within
a process execute instantaneously. For example, suppose that at time = 30 a state change
from S2 to 83 occurs. Ga and Rb are '1', but as soon as the process starts executing, the
first line of code is executed and Ga and Rb are scheduled to change to '0’ at time 20 + A.
The case statement then executes, and Ga and Rb are scheduled to change to '1" at time
20 + A. Since this is the same time as before, the new value ('1") preempts the previously
scheduled value ('0"), and the signals never change to '0".

Before completing the design of the traffic controller, we will test the VHDL code to
see that it meets specifications. As a minimum, our test sequence should cause all of the
arcs on the state graph to be traversed at least once. We may want to perform additional
tests to check the timing for various traffic conditions, such as heavy traffic on both “A”
and “B”, light traffic on both, heavy traffic on “A” only, heavy traffic on “B” only, and
special cases such as a car fails to move when the light is green, a car goes through the
intersection when the light is red, etc.

To make it easier to interpret the simulator output, we define a type named light with
the values R, Y, and G and two signals, lightA and lightB, which can assume these values.
Then we add code to set /ightA to R when the light is red, to Y when the light is yellow, and
to G when the light is green. The following simulator command file first tests the case
where both self-loops on the graph are traversed and then the case where neither self-loop

is traversed:

wave clk SA SB state lightA lightB

force clk 0 0, 1 5 sec -repeat 10 sec

force SA 1 0, 0 40, 1 170, 0 230, 1 250 sec

force SB 0 0, 1 70, 0 100, 1 120, 0 150, 1 210, 0 250, 1 270 sec

The test results in Figure 3-20 verify that the traffic lights change at the specified times.

Test Results for Traffic-Light Controller

jolk 1
fsaf L
fsbt :
Jstate BXEDDEG
Mighta {8 1
fightb {%
Fartrat

0 50

' i [‘ T i
‘i|“)|~\|1‘oi°“(‘llll1l5ioll‘lIlllé&I|lllll‘Izgolll‘lllléwl

3.4 » Other Sequential Programmable Logic Devices (PLDs) 107

Table 3-6 State Table for Traffic-Light Controller

SaSh

00 01 10 11 |Ga Ya Ra Gb Yb Rb
SO0 |S1 S1 St St |1 O O O O 1{GreenA,RedB}
S1 |82 S22 82 82111 0 0 0 0 1
52 1S3 83 83 83 (1 0 O 0 0 1
S3 1S4 S4 S4 S4 11 0 0 0 0O 1
54 |S5 S5 85§ 85|11 O O O O 1
S5 |S5 S6 85 S6 |1 0 O O O 1
S6 |S7 S§7 87 8710 1 0 0 O 1{Ya Rb}
S§7 |S8 S8 S8 S8 (0 0O 1 I 0 O0{Ra Gb}
S8 |S9 S9 S9 S9 |0 0 1 1 0 O
59 | §10 S10 S10 S1010 0 1 1 0 O
S10| 8§11 S11 S11 S11]0 O 1 1 0 0
S11] 812 S11 S12 S1210 O 1 1 0 0
S12180 SO SO SO JOo 0 1 0 1 0 {Ra, Yb}

Table 3-6 shows the state table for the controller. We implement the table using four
D flip-flops with inputs D, D,, D,, D, and outputs Q,, Q,, @5, @,. Using a straight binary
state assignment, the following equations were derived from the table with a logic design
program:

D, = 0,0,+0,0,0,

D, = 0,0,0, 0, +SaQ,0,0, + 5b'Q,0,0, + 0,0,0, + 0,0,0,

D, = 0,0,+5bQ0, + 0,00, +S4'SbQ,0,

D, = $a'SbQ,0; + QZ'Q‘; + Q0+ Sa Sb'Q,0:0,

Ga=Q,0,+ 0,0, Ya=Q,0,0, Ra=0Q,+0,0,0,
Gb=0,0,+0,0,0, Yb=0,0, Rb=Q,0,+ 0,0,+Q,0,

Since all these equations have fewer than eight AND terms, they will easily fit in the
22V10. If some equations had so many terms that they would not fit in the 22V 10, then it
would be necessary to try different state assignments.

If the controller were implemented using J-K flip-flops and gates, 4 flip-flops and 34
gates would be required for the straight binary state assignment. These flip-flops and gates
would require about 11 SSI (small-scale integration) integrated circuits, compared with
only 1 IC for the 22V10 solution. Using the 22V 10 leads to a simpler design that avoids
the necessity of laying out a circuit board and wiring the ICs. The resulting circuit is
smaller, uses less power, and is more reliable.

Parallel Adder with Accumulator

Next we implement a parallel binary adder with accumulator using a 22V 10. Figure 3-21
shows a block diagram for an adder that adds an »-bit number, B =b_- - - b,b,, to the
accumulator, A =a,,- - - a,a,, to give an n-bit sum and a carry. The full adder equations are
given by Equations 1-2 and 1-3. First, the number A must be loaded into the accumulator,
and then the number B is applied to the full adder inputs. After the carry has propagated
through the adders, the sum appears at the adder outputs. Then a clock pulse (CIk) transfers
the adder outputs into the accumulator. One way to load A into the accumulator is to first

108 CHAPTER 3 ® DESIGNING WITH PROGRAMMABLE Locic Devices

clear the accumulator using the clear inputs on the flip-flops and then put the A data on the
B inputs and add.

Figure 3-21 Parallel Adder with Accumulator

an : a a aj
L] []] []

Q Q 1R Q 71 Q Q Q Q Accumulator
C/{(D C/{(D CAK D CAK D Register
| -] 1 o

Spl an S aj N a Sy al
Y Y
—{ Full — Full —] Full — Full
<«— Adder je—---«——{ Adder j¢—-- - Adder Adderfe—
Cn+l F Sn S+l T ¥ G 3 77 €2 T c1
by bj by b

Next we will modify the design so that addition occurs only when an add signal (Ad)
is 1. One way to do this is to gate the clock so that the flip-flop clock inputs are clocked
only when Ad = 1 (see Figure 1-35(a)). A better way, which does not require gating the
clock, is to modify the accumulator flip-flop input equations to include Ad:

ai = S, = Adl@bc,+ apc;+abc+abc) +Ad'q, (3-5)

so that a; does not change when Ad = 0. No change is required for c,,;.

How many bits of the adder and accumulator will fit into a 22V10? We must consider
several limits. Let the number of flip-flops equal F, and the number of additional
combinational functions equal C. Since the number of macrocells is 10,

F+C<10 (3-6)

Since there are 12 dedicated inputs and any of the unused macrocells can be used as inputs,
the number of external inputs (I) is

IS12+{10-(F+O)]=22-F-C @7

In addition, we must make sure that the number of AND terms required for the D flip-flop
input functions and the combinational functions does not exceed the available number of
AND gates. Each bit of the adder requires one flip-flop, and the D input to this flip-flop is
S, In addition, we must generate the carry for each bit, which uses up another macrocell.
The c,,, function must be fed back to the AND array through the macrocell, even if an
external carry output is not required. For an N-bit adder, F = C = N; thus, from Equation
3-6,2N < 10. The number of inputs is N plus one each for the clock, clear, carry in (¢,), and
Ad signals; thus from Equation 3-7,

I=N+4<22-2N

3.5 ¢ Design of a Keypad Scanner 109

Solving these inequalities gives N < 5. The operation of an adder implemented in this
manner will be rather slow because of the time it takes for the carry to propagate through
five AND-OR sections of the 22V10. One way to speed up operation of the adder and at
the same time increase the number of bits that can be implemented in one 22V10 is to
implement the adder in blocks of 2 bits at a time with no intermediate carry generated. The
partial truth table and equations for such a 2-bit adder are

w

Lo
iy

I—'I—'I—\OOOII—‘I—‘OOONUJ

@]
w
It

B,B,C, + A;B,C; + A BB, + AB/C, +
AB, + AJAC, + AAB,

S, = (AJB,BJC, + AJAJBIB, + AJAIB,C! +
AAJBIC, + AAIBB) + AJBIB,Cl +
AJA,B!B! + AJA,ByCj+ A,B/B,C, +
A,B!BIC! + AAB,C, + AABB)Ad +
Ad'a,

S, = (A]BIC, + A!B/C, + ABIC! +
AB|C,)Ad + Ad'A,

P RRPRPRPRPRPRPR I OO0cOocooln

P OORPRRPFP O OO RO

ll)

Since the longest equation requires 13 AND terms and the maximum number of AND
terms for the 22V10 is 16, these equations will easily fit in a 22V 10. We can fit three 2-bit
adders in a 22V10 since F+ C=6+3=9<10and / = 6 + 4 < 22 — 9. With this
implementation, the carry must propagate through only three AND-OR sections, so this 6-
bit adder is faster than the 5-bit adder previously designed.

3.5 DESIGN OF A KEYPAD SCANNER

In this section, we design a scanner for a telephone keypad using a PLD. Figure 3-22
shows a block diagram for the system. The keypad is wired in matrix form with a switch at
the intersection of each row and column. Pressing a key establishes a connection between
arow and column. The purpose of the scanner is to determine which key has been pressed
and output a binary number N = N,N,N,N,, which corresponds to the key number. For
example, pressing key 5 will output 0101, pressing the * key will output 1010, and pressing
the # key will output 1011. When a valid key has been detected, the scanner should output
asignal V for one clock time. We will assume that only one key is pressed at time. Resistors
to ground are connected to each row of the keyboard, so that R, =R, = R, = R, = 0 when
no key is pressed.

h10 CHAPTER 3 ¢ DESIGNING WITH PROGRAMMABLE LoGic Devices

Figure 3-22 Block Diagram for Keypad Scanner

S AU A A
1
|
! l
]
=1 |4 _ﬁs L/is Ry Keypad - -
I : Scanner, .
-=: 7 8 | 9 :RZ Debouncer, N
|L4 —L A & Decoder
1 ———————»
1
- * 0 # 'R
%ld____l___.__..ﬁ_

clock

We will use the following procedure to scan the keyboard: First apply logic 1s to
columns Cy, C,, and C, and wait. If any key is pressed, a 1 will appear on R, R, R,, or R;.
Then apply a 1 to column C, only. If any of the R;’s is 1, a valid key is detected, so set V=
and output the corresponding N. If no key is detected in the first column, apply a 1 to C,;
and repeat. If no key is detected in the second column, repeat for C,. When a valid key is
detected, apply 1s to Cy, C,, and C, and wait until no key is pressed This last step is
necessary so that only one valid 31gnal is generated each time a key is pressed.

In the process of scanning the keyboard to determine which key is pressed, the scanner
must take contact bounce into account. When a mechanical switch is closed or opened, the
switch contact will bounce, causing noise in the switch output, as shown in Figure 3-23(a).
The contact may bounce for several milliseconds before it settles down to its final position.
After a switch closure has been detected, we must wait for the bounce to settle before
reading the key. The signal that indicates a key has been pressed also should be synchronized
with the clock, since it will be used as an input to a synchronous sequential network.

Figure 3-23(b) shows a proposed debouncing and synchronizing circuit. The clock
period must be greater than the bounce time. If C;= C, = C, = 1, when any key is pressed,
K will become 1 after the bounce is settled. If the rising edge of the clock occurs during the
bounce, either a 0 or 1 will be clocked into the flip-flop at t,.IfaO was clocked in, a 1 will
be clocked in at the next active clock edge (z,). So it appears that 0, will be a debounced
and synchronized version of K. However, a possibility of failure exists if K changes very
close to the clock edge such that the setup or hold time is violated. In this case the flip-flop
output ¢, may oscillate or otherwise malfunction. Although this situation will occur very
infrequently, it is best to guard against it by adding a second flip-flop. We will choose the

3.5 # Design of a Keypad Scanner 111

clock period so that any oscillation at the output of @, will have died out before the next
active edge of the clock so that the input D, will always be stable at the active clock edge.
The debounced signal, Kd, will always be clean and synchronized with the clock, although

it may be delayed up to two clock cycles after the key is pressed.

Figure 3-23 Debouncing and Synchronizing Circuit

I 1 i1 1 I
Contact I] T I
Closure i_NW : : M
Clock
Qa : :
! L
Qp 1 :
t3 '
(a)
R
R)—] K b D Kd
Ry—] A Qa B QB
R3
>CK CK
CLK:
(b)
Ro
R] K
IPi% Dy Qa Dg QgI—Kd
o >CK >CK
A—]
O
(c)

We will divide the keypad scanner into three modules, as shown in Figure 3-24. The
debounce module generates a signal K when a key has been pressed and a signal Kd after
it has been debounced. The keyscan module generates the column signals to scan the
keyboard. When a valid key is detected, the decoder determines the key number from the
row and column numbers. Figure 3-25 shows the keyscan state graph. Keyscan waits in S,
with outputs C, = C, = C; = 1 until a key is pressed. In S,, C;; = 1, so if the key that was

112 CHAPTER 3 @ DESIGNING WiTH PrROGRAMMABLE Locic Devices

pressed is in column 0, K = 1, and the network outputs a valid signal and goes to S,. If no
key press is found in column 0, column 1 is checked in S3, and if necessary, column 2 is
checkedin S,. In S, the network waits until all keys are released and Kd goes to O before
resetting.

Figure 3-24 Scanner Modules

R3.0
a . 1

Keypad Debounce K Keyscan [—V Decoder i»N
T Y0 i

Figure 3-25 State Graph for Scanner

The decoder determines the key number from the row and column numbers using the
truth table given in Table 3-7. The truth table has one row for each of the 12 keys. The
remaining rows have don’t care outputs since we have assumed that only one key is pressed
at a time. Since the decoder is a combinational network, its output will change as the
keypad is scanned. At the time a valid key is detected (K = | and V = 1), its output will
have the correct value and this value can be saved in a register at the same time the network
goes to S,.

3.5 « Design of a Keypad Scanner 113

Table 3-7 Truth Table for Decoder

RyR,R R G, C,C, N;N,N N,

0001 100 0001

0001 010 0010 Logic equations for decoder:
0001 00 1 0011 .

0010100 G100 Ny = R,C) + R,Cj
0010010 0101

0010001 0110 N, = R, + R,C,
0100100 0111

0100010 1000 N, = R,Cy + R3C, + RIRIC,
0100001 1001

1000100 1010(*)’ N, = R,C; + RIC, + R{R;C}
1000010 0000

1000001 1011

We will try to implement the debounce, keyscan, and decoder modules with a single
22V10 with as little added hardware as possible. The 22V 10 would require the following
inputs: R, R, R,, Ry, clock, and reset. The outputs would be C,, C,, C,, N;, N,, N, Ny,
and V. This uses up 8 of the 10 macrocells. If the state graph was implemented using three
flip-flops, 11 macrocells would be required, and it would not fit. One solution would be to
use two PALs and put the decoder in a separate PAL. A better solution is to use four flip-
flops to implement the state graph and encode the states so that the outputs C;, C|, and C,
can be read directly from the flip-flops Q,, Q,, Q,. The following state assignment can be
used for 0,0,0,0,: S,,0111; §,, 0100; S;, 0010; S,,0001; S, 1111. The first three flip-
flops produce the C outputs, and flip-flop Q, distinguishes between states S, and S,. With
this state encoding, a total of 9 macrocells are required to implement the keyscan and
decoder modules. This leaves one flip-flop available for debouncing, so that only one
external flip-flop is required for Kd. If the 22V 10 is reset, the flip-flop states will be 0000,
so we have added S to the state graph with a next state of S,. The equations derived from
the state graph using a CAD program (such as LogicAid) are as follows:

Qf=0,Kd+Q, 0:K+ 0,0, K+ 0,0,
Q7 =0,0;+K+0,
Qf=0Q}+0Q,+Q,Kd + QK
0=, +0,+Q;Kd'+ QK

V=KQ,0;+KQ,0, +Q;0,

To avoid generating K, which would use up a macrocell, we can substitute R+ R, + R, + R,
for X in the preceding equations. The resulting equation with the most terms is

QF=0,Kd+Q,0(R,+R +R, + R3)' +0,0,(R,+ R +R,+R)) + 0,0,

114

CHAPTER 3 @ DESIGNING WITH PROGRAMMABLE Locic DEvICES

The maximum number of terms in any equation is 10, and all these equations, as well as
the decoder equations, will easily fit in the 22V 10, The final equations can be entered into
a CAD program to generate the bit patterns for programming the PAL.

We tested the scanner design by using VHDL and discovered one flaw related to the
debouncing circuit (Figure 3-23(b)). The original design works fine if the key pressed is in
columns 0 or 1, but a problem occurs if the key pressed is in column 2. In this case, K goes
to O when scanning columns 0 and 1, so Kd goes to 0 when S, is reached, even if the key
is still being pressed. To remedy this problem, we change the next state equation for g, to

Oy =K+0,0,

The added term assures that once @, is set to 1, it will remain 1 until S is reached and Q,
becomes 1. The revised debounce circuit is shown in Figure 3-23(c).

The VHDL code used to test the design is shown in Figure 3-26. The decoder equations
as well as the equations for K and V are implemented by concurrent statements. The process
implements the next state equations for the keyscan and debounce flip-flops. This VHDL
code would be very difficult to test by supplying waveforms for the inputs R, R,, R,, and
R, since these inputs depend on the column outputs (Cy, C,, C,). Amuch better way to test
the scanner is write a test program, called scantest, in VHDL. Such a test program is often
referred to as a test bench, by analogy with a hardware test bench. The scanner we are
testing will be treated as a component and embedded in the test program. The signals
generated within scantest are interfaced to the scanner as shown in Figure 3-27. Scantest
simulates a key press by supplying the appropriate R signals in response to the C signals
from the scanner. When scantest receives V=1 from the scanner, it checks to see if the
value of N corresponds to the key that was pressed.

3.5 # Design of a Keypad Scanner 115

Figure 3-26 VHDL Code for Scanner

entity scanner is
port (RO,R1,R2,R3,CLK: in bit;
Cc0,C1,C2: inout bit;
NO,N1,N2,N3,V: out bit);
end scanner;

architecture scanl of scanner is
signal Q1,QA, K, Kd: bit;
alias Q2: bit is CO;
alias Q3: bit is C1;
alias Q4: bit is C2;
begin
K <= RO or Rl or R2 or R3;

N2 <= Rl or (R2 and CO);

process (CLK)
begin
if CLK = '1l' then

or (not Q2 and Q4);

QA <= K or (QA and not Q1);
Kd <= QA;
end if;
end process;
iend scanl;

Figure 3-27 Interface for Scantest

N3 «= (R2 and not CO0) or (R3 and not

-- column outputs will be the same
-- as the state variables because
-- of state assignment

-- this is the decoder section
Ccl);

N1l <= (RO and not CO) or (mot R2 amnd C2) or (not Rl and not RO and CO);
NO <= (R1 and Cl) or (not R1 and C2)
V <= (Q2 and not Q3 and K) or (not Q2 and Q3 and K) or {(mot Q2 and Q4):;

or (not R3 and not R1 and not Cl);

-- process to update flip-flops

Q1 <= (Q1 and Kd) or (Q2 and not Q3 and K} or (mot Q2 and g3 and K)

Q2 <= (not Q2 and not Q3) or XK or Q4;
Q3 <= not Q3 or Q1 or (Q4 and not Kd) or (not Q2 and K);
Q4 <= not Q2 or Q1 or (Q3 and not Kd) or (not Q3 and K);

-- first debounce flip-flop
-- second debounce flip-flop

TEST1

:

A
<

SCANNER

F

b16 CHaPTER 3 ® DESIGNING WITH PROGRAMMABLE LOGIC DEvICES

The VHDL code for scantest is shown in Figure 3-28. A copy of the scanner is
instantiated within the Testl architecture, and connections to the scanner are made by the
port map. The sequence of key numbers used for testing is stored in the array KARRAY.
The tester simulates the keypad operation using concurrent statements for R, R,, R,, and
R,. Whenever Cy, C;, C,, or the key number (KN) changes, new values for the Rs are
computed. For example if KN = 5 (to simulate pressing key 5), then R R R,R, = 0100 is
sent to the scanner when C,C,C, = 010. The test process is as follows:

1. Read a key number from the array to simulate pressing a key.

2. Waituntil V =1 and the rising edge of the clock occurs.

3. Verify that the N output from the scanner matches the key number.

4. Set KN = 15 to simulate no key pressed. (Since 15 is not a valid key number, all Rs

will goto 0.)

5. Wait until Kd = 0 before selecting a new key.
Scantest will report an error if the scanner generates the wrong key number, and it will
report “Testing complete” when all keys have been tested.

Assert Statement

The scantest architecture uses an assert statement to check if the scanner output matches
the key number. The assert statement checks to see if a certain condition is true, and if not
causes an error message to be displayed. One form of the assert statement is

asgert boolean-expression
report string-expression
geverity severity-level;

If the boolean-expression is false, then the string-expression is displayed on the monitor
along with the severity-level. If the boolean-expression is true, no message is displayed.
The four possible severity-levels are note, warning, error, and failure. The action taken for
these severity-levels depends on the simulator.

If the assert clause is omitted, then the report is always made. The severity-level is
optional. Thus the statement

report "ALL IS WELL";
will display the message "ALL IS WELL" whenever the statement is executed.

Figure 3-28 VHDL for Scantest

| 1ibrary BITLIB;
‘use BITLIB.bit_pack.all;

‘entity scantest is
| end scantest;

3.5 * Design of a Keypad Scanner 117

architecture testl of scantest is
component scanner
port (RO,R1,R2,R3,CLK: in bit;
C0,C1,C2: inout bit;
NO,N1,N2,N3,V: out bit);
end component;

type arr is array(0 to 11) of integer; -- array of keys to test
constant KARRAY:arr := (2,5,8,0,3,6,9,11,1,4,7,10);
signal cO0,C1,C2,V,CLK,R0O,R1,R2,R3: bit; -- interface signals
signal N: bit_vector (3 downto 0});
signal KN: integer; -- key number to test
begin

CLK <= not CLK after 20 ns; -- generate clock signal

-- this section emulates the keypad

RO <= '1l' when (CO='l' and KN=1) or (Cl='1l' and KN=2)
or (C2='1' and KN=3)

else '0'; -~

Rl <= '1l' when (C0O0='1l' and KN=4) or (Cl='l' and KN=5)
or {(C2='1' and KN=6)

else '0';

R2 <= 'l1' when (CO0='1l' and KN=7) or (Cl='1l' and KN=8)
or (C2='1' and KN=9)

else '0';

R3 <= '1' when (CO0='1' and KN=10) or (Cl='l' and KN=0)
or (C2='1' and KN=11)

else '0';
process -- this section tests scanner
begin
for i in 0 to 11 loop -- test every number in key array
KN <= KARRAY (1); -- simulates keypress
wait until (V='l' and rising_edge(CLK));
assert (vec2int (N) = KN) -- check if output matches

report "Numbers don't match”
severity error;
KN <= 15; -- equivalent to no key pressed
wait until rising_edge (CLK) ; -- wait for scanner to reset
wait until rising_edge (CLK) ;
wait until rising_edge (CLK) ;
end loop;
report "Test complete.”;
end process;
scannerl: scanner -- connect testl to scanner
port map(R0O,R1,R2,R3,CLK,C0,C1,C2,N(0)},N(1),N(2),N(3),V);
end testl;

118

CHAPTER 3 @ DESIGNING WiTH PROGRAMMABLE Locic Devices

Problems

In this chapter we have introduced several different types of PLDs and used them for
designing sequential networks. Many other types of PLDs are available, together with
software packages that facilitate their use. Some of these programs accept input only in
the form of logic equations, whereas others have options for state table, state graph, or
logic diagram input. These programs generally produce a data file used as input to a PLLD
programmer to program the PLD for a specific application. Programmable gate arrays
(PGAs) and other complex PLDs are described in Chapter 6.

3.1 The following state table is implemented using a ROM and two D flip-flops (falling-edge
triggered):

N} 9707 z
X=0 Xx=1 |x=0 Xx=1
00 01 10 0 T
01 10 00 1 1
10 00 01 1 0

(a) Draw the block diagram.

(b) Write VHDL code that describes the system. Assume that the ROM has a delay of 10 ns, and
each flip-flop has a propagation delay of 15 ns.

3.2 Anolder-model Thunderbird car has three left and three right tail lights, which flash in unique
patterns to indicate left and right turns.

Left-turn pattern: Right-turn pattern:

LC LB LA RA RB RC LC LB LA RA RB RC
o O O0O]|]0 O O O O O0J]O0 O O
O O e O O O O O o O O
O @€ @¢| O O O O O OoO|e e O
® ¢ ¢/ O O O O O Ole e e

Design a Moore sequential network to control these lights. The network has three inputs, LEFT,
RIGHT, and HAZ. LEFT and RIGHT come from driver’s tum-signal switch and cannot be 1 at the
same time. As indicated above, when LEFT = 1 the lights flash in a pattern LA on, LA and LB on,
LA, LB and LC on, and all off; then the sequence repeats. When RIGHT = 1, the light sequence is
similar. If a switch from LEFT to RIGHT (or vice versa) occurs in the middle of a flashing sequence,
the network should immediately go to the IDLE (lights off) state and then start the new sequence.
HAZ comes from the hazard switch, and when HAZ = 1, all six lights flash on and off in unison.
HAZ takes precedence if LEFT or RIGHT is also on. Assume that a clock signal is available with a
frequency equal to the desired flashing rate.

Problems 119

(@) Draw the state graph (8 states).

(b) Realize the network using six D flip-flops, and make a state assignment such that
each flip-flop output drives one of the six lights directly.

(¢) Realize the network using three D flip-flops, using the guidelines to determine a suitable state
assignment.

(d) Note the trade-off between more flip-flops and more gates in (b) and (c). Suggest a
suitable PAL or PLD for each case.

() Write VHDL code for and simulate your solution to (b).
3.3 Find a minimum-row PLA table to implement the following sets of functions.
@ f (A B,C D)y=Zm@4,5,10,11,12),
£, (A, B, C,D)=Zm(0, 1,3, 4,8, 11),
£ A, B, C,D)=Xm(0, 4, 10, 12, 14)
(b) f,(A B, C,D)=Z%m(3,4,6,9,11),
£, (A, B, C,D)=Zm(2,4,8, 10, 11, 12),
£ (A, B,C,D)y=Zm(3,6,7, 10, 11)

3.4 An N-bit bidirectional shift register has N parallel data inputs, N outputs, a left serial input
(LSI), a right serial input (RS7), a clock input, and the following control signals:

Load: Load the parallel data into the register (load overrides shift).
Rsh: Shift the register right (LS7 goes into the left end).
Lsh: Shift the register left (RSI goes into the right end).

(a) If the register is implemented using a 22V 10, what is the maximum value of N?
(b) Give equations for the rightmost two cells.

3.5 An N-bit binary up-down counter is to be realized using a 22V10. The counter has control
inputs U and D and a clock input. (U = 1, count up; D = 1, count down; U = D =0, no count; U= D
=1 is not allowed.) What is the maximum value of N? Show how you arrived at your answer.

3.6 Design an 6-bit up-down binary counter using a 22V 10 and a minimum number of external
gates. Give all of the flip-flop input equations. Write the VHDL code for the counter using a PLA.
Simulate the code and verify that the counter works.

3.7 A Mealy sequential network with four output variables is realized using a 22V10. What is the
maximum number of input variables it can have? The maximum number of states? Can any Mealy
network with these numbers of inputs and outputs be realized with a 22V10? Explain.

3.8 Akeypad has four rows and three columns as in Figure 3-22. Assume no more than two keys
will be pressed at a time. Write the first 10 rows of the truth table for a keypad decoder similar to
Table 3-7. If two keys are pressed in the same column, the N output should indicate the key in the
first of the two rows.

3.9 Write the VHDL behavioral model for the keypad scanner functionally equivalent to Figure
3-26 that includes the state machine in Figure 3-25 and the decoder in Table 3-7.

h 20 CHAPTER 3 ® DESIGNING WITH PROGRAMMABLE LOGIC DEVICES

3.10 Design a 4 x 4 keypad scanner for the following keypad layout.

Co C G2 G

1|2(3|A}—R;3
4({5|6(|BI—Ry
718(9]CEL—Ry
E|O0|F|D|I—Rg

(a) Assumiflg only one key can be pressed at a time, find the equations for a number decoder
given R, o and C, ,, whose output corresponds to the binary value of the key. For example, the F key
will return N, , = 1111 in binary, or 15.

(b) Design a debouncing circuit that detects when a key has been pressed or depressed. Assume
switch bounce will die out in one or two clock cycles. When a key has been pressed, K = 1 and Kd is
the debounced signal.

(¢) Design and draw an SM chart that performs the keyscan and issues a valid pulse when a valid
key has been pressed using inputs from part (b).

(d) Write a VHDL description of your keypad scanner and include the decoder, debouncing circuit,
and the scanner.

3.1

(a) Implement the traffic-light controller of Figure 3-18 using a 74163 counter with added logic.
Use a ROM to generate the outputs.

(b) Write a VHDL structural description of your answer to (a).

(c) Write a testbench for part (b) and verify that your controller works correctly.

CHAPTER 4!

DesicN oF NETWORKS FOR ARITHMETIC
OPERATIONS

This chapter uses binary multipliers and dividers as examples to illustrate the design of
small digital systems. We introduce the concept of using a control circuit to control the
sequence of operations in a digital system. We use VHDL to describe a digital system at
the behavioral level so we can simulate the system to check out the algorithms used and to
make sure that the sequence of operations is correct. We can then define the required
control signals and the actions performed by these signals. Next, we write a VHDL
description of the system in terms of the control signals and verify its correct operation by
simulation. After completing the detailed design in terms of components and logic equations,
we can again use VHDL to check out our design.

4.9 DESIGN OF A SERIAL ADDER WITH ACCUMULATOR

A control circuit for a digital system is a sequential network that outputs a sequence of
control signals. These signals cause operations such as addition and shifting to take place
at appropriate times. In this section, we illustrate the design of a control circuit for a serial
adder with accumulator. Figure 4-1 shows the block diagram for the adder. Two shift
registers are used to hold the 4-bit numbers to be added, X and Y. The box at the left end of
each shift register shows the inputs: S% (shift), ST (serial input), and Clock. When Sh =1
and the clock is pulsed, S7is entered into x, (or y,) as the contents of the register are shifted
right one position. The X-register serves as the accumulator, and after four shifts, the
number X is replaced with the sum of X and Y. The addend register is connected as a cyclic
shift register, so after four shifts it is back to its original state and the number ¥ is not lost.
The serial adder consists of a full adder and a carry flip-flop. At each clock time, one pair
of bits is added. When Sk = 1, the falling edge of the clock shifts the sum bit into the

L1 22 CHAPTER 4 @ DEsIGN oF NETWORKS FOR ARITHMETIC OPERATIONS

Figure 4-1 Serial Adder with Accumulator

Accumulator ‘)
S I I e Xj
N (Start Signal) ASI:R 3] 2] A1) 2o sum;
l Full
L’ISI Vi Adder
Sontrol Sh sy | ¥a| ¥2| 1| Yo :
ircui))
7 Addend Register S, Cit+1
Clock Serial Adder / Q Dle
Q CK ¢
Sh B
Cloeck _—

accumulator, stores the carry bit in the carry flip-flop, and causes the addend register to
rotate right. Additional connections needed for initially loading the X and Y registers and
clearing the carry flip-flop are not shown in the block diagram.

Table 4-1 illustrates the operation of the serial adder. In this table, t, is the time
before the first clock, ¢, is the time after the first clock, ¢, is the time after the second clock,
etc. Initially, at time ¢, the accumulator contains X, the addend register contains ¥, and the
carry flip-flop is clear. Since the full adder is a combinational network, x, =1, y, =1, and
¢, = 0 are added after a short propagation delay to give 10, so sum; =0 and carry ¢, = 1.
When the first clock occurs, sumy is shifted into the accumulator, and the remaining
accumulator digits are shifted right one position. The same shift pulse stores c, in the carry
flip-flop and cycles the addend register right one position. The next pair of bits, x, = 0 and
y; =1, are now at the full adder input, and the adder generates the sum and carry, sum, =
0 and ¢, = 1. The second clock pulse shifts sum, into the accumulator, stores c, in the carry
flip-flop and cycles the addend register right. Bits x, and y, are now at the adder input, and
the process continues until all bit pairs have been added. After four clocks (time ¢,), the
sum of X and Y is in the accumulator, and the addend register is back to its original state.

Table 4-1 Operation of Serial Adder

I X Y ¢ sum; it
I 0101 0111 0 0 1
8 0010 1011 1 0 1
t, 0001 1101 1 1 1
n | 1000 1110 1 0
t 1100 0111 0 (N ()]

The control circuit for the adder must now be designed so that after receiving a start
signal, the control circuit will output Sk = 1 for four clocks and then stop. Figure 4-2

4.2 = State Graphs for Control Networks 123

shows the state graph and table for the control circuit. The network remains in S, until a
start signal (V) is received, at which time the network outputs S = 1 and goes to S,. Then
Sh = 1 for three more clock times, and the network returns to S,,- It will be assumed that the
start signal is terminated before the network returns to state S, so no further action occurs
until another start signal is received. Dashes (don’t cares) on the graph indicate that once
S, is reached, the network operation continues regardless of the value of N.

Figure 4-2 Control State Graph and Table for Serial Adder
0/0

Present| Next State | Present Output (Sh)
State | N=0 N=1 | N=0 N=1

So So S1 0 1
Sq Sy S2 1 1
Sa S3 S3 1 1
S3 So So 1 1

4.2 STATE GRAPHS FOR CONTROL NETWORKS

Before continuing with the next design example, we describe the notation we use on control
state graphs, and then state the conditions that must be satisfied to have a proper state
graph. We usually label control state graphs using variable names instead of Os and 1s.
This makes the graph easier to read, especially when the number of inputs and outputs is
large. If we label an arc on a Mealy state graph X,.Xj/ZPZ , this means if inputs X; and X; are
1 (we don’t care what the other input values are), the outputs Z -, and Zq are 1 (and the other
outputs are 0), and we will traverse this arc to go to the next state. For example, for a
network with four inputs (X, Xy, X, X) and four outputs (Z,, Zz, Z,Z), the label X, X,/
Z,Z. is equivalent to 1-—0/0110. In general, if we label an arc with an input expression, 7,
we will traverse the arc when I = 1. For example, if the input label is AB + C', we will
traverse the arc when AB + C'= 1.

In order to have a completely specified proper state graph in which the next state is
always uniquely defined for every input combination, we must place the following
constraints on the input labels for every state S,

1. Ifl,and 1, are any pair of input labels on arcs exiting state S,, then I1,=0 ifi#].
2. If n arcs exit state S, and the n arcs have inputlabels I}, I, . . ., I, respectively, then
L+L+. -+ =1

124

CHAPTER 4 * DesiN oF NETWORKS FOR ARITHMETIC OPERATIONS

Condition 1 assures us that at most one input label can be 1 at any given time, and condition

2 assures us that at least one input label will be 1 at any given time. Therefore, exactly one

label will be 1, and the next state will be uniquely defined for every input combination.

For example, consider the following partial state graph where I, =X, I, = X,X,, and I, =
XX,

XpXiXy)y =0

XP XX =0
KX XXy =0
X| +X1'X2' + X1'X2 =1

Conditions 1 and 2 are satisfied for S,.

An incompletely specified proper state graph must always satisfy condition 2, and it
must satisfy condition 1 for all combinations of values of input variables that can occur for
each state S,. Thus, the following represents part of a proper state graph only if input
combination X, = X, = 1 cannot occur in state S, :

If there are three input variables (X, X,, X;), the preceding partial state graph represents
the following state table row:

JooOo 001 010 011 100 101 10 11
Se | S, S, S, s, S, S, = =

4,3 DESIGN OF A BINARY MULTIPLIER

In this section, we will design a multiplier for unsigned binary numbers. When we form
the product A x B, the first operand (A) is called the multiplicand, and the second operand
(B) is called the multiplier. As illustrated here, binary multiplication requires only shifting
and adding. In the following example, we multiply 13,/ by 11, in binary:

Muiltiplicand ——» 1101 (13)
Muitiplier ———»1011 (11)

1101
%'1101

Partial 100111
Products 0000
:: 100111

1101
TOOOTTIT (143)

4.3 # Design of a Binary Multiplier 125J

Note that each partial product is either the multiplicand (1101) shifted over by the appropriate
number of places or zero. Instead of forming all the partial products first and then adding,
each new partial product is added in as soon as it is formed, which eliminates the need for
adding more than two binary numbers at a time.

Multiplication of two 4-bit numbers requires a 4-bit multiplicand register, a 4-bit
multiplier register, a 4-bit full adder, and an 8-bit register for the product. The product
register serves as an accumulator to accumulate the sum of the partial products. If the
multiplicand were shifted left each time before it was added to the accumulator, as was
done in the previous example, an 8-bit adder would be needed. So it is better to shift the
contents of the product register to the right each time, as shown in the block diagram of
Figure 4-3. This type of multiplier is sometimes referred to as a serial-parallel multiplier,
since the multiplier bits are processed serially, but the addition takes place in parallel. As
indicated by the arrows on the diagram, 4 bits from the accumulator (ACC) and 4 bits from
the multiplicand register are connected to the adder inputs; the 4 sum bits and the carry
output from the adder are connected back to the accumulator. When an add signal (Ad)
occurs, the adder outputs are transferred to the accumulator by the next clock pulse, thus
causing the multiplicand to be added to the accumulator. An extra bit at the left end of the
product register temporarily stores any carry that is generated when the multiplicand is
added to the accumulator. When a shift signal (Sh) occurs, all 9 bits of ACC are shifted
right by the next clock pulse.

Figure 4-3 Block Diagram for Binary Multiplier

product
A
~ ACC N
Load 8 7] 6 5 4 3] 2] 1 0
Sh . l l : i 1 l i
C |Ad A)) I :) .) ! .
r 3
S R
Clk &
N Y
T Y multiplier
R Cm 4-BITADDER
Done
0 >
L s R
[N ' -
M multiplicand

Since the lower 4 bits of the product register are initially unused, we will store the
multiplier in this location instead of in a separate register. As each multiplier bit is used, it
is shifted out the right end of the register to make room for additional product bits. A shift
signal (Sh) causes the contents of the product register (including the multiplier) to be
shifted right one place when the next clock pulse occurs. The control circuit puts out the
proper sequence of add and shift signals after a start signal (St = 1) has been received. If

126 CHAPTER 4 ® DesicN oF NETWORKS FOR ARITHMETIC OPERATIONS

the current multiplier bit (M) is 1, the multiplicand is added to the accumulator followed
by a right shift; if the multiplier bit is 0, the addition is skipped, and only the right shift
occurs. The multiplication example (13 x 11) is reworked below showing the location of
the bits in the registers at each clock time.

initial contents of product register 00000]101 1 €— M (11)
(add multiplicand since M=1) 11011 (13)
‘after addition 011011011

after shift 001101]101«—M
(add multiplicand since M=1) 1101 1

after addition 1001111101

after shift 0100111})10%—M
(skip addition since M=0) l_

after shift 00100111}l e—M
(add multiplicand since M=1) 1101 i

after addition 1000111 l|_|1 .

after shift (final answer) 0100011 l/y (143)

dividing line between product and multiplier

The control circuit must be designed to output the proper sequence of add and shift
signals. Figure 4-4 shows a state graph for the control circuit. In Figure 4-4, S is the reset
state, and the network stays in S, until a start signal (St = 1) is received. This generates a
Load signal, which causes the multiplier to be 1oaded into the lower 4 bits of the accumulator
(ACC) and the upper 5 bits of the accumulator to be cleared. In state S,, the low-order bit
of the multiplier (M) is tested. If M = 1, an add signal is generated, and if M = 0, a shift

Figure 4-4 State Graph for Binary Multiplier Control

4.3 « Design of a Binary Multiplier 127 l

signal is generated. Similarly, in states S3, S5, and S, the current multiplier bit (M) is
tested to determine whether to generate an add or shift signal. A shift signal is always
generated at the next clock time following an add signal (states S,, S,, S, and Sy). After
four shifts have been generated, the control network goes to Sy, and a done signal is generated
before returning to S,

The behavioral VHDL model (Figure 4-5) corresponds directly to the state graph.
Since there are 10 states, we have declared an integer range 0 to 9 for the state signal. The
signal ACC represents the 9-bit accumulator output. The statement

alias M: bit is ACC(0);

allows us to use the name M in place of ACC(0). The notation when 1[3[517 =>
means when the state is 1 or 3 or 5 or 7, the action that follows occurs. All register operations
and state changes take place on the rising edge of the clock. For example, in state 0, if Stis
1, the multiplier is loaded into the accumulator at the same time the state changes to 1. The
add4 function computes the sum of two 4-bit vectors and a carry to give a 5-bit result. This
represents the adder output, which is loaded into ACC at the same time the state counter is
incremented. The right shift on ACC is accomplished by loading ACC with 0 concatenated
with the upper 8 bits of ACC. The expression '0'&ACC(8 downto 1) could be
replaced with ACC srl 1.

The done signal needs to be turned on only in state 9. If we had used the statement
when 9 => State <= 0; Done <='1", Done would be turned on at the same
time the State changed to 0. This is too late, since we want Dorne to turn on when the State
becomes 9. Therefore, we used a separate concurrent assignment statement. This statement
is placed outside the process so that Done will be updated whenever State changes.

Figure 4-5 Behavioral Model for 4 x 4 Binary Multiplier

-- This is a behavioral model of a multiplier for unsigned
-- binary numbers. It multiplies a 4-bit multiplicand
-- by a 4-bit multiplier to give an 8-bit product.

i —— The maximum number of clock cycles needed for a
-- multiply is 10.

{ library BITLIB;
‘use BITLIB.bit_pack.all;

entity multdX4 is
port (Clk, St: im bit;
Mplier,Mcand : in bit_vector (3 downto 0);
Dorie: out bit);
end multdXx4;

architecture behavel of mult4X4 is
signal State: integer range 0 to 9;
signal ACC: bit_vector(8 downto 0); --accumulator
alias M: bit is ACC(0); --M is bit 0 of ACC

128 CHAPTER 4 @ Desicn of NETWORKS FOR ARITHMETIC OPERATIONS

begin
process
begin
wait until Clk = '1'; --executes on rising edge of
case State is clock
‘ when 0=> --initial State
if St='1' then
ACC(8 downto 4) <= "00000"; --Begin cycle
ACC (3 downto 0) <= Mplier; --load the multiplier
State <= 1;
end if;
when 1 | 3 | 51 7 => --"add/shift" State
if M = '1' then --Add multiplicand
ACC(8 downto 4) <=add4 (ACC(7 downto 4),Mcand, '0');
State <= State+l;
else
ACC <= '0' & ACC(8 downto 1);--Shift accumulator right
State <= State + 2;
| end if;
when 2 | 4 | 6 | 8 => --"shift" State
ACC <= '0' & ACC(8 downto 1); --Right shift
| State <= State + 1;
§ when 9 => --End of cycle
| State <= 0;
‘ end case;

end process;
Done <= 'l' when State = 9 else '0';
end behavel;

As the state graph for the multiplier indicates, the control performs two functions—
generating add or shift signals as needed and counting the number of shifts. If the number
of bits is large, it is convenient to divide the control network into a counter and an add-
shift control, as shown in Figure 4-6(a). First, we will derive a state graph for the add-shift
control that tests St and M and outputs the proper sequence of add and shift signals (Figure
4-6(b)). Then we will add a completion signal (K) from the counter that stops the multiplier
after the proper number of shifts have been completed. Starting in SO in Figure 4-6(b),
when a start signal St = 1 is received, a load signal is generated and the network goes to
state S1. Then if M = 1, an add signal is generated and the network goes to state S2; if M =
0, a shift signal is generated and the network stays in S1. In S2, a shift signal is generated
since a shift always follows an add. The graph of Figure 4-6(b) will generate the proper
sequence of add and shift signals, but it has no provision for stopping the multiplier.

4.3 * Design of a Binary Multiplier 129

Figure 4-6 Multiplier Control with Counter

Done
St Add-shift Load
1
M—n contro Ad
Sh
A
K j
Counter
(a) Multiplier control
St'/0

(c) Final state graph for add-shift control

In order to determine when the multiplication is completed, the counter is incremented
each time a shift signal is generated. If the multiplier is » bits, » shifts are required. We will
design the counter so that a completion signal (K) is generated after n — 1 shifts have
occurred. When K = 1, the network should perform one more addition if necessary and
then do the final shift. The control operation in Figure 4-6(c) is the same as Figure 4-6(b)
as long as K=0. In state S1, if K= 1, we test M as usual. If M = 0, we output the final shift
signal and go to the done state (S3); however, if M = 1, we add before shifting and go to
state S2. In state S2, if K = 1, we output one more shift signal and then go to S3. The last
shift signal will increment the counter to 0 at the same time the add-shift control goes to
the done state.

As an example, consider the multiplier of Figure 4-3, but replace the control network
with Figure 4-6(a). Since n = 4, a 2-bit counter is needed to count the 4 shifts, and K =1
when the counter is in state 3 (11,). Table 4-2 shows the operation of the multiplier when
1101 is multiplied by 1011. SO, S1, S2, and S3 represent states of the control circuit (Figure
4-6(c)). The contents of the product register at each step is the same as given on page 126.

130 CHAPTER 4 ¢ DesiaN OF NETWORKS FOR ARITHMETIC OPERATIONS

Table 4-2 Operation of Multiplier Using a Counter

Time State Counter Product St M K Load Ad Sh Done
Register
f SO 00 000000000 O 0 0 0 0 0 0
4 SO 00 000000000 1 0 0 1 0 0 0
L S1 00 000001011 O 1 0 0 1 0 0
1 S2 00 011011011 O 1 0 0 0 1 0
Ly S1 01 001101101 O 1 0 0 1 0 0
L5 S2 01 100111101 © 1 0 0 0 1 0
te S1 10 010011110 0 0 4] 0 0 1 0
L S1 11 001001111 O 1 1 0 1 0 0
ty S2 11 100011111 0O 1 1 0 0 1 0
[S3 00 010001111 O 1 0 0 0 0 1

At time ¢, the control is reset and waiting for a start signal. At time #,, the start signal
St=1, and a Load signal is generated. At time ¢,, M = 1, so an Ad signal is generated. When
the next clock occurs, the output of the adder is loaded into the accumulator and the control
goes to S2. At t,, an Sh signal is generated, so at the next clock shifting occurs and the
counter is incremented. At t,, M =150 Ad = 1, and the adder output is loaded into the
accumulator at the next clock. At tsand 1, shifting and counting occur. At ., three shifts
have occurred and the counter state is 11, so K = 1. Since M = 1, addition occurs and
control goes to S2. At tgs Sh = K = 1, so at the next clock the final shift occurs and the
counter is incremented back to state 00. At 1y, a Done signal is generated.

The multiplier design given here can easily be expanded to 8, 16, or more bits simply
by increasing the register size and the number of bits in the counter. The add-shift control
would remain unchanged.

Next, we design a multiplier that consists of an array of AND gates and adders. This
multiplier will have an iterative structure with no sequential logic or registers required.
Table 4-3 illustrates multiplication of two 4-bit unsigned numbers, X3X2X X, times v.Y,Y Y,
Each of the Xl.Y]. product bits can be generated by an AND gate. Each partial product can be
added to the previous sum of partial products using a row of adders. The sum output of the
first row of adders, which adds the first two partial products, is §,,5,,5,,5,,, and the carry
output is C,3C;,C;;C,,. Similar results occur for the other two rows of adders. (We have
used the notation §;; and Cl.j to represent the sums and carries from the ith row of adders.)
Figure 4-7 shows the corresponding array of AND gates and adders. If an adder has three
inputs, a full adder (FA) is used, but if an adder has only two inputs, a half-adder (HA) is
used. A half-adder is the same as a full adder with one of the inputs set to 0. This multiplier
requires 16 AND gates, 8 full adders, and 4 half-adders. After the X and Y inputs have been
applied, the carry must propagate along each row of cells, and the sum must propagate
from row to row. The time required to complete the multiplication depends primarily on
the propagation delay in the adders. The longest path from input to output goes through 8
adders. If ¢ , is the worst-case (longest possible) delay through an adder, and , is the
longest AND gate delay, then the worst-case time to complete the multiplication is 8¢ , + ¢ .

4.3 ¢ Design of a Binary Multiplier

131

Table 4-3 4-bit Multiplier Partial Products

X3 XZ Xl XO
Y3 Y2 Y1 YO
X3Y0 XZYO XIYO XOYO
XY, XY, XY, XY,
C1 2 C1 1 C 10
C 13 S 13 S 12 Sl 1 5 10
XY, XY, XY, XY,
C22 C21 CZO
C23 SZB SZZ SZ] SZO
XY, XY, XY, XY,
C32 C31 C30
C33 833 532 S31 S30
P7 P6 PS 4 P3 PZ PI PO

Mutltiplicand
Multiplier
partial product 0
partial product 1
1st row carries
1st row sums
partial product 2
2nd row carries
2nd row sums
partial product 3
3rd row carries
3rd row sums
final product

In general, an n-bit-by-n-bit array multiplier would require n*> AND gates, n(n — 2)
full adders, and » half-adders. So the number of components required increases quadratically.
For the serial-parallel multiplier previously designed, the amount of hardware required in
addition to the control circuit increases linearly with n.

Figure 4-7 Block Diagram of 4 x 4 Array Multiplier

132 CHAPTER 4 ® DESIGN OF NETWORKS FOR ARITHMETIC OPERATIONS

For an n x n array multiplier, the longest path from input to output goes through 2n
adders, and the corresponding worst-case multiply time is 2nz_, + o The serial-parallel
multiplier of the type previously designed requires 2n clocks to complete the multiply in
the worst case, although this can be reduced to n clocks using a technique discussed in the
next section. The minimum clock period depends on the propagation delay through the »-
bit adder as well as the propagation delay and setup time for the accumulator flip-flops.

4.4 MULTIPLICATION OF SIGNED BINARY NUMBERS

Several algorithms are available for multiplication of signed binary numbers. The following
procedure is a straightforward way to carry out the multiplication:

Complement the multiplier if negative.
Complement the multiplicand if negative.
Multiply the two positive binary numbers.
Complement the product if it should be negative.

BN

Although this method is conceptually simple, it requires more hardware and computation
time than some of the other available methods.

The next method we describe requires only the ability to complement the multiplicand.
Complementation of the multiplier or product is not necessary. Although the method works
equally well with integers or fractions, we illustrate the method with fractions, since we
will later use this multiplier as part of a multiplier for floating-point numbers. Using 2’s
complement for negative numbers, we will represent signed binary fractions in the following
form:

0.101 +5/8 1.011 -5/8

The digit to the left of the binary point is the sign bit, which is O for positive fractions and
1 for negative fractions. In general, the 2’s complement of a binary fraction Fis F* =2 -
F. Thus, —5/8 is represented by 10.000 — 0.101 = 1.011. (This method of defining 2’s
complement fractions is consistent with the integer case (N* = 2" — N), since moving the
binary point n — 1 places to the left is equivalent to dividing by 2".) The 2’s complement
of a fraction can be found by starting at the right end and complementing all the digits to
the left of the first 1, the same as for the integer case. The 2’s complement fraction 1.000. . .
is a special case. It actually represents the number ~1, since the sign bit is negative and the
2’s complement of 1.000. . . is 2 — 1 = 1. We cannot represent +1 in the 2’s complement
fraction system, since 0.111. . . is the largest positive fraction.
‘When multiplying signed binary numbers, we must consider four cases:

Multiplicand Multiplier
+ +
- +

+ —_

4.4 » Multiplication of Signed Binary Numbers 133

‘When both the multiplicand and the multiplier are positive, standard binary multiplication
is used. For example,

0.1 11 (+7/8) — Multiplicand
X 0.101 (+5/8) —— Multiplier
(0. 00)0 111 (+7/64) «—— Note: The proper representation of the
(0.)o 1 1 1 (+716) «— fractional partial products requires
0. 100011 (+35/64) extension of the sign bit past the binary

point, as indicated in parentheses. (Such
extension is not necessary in the
hardware.)

When the multiplicand is negative and the multiplier is positive, the procedure is the same
as in the previous case, except that we must extend the sign bit of the multiplicand so that
the partial products and final product will have the proper negative sign. For example,

1.1 01 (-3/8)
X 0.1 01 (+5/8)
(1. 1 1)1 101 (-3/64) — Note: The extension of the sign bit
(1,311 01 (-3/16) — provides proper representation of the
1.1 10001 (-15/64) negative products.

When the multiplier is negative and the multiplicand is positive, we must make a
slight change in the multiplication procedure. A negative fraction of the form 1.g has a
numeric value —1 + 0.g; for example, 1.011 =-1 + 0.011 =— (1 - 0.011) =-0.101 = -5/8.
Thus, when multiplying by a negative fraction of the form 1.g, we treat the fraction part
(.g) as a positive fraction, but the sign bit is treated as —1. Hence, multiplication proceeds
in the normal way as we multiply by each bit of the fraction and accumulate the partial
products. However, when we reach the negative sign bit, we must add in the 2’s complement
of the multiplicand instead of the multiplicand itself. The following example illustrates
this:

0.1 01 (+5/8)
X 1.1 01 (-3/8)
(0. 0 0)0 1 0 1 (+5/64)
(0.)0 1 01 (+5/16)
(0.)0 110001
1. 01 1 (-5/8) — Note: The 2's complement of the

1.110001 (-15/64) multiplicand is added at this point.

When both the multiplicand and multiplier are negative, the procedure is the same as
before. At each step, we must be careful to extend the sign bit of the partial product to
preserve the proper negative sign, and at the final step we must add in the 2’s complement
of the multiplicand, since the sign bit of the multiplier is negative. For example,

134 CHAPTER 4 @ DEsSIGN OF NETWORKS FOR ARITHMETIC OPERATIONS

1.1 0 1 (-3/8)
X 1.101 (=3/8)
(1. 1 1)1 101 (-3/64)
(1.01 10 1 (-3/16)
1.110001
0. 011 (+3/8) — Add the 2’s complement of the
0. 001001 (+9/64) multiplicand.

In summary, the procedure for multiplying signed 2’s complement binary fractions is
the same as for multiplying positive binary fractions, except that we must be careful to
preserve the sign of the partial product at each step, and if the sign of the multiplier is
negative, we must complement the multiplicand before adding it in at the last step. The
hardware is almost identical to that used for multiplication of positive numbers, except a
complementer must be added for the multiplicand.

Figure 4-8 shows the hardware required to multiply two 4-bit fractions (including
the sign bit). A 5-bit adder is used so the sign of the sum is not lost due to a carry into the
sign bit position. The M input to the control circuit is the currently active bit of the multiplier.
Control signal Sh causes the accumulator to shift right one place with sign extension. Ad
causes the ADDER output to be loaded into the left 5 bits of the accumulator. The carry

Figure 4-8 Block Diagram for 2's Complement Multiplier

product
" accC ™
Load 8] 7] 61 5] 4 3 2] (I
Sh o !
L I I
C |Ad l l { { l ; l
0 4 4 4 4 J A T T T T
N Clk NG —— -
T Y Y v y y multiplier
R | 5-BITFULLADDER Cin [« S
onc
o * y y
L St
Cm I's COMPLEMENTER
E LT
—
™~
multiplicand

4.4 « Multiplication of Signed Binary Numbers 135

Figure 4-9 State Graph for 2's Complement Multiplier

- /Done

out from the last bit of the adder is discarded, since we are doing 2’s complement addition.
Cm causes the multiplicand (Mcand) to be complemented (1°s complement) before it enters
the adder inputs. Cr is also connected to the carry input of the adder so that when Cm =1,
the adder adds 1 plus the 1’s complement of Mcand to the accumulator, which is equivalent
to adding the 2’s complement of Mcand. Figure 4-9 shows a state graph for the control
circuit. Each multiplier bit (M) is tested to determine whether to add and shift or whether
to just shift. In state S,,, M is the sign bit, and if M = 1, the complement of the multiplicand
is added to the accumulator.

When the hardware in Figure 4-8 is used, the add and shift operations must be done
at two separate clock times. We can speed up operation of the multiplier by moving the
wires from the adder output one position to the right (Figure 4-10) so that the adder output
is already shifted over one position when it is loaded into the accumulator. With this
arrangement, the add and shift operations can occur at the same clock time, which leads to
the control state graph of Figure 4-11. When the multiplication is complete, the product (6
bits plus sign) is in the lower 3 bits of A followed by B. The binary point then is in the
middle of the A register. If we wanted it between the left two bits, we would have to shift
A and B left one place.

136 CHrpTER 4 * DesioN OF NETWORKS FOR ARITHMETIC OPERATIONS

Figure 4-10 Block Diagram for Faster Multiplier

product
A
a(accumulator) B ™
Load 3T a7 17 0 3T 7T 77
Sh : | | | : ! i
ol | 4 | .
N —
T D multiplier
R 4-BIT FULL ADDER Cinle——Cm
O [St
L
Cm 1's COMPLEMENTER

-.l
oL

multiplicand

Figure 4-11 State Graph for Faster Mulitiplier

—/Done

M/Cm AdSh
M'/Sh

M/AdSh M/AdSh

Figure 4-12 Behavioral Model for 2's Complement Multiplier

library BITLIB;
use BITLIB.bit_pack.all;

entity mulc2C is
port (CLK, St: in bit;
Mplier,Mcand : in bit_vector (3 downto 0);
Product: out bit_vector (& downto 0);
Done: out bit);
end mult2C;

architecture behavel of mult2C is
gignal State : integer range 0 to 5;
signal A, B: bit_vector (3 downto 0);
alias M: bit is B(0);

4.4 « Multiplication of Signed Binary Numbers 137

begin
§ process
| variable addout: bit_vector{4 downto 0);
| begin
I wait until CILK = '1';
case State is
when 0=> --initial State
if St='1l' then
A <= "0000"; --Begin cycle
B <= Mplier; --load the multiplier
State <= 1;
end if;
when 1 | 2 | 3 => --"add/shift" State
if M = 'l' then
! addout := add4 (A,Mcand,'0'); --Add multiplicand to A and
shift
A <= Mcand(3) & addout (3 downto 1);
B <= addout (0) & B(3 downto 1)
elge
A <= A(3) & A(3 downto 1); --Arithmetic right shift
B <= A(0) & B(3 downto 1); ’
end if;
State <= State + 1;
when 4 => --add complement if sign bit
if M = '1' then --of multiplier is 1
addout := add4 (A, not Mcand, 'l'):
A <= not Mcand(3) & addout (3 downto 1);
B <= addout(0) & B(3 downto 1);
else
A <= A(3) & A(3 downto 1); --Arithmetic right shift
B <= A(0) & B{(3 downto 1);
end if;
State <= 5;
wait for 0 ns;
Done <= '1';
Product <= A(2 downto 0) & B;
when 5 => --output product
State <= 0;
Done <= '0';
end case;
end process;
end behavel;

A behavioral VHDL model for this multiplier is shown in Figure 4-12. Shifting the A
and B registers together is accomplished by the sequential statements

A <=
B «=

(3) & A(3 downto 1);

A
A(0) & B(3 downto 1);

|138

CHAPTER 4 ® DesiGN ofF NETWORKS FOR ARITHMETIC OPERATIONS

Although these statements are executed sequentially, A and B are both scheduled to be
updated at the same delta time. Therefore, the old value of A(0) is used when computing
the new value of B.

A variable addout has been defined to represent the 5-bit output of the adder. In
states 1 through 4, if the current multiplier bit M is 1, then the sign bit of the multiplicand
followed by three bits of addout are loaded into A. At the same time, the low-order bit of
addout is loaded into B along with the high-order 3 bits of B. The done signal is turned on
when control goes to state 5, and then the new value of the product is output. The wait for
0 ns is required so that A and B are updated to their final values before outputting the new
product.

Before continuing with the design, we will test the behavioral level VHDL code to
make sure that the algorithm is correct and consistent with the hardware block diagram. At
early stages of testing, we will want a step-by-step printout to verify the internal operations
of the multiplier and to aid in debugging if required. When we think that the multiplier is
functioning properly, then we will only want to look at the final product output so that we
can quickly test a large number of cases.

Figure 4-13 Command File and Simulation Results for (+5/8 by -3/8)

|

. -— command file to test signed multiplier

1 list CLK St State A B Done Product
force st 1 2, 0 22
force clk 1 0, 0 10 - repeat 20

-- (5/8 * -3/8)

;force Mcand 0101
 force Mplier 1101

%run 120

ns delta CLK St State A B Done Product
0 +1 1 0 0 0000 Q00O 0 0000000
2 +0 1 1 0 0000 0000 0 0000000
10 +0 0 1 0 0000 0000 0 0000000
20 +1 1 1 1 0000 1101 0 0000000
22 +0 1 0 1 0000 1101 0 0000000
30 +0 0 0 1 0000 1101 0 0000000
40 +1 1 0 2 0010 1110 0 0000000
50 +0 0 0 2 0010 1110 0 0000000
60 +1 1 0 3 0001 0111 0 0000000
70 +0 0 0 3 0001 0111 0 0000000
80 +1 1 0 4 0011 0011 0 0000000
90 +0 0 0 4 0011 0011 0 0000000
100 +2 1 0 5 1111 0001 1 1110001
110 +0 0 0 5 1111 0001 1 1110001
120 +1 1 0 0 1111 0001 0 1110001

Figure 4-13 shows the command file and test results for multiplying +5/8 by -3/8. A
clock is defined with a 20-ns period. The St signal is turned on at 2 ns and turned off one
clock period later. By inspection of the state graph, the multiplication requires six clocks,

4.4 « Multiplication of Signed Binary Numbers 13ﬂ

so the run time is set at 120 ns. The simulator output corresponds to the example given on

page 133.
To thoroughly test the multiplier, we need to test not only the four standard cases
(+ +, + —, — +, and — -) but also special cases and limiting cases. Test values for the

multiplicand and multiplier should include 0, largest positive fraction, most negative
fraction, and all 1s. We will write a VHDL test bench to test the multiplier. This test bench
(Figure 4-14) supplies a sequence of values for the multiplicand and multiplier. It also

Figure 4-14 Test Bench for Signed Multiplier

- library BITLIB;
‘use BITLIB.bit_pack.all;

entity testmult is
~end testmult;

.architecture testl of testmult is
- component mult2C
port (CLK, St: in bit;
Mplier,Mcand : in bit_vector (3 downto 0);
Product: out bit_vector (6 downto 0);
Done: out bit);
end component;

congtant N: integer := 11;

type arr is array(l to N) of bit_vector (3 downto 0);

constant Mcandarr: arr := ("0111", "1101*, "0101", "1101", "O111r",
»1000", 0111, "1000", "0OOO", "1111", "1011");

constant Mplierarr: arr := ("0101"*, "0G1¢1*, *1101", "1101%*, "011l1",

0111", "1000"™, "1000™, "1201", "1111", "0O000");
signal CLK, St, Done: bit;
signal Mplier, Mcand: bit_vector (3 downto 0);
signal Product: bit_vector {6 downto 0);
begin
CLK <= not CLK after 10 ns;
process
begin
for i in 1 to N loop
Mcand <= Mcandarr(i);
Mplier <= Mplierarr(i):;

St <= '1';

wait until rising_edge(CLK);

St <= '0';

wait until falling_edge{Done) ;
end loop;

end process;
multl: mult2c port map(Clk, St, Mplier, Mcand, Product, Done);
end testl;

140

CHAPTER 4 ® DESIGN OF NETWORKS FOR ARITHMETIC OPERATIONS

generates the clock and start signal. The multiplicand and multiplier test values are placed
in constant arrays. The for loop reads values from these arrays and then sets the start signal
to '1". After the next clock, the start signal is turned off. Since the done signal is turned off
at the same time the multiplier control goes back to S, the process waits for the falling
edge of done before looping back to supply new values of Mcand and Mplier.

Figure 4-15 shows the command file and simulator output. We have annotated the
simulator output to interpret the test results. The —NOtrigger together with the —Trigger
done in the list statement causes the output to be displayed only when the Done signal
changes. Without the -NOtrigger and —Trigger, the output would be displayed every time
any signal on the list changed. All the product outputs are correct, except for the special
case of —1 x -1 (1.000 x 1.000), which gives 1.000000 (1) instead of +1. This occurs
because no representation of +1 is possible without adding another bit.

Figure 4-15 Command File and Simulation of Signed Multiplier

ns

0
30
110
210
230
330
350
450
470
570
590
690
;710
¢ 810
830
930
950
1050
1070
1170
1190
11290
1310

| -~ Command file to test results of signed multiplier
list -NOtrigger Mplier Mcand product -Trigger done
run 1320 :

delta mplier mcand product done

+1 0101 0111 0000000
+2 0101 0111 0100011
+2 0101 1101 0100011
+2 0101 1101 1110001
+2 1101 0101 1110001
+2 1101 0101 1110001
+2 1101 1101 1110001
+2 1101 1101 0001001
+2 0111 0111 0001001
+2 0111 0111 0110001
+2 0111 1000 0110001
+2 0111 1000 1001000
+2 1000 0111 1001000

5/8 * 7/8 = 35/64

1

5/8 * -3/8 = -15/¢64

-3/8 * 5/8 = ~15/64

I

-3/8 * -3/8 = 9/64

7/8 * 7/8 = 49/64

7/8 * -1 = -7/8

+2 1000 0111 1001000 -1 * 7/8 = -7/8

+2 1000 1000 1001000

+2 1000 1000 1000000 -1 * -1 = -1 (exrror)
+2 1101 0000 1000000

+2 1101 0000 0000000 -3/8 * 0 =0

+2 1111 1111 0000000
+2 1111 1111 0000001
+2 0000 1011 0000001
+2 0000 1011 0000000
+2 0101 0111 0000000

-1/8 * -1/8 = 1/64

P ORPORFRPRORFRF ORFRPRORFRPORFF O OO ORFROD

0 * -3/8 =10

<

Next we refine the VHDL model for the signed multiplier by explicitly defining the
control signals and the actions that occur when each control signal is asserted. The VHDL
code (Figure 4-16) is organized in a manner similar to the Mealy machine model of Figure
1-16. In the first part of the process, the Nextstate and output control signals are defined
for each present State. After waiting for the rising edge of the clock, the appropriate

A <= (Mcand(3) xor Cm) & addout (3 downto 1});
B <= addout(0) & B{3 downto 1)};
end if;
if Sh = '1' then
A <= A(3) & A(3 downto 1);
B <= A(0) & B(3 downto 1);
end if;

4.4 » Multiplication of Signed Binary Numbers 141
Figure 4-16 Model for 2's Complement Multiplier with Control Signals
. -- This architecture of a 4-bit multiplier for 2’'s complement
| -— numbers uses control signals.
‘architecture behave2 of mult2CS is
E signal State, Nextstate: integer range 0 to 5;
signal A, B: bit_vector(3 downto 0);
signal AdSh, Sh, Load, Cm, Done: bit;
alias M: bit is B{0);
ibegin
process
variable addout: bit_vector (4 downto 0);
begin
Load <= '0'; AdSh <= '0'; Sh <= '0'; Cm <= '0'; Done <= '0';
wait for 0 ns;
case State is
when 0=> --initial State
if St='1' then Load <= 'l'; Nextstate <= 1; end if;
when 1 | 2 | 3 => --"add/shift" State
if M = '1l' then AdSh <= '1l';
else Sh <= '1';
end if;
Nextstate <= State + 1;
when 4 => --add complement if sign
if M = '1l' then --bit of multiplier is 1
Cm <= '1l'; AdSh <= '1';
else Sh <= '1';
end if;
nextstate <= 5;
when 5 => --output product
done <= '1';
nextstate <= 0;
end case;
wait until CLK = '1'; --executes on rising edge
if Cm = '0' then addout := add4(A,Mcand, '0');
else addout := add4 (A, not Mcand, 'l');
end if;
if Load = '1l' then --load the multiplier
A <= "0000";
B <= Mplier;
end if;
if AdSh = '1' then --Add multiplicand to A and shift

142 CHAPTER 4 @ DesioN OF NETWORKS FOR ARITHMETIC OPERATIONS

if Done = 'l' then
Product <= A(2 downto 0) & B;
end if;

State <= Nextstate;
end process;
| end behave?;

registers are updated and the State is updated. We can test the VHDL code of Figure 4-16
using the same test file we used previously and verify that we get the same product outputs.

Since the control state graph (Figure 4-11) is a loop of states, it is natural to design
the control network using a counter. We use a 74163 counter and associated logic, as
shown in Figure 4-17. The counter output, Q,Q,0,Q,, represents the state of the control
network. We could have used only 3 bits of the counter to represent the six states. However,
the logic is simpler if we use all 4 bits with the following state assignment:

S, > 0000, S, -> 0100, S,->0101, S, > 0110, S, -> 0111, S, -> 1000

With this assignment the counter should be cleared in S, loaded with Din = 0100 in S,
and incremented in the remaining states. By inspection

CLRI =Qi Done=Q, (CLRI=0and Done = 1 in state 1000.)

Load =Q,0,5t (Load in state 0000 when St = 1.)

Ldl = Load’ (Load the counter in state 0000 when St = 1.)

Pl =0, (Increment in states 0100, 0101, 0110, 0111.)

Sh =M'Q, (Shift in states 0100, 0101, 0110, 0111 if M =0.)
AdSh =MQ, (Add/shift in states 0100, 0101, 0110, 0111 if M =1.)
Cm =MQ,Q,

To verify this design, we replace the behavioral description of the control network
with these and update the states of the flip-flops after waiting for the clock edge (see
Figure 4-18). The registers are updated in the same way as before. We have also explicitly
defined the complementer output as comp. We can then compute the complementer output
by XORing each input bit with Cm. In the statement

comp <= Mcand xor Cm&Cm&Cm&Cm

four copies of Cm are made using the concatenation operator. This corresponds to the
actual hardware, since Cm will be connected to four XOR gate inputs. In the port map for
the counter, the reserved word open is used to indicate no connection to the carry output.
Again, we can use the same test files as before and verify that the product outputs are the
same.

4.4 « Multiplication of Signed Binary Numbers 143

Figure 4-17 Realization of Multiplier Control Network

5 7
Q3 Q@ Q Q

Pl 1—
Ldi 74163 1
Cirl CLK
N 9 D3 p2 DI DO
LOGIC [Lo ﬁ
|.—» Done T T T
| . Sh 0 1 0 0
St — | AdSh
M — — Co

Figure 4-18 Model for 2's Complement Multiplier Using Control Equations

%—— This model of a 4-bit multiplier for 2’'s complement numbers

| —— implements the controller using a counter and logic equations.
/library BITLIB;

.use BITLIB.bit_pack.all;

 entity mult2CEQ is
. port(CLK, St: inm bit;
Mplier,Mcand: in bit_vector (3 downto 0);
Product: out bit_vector(6 downto 0));
end mult2CEQ;

architecture m2ceqg of mult2CEQ is
signal A, B, Q, Comp: bit_vector(3 downto 0);
signal addout: bit_vector(4 downto 0);
signal AdSh, Sh, Load, Cm, Done, Ldl, CLR1, Pl: bit;
Signal One: bit:='1';

Signal Din: bit_vector (3 downto 0) := "0100";

begin
Countl: C74163 port map (Ldl, CLR1, Pl, One, CLK, Din, open, Q);
P1 <= Q(2);

CLR1 <= mot Q(3);

Done <= Q(3});

Sh <= not M and Q(2);

AdSh <= M and Q(2);

Cm <= Q(1) and Q(0) and M;

. Load <= mot Q(3) and not Q(2) and St;

! Ldl <= not Load;
Comp <= Mcand xor (Cm & Cm & Cm & Cm); --complement Mcand if Cm='1"
addout <= add4 (A,Comp,Cm) ; --add complementer output to A

144 CHaPTER 4 @ DesiGN oF NETWORKS FOR ARITHMETIC OPERATIONS

. process
i begin
; wait until CLK = '1'; --executes on rising edge
if Load = '1' then --load the multiplier
A <= "0000";
B <= Mplier;
end if;
if AdSh = *'1' then --Add multiplicand to A and shift

A <= (Mcand(3) xor Cm) & addout(3 downto 1);
B <= addout{(0) & B(3 downto 1); -
end if;
if Sh = '1' then --Right shift with sign extend
A <= A(3) & A(3 downto 1);
B <= A(0) & B(3 downto 1);

| end if;

: if Done = '1' then

Product <= A(2 downto 0) & B;
f end if;

end process;
. end m2ceq;

4.5 DESIGN OF A BINARY DIVIDER

We will consider the design of a parallel divider for positive binary numbers. As an example,
we will design a network to divide an 8-bit dividend by a 4-bit divisor to obtain a 4-bit
quotient. The following example illustrates the division process:

1 quotient
divisor 1101 /10000111 dividend
ol

(135 + 13 = 10 with 0111
a remainder of 5) 0000
1111
1101
0101
0000
0101 remainder

Just as binary multiplication can be carried out as a series of add and shift operations,
division can be carried out by a series of subtract and shift operations. To construct the
divider, we will use a 9-bit dividend register and a 4-bit divisor register, as shown in
Figure 4-19. During the division process, instead of shifting the divisor right before each
subtraction, we will shift the dividend to the left. Note that an extra bit is required on the
left end of the dividend register so that a bit is not lost when the dividend is shifted left.
Instead of using a separate register to store the quotient, we will enter the quotient bit-by-
bit into the right end of the dividend register as the dividend is shifted left.

4.5 * Design of a Binary Divider 145

Figure 4-19 Block Diagram for Parallei Binary Divider

J

Dividend Register

X8| X7 | X6 | X5 | X4 X3 |X2]X1]| X0 \Ld St (Start Signal)
T Su
Subtractor C
and - L — -V
comparator Control (overflow
Indicator)
I 1
0
Ffﬂ v2 | vi | vo |

The preceding division example (135 divided by 13) is reworked next, showing the

" location of the bits in the registers at each clock time. Initially, the dividend and divisor are

entered as follows:

0Oj1J10j0|0]J0(f1}1

111101

Subtraction cannot be carried out without a negative result, so we will shift before we
subtract. Instead of shifting the divisor one place to the right, we will shift the dividend
one place to the left:

| -———— Dividing line between dividend and quotient.

1 0000 11 1%'0
1 1 0 1 : \ Note that after the shift, the rightmost position
in the dividend register is “empty.”

Subtraction is now carried out and the first quotient digit of 1 is stored in the unused
position of the dividend register:

1
0 00 1.1 1 1 11-a——-— Firstquotient digit
i

Next we shift the dividend one place to the left:

[146

CHaprTer 4 ® Desion oF NETWORKS FOR ARITHMETIC OPERATIONS

Since subtraction would yield a negative result, we shift the dividend to the left again, and
the second quotient bit remains zero:

011 1 0 0

!

1 11
110 1!
]

Subtraction is now carried out, and the third quotient digit of 1 is stored in the unused
position of the dividend register:

]
0 001 0 1+1 0O |-4—— Thirdquotient digit
'

A final shift is carried out and the fourth quotient bit is set to 0:

0010 1,1 010

- o | >
" "

. ! .
remainder quotient

The final result agrees with that obtained in the first example.

If, as aresult of a division operation, the quotient contains more bits than are available
for storing the quotient, we say that an overflow has occurred. For the divider of Figure
4-19, an overflow would occur if the quotient is greater than 15, since only 4 bits are
provided to store the quotient. It is not actually necessary to carry out the division to
determine if an overflow condition exists, since an initial comparison of the dividend and
divisor will tell if the quotient will be too large. For example, if we attempt to divide 135
by 7, the initial contents of the registers are:

010000111
0111

Since subtraction can be catried out with a nonnegative result, we should subtract the
divisor from the dividend and enter a quotient bit of 1 in the rightmost place in the dividend
register. However, we cannot do this because the rightmost place contains the least
significant bit of the dividend, and entering a quotient bit here would destroy that dividend
bit. Therefore, the quotient would be too large to store in the 4 bits we have allocated for it,
and we have detected an overflow condition. In general, for Figure 4-19, if initially
XX X XX, 2 Y,Y,Y Y, (i-e., if the left 5 bits of the dividend register exceed or equal the
divisor), the quotient will be greater than 15 and an overflow occurs. Note that if X, X_X X X,
2 Y, 1,1 Y, the quotient is

XXX XX XXX X, | XHXKAK0000 XX XXX,¥16

Y3 YZ Y] YO Y3 Y2 Yl Y() Y3 Y2 Yl YO

4.5 # Design of a Binary Divider 147 |

The operation of the divider can be explained in terms of the block diagram of Figure
4-19. A shift signal (Sh) will shift the dividend one place to the left. A subtract signal (Su)
will subtract the divisor from the 5 leftmost bits in the dividend register and set the quotient
bit (the rightmost bit in the dividend register) to 1. If the divisor is greater than the 4
leftmost dividend bits, the comparator output is C = 0; otherwise, C = 1. The control
circuit generates the required sequence of shift and subtract signals. Whenever C = 0,
subtraction cannot occur without a negative result, so a shift signal is generated. Whenever
C =1, a subtract signal is generated, and the quotient bit is setto 1.

Figure 4-20 shows the state diagram for the control circuit. When a start signal (S7)
occurs, the 8-bit dividend and 4-bit divisor are loaded into the appropriate registers. If Cis
1, the quotient would require five or more bits. Since space is only provided for a 4-bit
quotient, this condition constitutes an overflow, so the divider is stopped and the overflow
indicator is set by the V output. Normally, the initial value of C is 0, so a shift will occur
first, and the control circuit will go to state S2. Then, if C =1, subtraction occurs. After the
subtraction is completed, C will always be 0, so the next clock pulse will produce a shift.
This process continues until four shifts have occurred and the control is in state S5. Then
a final subtraction occurs if necessary, and the control returns to the stop state. For this
example, we will assume that when the start signal (S?) occurs, it will be 1 for one clock
time, and then it will remain O until the control network is back in state SO. Therefore, St
will always be 0 in states Sl through S5.

Figure 4-20 State Diagram for Divider Control Circuit

St/Loa

HEE)

d

Table 4-4 gives the state table for the control circuit. Since we assumed that St =0 in
states S1, S2, S3, and S4, the next states and outputs are don’t cares for these states when
St = 1. The entries in the output table indicate which outputs are 1. For example, the entry
Sh means Sh = 1 and the other outputs are 0.

148 CHAPTER 4 @ DEesicN oF NETWORKS FOR ARITHMETIC OPERATIONS

Table 4-4 State Table for Divider Control Circuit

StC StC

State | 00 01 11 10 00 01 11 10
So Sq S, ;) 0 0 Load Load
S, S, So — — Sh v — —
S, S, S, — - Sh Su — —
S, S, S, — —_ Sh Su —_ —
S, S S, — — Sh Su — —_
S Sy S, —_ — 0 Su — —

This example illustrates a general method for designing a divider for unsigned binary
numbers, and the design can easily be extended to larger numbers such as 16 bits divided
by 8 bits or 32 bits divided by 16 bits. We now design a divider for signed (2’s complement)
binary numbers that divides a 32-bit dividend by a 16-bit divisor to give a 16-bit quotient.
Although algorithms exist to divide the signed numbers directly, such algorithms are rather
complex. So we take the easy way out and complement the dividend and divisor if they are
negative; when division is complete, we complement the quotient if it should be negative.

Figure 4-21 shows a block diagram for the divider. We use a 16-bit bus to load the
registers. Since the dividend is 32 bits, two clocks are required to load the upper and lower
halves of the dividend register, and one clock is needed to load the divisor. An extra sign
flip-flop is used to store the sign of the dividend. We will use a dividend register with a
built-in 2’s complementer. The subtracter consists of an adder and a complementer, so
subtraction can be accomplished by adding the 2’s complement of the divisor to the dividend
register. If the divisor is negative, using a separate step to complement it is unnecessary;
we can simply disable the complementer and add the negative divisor instead of subtracting
its complement. The control network is divided into two parts—a main control, which
determines the sequence of shifts and subtracts, and a counter, which counts the number of
shifts. The counter outputs a signal K = | when 15 shifts have occurred. Control signals
are defined as follows:

LdU Load upper half of dividend from bus.

LdL Load lower half of dividend from bus.

Lds Load sign of dividend into sign flip-flop.

S Sign of dividend.

Cml Complement dividend register (2’s complement).

Ldd Load divisor from bus.

Su Enable adder output onto bus (Ena) and load upper half of dividend from

bus.

Cm2 Enable complementer. (Cm2 equals the complement of the sign bit of the

divisor, so a positive divisor is complemented and a negative divisor is

not.)

Sh Shift the dividend register left one place and increment the counter.

C Carry output from adder. (If C = 1, the divisor can be subtracted from the
upper dividend.)

St Start.

4.5 ¢ Design of a Binary Divider 149

\% Overflow.
Qneg Quotient will be negative. (Qneg = 1 when the sign of the dividend and
divisor are different.)

Figure 4-21 Block Diagram for Signed Divider

Dbus
Data in
-
16 16
Dividend
- 7 Cm]

I Acc (Remainder) ! Q (Quotient) T Ld

16 4 [Ldi

S 16
pY C_Ish
E
L 16-bit Full Adder ra L St
Cout Cin cm?2 Main
Control
Compout 16 K v
Cm2 4 -bit > H
16-bit Complementer] Counter
. 316 Ldd| St [Lds

. \
Divisor —|[< LSign

4
£

The procedure for carrying out the signed division is as follows:

1. Load the upper half of the dividend from the bus, and copy the sign of the dividend
into the sign flip-flop.

Load the lower half of the dividend from the bus.

Load the divisor from the bus.

Complement the dividend if it is negative.

If an overflow condition is present, go to the done state.

Else carry out the division by a series of shifts and subtracts.

When division is complete, complement the quotient if necessary, and go to the done
state.

NN R WD

Testing for overflow is slightly more complicated than for the case of unsigned
division. First, consider the case of all positive numbers. Since the divisor and quotient are
each 15 bits plus sign, their maximum value is 7FFFh. Since the remainder must be less
than the divisor, its maximum value is 7FFEh. Therefore, the maximum dividend for no
overflow is

divisor x quotient + remainder = 7FFFh x 7FFFh + 7FFEh = 3FFF7FFFh

|150

CHAPTER 4 @ DesiGN OfF NETWORKS FOR ARITHMETIC OQPERATIONS

If the dividend is 1 larger (3FFF8000h), division by 7FFFh (or anything smaller) will give
an overflow. We can test for the overflow condition by shifting the dividend left one place
and then comparing the upper half of the dividend (divu) with the divisor. If divu = divisor,
the quotient would be greater than the maximum value, which is an overflow condition.
For the preceding example, shifting 3FFF8000h left once gives 7FFF0000h. Since 7FFFh
equals the divisor, there is an overflow. On the other hand, shifting 3FFF7FFFh left gives
TFFEFFFEh, and since 7FFEh < 7FFFh, no overflow occurs when dividing by 7FFFh.
Another way of verifying that we must shift the dividend left before testing for
overflow is as follows. If we shift the dividend left one place and then divu = divisor, we
could subtract and generate a quotient bit of 1. However, this bit would have to go in the
sign bit position of the quotient. This would make the quotient negative, which is incorrect.
After testing for overflow, we must shift the dividend left again, which gives a place to
store the first quotient bit after the sign bit. Since we work with the complement of a
negative dividend or a negative divisor, this method for detecting overflow will work for
negative numbers, except for the special case where the dividend is 80000000h (the largest
negative value). Modifying the design to detect overflow in this case is left as an exercise.
Figure 4-22 shows the state graph for the control network. When St = 1, the registers
are loaded. In S2, if the sign of the dividend (S) is 1, the dividend is complemented. In S3,
we shift the dividend left one place and then we test for overflow in $4. If C = 1, subtraction
is possible, which implies an overflow, and the network goes to the done state. Otherwise,
the dividend is shifted left. In S5, Cis tested. If C = 1, then Su = 1, which implies Ldu and
Ena, so the adder output is enabled onto the bus and loaded into the upper dividend register
to accomplish the subtraction. Otherwise, Sh = 1 and the dividend register is shifted. This
continues until K = 1 at which time the last shift occurs if C = 0, and the network goes to
S6. Then if the sign of the divisor and the saved sign of the dividend are different, the
dividend register is complemented so that the quotient will have the correct sign.

Figure 4-22 State Graph for Signed Divider Control Network

4.5 ¢ Design of a Binary Divider 151

The VHDL code for the signed divider is shown in Figure 4-23. Since the 1’s
complementer and adder are combinational networks, we have represented their operation
by concurrent statements. ADDVEC is executed any time ACC or compout changes, so
Sum and carry are immediately recomputed. All the signals that represent register outputs
are updated on the rising edge of the clock, so these signals are updated in the process after
waiting for CLK to change to '1'. For example, ADDVEC is called in states 2 and 6 to store
the 2’s complement of the dividend back into the dividend register. The counter is simulated
by an integer signal, count. For convenience in listing the simulator output, we have added
a ready signal (Rdy), which is turned on in SO to indicate that the division is completed.

Figure 4-23 VHDL Model of 32-bit Signed Divider

ﬁlibrary BITLIB;
use BITLIB.bit_pack.all;

‘entity sdiv is
port (Clk,St: in bit;
Dbus: in bit_vector (15 downto 0);
Quotient: out bit_vector (15 downto () ;
V, Rdy: out bit);
end sdiv;

architecture Signdiv of Sdiv is
constant zero_vector: bit_vector (31 downto 0):=(others=>'0"');
signal State: integer range 0 to 6;
signal Count : integer range 0 to 15;
signal Sign,C,NC: bit;
signal Divisor, Sum,Compout: bit_vector (15 downto 0);
signal Dividend: bit_vector (31 downto 0);
alias Q: bit_vector(l5 downto 0) is Dividend(l5 downto 0);
alias Acc: bit_vector(l5 downto 0) is Dividend(31 downto 16);

- begin -- concurrent statements
; compout <= divisor when divisor(15) = '1° -- 1's complementer
else not divisor;
Addvec (Acc, compout ,not divisor(15),Sum,C,16); -- 16-bit adder

Quotient <= Qr
Rdy <= 'l' when State=0 else '0';

process
! begin
wailt until Clk = '1'; -- wait for rising edge of clock
case State is
when 0=>
if St = '1l' then
Acc <= Dbus; -- load upper dividend
Sign <= Dbus({15);
State <= 1;
V<= '0"; -- initialize overflow
Count <= 0; -- initialize counter

end if;

|152 CHapTer 4 @ DesioN OF NETWORKS FOR ARITHMETIC OPERATIONS

when 1=> .
Q <= Dbus; -- load lower dividend
State <= 2;

when 2=>
Divisor <= Dbus;
if Sign ='l'then -- two's complement Dividend if necessary

addvec (not Dividend, zero_vector,'l',Dividend,NC,32);
end if;
State <= 3;

when 3=>
Dividend <= Dividend(30 downto 0) & '0'; -~ left shift
Count <= Count+1;

State <= 4;

when 4 =>

if ¢ ='1' then -~ C
v <= '1l';
State <= 0;

else -- C
Dividend <= Dividend(30 downto 0) & '0'; -- left shift
Count <= Count+1l;
State <= 5;

end if;
when 5 =>
if C = '1l' then --C
ACC <= Sum; -- gubtract
> Q(Q)<= "1";
else
Dividend <= Dividend(30 downto 0) & '0'; ~-- left shift
if Count = 15 then ~- KC'

; State <= 6; Count <= 0;
else Count <= Count+l;

end if;

end if;

when 6=>

if C = '1l' then -- C
Acc <= Sum; -~ sgubtract
QD) <= '"1';

else if (Sign =xor Divisor(1l5))='1"' then -- C'Qneg

addvec (not Dividend, zero_vector, '1',Dividend,NC,32);

end if; -- 2’s complement Dividend
state <= 0;

end if;

end case;
end process;
end signdiv;

4.5 » Design of a Binary Divider 15&]

We are now ready to test the divider design by using the VHDL simulator. We will
need a comprehensive set of test examples that will test all the different special cases that
can arise in the division process. To start with, we need to test the basic operation of the
divider for all the different combinations of signs for the divisor and dividend (+ +, + —,
— +, and - —). We also need to test the overflow detection for these four cases. Limiting
cases must also be tested, including largest quotient, zero quotient, etc. Use of a VHDL
test bench is convenient because the test data must be supplied in sequence at certain
times, and the length of time to complete the division is dependent on the test data. Figure
4-24 shows a test bench for the divisor. The test bench contains a dividend array and a
divisor array for the test data. The notation X" 07FFQ0BB" is the hexadecimal representation
of a bit string. The process in testsdiv first puts the upper dividend on Dbus and supplies a
start signal. After waiting for the clock, it puts the lower dividend on Dbus. After the next
clock, it puts the divisor on Dbus. It then waits until the Rdy signal indicates that division
is complete before continuing. Count is set equal to the loop-index, so that the change in
Count can be used to trigger the listing output.

Figure 4-24 Test Bench for Signed Divider
‘library BITLIB;
‘use BITLIB.bit_pack.all;

entity testsdiv is
cend testsdiv;

.architecture testl of testsdiv is
| component sdiv
port (Clk,St: in bit;
Dbus: in bit_vector (15 downto 0);
Quotient: out bit_vector(l5 downto 0);
V, Rdy: out bit);
. end component;

| constant N: integer := 12; -- test sdivl N times
‘type arrl is array(l to N) of bit_vector(31 downto 0);

. type arr2 is array(l to N) of bit_vector(15 downto 0);

i constant dividendarr: arrl := (X"0000006F", X"0Q07FFOOBB", X"FFFFFE(08",

’ X"FF80030A", X"3FFFB000", X"3FFF7FFF", X"C0008000", X"CQQ0B00Q",

j X"Cc0008001", X"00000000", X"FFFFFFFF", X"FFFFFFFF");

: constant divisorarr: arr2 := (X"0007*, X"EOOS5", X"001lE", X"EFFA", X"7FFF",
X*7FFF", X"7FFF", X"8000", X"7FFF", X"0001", X"7FFF", X"0000");
'signal CLK, St, V, Rdy: bit;

fsignal Dbus, Quotient, divisor: bit_vector(l5 downto 0);

" signal Dividend: bit_vector (31 downto 0);

isignal count: integer range 0 to N;

|l54 CHapTEr 4 ® DesIGN OF NETWORKS FOR ARITHMETIC OPERATIONS

I begin
! CLK <= not CLK after 10 ns;
process
begin
for i in 1 to N loop
S5t <= '1';
Dbus <= dividendarr (i) (31 downto 16);
wait until rising_edge (CLK):;
Dbus <= dividendarr{i) {15 downto 0);
wait until rising_edge (CLK);
Dbus <= divisorarr(i);
St <= '0°;
dividend <= dividendarr (i) (31 downto 0);-- save dividend for
listing
divisor <= divisorarr(i); -- save divisor for
listing
wait until (Rdy = '1');
; count <= 1i; -- save index for triggering
5 end loop;

end process;
] sdivl: sdiv port map(Clk, St, Dbus, Quotient, V, RAy);
‘end testl;

Figure 4-25 shows the simulator command file and output. The -NOtrigger, together
with the —Trigger count in the list statement, causes the output to be displayed only when
the count signal changes. Examination of the simulator output shows that the divider
operation is correct for all of the test cases, except for the following case:

C0008000h + 7FFFh = —3FFF8000 + 7FFFh = -8000h = 8000h

In this case, the overflow is turned on, and division never occurs. In general, the divider
will indicate an overflow whenever the quotient should be 8000h (the most negative value).
This occurs because the divider basically divides positive numbers, and the largest positive
quotient is 7FFFh. If it is important to be able to generate the quotient 8000h, the overflow
detection can be modified so it does not generate an overflow in this special case.

Figure 4-25 Simulation Test Results for Signed Divider

?—» Command file to test results of signed multiplier

H

ilist -hex -NOtrigger dividend divisor Quotient V -Trigger count
i run 5300

i L -

Problems 155

ns delta dividend divisor guotient v count

0 +0 00000000 0000 0000 0O 0

470 +3 0000006F 0007 000F O 1

: 910 *+3 07FFO00OBRB E005 BFFE 0 2
| 1330 +3 FFFFFE0S 001E FFFO 0 3
1910 +3 FF80030Aa EFFA 07FC 0 4

2010 +3 3FFF8000 7FFF 0000 1 5

2710 +3 3FFF7FFF 7FFF TFFF 0)

2810 +3 C0008000 7FFF 0000 1 7

3510 +3 C0008000 8000 7FFF 0 8

4210 +3 C0008001 7FFF 8001 0 9

4610 +3 00000000 0001 0000 0 A

5010 +3 FFFFFFFF TFFF 0000 0 B

5110 +3 FFFFFFFF 0000 0002 1 C

In this chapter, we described algorithms for multiplication and division of unsigned
and signed binary numbers. We designed digital systems to implement these algorithms.
After developing a block diagram for such a system and defining the required control
signals, we used a state graph to define a sequential machine that generates control signals
in the proper sequence. We used VHDL to describe the systems at several different levels
so that we can simulate and test for correct operation of the systems we have designed.

' Problems

4.1 Ablock diagram for a 16-bit 2’s complement serial subtracter is given here. When St =1, the
registers are loaded and then subtraction occurs. The shift counter, C, produces a signal C15 =1 after
15 shifts. V should be set to 1 if an overflow occurs. Set the carry flip-flop to 1 during load in order
to form the 2’s complement. Assume that St remains 1 for one clock time.

(a) Draw a state diagram for the control (two states).

(b) Write VHDL code for the system. Use two processes. The first process should determine the
next state and control signals; the second process should update the registers on the rising edge of
the clock.

- X(16) 1 X0 |
_xanas) YP | Full 3

T Y(16) l_J_l>°_—' Adder

A viNai6)

LOAD
SHIFT . CA i CB

CLK— CONTROL | o
St YP— oV 1= v

g—-
FF
c@) C15—+

|156

CHAPTER 4 ® DESIGN OF NETWORKS FOR ARITHMETIC OPERATIONS

4.2 Initially a 3-digit BCD number is placed in the A register. When an St signal is received,
conversion to binary takes place, and the resulting binary number is stored in the B register. At each
step of the conversion, the entire BCD number (along with the binary number) is shifted one place to
the right. If the result in a given decade is greater than or equal 1000, the correction network subtracts
0011 from that decade. (If the result is less than 1000, the correction network leaves the contents of
the decade unchanged.) A shift counter is provided to count the number of shifts. When conversion
is complete, the maximum value of B will be 999 (in binary). Nore: B is 10 bits.

(@) Draw the block diagram of the BCD-to-binary converter.

(b) Draw a state diagram of the control network (3 states). Use the following control signals: S,
start conversion; Sh, shift right; Co, subtract correction if necessary; and C9, counter is in state 9, or
C10, counter is in state 10. (Use either C9 or C10 but not both.)

(c) Write a VHDL description of the system.

4.3 The block diagram for a multiplier for signed (2’s complement) binary numbers is shown in
Figure 4-10. Give the contents of the A and B registers after each clock pulse when multiplicand =
—1/8 and multiplier = -3/8.

44

(@) Draw the block diagram for a 32-bit serial adder with accumulator. The control network uses
a 5-bit counter, which outputs a signal K = 1 when it is in state 11111. When a start signal (V) is
received, the registers should be loaded. Assume that N will remain 1 until the addition is complete.
When the addition is complete, the control network should go to a stop state and remain there until
N is changed back to 0. Draw a state diagram for the control network (excluding the counter).

(b) Write the VHDL for the complete system, and verify its correct operation.
45 ‘

(@ Draw the block diagram for a divider for unsigned binary numbers that divides an 8-bit dividend
by a 3-bit divisor to give a 5-bit quotient.

(b) Draw a state graph for the control circuit. Assume that the start signal (57) is present for one
clock period.

(¢) Write a high-level VHDL description of the divider.

4.6 In Section 4.4 we developed an algorithm for mulﬁp]ying signed binary fractions, with negative
fractions represented in 2’s complement.

(a) TDlustrate this algorithm by multiplying 1.0111 by 1.101. .

(b) Draw a block diagram of the hardware necessary to implement this algorithm for the case
where the multiplier is 4 bits, including sign, and the multiplicand is 5 bits, including sign.

4.7

(a) Write a VHDL module that describes one bit of a full adder with accumulator. The module
should have two control inputs, Ad and L. If Ad = 1, the Y input (and carry input) are added to the
accumulator. If L = 1, the Y input is loaded into the accumulator.

(b) Using the module defined in (a), write a VHDL description of a 4-bit subtracter with
accumulator. Assume negative numbers are represented in 1’s complement. The subtracter should
have control inputs Su (subtract) and Ld (load).

Problems 157

4.8

(a) Show alogic diagram for a 16-bit serial multiplier. Use three 16-bit shift registers, two 74163
counters, a full adder, a D flip-flop, and appropriate gates. Note: Be sure to account for the fact that
the shift registers and 74163 change state on the rising edge of the clock.

(b) Draw a state graph for the control network.

(c) Realize the control network using a PLA and 2 D flip-flops.

(d) Give the PLA table.

(¢) Write a VHDL description for the multiplier using a PLA model.

4.9 Write a VHDL description of the serial multiplier in Problem 4.8. Define all the control signals
explictly. Do not use a case statement or IF clauses outside the modules. Specify the system in terms
of the modules and their connections as well as statements describing the adder, PLA and flip-flop
operations, etc.

4.10 This problem concerns the design of a divider for unsigned binary numbers that will divide a
16-bit dividend by an 8-bit divisor to give an 8-bit quotient. Assume that the start signal (ST = 1) is
1 for exactly one clock time. If the quotient would require more than 8 bits, the divider should stop
immediately and output V = 1 to indicate an overflow. Use a 17-bit dividend register and store the
quotient in the lower 8 bits of this register. Use a 4-bit counter to count the number of shifts, together
with a subtract-shift controller.

(@) Draw ablock diagram of the divider.
(b) Draw a state graph for the subtract-shift controller (3 states).
() Write a VHDL description of the divider.

4.11 This problem concerns the design of a binary divider that will divide an 8-bit number by a 4-
bit number to give a 4-bit quotient. All numbers are positive numbers without a sign bit. In order to
speed up the operation of the divider, the circuit is configured so that shifting and subtracting can be
completed in one clock time (instead of two clocks).

(a) Draw a block diagram that includes an 8-bit register, a 5-bit subtracter, and other necessary
components. Be careful to show which subtracter outputs connect to which register inputs. An overflow
indication is not required.

(b) Define the required control signals and draw a state diagram for the controller. Assume that
the start signal is present for only one clock and the divider stops in a done state.

4.12 This problem involves the design of a network that finds the square root of an 8-bit unsigned
binary number N using the method of subtracting out odd integers. To find the square root of N, we
subtract 1, then 3, then 5, etc., until we can no longer subtract without the result going negative. The
number of times we subtract is equal to the square root of N. For example, to find \27: 27-1= 26;
26-3=23;23-5=18; 18-7=11;11-9=2; 211 (can’t subtract). Since we subtracted 5 times,
V27 = 5. Note that the final odd integer is 11,,= 1011, and this consists of the square root (101, =
5,p) followed by a 1.

[158

CHAPTER 4 ® DESIGN OF NETWORKS FOR ARITHMETIC OPERATIONS

(a) Draw a block diagram of the square rooter that includes a register to hold N, a subtracter, a
register to hold the odd integers, and a control network. Indicate where to read the final square root.
Define the control signals used on the diagram.

(b) Draw a state graph for the control network using a minimum number of states. The N register
should be loaded when St = 1. When the square root is complete, the control network should output
a done signal and wait until St = 0 before resetting.

4.13 Design a multiplier that will multiply two 16-bit signed binary integers to give a 32-bit product.
Negative numbers should be represented in 2’s complement form. Use the following method: First
complement the multiplier and multiplicand if they are negative, multiply the positive numbers, and
then complement the product if necessary. Design the multiplier so that after the registers are loaded,
the multiplication can be completed in 16 clocks.

(a) Draw ablock diagram of the multiplier. Use a 4-bit counter to count the number of shifts. (The
counter will output a signal K = 1 when it is in state 15.) Define all condition and control signals
used on your diagram.

(b) Draw a state diagram for the multiplier control using a minimum number of states (3 states).
‘When the multiplication is complete, the control network should output a done signal and then wait
for ST = O before returning to state SO.

(c) Write a VHDL behavioral description of the multiplier without using control signals (for
example, see Figure 4-5) and test it.

(d) Write a VHDL behavioral description using control signals (for example, see Figure 4-12) and
test it.

4.14 Implement the block diagram for the multiplier of Figure 4-10 using 22V10 PALs and no
other logic. Is it possible to partition the block diagram so that only two 22V10s are required? If not,
use three 22V10s. Show the connections to the PALs and give the logic equations for the D input to
each macrocell. Specify the required fuse pattern for typical macrocells.

4.15 The objective of this problem is to use VHDL to describe and simulate a multiplier for signed
binary numbers using Booth’s algorithm. Negative numbers should be represented by their 2’s
complement. Booth's algorithm works as follows, assuming each number is » bits including sign:
Use an (n + 1)-bit register for the accumulator (4) so the sign bit will not be lost if an overflow
occurs. Also, use an (r + 1)-bit register (B) to hold the multiplier and an rn-bit register (C) to hold the
multiplicand.

1. Clear A (the accumulator), load the multiplier into the upper » bits of B, clear B, and load the
multiplicand into C.
2. Test the lower two bits of B (B, B).
If B\ B, = 01, then add C to A (C should be sign-extended to » + 1 bits and
added to A using an (n + 1)-bit adder).
If B|B, = 10, then add the 2’s complement of C to A.
If B,B, =00 or 11, skip this step.
3. Shift A and B together right one place with sign extended.
Repeat steps 2 and 3, n — 1 more times.
5. The product will be in A and B, except ignore B,

&

Problems 159 J

Example for n=15: Multiply -9 by —13.

A B BB,

1. Load registers. 000000 100110 10 C=10111
2. Add2’s comp. of Cto A. 001001

001001 100110
3. Shift A&B. 000100 110011 11
3. Shift A&B. 000010 011001 01
2. AddCtoA. 110111

111001 011001
3. Shift A&B. 111100 101100 00
3. Shift A&B. 111110 010110 10
2. Add?2’s comp. of Cto A. 001001

000111 010110
3. Shift A&B. 000011 101011

Final result: 0001110101 =+117

(@ Draw a block diagram of the system for n = 8. Use 9-bit registers for A and B, a 9-bit full
adder, an 8-bit complementer, a 3-bit counter, and a control network. Use the counter to count the
number of shifts.

(b) Draw a state graph for the control network. When the counter is in state 111, return to the start
state at the time the last shift occurs (3 states should be sufficient).

(¢) Write behavioral VHDL code for the multiplier (do not explicitly use output control signals in
your VHDL code). Use the procedure addvec (in BITLIB), which will add two n-bit vectors and a
carry to produce an n-bit sum and a carryout.

(d) Simulate your VHDL design using the following test cases (in each pair, the second number is
the multiplier):

01100110 x 00110011
10100110 X 01100110
01101011 x 10001110
11001100 x 10011001

Verify that your results are correct.

4.16 This problem involves the design of a parallel adder-subtracter for 8-bit numbers expressed in
sign and magnitude notation. The inputs X and Y are in sign and magnitude, and the output Z must be
in sign and magnitude. Internal computation may be done in either 2’s complement or 1’s complement
(specify which you use), but no credit will be given if you assume the inputs X and Y are in 1’s or 2’s
complement. If the input signal Sub =1, then Z=X-Y, else Z=X + Y. Your network must work for
all combinations of positive and negative inputs for both add and subtract. You may use only the
following components: an 8-bit adder, a 1’s complementer (for the input ¥), a second complementer
(which may be either 1’s complement or 2's complement—specify which you use), and a
combinational logic network to generate control signals. Hint: —X + Y=~ (X —Y). Also generate an
overflow signal that is 1 if the result cannot be represented in 8-bit sign and magnitude.

[160

CHAPTER 4 @ DesiGN oF NETWORKS FOR ARITHMETIC OPERATIONS

@
)

(]
4.17

Draw the block diagram. No registers, multiplexers, or tristate busses are allowed.

Give a truth table for the logic network that generates the necessary control signals. Inputs for
the table should be Sub, Xs, and Ys in that order, where Xs is the sign of X and ¥s is the sign
of .

Explain how you would determine the overflow and give an appropriate equation.

Using the full adder developed in Chapter 2, write a VHDL data flow description of the 4 x 4

array multiplier in Figure 4-7.

4.18
@
(b)
()

G

Consider a 2 x 2 array multiplier with 2-bit multiplicand and multiplier with a 4-bit result.
Draw the block diagram of the multiplier.
How many AND gates, full adders, and half-adders did you use?

If the maximum delay in a full adder is 15 ns, and the delay of an AND gate is 10 ns, what is
the worst-case time to complete the multiplication?

How fast does the clock of a 2-bit serial-parallel multiplier similar to Figure 4-3 have to be in
order to be as fast as the answer in part (c)?

CHAPTER 5

DicitAL DEsIGN wiTH SM CHARTS

A state machine is often used to control a digital system that carries out a step-by-step
procedure or algorithm. The state graphs in Figures 4-2, 4-4, 4-6, 4-9, 4-11, 4-20, and 4-22
define state machines for controlling adders, multipliers, and dividers. As an alternative to
using state graphs, a special type of flowchart, called a state machine flowchart, or SM
chart, may be used to describe the behavior of a state machine. SM charts are often used to
design control units for digital systems.

In this chapter we first describe the properties of SM charts and how they are used in
the design of state machines. Then we show examples of SM charts for a multiplier and a
dice game controller. We construct VHDL descriptions of these systems from the SM
charts, and we simulate the VHDL code to verify correct operation. We then proceed with
the design and show how PLA tables and logic equations can be derived from SM charts.
Finally, we show how alternative designs can be obtained by transforming the SM charts.

5.4 STATE MACHINE CHARTS

Just as flowcharts are useful in software design, flowcharts are useful in the hardware
design of digital systems. In this section we introduce the SM chart, which is also called an
ASM (algorithmic state machine) chart. We will see that the SM chart offers several
advantages over state graphs. It is often easier to understand the operation of a digital
system by inspection of the SM chart instead of the equivalent state graph. The conditions
for a proper state graph (see Section 4.2) are automatically satisfied for an SM chart. A
given SM chart can be converted into several equivalent forms, and each form leads directly
to a hardware realization.

An SM chart differs from an ordinary flowchart in that certain specific rules must be
followed in constructing the SM chart. When these rules are followed, the SM chart is
equivalent to a state graph, and it leads directly to a hardware realization. Figure 5-1 shows
the three principal components of an SM chart. The state of the system is represented by a
state box. The state box contains a state name, followed by a slash (/) and an optional
output list. After a state assignment has been made, a state code may be placed outside the
box at the top. A decision box is represented by a diamond-shaped symbol with true and
false branches. The condition placed in the box is a Boolean expression that is evaluated to
determine which branch to take. The conditional output box, which has curved ends, contains

162 CHAPTER 5 @ DiGiTAL DesiGN witH SM CHARTS

a conditional output list. The conditional outputs depend on both the state of the system
and the inputs.

An SM chart is constructed from SM blocks. Each SM block (Figure 5-2) contains
exactly one state box, together with the decision boxes and conditional output boxes
associated with that state. An SM block has one entrance path and one or more exit paths.
Each SM block describes the machine operation during the time that the machine is in one
state. When a digital system enters the state associated with a given SM block, the outputs

Figure 5-1 Components of an SM Chart

optional
l / state code

XXX (true (false conditional
state_name/ branch) 1 0 branch) output list

output list

» (c) Conditional
(a) State box (b) Decision box output box

on the output list in the state box become true. The conditions in the decision boxes are
evaluated to determine which path (or paths) are followed through the SM block. When a
conditional output box is encountered along such a path, the corresponding conditional
outputs become true. If an output is not encountered along a path, that output is false by
default. A path through an SM block from entrance to exit is referred to as a link path.

For the example of Figure 5-2, when state S, is entered, outputs Z, and Z, become 1.
If input X1 =0, Zyand Z, also become 1, If X = X, =0, at the end of the state time the
machine goes to the next state via exit path 1. On the other hand, if X; = 1 and X, = 0, the
output Z; is 1, and exit to the next state will occur via exit path 3. Since Z, and Z, are not
encountered along this link path, Z; = Z, = 0 by default.

A given SM block can generally be drawn in several different forms. Figure 5-3
shows two equivalent SM blocks. In both (a) and (b), the output Z, = 1 if X = 0; the next
state is S, if X, = 0 and S, if X, = 1. As illustrated in this example, the order in which the
inputs are tested may affect the complexity of the SM chart.

The SM charts of Figure 5-4(a) and (b) each represent a combinational network,
since there is only one state and no state change occurs. The outputis Z, = 1 if A + BC =1,
otherwise Z, = 0. Figure 5-4(b) shows an equivalent SM chart in which the input variables
are tested individually. The output is zZ=1 ifA=1lorifA=0,B=1,and C=1. Hence,

Z,=A+ABC=A+BC

which is the same output function realized by the SM chart of Figure 5-4(a).

Certain rules must be followed when constructing an SM block. First, for every valid
combination of input variables, there must be exactly one exit path defined. This is necessary
since each allowable input combination must lead to a single next state. Second, no internal
feedback within an SM block is allowed. Figure 5-5 shows incorrect and correct ways of
drawing an SM block with feedback.

5.1 « State Machine Charts 163 |

Figure 5-2 Example of an SM Block

one entrance path

S1/2Z1Z2| one state L sM

n exit paths

Figure 5-3 Equivalent SM Blocks

|164

CHapTer 5 ® Dicitar DesioN with SM CHarTs

Figure 5-4 Equivalent SM Charts for a Combinational Network

(a) ’ (b)

Figure 5-5 SM Block with Feedback

r-——-

(a) Incorrect (b) Correct

As shown in Figure 5-6(a), an SM block can have several parallel paths that lead to
the same exit path, and more than one of these paths can be active at the same time. For
example, if X 1=X=1 and X, = 0, the link paths marked with dashed lines are active, and
the outputs Z,, Z,, and Z, are 1. Although Figure 5-6(a) would not be a valid flowchart for
aprogram for a serial computer, it presents no problems for a state machine implementation.
The state machine can have a multiple-output network that generates Z,, Z,, and Z, at the
same time. Figure 5-6(b) shows a serial SM block, which is equivalent to Figure 5-6(a). In
the serial block only one active link path between entrance and exit is possible. For any
combination of input values, the outputs will be the same as in the equivalent parallel
form. The link path for X, = X, =1 and X, = 0 is shown with a dashed line, and the outputs
encountered on this path are Z,, Z,, and Z,. Regardless of whether the SM block is drawn
in serial or parallel form, all the tests take place within one clock time. In the rest of this
text, we use only the serial form for SM charts.

5.1 » State Machine Charts 155J

- Figure 5-6 Equivalent SM Blocks

(a) Parallel form

(b) Serial form

It is easy to convert a state graph for a sequential machine to an equivalent SM chart.
The state graph of Figure 5-7(a) has both Moore and Mealy outputs. The equivalent SM
chart has three blocks—one for each state. The Moore outputs Z,Z, ZC) are placed in the
state boxes, since they do not depend on the input. The Mealy outputs (Z,, Z,) appear in
conditional output boxes, since they depend on both the state and input. In this example,
each SM block has only one decision box, since only one input variable must be tested.
For both the state graph and SM chart, Z_is always 1 instate S,. If X =0 in state S,, Z, = 1
and the next state is S, If X = 1, Z,=1 and the next state is S,. We have added a state
assignment (S, = 00, S; =01, S, = 10) next to the state boxes.

Figure 5-8 shows a timing chart for the SM chart of Figure 5-7 with an input sequence
X=1,1,1,0,0,0. In this example, all state changes occur immediately after the rising
edge of the clock. Since the Moore outputs (Z, Z,, Z) depend on the state, they can
change only immediately following a state change. The Mealy outputs (Z,, Z,) can change
immediately after a state change or an input change. In any case, all outputs will have their
correct values at the time of the active clock edge.

L1 66 CHapTER 5 @ DicitaL DesioN with SM CHARTS

Figure 5-7 Conversion of a State Graph to an SM Chart

(b) Equivalent SM chart

Figure 5-8 Timing Chart for Figure 5-7

cose| | 1 [1 [[] []

State

%]
=

o 4}F

4

:

:

5.2 e Derivation of SM Charts 167

5.2 DERIVATION OF SM CHARTS

The method used to derive an SM chart for a sequential control network is similar to that
used to derive the state graph. First, we should draw a block diagram of the system we are
controlling. Next we should define the required input and output signals to the control
network. Then we can construct an SM chart that tests the input signals and generates the
proper sequence of output signals.

In this section we give two examples of SM charts. The first example is an SM chart
for control of the binary multiplier shown in Figures 4-3 and 4-6(a). The add-shift control
generates the required sequence of add and shift signals. The counter counts the number of
shifts and outputs K = 1 just before the last shift occurs. The SM chart for the multiplier
control (Figure 5-9) corresponds closely to the state graph of Figure 4-6(c). In state S,
when the start signal St is 1, the registers are loaded. In S|, the multiplier bit M is tested. If
M =1, an add signal is generated and the next state is S,. If M = 0, a shift signal is
generated and K is tested. If K = 1, this will be the last shift and the next state is S,. In S,,
a shift signal is generated, since a shift must always follow an add. If K = 1, the network
goes t0 S, at the time of the last shift; otherwise, the next state is S,. In S, the done signal
is turned on.

Figure 5-9 SM Chart for Binary Multiplier

Conversion of an SM chart to a VHDL process is straightforward. A case statement
can be used to specify what happens in each state. Each condition box corresponds directly
to an if statement (or an elsif). Figure 5-10 shows the VHDL code for the SM chart in
Figure 5-9. Two processes are used. The first process represents the combinational part of
the network, and the second process updates the state register on the rising edge of the
clock. The signals Load, Sh, and Ad are turned on in the appropriate states, and they must
be turned off when the state changes. A convenient way to do this is to set them all to 0 at
the start of the process.

| 168 CHAPTER 5 ® DiGITAL DesicN witH SM CHaRTS

Figure 5-10 VHDL for SM Chart of Figure 5-9

entity Mult is

port (CLK,St,K,M: in bit;
: Load, Sh,Ad,Done: out bit);
. end Mult;

architecture SMbehave of Mult is
signal State, Nextstate: integer range 0 to 3;
' begin
' process(St, K, M, State) -- start 1f state or inputs change
begin
Load <= '0'; Sh <= ‘0'; Ad <= ‘0’;
case State is
when 0 => if St = *1' then -- St (state 0)
Load <= ‘'1°';
Nextstate <= 1;
else Nextstate <= 0; -- St
end if; '
when 1 => if M = ‘'1' then -- M (state 1)
: Ad <= '1';
§ Nextstate <= 2;
; else -- M
i Sh <= '1';
| if K = 'l' then Nextstate <= 3; -- K
else Nextstate <= 1; -- K’
: end if;
end if;
when 2 => Sh <= '1'; -- (state 2)
if K = 'l' then Nextstate <= 3; -- K
else Nextstate <= 1; -- K
end if;
when 3 => Done <= 'l1'; -- (state 3)
Nextstate <= 0;

end case;
end process;
process (CLK)

! begin
if CILK = '1l' then
State <= Nextstate; -- update state on rising edge
end if;

end process;
end SMbehave;

As a second example of SM chart construction, we will design an electronic dice
game, Figure 5-11 shows the block diagram for the dice game. Two counters are used to
simulate the roll of the dice. Each counter counts in the sequence 1,2, 3,4,5,6,1,2,....

5.2 » Derivation of SM Charts 159J

Figure 5-11

Thus, after the “roll” of the dice, the sum of the values in the two counters will be in the
range 2 through 12. The rules of the game are as follows:

1. After the first roll of the dice, the player wins if the sum is 7 or 11. The player loses
if the sum is 2, 3, or 12. Otherwise, the sum the player obtained on the first roll is
referred to as a point, and he or she must roll the dice again.

2. On the second or subsequent roll of the dice, the player wins if the sum equals the
point, and he or she loses if the sum is 7. Otherwise, the player must roll again until
he or she finally wins or loses.

Block Diagram for Dice Game

Display Display | | DiceGame Module !

' |

[|

1-t0-6 1-t0-6 r‘ Roll F———- Rb

Counter Counter| . l«—— Reset {

Y K |

| X |

| Adder | : D; | contror [V10 !

— e _) Test D711 |

: i, > Logic [y, |
2 S i v = > Lose

oint q [

{ Register Comparator [

! L Sp “

The inputs to the dice game come from two push buttons, Rb (roll button) and Reset. Reset
is used to initiate a new game. When the roll button is pushed, the dice counters count at a
high speed, so the values cannot be read on the display. When the roll button is released,
the values in the two counters are displayed, and the game can proceed. If the Win light or
Lose light is not on, the player must push the roll button again.

Figure 5-12 shows a flowchart for the dice game. After rolling the dice, the sum 1is
tested. Ifitis 7 or 11, the player wins; if it is 2, 3, or 12, he or she loses. Otherwise the sum
is saved in the point register, and the player rolls again. If the new sum equals the point, the
player wins; if it is 7, he or she loses. Otherwise, the player rolls again. After winning or
losing, he or she must push Reset to begin a new game. We will assume at this point that
the push buttons are properly debounced and that changes in Rb are properly synchronized
with the clock. A method for debouncing and synchronization was discussed in Section 3.5.

L170 CHAPTER 5 @ DiGiTaL DesiGN wiTH SM CHARTS

Figure 5-12 Flowchart for Dice Game

xBTS

Roll dice

Store sum in
point register

Y

Roll Dice

The components for the dice game shown in the block diagram (Figure 5-11) include
an adder, which adds the two counter outputs, a register to store the point, test logic to
determine conditions for win or lose, and a control network. Input signals to the control
network are defined as follows:

D, =1if the sum of the dice is 7

D,,, = 1if the sum of the dice is 7 or 11

Dy, =1 if the sum of the dice is 2, 3, or 12

Eq =1 if the sum of the dice equals the number stored in the point register
Rb =1 when the roll button is pressed

Reset =1 when the reset button is pressed

5.2 * Derivation of SM Charts 171

Outputs from the control network are defined as follows:

Roll =1 enables the dice counters
Sp =1 causes the sum to be stored in the point register
Win =1 turns on the win light

Lose =1 turns on the lose light

We now convert the flowchart for the dice game to an SM chart for the control
network using the control signals defined above. Figure 5-13 shows the resulting SM
chart.

Figure 5-13 SM Chart for Dice Game

S2 /Win

172 CHAPTER 5 ® DiGITAL Desin witTH SM CHARTS

The control network waits in state S, until the roll button is pressed (Rb = 1). Then it goes
to state Sv and the roll counters are enabled as long as Rb = 1. As soon as the roll button is
released (Rb=0), D, is tested. If the sum is 7 or 11, the network goes to state S, and turns
on the Win light; otherwise, D,,,, is tested. If the sum is 2, 3, or 12, the network goes to
state S, and turns on the Lose light; otherwise, the signal Sp becomes 1 and the sum is
stored in the point register. It then enters S, and waits for the player to “roll the dice”
again. In S, after the roll button is released, if Eq = 1, the sum equals the point and state S,
is entered to indicate a win. If D, =1, the sum is 7 and S, is entered to indicate a loss.
Otherwise, control returns to S 4 SO that the player can roll again. When in S, or S3, the
game is reset to S, when the Reset button is pressed.

Instead of using an SM chart, we could construct an equivalent state graph from the
flowchart. Figure 5-14 shows a state graph for the dice game controller. The state graph
has the same states, inputs, and outputs as the SM chart. The arcs have been labeled
consistently with the rules for proper state graphs given in Section 4.2. Thus, the arcs
leaving state S, are labeled Rb, Rb'Dm, Rb'D7'11D2312, and Rb'D7' D12

Figure 5-14 State Graph for Dice Game Controller

Reset'/0

Reset'/0

Before proceeding with the design, it is important to verify that the SM chart (or state
graph) is correct. We will write a behavioral VHDL description based on the SM chart and
then write a test bench to simulate the roll of the dice. Initially we will write a dice game
module that contains the control network, point register, and comparator (see Figure
5-11). Later, we will add the counters and adder so that we can simulate the complete dice
game.

The VHDL code for the dice game in Figure 5-15 corresponds directly to the SM
chart of Figure 5-13. The case statement in the first process tests the state, and in each state
nested if-then-else (or elsif) statements are used to implement the conditional tests. In
State 1 the Roll signal is turned on when Rb is*1. If all conditions test false, Sp is set to 1
and the next state is 4. In the second process, the state is updated after the rising edge of the
clock, and if Sp is 1, the sum is stored in the point register.

5.2 * Derivation of SM Charts 173

Figure 5-15 Behavioral Model for Dice Game

.entity DiceGame is
port (Rb, Reset, CLK: in bit;
Sum: in integer range 2 to 12;
Roll, Win, Lose: out bit);
end DiceGame;

library BITLIB;
,use BITLIB.bit_pack.all;

architecture DiceBehave of DiceGame is
aignal State, Nextstate: integer range 0 to 5;
signal Point: integer range 2 to 12;
signal Sp: bit;
begin
process (Rb, Reset, Sum, State)
begin
Sp <= '0'; Roll <= '0'; Win <= '0'; Lose <= '0';
case State is
when 0 => if Rb = 'l' then Nextstate <= 1; end 1if;
when 1 =»>
if Rb = '1l' then Roll <= '1"';
elgif Sum = 7 or Sum = 11 then Nextstate <= 2;
elsif Sum = 2 or Sum = 3 or Sum =12 then Nextstate <= 3;

else Sp <= 'l'; Nextstate <= 4;
end if;
when 2 => Win <= '1';
if Reset = 'l' then Nextstate <= 0; end if;
when 3 => Lose <= '1"';
if Reset = 'l' then Nextstate <= 0; end 1if;
when 4 => if Rb = 'l' then Nextstate <= 5; end if;

when 5 =>
! if Rb = '1l' then Roll <= '1';
? elsif Sum = Point then Nextstate <= 2;
elsif Sum = 7 then Nextstate <= 3;
; else Nextstate <= 4;
: end if;
end case;
end process;
process (CLK)
begin
if rising_edge(CLK) then
State <= Nextstate;
if Sp = '1' then Point <= Sum; end if;
end if;
: end process;
{ end DiceBehave;

|174

CHAPTER 5 ® DiGITAL DESIGN witTH SM CHARTS

Figure 5-16

We are now ready to test the behavioral model of the dice game. It is not convenient
to include the counters that generate random numbers in the initial test, since we want to
specify a sequence of dice rolls that will test all paths on the SM chart. We could prepare
a simulator command file that would generate a sequence of data for Rb, Sum, and Reset.
This would require careful analysis of the timing to make sure that the input signals change
at the proper time. A better approach for testing the dice game is to design a VHDL test
bench module to monitor the output signals from the dice game module and supply a
sequence of inputs in response.

Figure 5-16 shows the DiceGame connected to a module called GameTest. GameTest
needs to perform the following functions:

1. Initially supply the Rb signal.
When the DiceGame responds with a Roll signal, supply a Sum signal, which
represents the sum of the two dice.

3. If no Win or Lose signal is generated by the DiceGame, repeat steps 1 and 2 to roll
again.

4. When a Win or Lose signal is detected, generate a Reset signal and start again.

Dice Game with Test Bench

Rb
Reset
CLK
Sum
Roll
Win

Lose

GameTest DiceGame

Figure 5-17 shows an SM chart for the GameTest module. Rb is generated in state
TO. When DiceGame detects Rb, it goes to S1 and generates Roll. When GameTest detects
Roll, the Sum that represents the next roll of the dice is read from Sumarray(i) and i is
incremented. When the state goes to T1, Rb goes to 0. The DiceGame goes to S2, S3, or S4
and GameTest goes to T2. The Win and Lose outputs are tested in state T2. If Win or Lose
is detected, a Reset signal is generated before the next roll of the dice. After N rolls of the
dice, GameTest goes to state T3, and no further action occurs.

5.2 e Derivation of SM Charts 175J

Figure 5-17 SM Chart for Dice Game Test

T3/ (Stop)

0

g

CSum = Sumarray(i)

i=i+1

GameTest (Figure 5-18) implements the SM chart for the GameTest module. It
contains an array of test data, a concurrent statement that generates the clock, and two
processes. The first process generates Rb, Reset, and Tnext (the next state) whenever Roll,
Win, Lose, or Tstate changes. The second process updates Tstate (the state of GameTest).
‘When running the simulator, we want to display only one line of output for each roll of the
dice. To facilitate this, we have added a signal Trigl, which changes everytime state T2 is
entered.

Figure 5-18 Dice Game Test Module

entlty GameTest is
port (Rb, Reset: out bit;
Sum: out integer range 2 to 12;
CLK: inout bit;
Roll, Win, Lose: in bit);
end GameTest;

library BITLIB;
use BITLIB.bit_pack.all;
architecture dicetest of GameTest is
signal Tstate, Tnext: integer range 0 to 3;
signal Trigl: bit;
type arr is array(0 to 11) of integer;
constant Sumarray:arr := (7,11,2,4,7,5,6,7,6,8,9,6);

176

CHAPTER 5 * DiciTAL DEesIGN WITH SM CHARTS

begin
CLK <= not CLK after 20 ns;
process (Roll, Win, Lose,
variable i: natural;
begin
case Tstate is
when 0 => Rb <= '1'";
Reset <='0";
if i>=12 then Tnext <=

when 1 => Rb <= '0"';
when 2 => Tnext <= 0;
Trigl <= not Trigl;
if (Win or Lose)

{ end process;
‘end dicetest;

Tstate)

Reset <= '1';
end if;
when 3 => null;
end case;
end process;
process (CLK)
begin
if CLK = 'l' then
Tstate <= Tnext;
end if;

-- i is initialized to 0

-- wait for Roll

then

elsif Roll = '1°
Sum <= Sumarray (i) ;
1:=1+1;
; Tnext <= 1;
§ end if;

Tnext <= 2;

-- toggle Trigl
'l' then

-- Stop state

Tester (Figure 5-19) connects the DiceGame and GameTest components so that the
game can be tested. Figure 5-20 shows the simulator command file and output. The listing
is triggered by Trigl once for every roll of the dice. The “run 2000” command runs for
more than enough time to process all the test data.

5.2 Derivation of SM Charts

177

Figure 5-19 Tester for Dice Game

entity tester is
end tester;
architecture test of tester is
component GameTest
port (Rb, Reset: out bit;
Sum: out integer range 2 to 12;
CLK: inout bit;
Roll, Win, Lose: in bit);
end component;
component DiceGame
port (Rb, Reset, CLK: in bit;
" Sum: in integer range 2 to 12 ;
Roll, Win, Lose: out bit);
end component;
signal rbl, resetl, clkl, rolll, winl, losel: bit;
signal suml: integer range 2 to 12;
begin
Dice: Dicegame port map{rbl,resetl,clkl,suml,rclll,winl, losel);

end test;

Figure 5-20 Simulation and Command File for Dice Game Tester

list /dicetest/trigl -NOTrigger suml winl losel /dice/point
run 2000

ns delta trigl suml winl losel point

0 +0 0 2 0 0 2
100 +3 0 7 1 0 2
260 +3 0 11 1 0 2
420 +3 0 2 0 1 2
580 +2 1 4 0 0 4
740 +3 1 7 0 1 4
900 +2 0 5 0 0 5

1060 +2 1 6 0 0 5
1220 +3 1 7 0 1 5
1380 +2 0 6 0 0 6
1540 +2 1 8 0 0 6
1700 +2 0 9 0 0 6
1860 +3 0 6 1 0 6

Dicetest: GameTest port map(rbl,resetl,suml,clkl,rolll,winl, losel);

|178

CHAPTER 5 @ DiciTaL DesiaN witH SM CHARTS

5.3 REALIZATION OF SM CHARTS

Methods used to realize SM charts are similar to the methods used to realize state graphs.
As with any sequential network, the realization will consist of a combinational subnetwork,
together with flip-flops for storing the state of the network. In some cases, it may be
possible to identify equivalent states in an SM chart and eliminate redundant states using
the same method as was used for reducing state tables. However, an SM chart is usually
incompletely specified in the sense that all inputs are not tested in every state, which
makes the reduction procedure more difficult. Even if the number of states in an SM chart
can be reduced, it is not always desirable to do so, since combining states may make the
SM chart more difficult to interpret.

Before deriving next-state and output equations from an SM chart, a state assignment
must be made. The best way of making the assignment depends on how the SM chart is
realized. If gates and flip-flops (or the equivalent PLD realization) are used, the guidelines
for state assignment given in Section 1.7 may be useful. If programmable gate arrays are
used, a one-hot assignment may be best, as explained in Section 6.4,

As an example of realizing an SM chart, consider Figure 5-7(b). We have made the
state assignment AB = 00 for SO, AB =01 for S1, and AB = 11 for S2. After a state assignment
has been made, output and next-state equations can be read directly from the SM chart.
Since the Moore output Za is 1 only in state 00, Za = A'B'. Similarly, Zb = A'B and Zc = AB.
The conditional output Z/ = ABX', since the only link path through Z7 starts with AB =11
and takes the X = 0 branch. Similarly, Z2 = ABX. There are three link paths (labeled link 1,
link 2, and link 3 in Figure 5-7(b)), which terminate in a state that has B = 1. Link 1 starts
with a present state AB = 00, takes the X = 1 branch, and terminates on a state in which
B = 1. Therefore, the next state of B (B*) equals 1 when A'B'X = 1. Link 2 starts in state 01,
takes the X = 1 branch, and ends in state 11, so B* has a term A'BX. Similarly, B* has a term
ABX from link 3. The next-state equation for B thus has three terms corresponding to the
three link paths:

B'=ABX+ ABX + ABX
link1 link2 link3

Similarly, two link paths terminate in a state with A = 1, so
At=A'BX + ABX

These output and next-state equations can be simplified with Karnaugh maps using the
unused state assignment (AB = 10) as a don’t care condition.

As illustrated above for flip-flops A and B, the next-state equation for a flip-flop Q
can be derived from the SM chart as follows:

Identify all of the states in which Q = 1.

. For each of these states, find all the link paths that lead info the state.

3. Foreach of these link paths, find a term that is 1 when the link path is followed. That
is, for a link path from S; to S,, the term will be 1 if the machine is in state S, and the
conditions for exiting to Sj are satisfied.

4. The expression for Q* (the next state of Q) is formed by ORing together the terms

found in step 3.

W=

5.3 » Realization of SM Charts 179

Next, consider the SM chart for the multiplier control (Figure 5-9). We can realize
this SM chart with a PLA or ROM and two D flip-flops, using a network of the form
shown in Figure 3-2. As indicated in Table 5-1, the PLA has five inputs and six outputs.
Each row in the table corresponds to one of the link paths in the SM chart. Since S, has
two exit paths, the table has two rows for present state S, The first row corresponds to the
St = 0 exit path, so the next state and outputs are 0. In the second row, St = 1, so the next
state is 01 and the other PLA outputs are 1000. Since St is not tested in states S|, S, and S,
St is a don’t care in the corresponding rows. The outputs for each row can be filled in by
tracing the corresponding link paths on the SM chart. For example, the link path from S, to
S, passes through conditional output Ad, so Ad =1 in this row. Since S, has a Moore
output S%, Sk = 1 in both of the rows for which AB = 10.

Table 5-1 PLA Table for Multiplier Control

A B St M K A7 B* Load S Ad Done
S, 0 0 - - 0 0 0 0 0 0

0 0 - - 0. 1 1 0 0 0
S, 0 1 - 0 0 0 1 0 1 0 0

0 1 - 0 1 1 1 0 1 0 0

0 1 — 1 - 1 0 0 0 1 0
S, 1 0 - - 0 0 1 0 1 0 0

1 0 - - 1 1 1 0 1 0 0
S, 1 1 - - - 0 0 0 0 0 1

If a ROM is used instead of a PLA, the PLA table must be expanded to 23 = 32 rows
since there are five inputs. To expand the table, the dashes in each row must be replaced
with all possible combinations of Os and Is. If a row has n dashes, it must be replaced with
2" rows. For example, the fifth row in Table 5-1 would be replaced with the following four
rows:

coo o
b
- - e
o
— =
—_——
co oo
cooo
cooo
— ok
co oo

The added entries are printed in boldface.
By inspection of the PLA table, the logic equations for the multiplier control are

A* =ABM'K+ABM+ABK=ABM+K)+ABK

B* =ABSt+ABM(K'+K)+AB(K'+ K)=A'B'St + ABM' + AB'
Load =A'B'St

Sh =ABM'K'+K)+AB(X'+K)=A'BM' + AB'

Ad =ABM’

Done = AB

[180

CHaPTER 5 @ DigitaL DesIGN witTH SM CHARTS

5.4 IMPLEMENTATION OF THE DICE GAME

We realize the SM chart for the dice game (Figure 5-13) using a PLA and three D flip-
flops, as shown in Figure 5-21. We use a straight binary state assignment. The PLA has 9
inputs and 7 outputs, which are listed at the top of Table 5-2. The PLA table has one row
for each link path on the SM chart. In state ABC = 000, the next state is A*B*C* = 000 or
001, depending on the value of Rb. Since state 001 has four exit paths, the PLA table has
four corresponding rows. When Rb is 1, Roll is 1 and there is no state change. When Rb =
Oand D,,, is 1, the next state is 010. When Rb = 0 and D,,,, = 1, the next state is 011. For
the link path from state 001 to 100, Rb, D711’ and D,,, are all 0, and Sp is a conditional
output. This path corresponds to row 4 of the PLA table, which has Sp = 1 and A*B*C* =
100. In state 010, the Win signal is always on, and the next state is 010 or 000, depending
on the value of Resez. Similarly, Lose is always on in state 011. In state 101, A*B*C*=010
if Eq =1; otherwise, A*B*C*= 011 or 100, depending on the value of D,. Since states 110
and 111 are not used, the next states and outputs are don’t cares when ABC = 110 or 111.

Figure 5-21 PLA Realization of Dice Game Controller

Rb —
Reset —» — Win
D711 » —— Lose
D, — RSoll
D331 — p
Eq —»] C+
PLA D 0
C B+ —pP>CK
L D Q
B —>CK
At
P Q
A= v—{>CK
Clock

The dice game controller can also be realized using a PAL. The required PAL equations
can be derived from Table 5-2 using the method of map-entered variables (see Section 1.3)
or using a CAD program such as LogicAid. Figure 5-22 shows maps for A*, B*, and Win,
which were plotted directly from the PLA table. Since A, B, C, and Rb have assigned
values in most of the rows of the table, these four variables are used on the map edges, and
the remaining variables are entered within the map. E, E, E;, and E, on the maps represent
the expressions given below the maps. From the A* column in the PLA table, A*is | in row
4, so we should enter D}, D, ,, in the ABCRb = 0010 square of the map. To save space, we
define E, = D;,,Di4,, and place E| in the square. Since A*is 1 inrows 11,12, and 16, 1s are
placed on the map squares ABCRb = 1000, 1001, 1011. From row 13, we place E, = D)Eq'
in the 1010 square. In rows 7 and 8, Win is always 1 when ABC = 010, so 1s are plotted in
the corresponding squares of the Win map.

5.4 ¢ Implementation of the Dice Game

181

Table 5-2 PLA Table for Dice Game

ABC Rb Reset D,

Dy Dyyy Eq

S
+

B* Win

Lose Roll

<

O 0~ B W N =

Figure 5-22 Maps Derived from Table 5-2

AB
CRb

00
01
11
10

000
000
001
001
001
001
010
010
011
011
100
100
101
101
101
101
110
111

0

1
1
0
0
0

|

| ~cco~=o|

00 01

11

10

5

>

X
X
X

1
5

11

2312

0
1

CRb
00

01
11
10

00

| ~rco~,~r—~rocoococococor—~ocoo
| mroe—~ocorro—~ocococo—~o~r~o |Q

| o~ —~occo~ocor~r—~r—~rocooo
| ccoccocoococo~—~rocoococooo

0ol 11 10

| x)
X
X

E3

BEIEIR

B+

R = Reset

E, =D, +D',,D

711772312

| ccoococo~~ococoocoooo

AB
CRb

00
01
11
10

711

E, =Eq+EqD,=Eq+D,

— O OO0 QOO0 =00

01

| cococoocooocooco~ocoo

|

10

L

s |3 L || =

=Dy + Dy,

Win

182

CHAPTER 5 DiGiTAL DesicN witH SM CHARTS

Figure 5-23 Data Flow Model for Dice Game

The resulting PAL equations are

A* =ABCRbD,D,,,+AC' +ARb + AD'"Eq &1)
B* =A'BCRb(D,,+ Dy,),) + BReset' + AC Rb(Eq + D)

C* =BRb+ABCD, D, +BC Reset + ACD.Eq

Win =BC'
Lose =BC
Roll =B'CRb

Sp =ABCRbPD, D,

These equations can be implemented using a 16R4 PAL with no external components.
Equations (5-1) can also be derived by tracing link paths on the SM chart and then
simplifying the resulting equations using the don’t care next states. The entire dice game,
including the control network, can be implemented using a programmable gate array (see
Section 6.2).

We now write a data flow VHDL model for the dice game controller based on the
block diagram of Figure 5-11 and Equations (5-1). The corresponding VHDL architecture
is shown in Figure 5-23. The process updates the flip-flop states and the point register
when the rising edge of the clock occurs. Generation of the control signals and D flip-flop
input equations is done using concurrent statements. In particular, D, D,,,, D,,,,, and Eq
are implemented using conditional signal assignments. As an alternative, all the signals
and D input equations could have been implemented in a process with a sensitivity list
containing A, B, C, Sum, Point, Rb, D,, D,,» Dy310, Eq, and Reset. If the architecture of
Figure 5-23 is used with the test bench of Figure 5-17, the results are identical to those
obtained with the behavioral architecture.

To complete the VHDL implementation of the dice game, we add two modulo-six
counters as shown in Figures 5-24 and 5-25. The counters are initialized to 1, so the sum of
the two dice will always be in the range 2 through 12. When Cnt/! is in state 6, the next
clock sets it to state 1, and Cns2 is incremented (or Cne2 is set to 1 if it is in state 6).

Earchitecture Dice_Eqg of DiceGame is

i eignal Sp,Eq,D7,D711,D2312: bit:='0';

| signal DA,DB,DC,A,B,C :bit:='0"';
signal Point: integer range 2 to 12;

| begin

{ process (C1k)

5.4 » Implementation of the Dice Game 183

begin
if rising_edge(Clk) then
A <= DA; B <= DB; C <= DC;
if Sp = '1l' then Point <= Sum; end if;
end if;

 end process;

Win <= B and not C;

Lose <= B and C;

' Roll <= not B and C and Rb;

/Sp <= not A and not B and C and not Rb and
not D711 and not D2312;
D7 <= 'l' when Sum = 7 else '0';
‘D711 <= '1' when (Sum = 11) or (Sum
D2312 <= '1l' when (Sum = 2) or (Sum
Eg <= 'l' when Point=Sum else '0';
DA <= (not A and not B and C and not Rb and not D711 and
i not D2312) or (A and not C) or (A and Rb)

7) else '0';
3) or (Sum = 12) else '0';

. or (A and not D7 and not Eq);

DB <= ((not A and not B and C and not Rb) and (D711 or D2312))
or (B and not Reset) or ((A and C and not Rb)

; and (Egq or D7));

‘DC <= (not B and Rb) or (not A and not B and C and not D711
and D2312) or (B and C and not Reset) or
(A and C and D7 and not EQ);

end Dice_ Eqg;

Figure 5-24 Counter for Dice Game

“entity Counter is
port (Clk, Roll: in bit;

Sum: out integer range 2 to 12);
:end Counter;

| architecture Count of Counter is

gignal Cntl,Cnt2: integer range 1 to 6 := 1;
‘ begin

process (Clk)

begin

if Clk='1' then
if Roll='1l' then
if Cntl=6 then Cntl <= 1; else Cntl <= Cntl+l; end if;
if Cntl=6 then
if Cnt2=6 then Cnt2 <= 1; elge Cnt2 <= Cnt2+1; end if;

end if;

! end if;

i end if;

é end process;

‘ Sum <= Cntl + Cnt2;

end Count ;

184

CHAPTER 5 @ DiciTaL DesicN witH SM CHARTS

Figure 5-25 Complete Dice Game

ent1ty Game is

port

(Rb, Reset, Clk: in bit;
Win, Lose: out bit);

end Game;

architecture Playl of Game is

component Counter
port (Clk, Roll: in bit;

Sum: out integer range 2 to 12);

end component;
component DiceGame
port (Rb, Reset, CLK: in bit;

Sum: in integer range 2 to 12;
Roll, Win, Lose: out bit);

end component ;
gignal rolll: bit;
signal suml: integer range 2 to 12;

fbegin

| Dice: Dicegame port map(Rb,Reset,Clk,suml,rolll,Win,Lose);

‘ Count: Counter port map(Clk,rolll, suml);

fend Playl;

This section has illustrated one way of realizing an SM chart using a PLA, ROM, or

PAL. Alternative procedures are available that make it possible to reduce the size of the
PLA or ROM by adding some components to the network. These methods are generally
based on transformation of the SM chart to different forms and encoding the inputs or
outputs of the network.

5.5 ALTERNATIVE REALIZATIONS FOR SM CHARTS USING

MICROPROGRAMMING

In applications where the number of inputs to the control network is large, the number of
inputs to the PLA, ROM, or PAL will be large. Several methods can be used to reduce the
number of inputs required. These methods generally require more states in the SM chart
and more output functions to be realized.

In Figure 5-26, the only inputs to the PLA come from the state register. The control
network inputs go into a MUX instead of into the PLA. The PLA output has four fields:
TEST, NSF, NST, and OUTPUT. TEST controls the input MUX, which selects one of the
inputs to be tested in each state. If this input is O (false), then the second MUX selects the
NSF field as the next state. If the input is 1 (true), it selects the NST field as the next state.
The OUTPUT field is the same as for the standard realization. However, the SM chart
must have only Moore outputs, since the outputs can be a function only of the state. (Figure
5-26 could be modified to allow Mealy outputs by replacing the OUTPUT field with
OUTPUTF and OUTPUTT, and adding a MUX to select one of the two output fields.)

5.5 ¢ Alternative Realizations for SM Charts Using Microprogramming

185

Figure 5-26 Control Network Using an Input MUX to Select the Next State

----...--..>
Register
In;futs
o

PLA or ROM or PAL

e e e e ———E—————— —]

NSF | NST ':OUTPUT

M'+

v

Figure 5-27 shows a modified version of the dice game SM chart. First, all the outputs

have been converted to Moore outputs. Second, only one input variable is tested in each
state. This corresponds directly to the block diagram of Figure 5-26, since the TEST field
can select only one input to test in each state and the output depends only on the state.

The variables Rb, D

711’

Next we derive the PLA table (Table 5-3) using a straight binary state assignment.
sz, Eq, D7, and Reset must be tested, so we will use an 8-to-1

MUX (Figure 5-28). When 7EST = 001, Rb is selected, etc. In state S|, the next state is
always 0111, so NSF = NST = 0111 and the TEST field is don’t care. Each row in the PLA
table corresponds to a link path on the SM chart. For example, in S,, the test field 110
selects Reset. If Reset= 0, NSF =0100 is selected, and if Reset = 1, NST= 0000 is selected.
In S,, the output Win = 1 and the other outputs are 0.

Table 5-3 PLA/ROM Table for Figure 5-27

State ABCD || TEST NSF NST ROLL Sp Win Lose
SO 0000 001 0000 0001 0 0 0 0
S1 0001 001 0010 0001 1 0 0 0
S11 0010 010 0011 0100 0 0 0 0
S12 0011 011 0101 0110 0 0 0 0
S2 0100 110 0100 0000 0 0 1 0
S13 0101 XXX 0111 0111 0 1 0 0
S3 0110 110 o110 0000 0 0 0 1
S4 o1 001 0111 1000 0 0 0 0
S5 1000 001 1001 1000 1 0 0 0
S51 1001 100 1010 0100 0 0 0 0
S$52 1010 101 0111 0110 0 0 0 0

186 CHAPTER 5 ® DiGITAL DesiGN witH SM CHarTs

Figure 5-27 SM Chart with Moore Outputs and One Test per State

S2/Win {0100

S3/Lose
0110

5.5 e Alternative Realizations for SM Charts Using Microprogramming 187

Figure 5-28 MUX for SM Chart of Figure 5-27

—

Rb —»

D7y =
Dp3ip —f
Eq —*™
D7 —
Reset —

~N N R W=D
£
2

11

TEST

The block diagram of Figure 5-29 is similar to Figure 5-26, except the state register
has been replaced with a counter. The NSF field has been eliminated from the PLA output.
As before, the TEST field selects one of the inputs to be tested in each state. If the selected
input is 1 (true), the NST field is loaded into the counter. If the selected input is O, the
counter is incremented. This requires that the SM chart be modified as shown in Figure
5-30 and that the state assignment be made in a special way. For each condition box, for
the false branch, the next state is assigned in sequence if possible. If this is not possible,
extra states (called X-states) must be added. The required number of X-states can be reduced
by assigning long strings of states in sequence. To facilitate this, it may be necessary to
complement some of the variables that are tested. In Figure 5-31, Rb and Reset have each
been complemented in two places, and the 0 and 1 branches have been interchanged
accordingly. With this change, states 0000, 0001, . . ., 1000 are in sequence. S, has been
assigned 1001, and before adding an X-state, NSF was 0000 and NST was 1001, so neither
next state was in sequence. Therefore, X-state S, was added with a sequential assignment
1010; the next state of S, is always 0000. If we assign 1011 to Sz’ the next states would be
1011 and 0000, and neither next state would be in sequence. We could solve the problem
by adding an X-state. A better approach is to assign 1111 to S,, as shown. Since incrementing
1111 goes to 0000, one of the next states is in sequence, and no X-state is required.

Figure 5-29 Control Network Using a Counter for the State Register

> PLA or ROM or PAL
Counter TEST { NST | OUTPUT
Data Load Count 1 *
Next ‘L_T Inputs
state ——> MUX
(true) —r
Load/Count'

l188 CHAPTER 5 @ DiciaL DEsIGN witH SM CHARTS

The inputs tested by the MUX in Figure 5-31 are similar to Figure 5-26 except D,
and Reset have been complemented, and both Rb and Rb' are needed. Since NST is always
0101 in state S, ,, a 1 input to multiplexer is needed. The corresponding PLA table is given
in Table 5-4.

Figure 5-30 SM Chart with Serial State Assignment and Added X-State

S2/ Win

S13/Sp 0100

5.5 e Alternative Realizations for SM Charts Using Microprogramming 189

Figure 5-31 MUX for SM Chart of Figure 5-30

Rb' —»
Rb —»
DD711 >
B2 MUX |——Load/Count'
Eq —
D7' —>
Reset' —»

~NOYN R W = O

1 —»

e

Table 5-4 PLA Table for Figure 5-31

State ABCD Test NST Roll Sp Win Lose
S0 0000 000 0000 0 0 0 0
S1 0001 001 0001 1 0 0 0
S11 0010 010 1111 0 0 0 0
S12 0011 011 1001 0 0 0 0
S13 0100 111 0101 0 1 0 0
S4 0101 000 0101 0 0 0 0
S5 0110 001 0110 1 0 0 0
S51 0111 100 1111 0 0 0 0
S52 1000 101 0101 0 0 0 0
S3 1001 110 1001 0 0 0 1
Sx 1010 111 0000 0 0 0 0
S2 1111 110 1111 0 0 1 0

The minimum logic equations for a PAL, derived from Table 5-4 with don’t care
outputs assigned to the unused states, are as follows:

Test(2) = BC'D'+BCD+A (5-2)
Test(1) = B'C+BC'D'+AD

Test(0) = A'B'D+ BD' +AD'

NST(3) = A'B'C+CD+AD

NST(2) = A'CD'+B+AC'D'

NST(1) = A'CD'+BC

NST(0) D+AB'C+BC'+AC'

[190

CHaPTER 5 * DicitaL Desicn witH SM CHARTS

Roll = A'B'C'D + BCD'

SP = BC'D
Win = AB
Lose = AB'D

Note that each of these equations requires at most four variables, whereas some of Equations
(5-1) require up to nine variables.

The methods we have just studied for implementing SM charts are examples of
microprogramiming techniques. The counter in Figure 5-28 is analogous to the program
counter in a computer, which provides the address of the next instruction to be executed.
The PLA or ROM output is a microinstruction, which is executed by the remaining hardware.
Each microinstruction is like a conditional branch instruction that tests an input and branches
to a different address if the test is true; otherwise, the next instruction in sequence is executed.
The output field in the microinstruction has bits that control the operation of the hardware.

5.% LINKED STATE MACHINES

‘When a sequential machine becomes large and complex, it is desirable to divide the machine
up into several smaller machines that are linked together. Each of the smaller machines is
easier to design and implement. Also, one of the submachines may be “called” in several
different places by the main machine. This is analogous to dividing a large software program
into procedures that are called by the main program.

Figure 5-32 shows the SM charts for two serially linked state machines. The main
machine (machine A) executes a sequence of “some states” until it is ready to call the
submachine (machine B). When state SA is reached, the output signal ZA activates machine
B. Machine B then leaves its idle state and executes a sequence of “other states,” When it
is finished, it outputs ZB before returning to the idle state. When machine A receives ZB, it
continues to execute “other states.” Figure 5-32 assumes that the two machines have a
common clock.

5.6 ¢ Linked State Machines 191

Figure 5-32 SM Charts for Serially Linked State Machines

Machine A Machine B
(calling machine) (called machine)

-

OTHER
STATES

y
= SB/ZB
OTHER

STATES

L

As an example of using linked state machines, we split the SM chart of Figure 5-13
into two linked SM charts. In Figure 5-13, Rb is used to control the roll of the dice in states
S0 and S1 and in an identical way in states S4 and S5. Since this function is repeated in
two places, it is logical to use a separate machine for the roll control (Figure 5-33(b)). Use
of the separate roll control allows the main dice control (Figure 5-33(a)) to be reduced
from six states to four states. The main control generates an En_roll (enable roll) signal in
TO and then waits for a Dn_roll (done rolling) signal before continuing. Similar action
occurs in T1. The roll control machine waits in state SO until it gets an En_roll signal from
the main dice game control. Then, when the roll button is pressed (Rb = 1), the machine
goes to S1 and generates a Roll signal. It remains in S1 until Rb = 0, in which case the
Dn_roll signal is generated and the machine goes back to state SO.

/

192 CHAPTER 5 @ DiciTAL DesioN witH SM CHARTS

Figure 5-33 Linked SM Charts for Dice Game

e

TO / En_roll

Yy oy

T2/ Win

(a) Main dice game control

T3 /Lose

(b) Roll control

Problems 193

In this chapter we described a procedure for digital system design based on SM
charts. An SM chart is equivalent to a state graph, but it is usually easier to understand the
system operation by inspection of the SM chart. After we have drawn a block diagram for
a digital system, we can represent the control unit by an SM chart. Next we can write a
behavioral VHDL description of the system based on this chart. Using a test bench written
in VHDL, we can simulate the VHDL code to verify that the system functions according
to specifications. After making any necessary corrections to the VHDL code and SM chart,
we can proceed with the detailed logic design of the system. Rewriting the VHDL
architecture to describe the system operation in terms of control signals and logic equations
allows us to verify that our design is correct.

PLA tables and logic equations can easily be derived by tracing link paths on an SM
chart. When SM charts are realized using PLAs, the PLA size can be reduced by
transforming the SM chart into a form in which only one input is tested in each state.
However, this generally increases the number of states and slows down the operation of
the system. For complex systems, we can split the control unit into several sections by
using linked state machines.

Problems
5.1

(a) Construct an SM chart equivalent to the following state table. Test only one variable in each
decision box. Try to minimize the number of decision boxes.

(b) Write a VHDL description of the state machine based on the SM chart.

Present Next State Output Z, 7,

State || X, X, = 00 01 10 11 XX,= 00 01 10 11
S0 S3 S2 S1 SO 00 10 11 01
S1 SO S1 S2 S3 10 10 11 11
S2 S3 SO S1 S1 00 10 11 01
S3 S2 S2 S1 SO 00 00 01 01

5.2

(a) Draw the block diagram for a divider that divides an 8-bit dividend by a 5-bit divisor to give a
3-bit quotient. The dividend register should be loaded when St = 1.

(b) Draw an SM chart for the control circuit.

(¢) Write a VHDL description of the divider based on your SM chart. Your VHDL should explicitly
generate the control signals.

(d) Give a sequence of simulator commands that would test the divider for the case 93 divided
by 17.

194 CHAPTER 5 ¢ DicaL Desich with SM CHARTS

5.3 For the following SM chart:

(a) Draw atiming chart that shows the clock, the state (SO, S1, or $2), the inputs (X!, X2, and X3),
and the outputs. The input sequence is X1 X2 X3 = 011,101,111,010,110,101,001. Assume that all
state changes occur on the rising edge of the clock, and the inputs change between clock pulses.

(b) Use the state assignment SO: AB =00; S1: AB = 01; $S2: AB = 10. Derive the next state and
output equations by tracing link paths. Simplify these equations using the don't care state (AB = 11).

(c) Realize the chart using a PLA and D flip-flops. Give the PLA table.

(d) IfaROM is used instead of a PLA, what size ROM is required? Give the first five rows of the
ROM table.

5.4 The following SM chart is to be realized using a PLA, a 4-to-1 MUX, and a 3-bit binary
counter (similar to a 74163).

(@) Draw ablock diagram of the system.
(b) Make a suitable state assignment. Indicate any necessary changes on the SM chart.

(¢) Give the PLA table.

Problems 195

5.5 For the following SM chart:

196

CHAPTER 5 @ DiGiTaL DesicN witH SM CHARTS

(a) Convert the chart to the proper form for use with the hardware shown in Figure 5-26.

(b) The left MUX data inputs are X7, X2, X3, and 1, selected by 00, 01, 10 and 11, respectively.
Assign S0 = 000. Give the complete ROM table in binary.

(¢) Convert your answer to (a) for use with the hardware of Figure 5-29. Use the same four
selector inputs as in (b). (Don't add any complemented variables as inputs to the selector.) Add X-
states where needed and make a suitable state assighment (assign SO = 0000).

(d) Give the ROM table for (c) in binary.
5.6 For the given SM chart:

001 (Q3Q2QN

(@) Complete the following timing diagram (assume that X/ =1, X2=0,X3=0,X5=1, and X4 is
as shown). Flip-flops change state on falling edge of clock.

oo [1 [1 [T [1 []
"]

Q2

Q3

73

(b) Using the given one-hot state assignment, derive the minimum next state and output equations
by inspection of the SM chart.

(c) Write a VHDL description of the digital system.

(d) If a digital system is built using 22V10 PLDs, under what conditions, if any, would it be
desirable to use a one-hot state assignment rather than using a minimum number of flip-flops?

Problems 197

5.7 Realize the following SM chart using a PL.A with a minimum number of inputs, a multiplexer,
and a loadable counter (like the 74163). The PLA should generate both NST and NSFE. The multiplexer
inputs are selected as shown in the table beside the SM chart.

@)
(b)
©
@

Draw the block diagram.
Convert the SM chart to the proper format. Add a minimum number of extra states.
Make a suitable state assignment and give the first five rows of the PLA table.

Write a VHDL description of the system using a PLA.

(z1)

1

1

Z1

1/

SO L
NS

5.8 The following SM chart is to be realized using the structure shown in Figure 5-26.

(a) Convert the SM chart to the proper form by adding a minimum number of states to the given
diagram. Make a suitable state assignment.

(b) Complete the given ROM table.

(c) Draw a block diagram showing how the SM chart can be realized using a ROM, multiplexers,
and flip-flops.

198

CHaPTER 5 @ DiciTAL DesicN witH SM CHARTS

Qc Qb Qa|T1 TO CF BF AF CT BT AT Z1 72 73
000 |

5.9 The SM charts for two linked state machines are given below. Assume that all state changes
occur 10 ns after the falling edge of the common clock. Also assume that the combinational network
that generates X has a propagation delay of 5 ns. The clock period is 40 ns.

(a) Complete the timing charts. Initially A =0 and B =1.

(b) Realize the two SM charts using a PLA and D flip-flops. Draw a block diagram and derive the
PLA table by inspection of the SM chart. Note: Only one PLA is needed.

() Write VHDL code that describes the operation of the linked state machines (including the
appropriate delays).

IR

__t__L_:]

Problems 199

5.10 The SM charts for three linked machines are given below. All state changes occur during the
falling edge of a common clock. Complete a timing chart including ST, Wa, A, B, C, and D. All state
machines start in the state with an asterisk (¥).

5.11
(@)
(b)
(0

Y K/
[so/ax| [ToB*]

Realize the SM chart given here using a PLA, counter, and a 4-to-1 multiplexer.
Draw a block diagram. Show the MUX inputs.
Change the SM chart to the proper form. Mark required changes on the following chart.

Make a suitable state assignment. Give the first six rows of the PLA table.

D /k

X2

|200

CHAPTER 5 ® DiGiTAL DesiGN witH SM CHARTS

5.12 The block diagram for an elevator controller for a building with two floors is shown below.
The inputs FB! and FB2 are floor buttons in the elevator. The inputs CALL] and CALL2 are call
buttons in the hall. The inputs FS/ and FS2 are floor switches that output a 1 when the elevator is at
the first or second floor landing. Outputs UP and DOWN control the motor, and the elevator is
stopped when UP = DOWN = 0. NI and N2 are flip-flops that indicate when the elevator is needed
on the first or second floor. R/ and R2 are signals that reset these flip-flops. DO = 1 causes the door
to open, and DC = 1 indicates that the door is closed. Draw an SM chart for the elevator controller

(four states).

R
FB1—> 2

Storage N R’
C ALLl—J Network |1 N 1
EBy —> Storage N Elevator —— UJP
CALL Network | N2 Control
2 Network > DOWN
FS;
FSy
DO Door
Mechanism

DC

CHAPTER &)

DESIGNING WITH PROGRAMMABLE GATE ARRAYS
AND CompPLEX PROGRAMMABLE Locic DEVICES

The PLDs we discussed in Chapter 3 are capable of implementing a sequential network
but not a complete digital system. Programmable gate arrays (PGAs) and complex
programmable logic devices (CPLDs) are more flexible and more versatile and can be
used to implement a complete digital system on a single IC chip. Some of the larger devices
can implement a small microprocessor. A typical PGA is an IC that contains an array of
identical logic cells with programmable interconnections. The user can program the
functions realized by each logic cell and the connections between the cells. Such PGAs
are often called FPGAs since they are field~programmable.

This chapter describes the internal structure of some typical FPGAs made by Xilinx.
Methods for programming these FPGAs to implement digital logic are then discussed.
The basic steps for designing with FPGAs are outlined, and the dice game from Chapter 5
is implemented using an FPGA. The chapter concludes with a discussion of Altera CPLDs.
The reader should refer to the manufacturer’s data books and web pages for more detailed
specifications for the devices described in this chapter.

€. XILINX 3000 SERIES FPGAS

As an example of a FPGA, we will describe the Xilinx XC3020 Logic Cell Array (LCA).
Figure 6-1 shows a part of the basic structure, which consists of an interior array of 64
configurable logic blocks (CLBs) surrounded by a ring of 64 input-output interface blocks.
The interconnections between these blocks can be programmed by storing data in internal
configuration memory cells. Each configurable logic block contains some combinational
logic and two D flip-flops and can be programmed to perform a variety of logic functions.

The configuration memory cells are programmed after power has been applied to the
LCA, and the programmed logic functions and interconnections are retained until the power
is turned off. During configuration, each memory cell (see Figure 6-2) is selected in turn.
When a WRITE signal is applied to the pass transistor, DATA is stored in the cell. Each
connection point in the LCA has an associated memory cell, and the data stored in that cell
determines whether the connection is made or not.

202 CHAPTER 6 ® DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND CompLEX LoGIC DEVICES

Figure 6-1 Layout of Part of a Programmable Logic Cell Array

D 1/0 Block”
Configurable Logic Bloc\
]]
3 r 3 = 3
‘[F T —] T
3 3 r 3 F 3 F+
Interconnect Area
ﬁ ‘
4 L 4 L - 1 L
1 F - A F . 1 F
1 I |
3+ 3 3 F 3 +
Figure 6-2 Configuration Memory Cell
r--"—"-""-""—""—"7 /"7 /7 — — ']
1 q
l CONFIGURATION
I

J _ CONTROL
»———oq——oj—- Q

|

|

|

Figure 6-3 shows a configurable logic block. The block has five logic inputs (4, B, C,
D, E), a data input (DI), a clock input (K), a clock enable (EC), a direct reset (RD), and two
outputs (X and Y). The trapezoidal blocks on the diagram represent multiplexers, which
can be programmed to select one of the inputs. For example, the X output can either come
from the upper flip-flop (QX) or from the F output of the “Combinatorial Function™ block.
Similarly, the Y output can come either from the lower flip-flop (QY) or from G. Each
represents a configuration memory cell, and the data in the cell determines which MUX
input is selected.

6.1 ¢ Xilinx 3000 Series FPGAs 203

Figure 6-3 Xilinx 3000 Series Logic Cell

DI

DATA IN
0
MUX D Q
F {— 1
DIN
1 G
B . 3
Qx x
A . .
B
LOGIC ¢ COMBINATORIAL .
VARIABLES o FUNCTION CLB OUTPUTS
E G
G
QY Y
F Py QY,
DIN
G — o J
MUx b Q
1
o
ENABLE CLOCK —2< \
RD
1 (ENABLE) J
CLOCK L3
DIRECT —RD
RESET

0 (INHIBIT)

(GLOBAL RESET)

The Combinatorial Function block contains RAM memory cells and can be
programmed to realize any function of five variables or any two functions of four variables.
The functions are stored in truth table form, so the number of gates required to realize the
functions is not important. Figure 6-4 shows the three different modes of operation for this
block. As before, each trapezoidal block represents a multiplexer, which can be programmed
to select one of its inputs. The FG mode generates two functions of four variables each.
One variable (A) must be common to both functions. The next two variables can be chosen
from B, C, QX, and QY. The remaining variable can be either D or E. For example, we
could generate F=AB'+ QX FE and G=A'C+ QY D. If QX and QY are not used, then the
two four-variable functions must have A, B, and C in common, and the fourth variable can
be Dor E.

204 CHAPTER 6 ® DESIGNING WiITH PROGRAMMABLE GATE ARRAYS AND CompLEX Logic Devices

The F mode can generate one function of five variables (A, D, E, and two variables
chosen from B, C, QX, and QY). We can realize functions ranging in complexity from a

simple AND gate,

F=G=ABCDE

to a parity function,

F=G=A®B®CO®DSDE

which has 16 terms when expanded to a sum of products. The FGM mode uses a multiplexer
with E as a control input to select one of two four-variable functions. Each function uses
inputs A, D, and two of the inputs B, C, QX, and QY. The FGM mode can realize some
functions of six or seven variables. For example, this mode could realize the seven-variable

function

F=G=E(AB + QX D) +E'(A'C + QYD)

Figure 6-4 Combinatorial Logic Options

AL ;
B K Any Function ‘
E QY -D—— of<4 F ':
c—] -] Variables !
D —— :
I x Any Function :
E QY of <4 G |
D" Variables
; . FG
S < e ' MODE
A . I
B :
' x e Any Function Foa
' i of 5 Variables ¢
C— |
D : F
e e!MODE
At 5
B = Any Function '
Qx y .
f QY_W of<4 i
c— Variables i
D— F
E 6!
; x Any Function
: QYE of <4 '
' Variables ‘
i FGM
E 1

6.1 * Xilinx 3000 Series FPGAs 205

The D input on each flip-flop can be programmed to come from F, G, or the DI data
input. The two flip-flops have a common clock. The MUX connected to the CLOCK input
(K) can be programmed to select either K or K, so the D flip-flops will change state either
on the rising or falling edge of the clock. The clock is either always enabled, or it is
controlled by the Enable Clock (EC) input. The MUX connected to the D input of each
flip-flop is used to effectively disable the clock. If EC = 0, the Q output is fed back to the
D input so that " = Q, and the flip-flop never changes states even though the clock is
changing. If EC = 1, the D input is connected to F, G, or DIN, and state changes occur in
response to the clock. The D flip-flop and MUX combination is equivalent to a D flip-flop
with an enable clock (EC) input as shown in Figure 6-5. Since Q can change only when
EC = 1, the following characteristic equation describes the flip-flop behavior:

Q' = ECD+EC'Q

Using this type of flip-flop makes it unnecessary to gate the clock with a control signal, as
was done in Section 1.12. Since the clock can go directly to each flip-flop input, achieving
proper synchronous operation is much easier. The flip-flops have an active high
asynchronous reset (RD). The direct reset input (if it is not inhibited) will clear both flip-
flops when it is set to 1. The global reset will clear the flip-flops in all of the cells in the
array.

Figure 6-5 Flip-flops with Clock Enable

1 o
MUX—D Q pi—b Q@

p1—] EC—CE _
= CLK —
EC —
CLK RD Reset

As an example, we will implement a parallel adder-subtracter with an accumulator
using an XC3020. The overall structure is similar to Figure 3-21, except control signals
are needed for both add and subtract. If Ad = 1, the B input will be added to the accumulator.
If Su = 1, the B input will be subtracted from the accumulator. Subtraction will be
accomplished by adding the 2’s complement of B to the accumulator. If Ad = Su = 0, the
accumulator should remain unchanged. We will form the 2’s complement by taking the 1's
complement of B and setting the carry into the first full adder to 1.

Since each logic cell has two flip-flops, it might be possible to implement two bits of
the accumulator in one cell. However, if two bits of the adder-subtracter were implemented
in one cell, two outputs from the accumulator flip-flops plus a carry output to the next cell
would be required. Since each cell has only two outputs, this scheme would not work.
Therefore, we can implement only one bit per cell.

206 CHAPTER 6 ® DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND CompLex Locic DEevices

Figure 6-6 Parallel Adder-Subtracter Logic Cell

Si A G Ci4q (Carry out)

b; 1B Combinational

Su — »E Logic

—! (QX) F D Q a (Sum)
(Ad + Su) CE
Tb RD
Reset
K (Clock)

Figure 6-6 shows a typical cell of the parallel adder-subtracter. The logic inputs are
b,, ¢, (carry from previous cell), and Su. The accumulator flip-flop output (a) is fed back
internally within the cell. The combinatorial function block implements the following
equations:

F=sum=a''=a,® (b,®Su) D,

G=c,, =carryout= a;c;+(a,+ c)b, ® Su)

If Su = 0, these equations reduce to the standard equations for a full adder (equations (1-
31) and (1-22), with x; =@, and y, = b)). If Su = 1, b, is complemented by the exclusive-OR.
If the carry-in to the least significant bit is also connected to Su, when Su = 1 the 2’s
complement of B is added to 4, so that subtraction will occur. Since both F and G are 4-
variable functions of the same variables, we know that they can be implemented by the
combinatorial function block using the FG mode in Figure 6-4. In Figure 6-6, ¢, and b, are
connected to the A and B block inputs, so the internal feedback from the a; flip-flop (QX)
must be routed to the third block input. Then the remaining input, Su, can be connected to
block input D or E. Since the accumulator should only change when Ad =1 or Su =1, we
connect the clock enable (EC) to the signal Ad + Su. An OR gate in another logic cell
generates this signal, which is used by all of the adder-subtracter cells.

The dashed lines in Figure 6-7 indicate the relevant signal paths that are present
within the logic cell after it has been programmed. The F function is connected to the D
input of the accumulator flip-flop (a,), and the G function is connected to the carry out

(Ci)-

6.1 * Xilinx 3000 Series FPGAs 207

Figure 6-7 Signal Paths Within Adder-Subtracter Logic Cell

DIRECT
RESET

e 1
DATAN—2L —— — | |
I B o |
| s
4 1
| y | - |
| ——y A T |
| | L T
c A '] x _] I l — i
i— : — F i |] F
Locic 1 c COMB[NA’I(“)%RIAL I | = CLB OUTPUTS
VARIABLES D | | |
Su_i_-QY Sy ———— _L-+__—_r_-§—_c
i+1
> I | ol ov "
DIN | | |
G — O | | |
MUX I D Q
Ll |
Ad+Su gc INa |
ENABLE CLOCK ——— ———————————— ﬁ‘] _] | D I
1 (ENABLE) / | |
| l
I
|
|
]

0 (INHIBIT)—————— ’ :E

(GLOBAL RESET)

Input-Output Blocks

Figure 6-8 shows a configurable input-output block (IOB). The I/O pad connects to one of
the pins on the IC package so that external signals can be input to or output from the array
of logic cells. To use the cell as an input, the 3-state control must be set to place the tristate
buffer, which drives the output pin, in the high-impedance state. To use the cell as an
output, the tristate buffer must be enabled. Flip-flops are provided so that input and output
values can be stored within the IOB. The flip-flops are bypassed when direct input or
output is desired. Two clock lines (CK! and CK?2) can be programmed to connect to either
flip-flop. The input flip-flop can be programmed to act as an edge-triggered D flip-flop or
as a transparent latch. Even if the I/O pin is not used, the 1/O flip-flops can still be used to
store data.

An OUT signal coming from the logic array first goes through an exclusive-OR gate,
where it is either complemented or not, depending on how the QUT-INVERT bit is

208 CHAPTER 6 ® DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND CompLex Locic Devices

programmed. The QOUT signal can be stored in the flip-flop if desired. Depending on how

the QUTPUT-SELECT bit is programmed, either the QUT signal or the flip-flop output

goes to the output buffer. If the 3-STATE signal is 1 and the 3-STATE INVERT bit is 0 (or
Figure 6-8 Xilinx 3000 Series 1/0 Block

PROGRAM-CONTROLLED MEMORY CELLS

ouT 3.STATE OUTPUT SLEW PASSIVE
INVERT INVERT SELECT RATE PULL UP 1
ISTATE _ T)D— H
i ! 1
(OUTPUT ENABLE) N
ouT _’——)o E)—K D Q OUTPUT
BUFFER
FLIP
FLOP
X /O PAD
R
DIRECT IN ¢—L
REGISTERED IN «¢—Q Q D <
FLIP TTL or \J
S CMOS
9 INPUT
LA THRESHOLD
R
[
K - (GLOBAL RESET)
—é @— cK1
C CK2
PROGRAM
CONTROLLED

MULTIPLEXER O =PROGRAMMABLE INTERCONNECTION POINT or PIP

if the 3-STATE signal is 0 and the 3-STATE INVERT bit is 1), the output buffer has a high-
impedance output. Otherwise, the buffer drives the output signal to the 1/O pad. When the
I/O pad is used as an input, the output buffer must be in the high-impedance state. An
external signal coming into the I/O pad goes through a buffer and then to the input of a D
flip-flop. The buffer output provides a DIRECT IN signal to the logic array. Alternatively,
the input signal can be stored in the D flip-flop, which provides the REGISTERED IN
signal to the logic array.

Each IOB has a number of I/O options, which can be selected by configuration memeory
cells. The input threshold can be programmed to respond to either TTL or CMOS signal
levels. The SLEW RATE bit controls the rate at which the output signal can change. When
the output drives an external device, reduction of the slew rate is desirable to reduce the
induced noise that can occur when the output changes rapidly. When the PASSIVE PULL-
UP bit is set, a pull-up resistor is connected to the /O pad. This internal pull-up resistor
can be used to avoid floating inputs.

6.1 e Xilinx 3000 Series FPGAs 209

Programmable Interconnects

The programmable interconnections between the configurable logic blocks and I/O blocks
can be made in several ways—general-purpose interconnects, direct interconnects, and
long lines. Figure 6-9 illustrates the general-purpose interconnect system. Signals between
CLBs or between CLBs and I0Bs can be routed through switch matrices as they travel
along the horizontal and vertical interconnect lines. Direct interconnection of adjacent
CLBs is possible, as shown in Figure 6-10. Long lines are provided to connect CLBs that
are far apart. All the interconnections are programmed by storing bits in internal
configuration memory cells within the LCA.

Figure 6-9 General-purpose Interconnects

Figure 6-10

N | |
—CLB— —CLB == CLB
_ | | L

$‘ Swifctr Switch

— | Mgrix Mam/x_._
N B |
—{CLB == —CLB— CLB

. 1

Direct Interconnects Between Adjacent CLBs
N N | |
—CLB —CLB— CLB—
_ | - - L [L
Switch Switch
Matrix Matrix
L L N | |
|; CLB —CLB=H CLB
I ! I
Switch Switch
Matrix Matrix
. N |
—CLB —CLB- CLB
B T i T - T

210 CHAPTER 6 ® DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND COMPLEX LOGIC DevICES

Long lines provide for high fan-out, low-skew distribution of signals that must travel
arelatively long distance. As shown in Figure 6-11, there are four vertical long lines between
each pair of adjacent columns of CLBs, and two of these can be used for clocks. There are
two horizontal long lines between each pair of adjacent rows of CLBs. The long lines span
the entire length or width of the interconnection area.

Figure 6-11 Vertical and Horizontal Long Lines

e l

—CLB[~ —CLB

SUMRS

CLB[— —CLB

yy
S

Each logic cell has two adjacent tristate buffers that connect to horizontal long lines.
Designers can use these long lines and buffers to implement tristate busses. Figure 6-12(a)
shows how tristate buffers can be used to multiplex signals onto a horizontal long line.
These buffers have an active-low output enable, so when A =0, D, is driven onto the line.
A weak keeper circuit at the end of the line remembers the last value driven onto the line,
so it is never left floating. Care must be taken to avoid bus contention, which would occur
if both a 0 and 1 were driven onto the bus at the same time. The tristate buffers can also be
used to implement a wired-AND function, as shown in Figure 6-12(b). When one or more
of the D inputs is 0, the line is driven to 0. When all the D inputs are 1, all the buffer
outputs are high-Z, and the pull-up resistor pulls the line up to a 1.

| Z=DyA' + DB + DcC' + ... + DYN’

KEEPER
CIRCUIT A B C N

(a) Multiplexer implementation

s
J
| I—

6.2 » Designing with FPGAs 211 J

MR RN

(b) Wired-AND implementation

A crystal oscillator may be implemented using an internal high-speed inverting buffer
together with an external crystal (Y1), resistors, and capacitors, as shown in Figure 6-13.
The external components connect to two of the IOB pins, and the oscillator output connects
to the alternate clock buffer. The alternate clock buffer drives a horizontal long line, which
in turn can be used to drive vertical long lines and the K (clock) inputs to the logic blocks.
If an external clock is used, it can be connected to the global clock buffer. This buffer
drives a global network, which provides a high fan-out, synchronized clock to all the IOBs
and logic blocks. If a symmetric clock is required, the oscillator output can be routed
through a flip-flop that divides the frequency by 2.

The XC3020 FPGA, which we have just described, has 64 CLBs (8 x 8), 64 user I/
Os, 256 flip-flops (128 in the CLBs and 128 in the IOBs), 16 horizontal long lines, and
14,779 configuration data bits. Other members of the XC3000 family have up to 484
CLBs (22 x 22), 176 user 1/Os, 1320 flip-flops, 44 horizontal long lines, and 94,984
configuration data bits.

Figure 6-13 Crystal Oscillator

<} {>o {1
XTAL1
D Q XTAL2 C
(IN) R1
- R2
1 W 1
Vg
Alternate ™ :[C 1 :[CZ

Clock Buffer

6.2 DESIGNING WITH FPGAS

Sophisticated CAD tools are available to assist with the design of systems using
programmable gate arrays. One method of designing a digital system with a FPGA uses
the following steps:

1. Draw ablock diagram of the digital system. Define condition and control signals and
construct SM charts or state graphs that describe the required sequence of operations.

2. Write a VHDL description of the system. Simulate and debug the VHDL code, and
make any necessary corrections to the design that was developed in step 1.

|212

CHAPTER 6 ® DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND ComPLEX LoGic DEvICES

Work out the detailed logic design of the system using gates, flip-flops, registers,
counters, adders, etc.

Enter a logic diagram of the system into the computer using a schematic capture
program. Simulate and debug the logic diagram, and make any necessary corrections
to the design of step 3.

Run a partitioning program. This program will break the logic diagram into pieces
that will fit into the configurable logic blocks.

Run an automatic place and route program. This will place the logic blocks in
appropriate places in the FPGA and then route the interconnections between the logic
blocks. :

Run a program that will generate the bit pattern necessary to program the FPGA.
Download the bit pattern into the internal configuration memory cells in the FPGA
and test the operation of the FPGA.

Automatic synthesis tools are available that will take a VHDL description of the

system as an input and generate an interconnection of gates and flip-flops to realize the
system. Using such tools effectively automates steps 3 and 4. However, certain restrictions
must be placed on the VHDL. code to make sure that it is synthesizable. These are discussed
in Chapter 8.

When the final system is built, the bit pattern for programming the FPGA is normally

stored in an EPROM and automatically loaded into the FPGA when the power is turned
on, The EPROM is connected to the FPGA, as shown in Figure 6-14. The FPGA resets
itself after the power has been applied. Then it reads the configuration data from the EPROM
by supplying a sequence of addresses to the EPROM inputs and storing the EPROM output
data in the FPGA internal configuration memory cells.

Figure 6-14 EPROM Connections for LCA Initialization

Address EPROM
(contains
FPGA configuration
Data data)

6.2 ¢ Designing with FPGAs 213

The following example shows how the dice game (Figure 5-11) can be implemented
using an XC3020 LCA. Figure 6-15 shows the dice game block diagram after it has been
entered using ViewDraw CAD software. Each of the modules will be expanded later. The
heavy lines indicate busses, which connect some of the modules. The IPADs and OPADs
represent the input and output pins on the XC3020. The output buffers (OBUFs) drive
external LEDs to indicate the state of each counter and WIN or LOSE. IPADs P12 and P14
are connected to an external RC network, which together with the GOSC module forms an
RC clock. This oscillator drives all the CLK inputs on the LCA through the ACLK buffer.
External push buttons connected to P11 and P16 are used for the GAME_RESET and the
roll button, respectively. The roll button is connected to two D flip-flops, which serve to
debounce the signal from the push button and synchronize it with the clock.

We design the dice_controller module based on the SM charts of Figure 5-32. The
main control has four states and requires two flip-flops. Using the state assignment TO:
AB=00,T1: AB=01,T2: AB=10, T3: AB = 11, the simplified logic equations derived
from the SM chart are

A* =A'B'Dn_roll D711 + A'B' Dn_roll D2312 + A'B Dn_roll Eq
+A'B Dn_roll D7 + A Reset'

B* =A'B'Dn_roll D711' + A'B Dn_roll' + AB Eq' + A B Reset’
Win =AB Lose=AB En_roll=A'

Sp =A'B'Dn_roll D711' D2312' (6-1)
The roll control requires one flip-flop, and by inspection of its SM chart,
Qt=Q'En_rollRb+QRb Roll=QRb Dn_roll=QRb' (6-2)
Since En_roll is always '1" in 80, we can rewrite the equation for Q* as
Ot =QEn_roll Rb + Q En_roll Rb = En_roll Rb

Figure 6-16 shows a ViewDraw schematic that implements equations (6-1) and (6-2).

[214

CHAPTER 6 ® DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND CompLEx Locic Devices

Figure 6-15 Dice Game Block Diagram

~ o [
[N LN [
38| 3|5 8|8
pl e~ -

>
0BUF
0Byl

>
OBUF

D2_2 >.
D2_1 »'
D2_0 ’ o

D12 ’. >

0BUF

D1_1 >‘ >

OBUF
0BUF

D1_@ ». >

D2_[2:0]
01_(2:01
COUNT_1to6 COUNT_1to6 full_adder3
COUNT[2:0] e —| COUNT[2:€] A[2:0]
Lk |_CLK ok K o SUN[3:0]
! carry CHIP_ENABLE CARRY CHIP_ENABLE B8[2:0]
test logic
i tol D7 SUM[3:2)
LOCeP33 - OBUF dice_contoller e
<<} WIN ROLL 02312
LOC=P32 | oo ROLL
o<} LOSE 07
OBUF RB p711 4bit_register
»——r8 02312 e
sp - LK D[3:0]
Sy GAME_RESET GAME_RESET E [
- Q CHIP_ENABLE Qr3:0]
IBUF K
LOC=P12 GOSC comparator 3:0
IPAD @ CLK_IN LK AL3:0) e
LOC=P14 £Q
w@L ACLK B[3:0]
TBUF OFF DFF
LOC=P16 U R8
D q > q n
SPARESWITCH E CE
v LK
(44 C L c Ck_ L "

[

—

SuM[3:0]

6.2 ® Designing with FPGAs 215
Figure 6-16 Dice Game Controller Module
CLK
=
pONROLL o |
o
-
p711 r
TR Y %
DFF
T pu
pC
at] s
‘7
g GAME_RESET
[
DFF
: T
. CE
o} —C RD
¢ l
H—
O
WIN
l T | LOSE
ENROLL'
(a) Main controller
ROLL_NEXT
- DFF
EN_ROLL'] Q _—O‘D ON_ROLL o

vee

CLK

|

(b) Dice roll controller

|216 CHAPTER 6 ® DesiGNING wWiTH PROGRAMMABLE GATE ARRAYS AND ComMPLEX Loaic Devices

The logic equations for the modulo-6 counter are

0y =0,0,+2,0,
0" = 010;+ 00,

05 =0

This 3-bit counter module is implemented as shown in Figure 6-17. The CHIP_ENABLE
connects to CE on the flip-flops, so the counter increments only when CHIP_ENABLE = 1.

Figure 6-17 Modulo-6 Counter

DFF

CARRY

l
mCHIP_ENABLE —

CE
CHIP_ENABLE Cro

CLK

 MAIN_RESET L

EEeE——
COUNT[2:0]

After the final design has been partitioned into logic cells, the logic cells placed and
the connections routed, 29 out of the 64 logic cells on the 3020 are used to implement the
dice game. Figure 6-18 shows the final routing of the interconnections for the dice game.

Realizing Functions with Six or More Variables

Although some 6-variable logic functions can be realized with one or two logic cells, a
general 6-variable function may require three cells. We now describe a general method for
realizing any 6-variable function. First, expand the function as follows:

Zabcdef) = aZObeded) +a Zlbcdef) = aZy + aZ, (6-3)

6.2 ¢ Designing with FPGAs 217 I

This is an example of Shannon's expansion theorem. You can verify that equation (6-3) is
correct by first setting a to 0 on both sides and then setting a to 1 on both sides. Since the
equation is true for both a = 0 and a = 1, it is always true. Equation (6-3) leads directly to
the network of Figure 6-19(a), which uses two cells to realize Z, and Z,. Half of a third cell
is used to realize the 3-variable function, Z = a'Z, + aZ,. As an example, consider the
following function:

Z = abcd'ef' + a'b'c'def' + b'cde'f

Figure 6-18 Layout and Routing for Dice Game for XC3020

g
a

‘1
4
4
4

]
3
3
]

q
4
4
<

,,
-
-
.

|
1
a2
8
()

.?
.
4
4
4

f,
.
F
re
-

I A -
< * <

I
i >

g
>

[

3

<

<

,,
BEO° B3 " "0 "OEwEly "OrE "t @t n

51

218

CHAPTER 6 ® DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND CompLEX LoGic DEVICES

“igure 6-19

Setting a =0 gives Z,=0 bcd'ef'+ 1 b'c'def’ + b'cdelf = b'c'def’ + b'cde’f and setting g =
1 gives Z =1 bcd'ef' + 0 b'c'def' + b'cdef = bed'ef' + b'cdelf. Since Z and Z, are 5-
variable functions, each of them can be realized by a single cell.

Any 7-variable function can be realized with 6 or fewer logic cells. The expansion
for a general 7-variable function is

Z(a,bcd.efg) =abZ(0,0,cdefg)+abZ01,cdefg)
+ab'Z(1,0,c.d.ef.g) + abZ(1,1,c.def,g)

= ab'¥, + ab¥, + ab'¥, + aby, (6-4)

Equation (6-4) can be obtained by applying the expansion theorem twice, first expanding
about a and then expanding about b. As an example, consider the 7-variable function

Z=Ccde'fg + bed'efg' + a'c'def'g + a'b'd'ef'g' + ab'defy'
* Substituting a=b=0 gives Y, =c'defg +c'def'g+d'ef'g.
* Substituting a=0,b=1 gives Y, =c'delfg + cd'effg' + c'def'g.
* Substituting a=1,b=0 gives Y, =c'defg + defg'.
* Substituting a=b=1 gives Y, =c'defg + cd'efg'.

Realization of 6- and 7-variable Functions
F -
e Yo . Zy
£ >
b, >
<, 7 (Ci—>
d_> | 0 a e—’ Yl
€ l f—>
f —
z £
S .]
b_, > d_> 4
c - b,
™ Z e . Y, Z
e —
] — -
£,
d
e Y,
f
—>
£

(a) General 6-variable function (b) General 7-variable function

6.3 * Xilinx 4000 Series FPGAS 219

The network of Figure 6-19(b) implements equation (6-4). Four cells implement the 5-
variable functions, Y, Y, Y,, and Y,. Afifth cell implements the 4-variable function, Z,=
a'b'Y0 + a'bY|, and the remaining cell implements a 5-variable function, Z = Zy+ab'Y, +
abY,. As the number of variables (n) increases, the maximum number of logic cells required
to realize an n-variable function increases rapidly. For this reason, PLDs may be a better

solution than LCAs when # is large.

6.3 XILINX 4000 SERIES FPGAS

The Xilinx 4000 series FPGAs are similar to the 3000 series, but more inputs and outputs
and many other features have been added. Figure 6-20 shows a simplified block diagram
of an XC4000 configurable logic block. It has nine logic inputs (F1, F2, F3, F4, G1, G2,
G3, G4, and H1). It can generate two independent functions of four variables:

G(G1,G2,G3,G4) and F(F1,F2,F3,F4)

This is in contrast to the 3000 series, where the inputs to the 4-variable function generators
must overlap. The 4000 series CLB can also generate a function H, which depends on F,
G, and HI. By setting FI = GI, F2 = G2, F3 = G3, and F4 = G4, it can generate any
function of five variables in the form H = F(F1,F2,F3,F4) Hl' + G(FI,F2,F3,F4) HI. It
can also generate some functions of 6, 7, 8, and 9 variables.

The CLB has two D flip-flops with enable clock (EC) inputs. The CLB has four
outputs, two from the flip-flops and two from the combinational logic function generators.
Unlike the 3000 CLB, the 4000 CLB has no internal feedback, so flip-flop outputs must be
routed externally back to the logic inputs when feedback is required. The CLB has an S/R
(set/reset) input that can be independently configured to connect to the SD or RD input on
each flip-flop. Thus one flip-flop could be set to 1 and the other set to 0 using the same
S/R signal. The clock input to each flip-flop can be configured to trigger on either the
rising edge or falling edge of the K (clock) input. The EC input on each flip-flop can either
be always enabled or it can be enabled by the EC input to the CLB. The D input to each
flip-flop can be connected to DIN, F, G, or H.

The 4000 logic cell contains dedicated carry logic, as shown in Figure 6-21. Each
cell contains carry logic for two bits, and the F and G function generators can be used to
generate the sum bits, Thus, each cell can be programmed to implement both the carry and
sum for two bits of a full adder. The carry lines between cells are hardwired (not
programmable) to provide for fast propagation of carries. The carries can propagate up or
down between cells, and a programmable multiplexer (labeled M1 in Figure 6-21) selects
the direction of propagation. Multiplexers M2, M3, and M4 allow some of the F and G
function generator inputs to come from carries instead of from the normal F and G cell
inputs. In addition to adders, the carry logic can be programmed to implement subtracters,
adder/subtracters, incrementer/decrementers, 2’s complementers, and counters.

220 CHAPTER 6 ® DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND CompLex Locic Devices

Figure 6-20 Simplified Block Diagram for 4000 Series CLB

oy
r H1 DIN SR EC]
‘ 1 |
G4 —] | SR
| CONTROL
LOGIC DIN]
G3
| FuncTION b p P gl—xo0
OF b
G2 G1-G4 H

) >
G1 —]

LOGIC EC
[| FUNOCFHON L1 g RD
— £ T 1 T
—] AND
HI1 X
F4 — SR |
CONTROL|] |
1 Lrocic DIN|
F3 SD
FUNCTION E D Q—vq
or F G
——H
F2 — F1-F4

[E ‘ } D>
F1 — |
' {7 EC
RD
K]
(CLOCK) ': 1
H Y
b F

‘When a cell is programmed to implement two bits of a full adder, the logic is equivalent
to that shown in Figure 6-22. In this configuration, A; and B, come from cell inputs £/ and
F2.A,,, and B, , come from G/ and G4. The C, input and the C,,, output connect to the
hardwired carry propagation lines. Figure 6-23 shows the connections for a 4-bit adder.
The middle two CLBs perform the four-bit addition. If a carry into the least significant bit
is needed, Co must be routed through an additional cell, since no direct connection to the
hardwired carry lines is allowed. If an overflow indication and a carry out from the most
significant bit is needed, a fourth cell is required. In this example, C, (instead of C,) is
routed to the fourth cell, and the cell inputs A, and B, are duplicated. C, is computed using
the F function generator to provide a carry output from the cell. C, is also recomputed
using the carry logic in the cell, and then the overflow is computed by the G function
generator as V= C, @ C,. This 4-bit adder can easily be expanded to 8 or 16 bits by adding
two or six additional cells. These adder modules are available in the Xilinx library.

6.3 * Xilinx 4000 Series FPGAs 221
Figure 6-21 XC4000 Dedicated Carry Logic
CF)UT CinDOowN Dy
4
G
CARRY G
Y
G4 r B
L
3 DIN
G3 = q S/R
¢ H G D Qp»YQ
G2 Fl } b
(28]
- EC
Gl
H1
F
CARRY Dlg S/R
r G D Ql+xXQ
F4 [E b
»@ EC
F3 H
F ‘—4;
F2 F X
Fl

L

,
Cinup Cout

When a cell is programmed to implement two bits of an adder/subtracter, an Add/Sub
signal must be connected to F3 and G3. When Add/Sub = 0, the B, and B, , inputs are
inverted inside the carry logic and the function generators so subtraction can be
accomplished by adding the 2’s complement.

222 CHAPTER 6 * DESIGNING WiTH PROGRAMMABLE GATE ARRAYS AND CompLex Locic Devices

Figure 6-22 Conceptual Diagram of a Typical Addition (2 Bits/CLB)

Carry Logic
e m e —
l
i ‘D—l_ﬂ_\
1 | j—\
JiEn S
I
| [
Ajg] —+
|
Bi+17 ~
I N
I
!
I _
|
I
1
' J
A —+
B4 :
G -+

Figure 6-23 Connections for a 4-bit Adder

[~ Ov
CLB
—»Cy
—
TC3 \\\
B3 _’ \\\\
A3_0—"> —>S\\
»| CLB 3~
B2 >—>SZ \\\
A2 S
Oy ~mmmmmmmm—m-- hard-wired
2 carries
By — e
AI_H ——>Sl //’

By — CLB ——» S 7

6.3 * Xilinx 4000 Series FPGAs 223

The F and G function generators can be programmed to serve as RAM memories
(see Figure 6-24). Each cell can be configured as a 16-word-by-2-bit RAM. The F and G
function generator inputs (FI/ = GI, F2 = G2, F3 = G3, and F4 = G4) provide a 4-bit
address, CI is used as a write-enable line (WE), and C2 and C3 serve as data inputs (D1
and D0). The contents of the memory cells being addressed are available at the F and G
function generator outputs. Alternatively, the cell can be configured as a 32 x 1-bit RAM,
with C2 used as the fifth address bit and C3 as the data input. The configuration bits
labeled WRITE G and WRITE F must be set to allow writing to the G and F function
generators, respectively.

Figure 6-24 CLB as a Read/Write Memory Cell

C1 2 C3 c4
i i | !
WE D1 DO EC
L_—_ i
I — Cjﬁ
G4 WE DATA WRITE G
—] IN o
G3 — G WRITE F
FUNCTION |~
G2 — GENERATOR M
Gl — (/ 16x2
I T
WE DATA
F4 — IN
F3 —] F
FUNCTION [~
F2 — GENERATOR
F1l —]

Figure 6-25 shows a 4000 series 1/0 block, which is similar in capability to the 3000
series I/0 block. The Ms on the diagram represent configuration memory bits. As is the
case for the 3000 IOB, the 4000 IOB can be programmed to invert the input, output,
tristate buffer control, and clock input. In addition, the global S/R line can be programmed
to set or reset each flip-flop. The 4000 IOB has both an optional pull-up and pull-down
resistor connected to the I/0 pad. The 4000 IOB also contains added logic for boundary
scan testing, which is discussed in Chapter 10.

The XC4003 FPGA, which we have just described, has 100 CLBs (10 x 10),
approximately 3000 gates, 80 user 1/Os, 360 flip-flops (200 in the CLBs and 160 in the
I0Bs), and 45,636 configuration data bits. Other members of the XC4000 families have
up to 2304 CLBs (48 x 48), 384 user 1/0s, 5376 flip-flops, and more than one million
configuration data bits.

224

CHAPTER 6 ® DESIGNING WiTH PROGRAMMABLE GATE ARRAYS AND CompLEX LoGIC Devices

Figure 6-25 4000 Series I/0 Block

TS INV
TS/OE

3 - State TS

OUTPUT

Output Data O D

Output Clock OK

INVERT
OUTPUT

S

can

D <
Boundary {TS - capture

TS - update __1

=

sd

EXTEST

SLEW PULL PULL
RATE DOWN UP

h

M [INVERT

5

D Q

7.
H s

Boundary

Scan | O - update

O - capture —
Q - capture ——J

ouT
SEL

i

A

1 - capture
Boundary — :| ! "_-'D_—
Scan
I - update) q 3]_
s
b b Q
f | L
ELAY]
EM 'NVERT @
. /
Input Clock IK D rd | FLIP-FLOP/

INPUT

GLOBAL
S/R

VHDL Model for a 4000 Series CLB

We now develop a VHDL model for the basic 4000 series CLB, including the function
generators and flip-flops but excluding the carry logic and RAM memory function. We
then use this model to simulate a control state machine. In the port declaration (see Figure
6-26), the bit-vector MEM _BITS represents the configuration memory bits, which determine
the functions generated by the cell and the connections within the cell. G_IN represents
the inputs G4, G3, G2, and GI; F_IN represents F4, F3, F2, and FI; C_IN represents C4,
C3, C2, and CI. The outputs are Y, X, and the two-bit vector O, which represents the two
flip-flop outputs (YQ and XQ).

—{ —

7.
7] s

LATCH

PAD|

Input Data 111

Input Data 2 2

6.3 * Xilinx 4000 Series FPGAs 225

Figure 6-26 Behavioral Model for XC4000 CLB

{ -- Behavioral description of the XC4000 CLB

library BITLIB;
use BITLIB.BIT_ PACK.ALL;

entity XC4000CLB is
port (MEM_BITS : in bit_vector(0 to 51);
G_IN, F_IN, C_IN : in bit_vector{(4 downto 1};
K : in bit;
Y,X : out bit;
Q : out bit_vector (1 downto 0));
end XC4000CLB;

architecture behavior of XC400OCLB is

alias G_FUNC : bit_vector (0 to 15) is MEM_BITS(0 to 15);

alias F_FUNC : bit_vector(0 teo 15) is MEM _BITS(16 to 31);

alias H FUNC : bit_vector (0 to 7) is MEM_BITS (32 to 39);

type bv2D is array (1 downto 0) of bit_vector (1l downto 0);
constant FF_SEL : bv2D := (MEM_BITS(40 to 41),MEM_BITS (42 to 43));
alias Y_SEL : bit is MEM_BITS(44);

alias X_SEL : bit is MEM_BITS(45);

alias EDGE_SEL: bit_wvector(l downto 0) is MEM_BITS(46 to 47);
alias EC_SEL : bit_vector(l downto 0) is MEM_BITS (48 to 49);

alias SR_SEL : bit_vector(l downto 0} is MEM_BITS(50 to 51);

alias H1 : bit is C_IN(1l};
alias DIN : bit is C_IN(2);
alias SR : bit is C_IN(3);
alias EC : bit is C_IN(4);

-- Timing spec for XC4000, Speed Grade -4

constant Tiho : TIME := 6 ns; -- F/G inputs to X/Y outputs via H
constant Tilo : TIME := 4 ns; -- F/G inputs to X/Y outputs
constant Tcko : TIME := 3 ns; -- Clock K to Q outputs

constant Trio : TIME := 7 ns; -- S/R to Q outputs

gignal G,F,H : bit;
begin

<= G_FUNC (vec2int (G_IN));

<= F_FUNC (vec2int (F_IN));

<= H_FUNC (vec2int (H1&G&F)) after (Tiho-Tilo);

<= (X_SEL and H) or (not X_SEL and G) after Tilo;
<= (Y_SEL and H) or (not Y_SEL and F) after Tilo;

Ko m™o@

226 CHAPTER 6 ® DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND Compiex Locic Devices

procesa (K, SR) -- update FF outputs
variable DFF_EC,D : bit_wector(l downto 0);
¢ begin
i for i in 0 to 1 loop
: DFF_EC(i) := EC or EC_SEL(1i);
case FF_SEL(i) is
when "00" => D{i) := DIN;
§ when "01" => D(1i) := F;
: when "10" => D(1i) := G;
when "11" => D(i) := H;
end case;
if (SR='1') then -- If SR set, then set or reset ff
! Q(i)<=SR_SEL(i) after Trio;
; else
if (DFF_EC(i)='1') then -- If clock enabled then
-- If correct triggering edge then update ff value
if ((EDGE_SEL(i)='1l' and rising edge(K)) or
(EDGE_SEL(i)='0' and falling_edge(X))) then
Q(i)<=D{(i) after Tcko;
end if;
end if;
end if;
end loop;

end process;
i end behavior;

In order to make the VHDL code more readable, we use aliases to split up MEM_BITS
into its component parts. Within the cell, the functions generated by the function generators
are stored in truth table form. G_FUNC specifies the output column of the truth table for
the function G(G4,G3,G2,G1). Since G is a four-variable function, 16 bits are required.
F_FUNC is similar to G_FUNC, but H_FUNC requires only 8 bits, since H is a function
of the three variables—F, G, and H1. Y_SEL selects the Y output (1 selects H and 0 selects
G). X_SEL selects the X output (1 selects H and 0 selects F). EDGE_SEL, EC_SEL, and
SR_SEL select the clock edge, the clock enable, and the set or reset, respectively, for the
two flip-flops. Since aliasing a bit-vector array to a bit-vector is not allowed, we have used
a constant declaration to define FF_SEL. FF_SEL(1) selects the D input for flip-flop YQ,
and FF_SEL(0) selects the D input for flip-flop XQ.

We have included timing information in the model. The constant Tilo is the maximum
propagation delay between a change in the F/G inputs and the X/Y outputs. When the
output is via the H function generator, the maximum propagation delay is 7iho. The delay
from clock K to outputs Q is Tcko, and the delay from S/R (C3) going high to Q is Trio. We
have not included specifications for setup and hold times; VHDL code for checking these
specifications will be discussed in Chapter 8.

The architecture body begins with concurrent statements that update G, F, H, X, and
Y. The specification for individual function generator delays is not given in the data sheet,
but these delays are included in Tilo when X or Y is updated. If the A function generator is
used, the additional delay is (Tiko — Tilo).

6.3 * Xilinx 4000 Series FPGAs 227 |

The for loop within the process updates the flip-flop outputs whenever K or SR
changes. The D flip-flop clock is enabled if EC_SEL(i)='1" orif the EC input (C4)is '1".
The case statement represents the multiplexer, which selects the D(i) flip-flop input as
DIN, F, G, or H, depending on the value of FF_SEL(i). When SR changes to '1’, (i) is set
or reset after the delay Trio. Otherwise, Q(i) is updated after Tcko if the clock is enabled
and the selected clock edge has occurred.

To illustrate the use of the VHDL CLB model, we implement the multiplier control
state graph of Figure 4-6(c) using XC4000 CLBs. Using a straight binary assignment, the
logic equations are

QI* =KQI'Q0+M QI'Q0+ K QI Q0' (6-5a)
Q0* =St Q0"+ MQI'Q0+ QI Q0' (6-5b)
Done =QI Q0 (6-5¢)
Load =St QI'Q0' (6-5d)
Ad =MQI'Q0 (6-5¢)
Sh =M'QI'Q0+ QI Q0" (6-5f)

Since each equation requires four variables or less, the equations can be implemented
'using three CLBs.

Figure 6-27 shows the VHDL code that instantiates three copies of the XC4000 CLB
component and connects them to realize equations (6-5). Delays in the interconnections
between the cells have not been included, since these delays are not known until after the
cells have been placed and the interconnections routed. The constants MEM1, MEM?2, and
MEM3 specify the configuration memory bits for the CLBs. These bits are specified as
constants, since they are loaded into the CLBs after power-up, and then they are not changed.
The G inputs to CLB1 (G_INI) are G4 =K, G3 =M, G2 = Q1, and GI = Q0. The truth
table for the G function generator, which implements QI* (equation (6-5a)) is in Table
6-1. Based on this table, the first 16 bits of MEM] are "0000010001100110". The F function
generator implements equation (6-5b), and the next 16 bits of MEM1 are the truth table for
F = Q0" (see Table 6-1). Since the H function is not used, the next 8 bits are 0. The
remaining bits of MEM1 specify the cell configuration.

[228 CHAPTER 6 * DESIGNING WiTH PROGRAMMABLE GATE ARRAYS AND COMPLEX Locic Devices

Table 6-1 Truth Tables for G and F Function Generators

(a) (b)
G4 G3 G2 @Gl G F4 F3 F2 F1 F
K M Q1 00 |o1* St M Q1 Q0 | oot
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 1
0 0 1 0 0 0 0 1 0 1
0 0 1 1 0 0 0 1 1 0
0 1 0 0 0 0 1 0 0 0
0 1 0 1 1 0 1 0 1 0
0 1 1 0 0 0 1 1 0 1
0 1 1 1 0 0 1 1 1 0
1 0 0 0 0 1 0 0 0 1
1 0 0 1 1 1 0 0 1 1
1 0 1 0 1 1 0 1 0 1
1 0 1 1 0 1 0 1 1 0
1 1 0 0 0 1 1 0 0 1
1 1 0 1 1 1 1 0 1 0
1 1 1 0 1 1 1 1 0 1
1 1 1 1 0 1 1 1 1 0

Figure 6-27 XC4000 Implementation of Multiplier Control

zentity Fig_4_6 is
port (St, K, M, CLK : in bit;
Ad, Sh, Load, Done : out bit);
end Fig_4_6;

architecture CLBs of Fig_4 6 is
component XC4000CLB
port (MEM_BITS : in bit_vector(0 to 51);

G_IN, F_IN, C_IN : in bit_vector (4 downto 1);
K : in bit;
Y,¥X : out bit;
Q : out bit_vector (1 downto 0));

end component;

constant MEM1 : bit_vector (0 to 51) :=
"0000010001100110011000101110101000000000100100110000~";

constant MEM2 : bit_vector (0 to 51) :=
"0001000100010001000000001000100000000000000000110000";

constant MEM3 : bit_vector (0 to 51) :=
"0000000001000100011001100010001000000000000000110000";

signal Q : bit_vector (1 downto 0);

signal G_IN1,G_IN2,G_IN3,F_INI1,F_IN2,F_IN3 : bit_vector (3 downto 0);

6.4 » Using a One-hot State Assignment 229

i begin

CLBl:
CLB2:
CLB3:

G_IN1<=K&M&Q; F_INl<=St&M&Q;
G_IN2<="00"&Q; F_TIN2<=St& '0‘&Q;
G_IN3<=M&'0'&Q; F_IN3<=M&'0'&Q;

XC4000CLB port map (MEM1,G_TN1,F_TN1,"1000",CLK, open,open,(Q);
XC4000CLB port map (MEM2,G_IN2,F_IN2,"1000",CLK,Done, Load, open) ;
XC4000CLB port map (MEM3,G_IN3,F _IN3,"1000",CLK,Ad,Sh,open);

end CLBs;

®&.4 USING A ONE-HOT STATE ASSIGNMENT

When designing with PGAs, we should keep in mind that each logic cell contains two flip-
flops. This means that it may not be important to minimize the number of flip-flops used in
the design. Instead, we should try to reduce the total number of logic cells used and try to
reduce the interconnections between cells. In order to design faster logic, we should try to
reduce the number of cells required to realize each equation. Using a one-hot state
assignment will often help to accomplish this.

The one-hot assignment uses one flip-flop for each state, so a state machine with ¥
states requires N flip-flops. Exactly one flip-flop is set to 1 in each state. For example, a
system with four states (T0, T1, T2, and T3) could use four flip-flops (Q0, @I, Q2, and
Q3) with the following state assignment:

TO: Q0 Q1 Q2 03 = 1000, T1: 0100, T2: 0010, T3: 0001 (6-6)

The other 12 combinations are not used.

We can write next-state and output equations by inspection of the state graph or by
tracing link paths on an SM chart. Consider the partial state graph given in Figure 6-28.
The next-state equation for flip-flop Q3 could be written as

Q3+ = X1 Q0QI' 02 Q3+ X2 Q0' QI 02 Q3

+X3Q00'QI' Q2 03'+ X4 Q0' QI' Q2' O3

However, since Q0 = 1 implies Q7 = 02 = 03 =0, the QI'Q2'Q3' term is redundant and
can be eliminated. Similarly, all the primed state variables can be eliminated from the
other terms, so the next-state equation reduces to

03t =XI100+X2Q01+X302+X403

Note that each term contains exactly one state variable. Similarly, each term in each output
equation contains exactly one state variable:

Z1 = XIQ0+X3Q2, Z2=X2QI +X403

When a one-hot assignment is used, the next-state equation for each flip-flop will contain
one term for each arc leading into the corresponding state (or for each link path leading
into the state). In general, each term in every next-state equation and in every output equation

230 CHAPTER 6 ® DESIGNING WiITH PROGRAMMABLE GATE ARRAYS AND CompLEX LoGIC DEVICES
will contain exactly one state variable. The one-hot state assignment for asynchronous
networks is similar to that described above, but a “holding term” is required for each next-
state equation (see Fundamentals of Logic Design, p. 644).

Figure 6-28 Partial State Graph

W @

X2/72
X1/Z1 X3/21

X4/72

When a one-hot assignment is used, resetting the system requires that one flip-flop
be set to 1 instead of resetting all flip-flops to 0. If the flip-flops used do not have a preset
input (as is the case for the Xilinx 3000 series), then we can modify the one-hot assignment
by replacing Q0 with Q0' throughout. For the preceding assignment, the modification is

TO: Q0 Q1 Q2 Q3 = 0000, T1: 1100, T2: 1010, T3: 1001 6-7)
and the modified equations are:
Q3= XI1Q0'+X2Q1 +X3Q2+X4Q3

ZI = XI100'+X302, Z2=X2Ql+X403

Another way to solve the reset problem without modifying the one-hot assignment is
to add an extra term to the equation for the flip-flop, which should be 1 in the starting state.
As an example, we use the one-hot assignment given in (6-6) for the main dice game
control of Figure 5-32(a). The next state equation for Q0 is

Q0" = Q0 Dn_roll' + Q2 Reset + Q3 Reset

If the system is reset to state 0000 after power-up, we can add the term Q0'Q1'Q2'Q3' to
the equation for Q0*. Then, after the first clock the state will change from 0000 to 1000
(T0), which is the correct starting state.

In general, both an assignment with a minimum number of state variables and a one-
hot assignment should be tried to see which one leads to a design with the smallest number
of logic cells. Alternatively, if speed of operation is important, the design that leads to the
fastest logic should be chosen. When a one-hot assignment is used, more next-state equations
are required, but in general both the next-state and output equations will contain fewer
variables. An equation with fewer variables generally requires fewer logic cells to realize.
Equations with five or fewer variables require a single cell. As seen in Figure 6-19, an
equation with six variables may require cascading two cells, an equation with seven variables
may require cascading three cells, etc. The more cells cascaded, the longer the propagation
delay, and the slower the operation.

6.5 ¢ Altera Complex Programmable Logic Devices (CPLDs) 231 }

©.5 ALTERA COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLDS)

CPLDs are an extension of the PAL concept. In general, a CPLD is an IC that consists of
a number of PAL-like logic blocks together with a programmable interconnect matrix.
Each PAL-like logic block has a programmable AND array that feeds macrocells, and the
outputs of these macrocells can be routed to the inputs of other logic blocks within the
same IC. Many CPLDs are electrically erasable and reprogrammable and, as such, are
sometimes referred to as EPLDs (erasable PLDs).

The Altera MAX 7000 series is a family of high-performance CMOS CPLDs. In
contrast to the Xilinx FPGAs, the Altera 7000 series uses EEPROM-based configuration
memory cells, so that once the configuration is programmed, it is retained until it is erased.
Figure 6-29 shows the basic 7000 series architecture, which consists of a number of Logic
Array Blocks (LABs), I/O Control Blocks, and a Programmable Interconnect Matrix (PIA).
Each LAB contains 16 macrocells, each of which contains combinational logic and a flip-
flop. Each LAB has 36 inputs from the PIA and 16 outputs to the PIA. From 8 to 16
outputs from each LAB can be routed to the 1/O pins through the I/O control block. From
8 to 16 inputs from the I/O pins can be routed through the /O control block to the PIA. The
global clock input (GCLK) and global clear input (GCLRn) connect to all macrocells. Two
output enable signals (OEIn and OE2n) connect to all 1/O control blocks.

Each macrocell (Figure 6-30) includes a logic array, a product-term select matrix
that feeds an OR gate, and a programmable flip-flop. The vertical lines in the logic array,
which are common to all of the macrocells in a LAB, are driven with the programmable
interconnect signals from the PIA and from shared logic expanders. Product terms are
formed in the logic array just as they are in a PAL. Five product terms are provided in each
macrocell, and these product terms are allocated by the product term select matrix. A
product term may be used as an OR gate input, an XOR gate input, a logic expander, or as
a flip-flop preset, clear, clock, or enable input.

232

CHAPTER & ® DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND COMPLEX Loaic Devices

Figure 6-29 Altera 7000 Series Architecture for EPM7032, 7064, and 7096 Devices

INPUT/GCLK >
INPUT/GCLRn [—@-
INPUT/QELl [o—@—— t
INPUT/OE2 w
4 \A 4 Ad LA 4 }1
LABA LABB
KE" 8 to Macrocells Macrocells ™ -KE
K 6 108 36 36 171024 6 <
/0 p o
[i : ®
Eg) 1.6 ® | Control ’4 § 7 > Control | @ 8t 1.6
pins ¢ Block Macrocells Macrocells Block e UO pins
9to 16 2 32
E2H d 16 16 310 HH
KH P> < S
¢ > <
8to 16 8to 16
W , v W
LABC PIA LABD
@_ Macrocells Macrocells "@
8to| 8to
=y " 331040 36 3% wwse 1% -S|
8016 8 | VO e = i Pl YO | e 5116
. ‘ontrol Control ® .
I/Opins ¢ Block Magrocells Macrocells Block o L/O pins
41t0 48 57t0 64
K>H 16 16 S
&+ s <> 1)
> ’4 -
8to 16 Bto 16
vy vy \ A4 vy
[°
° ®
° °
Figure 6-30 Macrocell for EPM7032, 7064, and 7096 Devices
Logic Array
e ———— 1 Global Global
L Y ! Clear Clock
L5 | Parallel Logic
[| Expanders
1 2 | (from other Prol%ra rpl;rlable
t) macrocells) cglster
== - Register
Bypass
I }- D to VO
Control
o FL T o
Product- | o Clock/ P |
Enable ENA
{) Term CLRN
Select Select
Matrix
|'+—__ _____ T 7 Clear
i {)—-— -l Select |
1 11 |>°
sse I %5. ° ozi 1
]
l !
Ll e e - —— -l Shared Logic to PIA
36 Signals 16 Expander
from PIA p Expanders

Product Terms

6.5 » Altera Complex Programmable Logic Devices (CPLDs) 233

The flip-flop in each macrocell is a D flip-flop with clock enable and asynchronous
preset and clear. The clock input can be driven by the global clock or from a product term.
The clock enable can be driven from a product term or Vce (always enabled). The clear
can be driven from the global clear or from a product term. The preset can be driven from
a product term. The D input always comes from the XOR gate output. Either the flip-flop
Q output or the XOR gate output can be selected by the Register Bypass multiplexer. The
selected output goes to the PIA and to the I/O control block. The D flip-flop in a cell can be
converted to a T flip-flop using the XOR gate. Since the characteristic equation for a T
flip-flop is Q" = Q0 @ T, we can connect one XOR gate input to (and use the other input
for 7. Using T flip-flops to implement counters and adders often requires fewer gates than
using D flip-flops.

Although only five product terms are available in each macrocell, more complex
functions can be implemented by utilizing unused product terms from other macrocells.
Two types of expander product terms are available—shareable expanders and parallel
logic expanders. One of the product terms in each macrocell may be used as a shareable
expander (Figure 6-31). The selected product term is fed back to the logic array through an
inverter, and hence the inverted product term can be used as an input to any macrocell
AND gate. When shareable expanders are used, the realization is equivalent to a three-
level NAND-AND-OR network. An AND-OR logic expression with more than five terms
can often be factored to utilize shareable expanders from other macrocells. For example,

P =AB+BC+CD+EF+EG+EH+F'I1+F'J

=AB+BC+CD+E(F'GHY+F{JYy
can use shareable expanders to generate (F'G'H') and ({'J')' . The XOR gate in a cell can
be used to complement a function, since F = F' @ 1. Sometimes the complement of a
function (F") requires fewer terms than the original function (F), in which case it is more
economical to implement F' and complement it using the XOR gate.

Parallel expanders (Figure 6-32) allow unused product terms from a macrocell to be
used in a neighboring macrocell. The parallel expander product terms can be chained from
one macrocell to the next within two groups-—macrocells 8 downto 1 and 16 downto 9.
When parallel expanders are used without shareable expanders, the maximum number of
product terms in any logic function is 20, five from the macrocell itself, and three additional
groups of five chained from neighboring macrocells.

234

CHAPTER 6 ® DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND CompLEx LoGiC DeviCEs

Figure 6-31 Shareable Expanders

Neos
7ooeg
36 Signals
from PIA

Figure 6-32 Parallel Expanders

16 Shared
Expanders

from Previous

Macrocell

Preset

Macrocell
Product-term
Logic

Product-term Select Matrix

Macrocell
Product-term
Logic

” >__ Macrocell
H Product-term
Clock LOgiC
Clear
Preset
———’_‘)D__ Macrocell
“. Product-term
] Clock Logic
Clear

36 Signals
from PIA

190

16 Shared
Expanders

to Next
Macrocell

—

6.5 Altera Complex Programmable Logic Devices (CPLDs) 235

Figure 6-33

Figure 6-33 shows an I/O control block for an I/O pin. This block allows each I/O pin
to be configured as an input, output, or bidirectional pin. A tristate buffer drives the [/O
pin. The OE control mux is programmed to select either Vcc, Gnd, or one of the global
output enable signals. If Vcc is selected, the macrocell output is enabled to the I/O pin. If
Gnd is selected, the buffer is disabled and the I/O pin can be used as an input. Otherwise,
the buffer is controlled by OE1n or OE2n.

1/0 Control Block for EPM 7032, 7064, and 7096

VCC
OEln A OE Control
OE2n
GND @
from Macrocell @
to PIA

-«

Software provided by Altera can be used to optimize and partition a design to fit it
into logic cells and route the connections between the cells. For example, if we use the
Altera software to implement two bits of the ful! adder of Figure 3-21 using the equations
given on page 109, the software first determines that T flip-flops will require fewer gates
than D flip-flops and then it factors the equations to utilize shareable expanders. The
resulting equations are

C3 = Al A2 X01 + Bl C1 X02 + Al B2 X01 + A2 B2
where X01 = B1+Cl and X02 = A2+B2 are shareable
expander outputs

T2 = Ad A1 B2'Cl + Ad Bl B2' X03 + Ad B1'B2 X04 + Ad Al' B2 C1'
where X03 = Al1+Cl and X04 = Al'+Cl' are shareable
expander outputs

Tl = 2d B1 C1' + Ad B1'Cl

Each logic equation has less than or equal to five terms, so it fits in a logic cell. Implementing
these equations requires three logic cells and four shareable expanders.

Using the Altera software, we entered the schematics for the dice game (Figures 6-15
through 6-17) and compiled the design. The resulting equations require 23 logic cells and
8 shareable expanders, and they fit into an EPM7032 CPLD. More examples of using
Altera CPLDs are given in Chapter 8.

Altera manufactures several other series of CPLDs. The MAX 7000S series is similar
to the MAX 7000 series, except that it is in-circuit programmable rather than requiring a
programmer. The MAX 9000 series, which is an enhanced version of the MAX 7000S
series, has higher density and additional routing resources. The FLEX 8000 and FLEX
10K series use RAM-based configuration memory cells instead of EEPROM-based cells.

|236

CHAPTER 6 ® DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND COMPLEX LoaIC DEvICES

©.% ALTERA FLEX 10K SERIES CPLDS

Figure 6-34

The Altera FLEX 10K embedded programmable logic family provides high-density logic
along with RAM memory in each device. The logic and interconnections are programmed
using configuration RAM cells in a manner similar to the Xilinx FPGAs. Figure 6-34
shows the block diagram for a FLEX 10K device. Each row of the logic array contains
several logic array blocks (LABs) and an embedded array block (EAB). Each LAB contains
eight logic elements and a local interconnect channel. The EAB contains 2048 bits of
RAM memory. The LABs and EABs can be interconnected through fast row and column
interconnect channels, referred to as FastTrack Interconnect. Each input-ouput element
(IOE) can be used as an input, output, or bidirectional pin. Each IOE contains a bidirectional
buffer and a flip-flop that can be used to store either input or output data. A single FLEX
10K device provides from 72 to 624 LLABs, 3 to 12 EABs, and up to 406 IOEs. It can
utilize from 10,000 to 100,000 equivalent gates in a typical application.

FLEX 10K Device Block Diagram

Embedded
Array
Block (EAB)

4

Column ;
Interconnect :

Row /

Interconnect

«—— Logic Array

Logic Array
Block (LAB)

- Logic Element (LE)

[T

Local Interconnect

Embedded

Array iog] [10g] [1og] [iog]

Figure 6-35 shows the block diagram for a FLEX 10K LAB that contains 8 logic
elements (LEs). The local interconnect channel has 22 or more inputs from the row
interconnect and 8 inputs fed back from the LE outputs. Each LE has four data inputs from
the local interconnect channel as well as additional control inputs. The LE outputs can be
routed to the row or column interconnects, and connections can also be made between the
row and column interconnects.

6.6 ¢ Altera FLEX 10K Series CPLDs 237 I

Each logic element (Figure 6-36) contains a function generator that can implement
any function of four variables using a lookup table (LUT). A cascade chain provides
connections to adjacent LEs so functions of more than four variables can be implemented.
The cascade chain can be used in an AND or in an OR configuration as illustrated in
Figure 6-37.

Figure 6-35 FLEX 10K Logic Array Block

Dedicated Inputs &

Global Signals Row Interconnect

6 e —
16 4
LAB Local
Interconnect - 4 :
Carry-In & A A
Cascade-In 6 Joa
L)_‘\B Control e — Y 7 ¢2
Signals —
> ——
4 > HE H "~ Column-to-Row
_l Interconnect
» mE
4 > LE2 B
Column
4 E LE3 j “__' Interconnect
- ;. 8 16
4 > o= [T o
4 ; LES
—_]
> LE6
4 > b
> H—
» LE7
4 > 4
—_—]
> LES
4 > L
8
Carry-Out &
Cascade-Out

When used in the arithmetic mode, an LE can implement the sum and carry for one
bit of a full adder. The carry chain provides for propagation of carries between adjacent
cells. Each LE contains one D flip-flop with a clock enable and asynchronous clear and
preset inputs. The LE ouput can come from the flip-flop or directly from the combinational
logic.

Functions of more than four variables require multiple LEs for implementation. For
example, a six-variable function, Z(a, b, c, d, e, f) can be implemented using six LEs.
Applying the expansion theorem, '

Za,b,c,d,e,f)=abZyc,d, e, f)+abZ(c, d,e f)+ab'Z,(c,d,e,f) +abZc,d,e,f)

238 CHAPTER 6 ® DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND CoMPLEX Logic DEevices

Zy 2,7, and Z3 can each be implemented with an LE. The outputs of these LEs can be
connected to inputs of other LEs via the local interconnect. The 4-variable functions Y, =
abZ,+abZ and Y, = ab'Z, + abZ, each require another LE. ¥ can be ORed with Y,

using the cascade chain, so no additional LE is required.

Figure 6-36 FLEX 10K Logic Element

Carry-In Cascade-In Register Bypass Programmable
Register
DATA ———¢———P» l /
Look-U —P
DATA2 —»| e | Camy | |Cascade PAn | _ to FastTrack
DATA3 P Chain Chain —»D Q P Interconnect
DATA4 > —»D
ENA
CLRn
to LAB Local
- Interconnect
I .
LABCTRLI ——————— P cjear
LABCTRL2 — | preset
Logic
Device-Wide ———————— P
Clear
Clock
Select
LABCTRL3
LABCTRL4
\/ \/
Carry-Out Cascade-Out
Figure 6-37 Cascade Chain Operation
AND Cascade Chain OR Cascade Chain

d[3..0]

d[3.0] ’

[4 ®
L 4 ®
L] []

di7..4]

6.6 ¢ Altera FLEX 10K Series CPLDs 239

Figure 6-38 shows an embedded array block. The inputs from the row interconnect
go through the EAB local interconnect and can be utilized as data inputs or address inputs
to the EAB. The internal memory array can be used as a RAM or ROM of size 256 x 8§,
512 x 4, 1024 x 2, or 2048 x 1. Several EABs can be used together to form a larger
memory. The memory data outputs can be routed to either the row or column interconnects.
All memory inputs and outputs are connected to registers so the memory can be operated
in a synchronous mode. Alternatively, the registers can be bypassed and the memory
operated asynchronously.

Use of CPLDs such as the FLEX 10K series allows us to implement a complex
digital system using a single IC. An example of implementing a microcontroller with a
FLEX 10K20 device is given in Chapter 11.

Figure 6-38 FLEX 10K Embedded Array Block

Dedicated Inputs & Device-Wide
Global Signals Clear

Row Interconnect

/

Data Data
In Out [__
8,4,2,1 ——F
7]
r Address
D Q
8,9, 10,11 ~—> RAM/ROM
256 x 8
T 512 x4
1,024 x 2 Column————
2,048 x 1 interconnect
» F WE
Py * D Q :l;
CC/‘O) >
4:‘C°\|
T4
“LO\|

T
N

EAB Local Interconnect

240 CHAPTER 6 ® DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND CompLEX Locic Devices

In this chapter we described several types of FPGAs and CPLDs and procedures for
designing with these devices. Use of appropriate CAD software facilitates partitioning a
design into logic blocks, placing these logic blocks within a logic array, and routing the
connections between the blocks. In Chapter 8, we will introduce the use of synthesis tools,
which allow us to start with a VHDL description of a digital system and synthesize digital
logic to fit into a target FPGA or CPLD.

| Problems

6.1 An 8-bit right shift register with parallel load is to be implemented using Xilinx 3000 logic
cells. The flip-flops are labeled X, X X.X,X.X,X X . The control signals N and S operate as follows:
N =0, do nothing; NS = 11, right shift; NS = 10, load. The serial input for right shift is S7.

(@) How many logic cells are required?
(b) Show the required connections for the rightmost cell on a copy of Figure 6-3.
(¢) Give the F and G equations for this cell.

6.2 Is it possible to implement two J-K flip-flops with a single 3000 series logic cell? If not,
explain why not. If yes, indicate the connections required on a copy of Figure 6-3, and give equations
for F and G. Label cell inputs J1 K1 J2 K2, outputs Q1 02, etc. Draw heavy lines for all internal
connections. Hint: The next-state equation for a J-K flip-flop is

0r=J0'+K'Q

6.3 Implement a 2-bit binary counter using one 3000 series logic cell. Ox is the least significant
bit, and Qy is the most significant bit of the counter. The counter has an asynchronous reset (AR) and
a synchronous load (Ld). The counter operates as follows:

En=0 No change.
En=1, Ld=1 Load Qxand Qy with external inputs U and V on rising edge of clock.
En=1, Ld=0 Increment counter on rising edge of clock.

(a) Give the next-state equations for Ox and Qy.

(b) Show all required inputs and connections on a copy of Figure 6-3. Show the connection paths
with heavy lines. Label the inputs on the FG mode diagram in Figure 6-4 and show the connection
paths.

6.4 Design a4-bit right-shift register using a 3020 FPGA. When the register is clocked, the register
loads if Ld = 1 and En = 1, it shifts right when Ld = 0 and En = 1, and nothing happens when En = 0.
Si and So are the shift input and output of the register. D, ;, and Q, , are the parallel inputs and
outputs, respectively. The next-state equation for the leftmost flip-flop is Q;* = En'Q, + En (Ld D,
+ Ld' Si).

(@ Give the next-state equations for the other three flip-flops.

(b) Determine the minimum number of 3000 series logic cells required to implement the shift
register.

(¢) For the left cell, give the input connections and the internal paths on a copy of Figure 6-3.
Also, give the F and G functions.

Problems 241

6.5 Show how to realize the following combinational function using two 3000 series logic cells:
Show the cell connections on a copy of Figure 6-3 and give the functions F and G for both cells.

F = XXX X+ XX X X+ XXX, + XX X X+ XX XX+ X,
6.6 Realize the following next-state equation using a 3020 FPGA. Try to minimize the number of
logic cells required. Draw a diagram that shows the connections to the logic cells (Figure 6-3) and
give the functions F and G for each cell. (The equation is already in minimum form.) It is not
necessary to show the individual gates.

Or=UQV'W+U'QVX'Y'+ UQX'Y+U'QV'Y+U'QXY+ UQVW'+ U'Q'V'X
6.7

(a) Make a one-hot state assignment for the state graph of Figure 4-22. By inspection, derive the
next-state and output equations.

(b) If a 3000 series FPGA is used, estimate the number of logic cells required to implement the
state graph. Repeat for a 4000 series FPGA.

6.8 How many 3000 series I/O blocks with unused 10 pads would be required to construct an 8-bit
serial in—parallel out register? When IN is 1, data is shifted into the register on a clock edge, and the
parallel outputs are always enabled. Draw the connections for the first I/O block.

6.9 What is the minimum number of 4000 series logic cells required to realize the following
function?

X =XI'X2'X3'X4'X5 + X1 X2 X3 X4 X5 + X5'X6 X7'X8'X9 + X5'X6'X7 X8 X9'

If your answer is 1, show the required input connections on a copy of Figure 6-20, and also mark the
internal connection paths with heavy lines. If your answer is greater than 1, draw a block diagram
showing the cell inputs and interconnections between cells. In any case, give the functions to be
realized by each F, G, and H block.

6.10 For the given state graph:

(a) Derive the simplified next-state and output equations by inspection. Use the following one-
hot state assignment for flip-flops 0,0, 2,0,: S0, 1000; S1, 0100; S2, 0010; S3, 0001.

(b) How many 4000 series CLBs are required to implement these equations?

(c) Refer to the behavioral VHDL model for the XC4000 CLB for this part in Figure 6-26. For the
CLB that implements Q,, and Q,, specify the following: G_FUNC, FF_SEL, SR_SEL.

(d) Assuming a maximum interconnect delay of 2 ns between CLBs, what is the maximum clock
rate for this implementation? Setup time for the flip-flop D inputs measured from the function
generator inputs is 6 ns, and propagation delay from clock input to Q output is 5ns.

242

CHAPTER 6 ® DESIGNING WITH PROGRAMMABLE GATE ARRAYS AND COMPLEX LOGIC DEVICES

6.11 Consider a 4-to-1 multiplexer. Can it be implemented using only one 4000 logic cell? If it can
be implemented, show the configuration of the 4000 CLB (Figure 6-20) and give the equations for
F, G, and H. If not, show or explain why it cannot be done. What about a 3-to-1 multiplexer?

6.12 Given Z(T,U,V,W, X, Y) = VWX + U'V'WY + TV'WY',

(@) Show how Z can be realized using a single 4000 series logic cell. Show the cell inputs on a
copy of Figure 6-20, indicate the internal connections in the cell, and specify the functions F, G, and
H. Use Y for the HI input.

(b) Show how Z can be realized using two 3000 series logic cells. Draw a diagram showing the
inputs to each cell, the interconnections between cells, and the F and G functions for each cell.

6.13 Complete the following VHDL model for a XC3000 logic cell (Figure 6-3). Assume that a
procedure is available, FG_GEN(A,B,C,D,E,QX,QY,F,G), that returns the values of F and G when it
is called. Ignore propagation delays. For each programmable 2-to-1 MUX, the top input is selected
when M = 0. For each programmable 3-to-1 MUX, F is selected when MM = 00, DIN is selected
when MM =01, and G is selected when MM = 10. M is the bit array used to program the logic cell.
Label the control inputs on the top F-DIN-G MUX as M(0) and M(1). Label the other M bits in a
similar manner. .

entity XC3000 is
port (M: in bit_vector(0 to 8);
A, B, C, D, E, DI, EC, K, DR, GR: in bit;
X, Y: out bit);
end XC3000;

6.14 A 4 x4 array multiplier (Figure 4-7) is to be implemented using an XC4003 FPGA.

(a) Without using the built-in carry logic, partition the logic so that it fits in a minimum number of
logic cells. Draw loops around each set of components that will fit in a single logic cell. Determine
the total number of F and G function generators required.

(b) Repeat part (a), except use the built-in carry logic.
6.15

(a) Implement an 8-to-1 multiplexer using an Altera 7000 series device. Give the logic equations
and determine the number of macrocells required if parallel expanders are used.

(b) Repeat (a), except use shareable expanders and no parallel expanders.
(¢) Implement the MUX using a FLEX 10K device. How many logic elements are required?
6.16

(@) Implement a 6-bit counter using an Altera 7000 series device. Give the logic equations and
determine the number of macrocells required. Use the XOR gates to create T flip-flops.

(b) Implement the counter using a FLEX 10K device. Use the carry chain so that each logic
element can implement a sum and carry.

CHAPTER 7/

FLOATING-POINT ARITHMETIC

Floating-point numbers are frequently used for numerical calculations in computing
systems. Arithmetic units for floating-point numbers are considerably more complex than
those for fixed-point numbers. This chapter first describes a simple representation for
floating-point numbers. Next an algorithm for floating-point multiplication is developed
and tested using VHDL. Then the design of the floating-point multiplier is completed and
implemented using an FPGA. Floating-point addition, subtraction, and division are also
briefly described.

7 .1 REPRESENTATION OF FLOATING-POINT NUMBERS

A simple representation of a floating-point (or real) number (V) uses a binary fraction (F)
and exponent (E), where N = F x 2E. We will represent negative fractions and exponents
in 2’s complement form. (Refer to Section 4.4 for a discussion of 2’s complement fractions.)
In a typical floating-point number system, F is 16 to 64 bits long and E is 8 to 15 bits. In
order to keep the examples in this chapter simple and easy to follow, we will use a 4-bit
fraction and a 4-bit exponent, but the concepts presented here are easily extended to more
bits. Examples of floating-point numbers using a 4-bit fraction and 4-bit exponent are

F=0.101 E=0101 N=5/8x2°
F=1.011 E=1011 N=-5/8x273
F=1.000 E =1000 N=-1x273

In order to utilize all the bits in F and have the maximum number of significant
figures, F should be normalized so that its magnitude is as large as possible. If F is not
normalized, we can normalize F by shifting it left until the sign bit and the next bit are
different. Shifting F left is equivalent to multiplying by 2, so every time we shift we must
decrement E by 1 to keep N the same. After normalization, the magnitude of F' will be as
large as possible, since any further shifting would change the sign bit. In the following
examples, F is unnormalized to start with and then it is normalized by shifting left.

244 CHAPTER 7 ® FLOATING-POINT ARITHMETIC

Unnormalized: F=0.0101 E=0011 N=5/16x23=5/2
Normalized: F=0.101 E=0010 N=5/8x22=5/2
Unnormalized: F=1.11011 E=1100 N=-5/32x2%=-5%x2"
(shift F left) F=1.1011 E=1011 N=-5/16%x25=-5x2"

Normalized: F=1.011 E =1010 N=-5/8x2% =-5x%x27

Zero cannot be normalized, so F = 0.000 when N = 0. Any exponent could then be used;
however, it is best to have a uniform representation of 0. We will associate the negative
exponent with the largest magnitude with the fraction 0. In a 4-bit 2’s complement integer
number system, the most negative number is 1000, which represents —8. Thus when F and
E are 4 bits, 0 is represented by

F =0.000, E=1000, or 0.000 x 2

This is logical, since the smallest nonzero positive number that could be represented is
0.001 x 28, Some floating-point systems use a biased exponent, so E = 0 is associated
with F =0.

IEEE has established a standard for floating-point numbers that provides a uniform
way of storing floating-point numbers in computer systems. However, most floating-point
arithmetic units convert the IEEE notation to 2’s complement and then use the 2’s
complement internally for carrying out the floating-point operations. Then the final result
is converted back to IEEE standard notation.

7 .2 FLOATING-POINT MULTIPLICATION

In this section we design a multiplier for floating-point numbers. We use 4-bit fractions
and 4-bit exponents, with negative numbers represented in 2’s complement. Given two
floating-point numbers, the product is

(F, x 2E1) x (F, x 2B2) = (F| x F)) x 2E1*ED = F x 2F

The fraction part of the product is the product of the fractions, and the exponent part of the
product is the sum of the exponents. We assume that F| and F, are properly normalized to
start with, and we want the final result to be normalized.

Basically, all we have to do is multiply the fractions and add the exponents. However,
several special cases must be considered. First, if F is 0, we must set the exponent E to the
largest negative value (1000). Second, if we multiply —1 by —1 (1.000 x 1.000), the result
should be +1. Since we cannot represent +1 as a 2’s complement fraction, we call this
special case a fraction overflow. To correct this situation, we set F'=1/2 (0.100) and add 1
to E. This is justified, since 1 x 2E = 1/2 x 25+,

When we multiply the fractions, the result could be unnormalized. For example,

(0.1 x 2E1) x (0.1 x 2E2) = 0.01 x 2E1+E2 = 0.1 x 2E1+E271

7.2 « Floating-Point Multiplication 245 |

In this example, we normalize the result by shifting the fraction left one place and subtracting
1 from the exponent to compensate. Finally, if the resulting exponent is too large in
magnitude to represent in our number system, we have an exponent overflow. (Sometimes,
an overflow in the negative direction is referred to as an underflow.) Since we are using 4-
bit exponents, if the exponent is not in the range 1000 to 0111 (-8 to +7), an overflow has
occurred. Since an exponent overflow cannot be corrected, an overflow indicator should
be turned on.

A flowchart for the floating-point multiplier is shown in Figure 7-1. After the fraction
multiply is completed, all the special cases must be tested for. Since F, and F, are
normalized, the smallest possible magnitude for the product is 0.01, as indicated in the
preceding example. Therefore, only one left shift is required to normalize F.

Figure 7-1 Flowchart for Floating-Point Multiplication

Start

Add Exponents
Multiply Fractions

SetE =-8

! |
| Done | SetF=1/2

E <=E+1

Shift F Left
E <=E-1

»le]

Exp Y
Overflow

Set Indicator

|246

CHAPTER 7 ® FLOATING-POINT ARITHMETIC

The hardware required to implement the multiplier (Figure 7-2) consists of an exponent
adder and a fraction multiplier. The latter is similar to the 2’s complement multiplier of
Figure 4-10. Since we are multiplying 3 bits plus sign by 3 bits plus sign, the result will be
6 bits plus sign. After the fraction multiply, the 7-bit result (#) will be the lower 3 bits of A
concatenated with B.

Figure 7-2 Exponent Adder and Fraction Multiplier

El
Load
SM8 . ry 3T lzl llu 10
Inc —> i LT X
St —> — Load Dec ——* I I I I
A A [[
Mdone — Adx Adx y ' y 4
P > SM8 5-bit Full Adder
ain
— RSF =1Inc
BV Control t 1] 1
> LSF =Dec
— 32, 1, 0
Fnorm —— Done Load > i | i Y
|
v v SRR
F —_———
RSF A (accumulator) B
Load 37 2! 11 0] 37 2! 1] 0
AdSh———»| i : | I I I -
Sh—» . ! 1 I ! | !
LSF'—1 T T T T
F2
Y A A
4-bit Full Adder < M
y
J § A A y sh M 1 1
ulti
AdSh<e— Contll')oil [— Adx
1's Complementer
Cm
]] y l
Mdone
T T T
Load—»] I N e
| | |

7.2 « Floating-Point Multiplication 247]

When the exponents are added, an overflow can occur. If E| and E, are positive and
the sum (E) is negative, or if £, and E, are negative and the sum is positive, the result is a
2’s complement overflow. However, this overflow might be corrected when 1 is added to
or subtracted from E during normalization or correction of fraction overflow. To allow for
this case, we have made the X register 5 bits long. When E | is loaded into X, the sign bit
must be extended so that we have a correct 2°s complement representation. Since there are
two sign bits, if the addition of E, and E, produces an overflow, the lower sign bit will get
changed, but the high-order sign bit will be unchanged. Each of the following examples
has an overflow, since the lower sign bit has the wrong value:

7+6 =00111+00110=01101 =13 (maximum allowable value is 7)

-7+ (-6) = 11001 + 11010 = 10011 = -13 (most negative allowable value is -8)

The following example illustrates the special case where an initial fraction overflow and
exponent overflow occurs, but the exponent overflow is corrected when the fraction
overflow is corrected:

(1.000 x 273 x (1.000 x 2-%) = 01.000000 x 2~° = 00.100000 x 2-8

The SM chart for the main controller (Figure 7-3) of the floating-point multiplier is
based on the flowchart. The controller for the multiplier is a separate state machine, which
is linked into the main controller. The SM chart uses the following inputs and control

signals:
St Start the floating-point multiplication.
Mdone Fraction multiply is done.
FZ Fraction is zero.
FV Fraction overflow.
Fnorm F is normalized.
EV Exponent overflow.

Load Load F), E,, F,, E, into the appropriate registers (also clear A in

preparation for multiplication).

Adx Add exponents; this signal also starts the fraction multiplier.

SM8 Set exponent to minus 8.

RSF Shift fraction right; also increment E.

LSF Shift fraction left; also decrement E.

v Overflow indicator.

Done Floating-point multiplication is complete.

The SM chart for the main controller has four states. In SO, the registers are loaded
when the start signal is 1. In S1, the exponents are added, and fraction multiply is started.
In 82, we wait until the fraction multiply is done and then test for special cases and take
appropriate action. It may seem surprising that the tests on FZ, FV, and Frnorm can all be
done in the same state, since they are done in sequence on the flowchart. However, FZ, FV,
and Frnorm are generated by combinational circuits that operate in parallel and hence can
be tested in the same state. However, we must wait until the exponent has been incremented
or decremented at the next clock before we can check for exponent overflow in S3. In 83,
the Done signal is turned on and the controller waits for St = O before returning to SO.

248 CHAPTER 7 ® FLOATING-POINT ARITHMETIC

Figure 7-3 SM Chart for Floating-Point Multiplication

Fraction
Multiplier
Control

RSF

A 4
S3/Done [
\L@L
v

Cv o

LSF

The state graph for the multiplier control (Figure 7-4) is similar to Figure 4-11, except
the load state is not needed, because the registers are loaded by the main controller. When
Adx = 1, the multiplier is started, and Mdone is turned on when the multiplication is

completed.

7.2 Fioating-Point Multiplication 249

Figure 7-4 State Graph for Multiplier Control

Adx'/0

Adx M/AdSh
Adx M'/Sh

The VHDL behavioral description (Figure 7-5) uses three processes. The main process
generates control signals based on the SM chart. A second process generates the control
signals for the fraction multiplier. The third process tests the control signals and updates
the appropriate registers on the rising edge of the clock. In state S2 of the main process,
A ="0000" implies that F =0 (FZ =1 on SM chart). If we multiply 1.000 x 1.000, the
result is A&B = "01000000", and a fraction overflow has occurred (FV = 1). If AQ2) =
A(1), the sign bit of F and the following bit are the same and F is unnormalized (Frnorm =
0). In state S3, if the two high-order bits of X are different, an exponent overflow has
occurred (EV =1).

The registers are updated in the third process. The variable addout represents the
output of the 4-bit full adder, which is part of the fraction multiplier. This adder adds the
2’s complement of C to A when Cm = 1. When Load = 1, the sign-extended exponents are
loaded into X and Y. When Adx = 1, the procedure Addvec (Figure 2-23) is called to add the
5-bit vectors X and Y. The constant ‘0’ indicates that Cin is 0, and NC is a dummy output
signal that is set equal to the carry-out but not used. When SM8 = 1, -8 is loaded into X.
Addvec is also called to increment or decrement X by adding +1 or —1. When AdSh =1, A
is loaded with the sign bit of C (or the complement of the sign bit if Cm = 1) concatenated
with bits 3 downto 1 of the adder output, and the remaining bit of addout is shifted into the
B register.

Testing the VHDL code for the floating-point multiplier must be done carefully to
account for all the special cases in combination with positive and negative fractions, as
well as positive and negative exponents. Figure 7-6 shows a command file and some test
results. This is not a complete test.

250 CHAPTER 7 ® FLOATING-POINT ARITHMETIC

Figurep7-5 VHD

. library BITLIB;
‘use BITLIB.bit_pack.all;

~entlty FMUL is
port (CLK, St: in bit;
F1,E1,F2,E2: in bit_vector (3 downto 0);
F: out bit_vector(6 downto 0);
V, done:out bit);

. end FMUL;

§architecture FMULR of FMUL is

isignal A, B, C: bit_vector(3 downto 0); --fraction registers
‘signal X, Y: bit_vector (4 downto 0); --exponent registers

. signal Load, Adx, Mdone, SM8, RSF, LSF, NC: bit;
. signal Adsh, Sh, Cm: bit;

signal PS1, NS1: integer range 0 to 3; -- present and next state
signal State, Nextstate: integer range (0 to 4;-- multiplier control state
"alias M: bit is B(0); v
. constant one:bit_vector (4 downto 0):="00001";
. constant neg_one:bit_vector(4 downto 0):="11111";
. begin
'main_control: process
begin
Load <= '0'; Adx <= '0'; ~-clear control signals

SM8 <= '0'; RSF <= '0'; LSF <= '0';
casge PSl is

when 0 => done<='0"; V<='0"'; --clear outputs
if St = 'l' then Load <= '1'; NS1 <= 1; F <= "0000000";
end if;

when 1 => Adx <= 'l'; NS1 <= 2;
when 2 -=>

if Mdone = 'l' then --wait for multiply
if A = "0000" then --zero fraction
SM8 <= 'l1';
elgif A = "0100" and B = "0000" then --fraction overflow
RSF <= 'l1'; --shift AB right
elsif A(2) = A(l) then --test for unnormalized
LSF <= '1"'; --ghift AB left
end if;
NS1 <= 3;
end if;
when 3 => --test for exp overflow
if X(4) /= X(3) then V <= '1'; else V <= '0'; end if;
{ done <= '1';
: F <= A(2 downto 0) & B; --output fraction
if ST = '0' then NS1<=0; end if;
end case;
walt until rising_edge(CLK]) ;
PS1 <= NS1;
wait for 0 ns; --wait for state change

{ end process main_control;

7.2 » Floating-Point Multiplication 251

‘mul2c: process --2's complement
‘multiply
begin
AdSh <= '0'; Sh <= '0'; Cm <= '0'; --clear control egignals
cage State is
when (0-> Mdone <= '0'; --gstart multiply

if Adx='1' then
if M = '1l'" then AdSh <= '1'; else Sh <= '1'; end if;
Nextstate <= 1;

end if;
when 1 | 2 =» --add/shift state
if M = 'l' then AdSh <= '1'; else Sh <= '1l'; end if;

Nextstate <= State + 1;
when 3 =>
if M = '1l' then Cm <= '1l'; AdSh <= '1l'; else Sh <='1'; end if;
Nextstate <= 4;
when 4 =>
Mdone <= '1l'; Nextstate <= 0;
end case;
wait until rising_edge (CLK):;
State <= Nextstate;
wait for 0 ns; --wait for state change
end process mullc;

update: process --update registers
variable addout: bit_vector (4 downto 0);
begin

wait until rising edge (CLK);
if Cm = '0' then addout := add4(a,C,'0');

else addout := add4(A, not C,'1'); end if; --add 2's comp. of C
if Load = '1' then X <= E1(3)&El; Y <= E2(3)&E2;
A <= "0000"; B <= F2; C <= Fl; end if;
if ADX = '1' then addvec(X,Y,'0',X,NC,5); end if;
if sM8 = '1' then X <= "11000'"; end if;
if RSF = '1l' then A <= '0'&A(3 downto 1);
B <= A(0)&B(3 downto 1);
addvec(X,one, '0',X,NC,5); end if; -- increment X
if LSF = '1' then
A <= A(2 downto 0)&B(3); B <= B(2 downto 0)&'0";
addvec (X,neg_one, '0',X,NC,5); end if; -- decrement X
if AdSh = '1l' then
A <= (C(3) xor Cm) & addout (3 downto 1); -- load shifted adder
B <= addout(0) & B(3 downto 1); end if; -- output into A & B
if Sh = '1' then
A <= A(3) & A(3 downto 1); -- right shift A & B
B <= A(0) & B(3 downto 1); -- with sign extend
end if;

, end process update;
. end FMULB;

|252

CHAPTER 7 ® FLOATING-POINT ARITHMETIC

Figure 7-6 Test Data and Simulation Results for Floating-Point Muitiply

list £ x

{ force £1 0111 0, 1001 200, 1000 400, 0000 600,
force el 0001 0, 1001 200, 0111 400, 1000 600,
force £2 0111 0, 1001 200, 1000 400, 0000 600,
force e2 1000 0, 0001 200, 1001 400, 1000 600,
force st 1 0, 0 20, 1 200, 0 220, 1 400, 0 420,
force clk 0 0, 1 10 -repeat 20
run 1000

ns delta £ X f1l el f2 e2 v

0 +0 0000000 00000 0000 0000 0000 0000 O O

0 +1 0000000 00000 0111 0001 0111 1000 O O

10 +1 0000000 00001 0111 00010111 1000 O O

30 +1 0000000 11001 0111 0001 0111 1000 0 O
150 +2 0110001 11001 0111 0001 0111 1000 O 1
170 +2 0000000 11001 0111 0001 0111 1000 0 O
200 +0 0000000 11001 1001 1001 1001 0001 0 O
250 +1 0000000 11010 1001 1001 1001 0001 0 O
370 +2 0110001 11010 1001 1001 1001 0001 O 1
390 +2 0000000 11010 1001 1001 1001 0001 O O
400 +0 0000000 11010 1000 0111 1000 1001 O O
1430 +1 0000000 00111 1000 0111 1000 1001 0 O
450 +1 0000000 00000 1000 0111 1000 1001 0 O
570 +1 0000000 00001 1000 0111 1000 1001 0O O
570 +2 0100000 00001 1000 0111 1000 1001 O 1
590 +2 0000000 00001 1000 0111 1000 1001 O O
600 +0 0000000 00001 0000 1000 0000 1000 O O
1630 +1 0000000 11000 0000 1000 0000 1000 O O
1650 +1 0000000 10000 0000 1000 0000 1000 O O
770 +1 0000000 11000 0000 1000 0000 1000 O O
770 +2 0000000 11000 0000 1000 0000 1000 0 1
790 +2 0000000 11000 0000 1000 0000 1000 0 ©
800 +0 0000000 11000 0111 0111 1001 0001 0 O
830 +1 0000000 00111 0111 0111 1001 0001 O O
850 +1 0000000 01000 0111 01111001 0001 O O
970 +2 1001111 01000 0111 0111 1001 0001 1 1
990 +2 0000000 01000 0111 0111 1001 0001 O O

fl el £f2 e2 v done

0111 800
0111 800
1001 800
0001 800
1 600, 0 620, 1 800, 0 820

o
@]
o]
v}

()

[

=

o

(]

L111 x 2% x (0.111 x 279)

0.110001 x 277

001 x 277) x (1.001 x 21

0.110001 x 27°

.000 x 27y x (1.000 x 277)

0.100000 x 21!

.000 x 278) x (0.000 x 278)

0.0000000 x 278

111 x 27) x (1.001 x 20

1.001111 x 28 (overflow)

After the VHDL code has been thoroughly tested, we complete the logic design and
then implement the multiplier using a programmable gate array. To facilitate loading the
registers, we use an input data bus, as shown in Figure 7-7. Instead of loading all the
registers at the same time, we load FI, F2, E1, and E2 at successive clock times using the
input data bus. When we add the exponents, we must load EI from the exponent adder
output, and we use the same bus for this purpose. To avoid bus conflict, we use tristate
buffers for the input data and for the exponent adder output. During loading, the input
tristate buffers are enabled, and during exponent addition, the other tristate buffers are
enabled. Alternatively, we could use a quad 2-to-1 multiplexer at the E/ register input and
eliminate the tristate buffers. Use of the multiplexer would require two additional logic

7.2 * Floating-Point Multiplication 253 |

cells and would increase the propagation delay; therefore, use of the tristate buffers is
probably the best choice if sufficient tristate buffers and associated horizontal long lines
are available. The VHDL code of Figure 7-5 was written in terms of conditional register
transfers and did not use either multiplexers or tristate buffers. The tristate bus could be
explicitly included in the VHDL model by using techniques described in Section 8.4,

Figure 7-7 Bus Structure for Floating-Point Multiplier
] —

Fraction Exponent

Adder Adder
F 1 F 1 Y

C(F1) B(F2)| [|X(El)| |Y(E2)

N I S R R |

Input
|V

Figure 7-8 shows a high-level schematic diagram for the multiplier. This diagram
includes the registers and adders that implement the fraction multiplier and exponent adder
of Figure 7-2 together with the multiplier control and main control modules. This design is
set up so the multiplier can be tested using a limited number of input switches. This requires
a modification of the SM chart—the load signal is eliminated and instead an external load
button (L.D) is used to load each register. The four data inputs (D3, D2, D1, D0) are connected
to the data bus (DB3, DB2, DBI, DB0) through tristate buffers. Switches SW0 and SW1
and the multiplexer (D2 — 4E) generate the signals L1, L2, L3, and L4, which select the
register to be loaded from the data inputs when the LD button is pressed.

We will use the following one-hot assignment for the main controller:

S0: 0,0,0,0, = 1000, S1: 0100, $2: 0010, $3: 0001
The following simplified logic equations can be obtained by inspection of the SM chart:
Qy =Q,St'+Q@,8t" or Q7 =Q,Q, St
0F =0,
Q7 =Q,Mdone' + Q,

Q7 =0Q,5t+ Q,Mdone

CLR =Q, (clearA)

Adx =(Q,

RSF = Q,Mdone FZ'FV

LSF = Q,Mdone FV'FZ'Fnorm'
SM8 = Q,MdoneFZ

Done = Q,

254

CHAPTER 7 ® FLOATING-POINT ARITHMETIC

Figure 7-8 Top-level Schematic for Floating-Point Multiplier

F1_Register

FD4CE
DBO 0o Qo F19 FRAADCDTEIf? "
0B1 F11
01 Q1 <)
MAIN D82 0z Q@ F12 L — @
" one|_DONE 0B3 03 Q3 2E] oy L
—=Jcz DONE———= st ice FS[4-0] ii0]
ST LR c o
———— . —_—
|c=v ¢ o ADX C aw el
ety | - AO0F g
EN N RSF———=m GND A_Register
MDONE LSF__LS—F. .-—c;R———CLR A[3-9]
B A[3-0]
SM8 —— B3
SM8— g FSUM1 s1
FSUMZ
s2
MDONE FSUM3 53
Multiplier FSUM4
ADX ADx MDONE—w LSE F1c3
._—;
e ADSH|AOSH__ g osn1ooF FV
IC—BO ¢pL_€P l_A$_}\DSH FV——a
— e on|_SH : u—RSF__ Irsr Fz—F2 g
I — Fn—FH g
— ¢
FSUM[4-0]
IPAD4 B_Register
A0 Data_Qutl
A0 ._H___AO A0
FSUMO 1) .T—Al
DB[3-0] i——r
B[3-0] B[3-0)
'—_II:ZF LFZ B[3-0]
5 LSF
D2_4E IRSF— RSF
ADSH ADSH
g ADSH |
A2 go——= SH
L B
Al Bl —-m C é"
L
B2———=8
1 L4
E 3| L] Exponent
E1_Register (X) Apdder'
DONE ADX
——{DONE 20X [apx s4
DB[3-0] PR L A Y s
T BUFT4 = o
i E1[4-0]

IPIA304 03 IBUF4—{>°j DR3 E1[4-0] E1[4-0]
B b2 < (B2 .54—]:"4 Data_Out2 S [3-0 Jre
2 0r K K o] g SMB gy 1[4-0]

To Do < (DB@ ."3—__|_51 E2[3-0]
RSF
RSF v
DB[3-0] .L_ LSF v v
e 1
.1 S Y
0sc4 -
E2._Register (YD)
FBM |— DBO E20 E2[3-0]
D9 L
F50@0K— DB1 W
F15K—————[>—cl 082 N 7T
F490— BUFG el
s 2 DB3 D3 Q3 E23
5 Ciore . 4 e
C
N
¢
-ﬁ’

7.2 = Floating-Point Multiplication 255

The second equation for Q7 was obtained from a Karnaugh map by noting that if St =0,
then Q7 =1 in states 1000 and 0001, Q7 = 0 in states 0100 and 0010, and Q is a don’t care
in the remaining unused states.

Using the second equation for Q7, these equations are implemented in the main control
module (see Figure 7-9). When the network is reset, it will actually start in state 0000
instead of 1000, but after the first clock Q, will become 1. The extra flip-flop on the left
side of the control module synchronizes the start signal with the clock.

Figure 7-9 Main Control for Floating-Point Multiplier

DONEA.

*-

FD
L ADX
D ™
! Q

Q
1
FD
D [
4 7 Q2 RSF
0——%(: 4
|
FD — o LSF
23 o Q[.J D Q~Q_3_J &
) ! }—:D—d
2 be —cC
B :] SM8
! : ;f *—)
mt T Lo
.=MDONE |
.tV
m_FNORM 1
uFZ .

We will implement the multiplier control of Figure 7-4 using the following modified
one-hot assignment :

S0: 0,0,0,0,=0000, S1:1000, S2:0100, S3:0010, S4:0001

256 CHAPTER 7 ® FLOATING-POINT ARITHMETIC

The resulting logic equations are

N = AdxQ,0,0:0, (since Q,=Q,=Q,=0,=0 only in S0)

(2;- = (21
o3 =0,
N =0;

AdSh =M(Adx+Q, + 0, +0Q,)

Sh =M'(Adx+ Q, + 0, + 0Q,)
Cm =MQ,
Mdore =Q,

Since Qf = Q7 = 07 = O/ = 0in 84, the next state of 5S4 is SO. The preceding equations are
implemented in the multiplier control module (see Figure 7-10.)

Figure 7-10 Multiplier Control

ADX

FD
D Q MDONE

FD

D Q
Q3
b {
FD q SH
D Q
Q2 4

FD

ADSH

BO

7.2 » Floating-Point Multiplication 257

Figure 7-11 shows the implementation of the A register module. The X74-194 is a
bidirectional shift register with control inputs SO (left shift) and S7 (right shift). If both SO
and S1 are 1, a parallel load occurs. Left shift occurs when LSF = 1, and right shift occurs
when RSF =1 or Sh = 1. When shifting right, the serial input (LSI) is O when RSF =1, else
itis A, (sign extend). When AdSh =1, S0 and S1 are both 1, so the adder output (offset by
one place) is loaded into the register. This module also generates the condition signals FV,
FZ, and FN (fraction normalized). When fraction overflow occurs, A = 0100, so FV =
AéAzAl'A(;. Since we assume that | and F,, are normalized if nonzero, if product bits A, =
A, = A, =0, this implies that the product is 0, so FZ = A A/A ;. If the sign bit (4,) and
following bit (A,) are complements, F is normalized, so FN=A, @ A|.

Figure 7-11 A Register

! X74_194 fv
L s

- St . @ a0

mS2 B QB AL

33 ¢ Qc A2

= A3 FZ

F1C3 o w /
LSE s |
. —————1 50
s1 FN
AOSH
R ~
SHog— |

| Name=A.1

Figure 7-12 shows the implementation of the E1 register module. The RD5SCR is a 5-
bit register with a clock enable. This register was implemented by modifying a standard 4-
bit register from the library. When SM8 = 0, the register is loaded from the data bus (DB).
D4 is loaded from the MUX output, so D4 is either IN4 or a copy of the sign bit (DB3).
When SM8& = 1, the AND and OR gates driving the D inputs force 11000 to be loaded into
the register. The register is loaded when SM8, Ld1, Adx, Dec, or Incis 1.

The exponent adder (Figure 7-13) adds EI and E2 when Adx = 1. When Inc = 1, 0001
is added to E! (increment), and when Dec = 1, 1111 (-1) is added (decrement). A 4-bit
adder plus an XOR gate is used to generate the 5-bit sum. Four bits from the £7 bus go into
the ADD4 module, and the fifth bit (E74) goes into the XOR gate. The adder output is
enabled onto the data bus when Adx, Dec, or Incis 1.

258

CHAPTER 7 ® FLOATING-POINT ARITHMETIC

The design was placed and routed using the XACT software package from Xilinx
using the 4003 FPGA as the target. The following results indicate the utilization of the
device:

Occupied CLBs 50 out of 100
F and G function generators 67 out of 200
H function generators 17 out of 100
CLB flip-flops 30 outof 200
Three-state buffers 8 out of 240
CLB fast carry logic 7 outof 100

Since less than half of the available resources were used, it should be possible to design a
floating-point multiplier with an 8-bit fraction and 8-bit exponent using the same part.
Now that the basic design has been completed, we need to determine how fast the
floating-point multiplier will operate and determine the maximum clock frequency. Most
CAD tools provide a way of simulating the final circuit taking into account both the delays
within the logic blocks and the interconnection delays. If this timing analysis indicates
that the design does not operate fast enough to meet specifications, several options are
possible. Most FPGAs come in several different speed grades, so one option is to select a
faster part. Another approach is to determine the longest delay path in the circuit and
attempt to reroute the connections or redesign that part of the circuit to reduce the delays.

Figure 7-12 ET7 Register

DB[3-90]

DBO —

DB1

DB2

083
Qe ElQ
IN4 Q1 E11
Q2 E12
Q3 E13
Q4 E14 E1[4-0]
L —
LE1 RDSCR
CADX
D¢
1C _
c

DONE \

7.3 ¢ Other Floating-Point Operations 259

Figure 7-13 Exponent Adder

ADX

- 3
oy
o ADD4

I

E1[4-0] Elo AQ
— E:; M BUFT4
A2 se . s[3-0]
E13 A3 se 51

&—

Sk

£20 s1
Ez[3-0] 80 % 52 2;
i 51 s3
82
8
81 m 3 co
E1e %
E 83

7.3 OTHER FLOATING-POINT OPERATIONS

Next, we consider the design of an adder for floating-point numbers. Two floating-point
numbers will be added to form a floating-point sum:

£21

E22

&

E23

(F x2E1) + (F,x 2E5) = F x 2F

Again, we will assume that the numbers to be added are properly normalized and that the
answer should be put in normalized form. In order to add two fractions, the associated
exponents must be equal. Thus, if the exponents E, and E, are different, we must
unnormalize one of the fractions and adjust the exponent accordingly. To illustrate the
process, we add

F,x2E1=0.111 x2% and F,x2£2=0.101 x 23
Since E, # E,, we unnormalize F, by shifting right two times and adding 2 to the exponent:
0.101 x 23 =0.0101 x 24 = 0.00101 x 25

Note that shifting right one place is equivalent to dividing by 2, so each time we shift we
must add 1 to the exponent to compensate. When the exponents are equal, we add the
fractions:

(0.111 x 2%) + (0.00101 x 2%) = 01.00001 x 2°

This addition caused an overflow into the sign bit position, so we shift right and add 1 to
the exponent to correct the fraction overflow. The final result is

F % 2E =0.100001 x 26

260 CHAPTER 7 ® FLOATING-POINT ARITHMETIC

When one of the fractions is negative, the result of adding fractions may be
unnormalized, as illustrated in the following example:

(1.100 x 272) + (0.100 x 271
= (1.110 x 271 + (0.100 x 271 (after shifting F,)

0.010 x 21 (result of adding fractions is unnormalized)

= 0.100 x 272 (normalized by shifting left and subtracting 1 from exponent)

In summary, the steps required to carry out floating-point addition are as follows:

1. If the exponents are not equal, shift the fraction with the smallest exponent right and
add 1 to its exponent; repeat until the exponents are equal.

2. Add the fractions.

3. (a) If fraction overflow occurs, shift right and add 1 to the exponent to correct the
overflow.
(b) If the fraction is unnormalized, shift left and subtract 1 from the exponent until
the fraction is normalized. :
(c) If the fraction is 0, set the exponent to the appropriate value.

4. Check for exponent overflow.

Step 4 is necessary, since step 3a or 3b may produce an exponent overflow. If £, >> E, and
F, is positive, F, will become all Os as we right-shift F), to equalize the exponents. In this
case, the resultis F = F and E=E,, so it is a waste of time to do the shifting. If E >>E,
and F, is negative, F, will become all 1s (instead of all Os) as we right-shift F, to equalize
the exponents. When we add the fractions, we will get the wrong answer. To avoid this
problem, we can skip the shifting when £, >> E, and set F = F, and E = E,. Similarly, if
E, >> E,, we can skip the shifting and set F = F, and E = E,. For the 4-bit fractions in our
example, if |E; — E,| > 3, we can skip the shifting.

Floating-point subtraction is the same as floating-point addition, except in step 2 we
must subtract the fractions instead of adding them.

The quotient of two floating-point numbers is

(F, x 2B1) + (F, x 2B2) = (F /F,) x 2ErE2 = F x 2F
Thus, the basic rule for floating-point division is divide the fractions and subtract the
exponents. In addition to considering the same special cases as for multiplication, we must

test for divide by O before dividing. If F| and F), are normalized, then the largest positive
quotient (F) will be

0.1111.. /0.1000. . .= OL.111...
which is less than 10,, so the fraction overflow is easily corrected. For example,

(0.110101 x 22) + (0.101 x27%) = 01.010%x 2% = 0.101 x 26

Problems 26Ll

Alternatively, if F| 2 F,, we can shift F, right before dividing and avoid fraction overflow
in the first place.

The main thrust of this chapter was the design of a floating-point multiplier. In the
process of designing the multiplier we used the following steps:

1. Develop an algorithm for floating-point multiplication, taking all of the special cases

into account.

Draw a block diagram of the system and define the necessary control signals.

3. Construct an SM chart (or state graph) for the control state machine using a separate
linked state machine for controlling the fraction multiplier.

4. Write YHDL code to implement the algorithm using control signals, with one process
for each state machine and one process for updating the registers on the rising edge
of the clock.

5. Test the VHDL code to verify that the high-level design of the multiplier is correct.

6. Draw a top-level schematic for the multiplier and complete the logic design for each
module.

7. Enter the schematic diagrams into the computer.

8. Simulate and debug the design using the same test examples as in step 5.

9. Use the CAD software to implement the multiplier using an FPGA.

N

In the next chapter, we show how CAD tools can be used to synthesize the floating-point
multiplier directly from the VHDL code.

Pr—

? Problems

7.1 Add the following floating-point numbers (show each step). Assume that each fraction is 5
bits (including sign) and each exponent is 5 bits (including sign) with negative numbers in 2’s
complement.

Fl 0.1011 El 11111
F2 = 1.0100 E2 = 11101

72

(a) Draw ablock diagram for a floating-point subtracter. Assume that the inputs to the subtracter
are properly normalized, and the answer should be properly normalized. The fractions are 8 bits
including sign, and the exponents are 5 bits including sign. Negative numbers are represented in 2°s
complement.

(b) Draw an SM chart for the control network for the floating-point subtracter. Define the control
signals used, and give an equation for each control signal used as an input to the control network.

(¢) Write the VHDL description of the floating-point subtracter.

7.3 This problem concerns the design of a digital system that converts an 8-bit signed integer
(negative numbers are represented in 2’s complement) to a floating-point number. Use a floating-
point format similar to the one used in class, except the fraction should be 8 bits and the exponent 4
bits. The fraction should be properly normalized.

262

CHAPTER 7 ® FLOATING-POINT ARITHMETIC

(a) Draw ablock diagram of the system and develop an algorithm for doing the conversion. Assume
that the integer is already loaded into an 8-bit register, and when the conversion is complete the
fraction should be in the same register. Illustrate your algorithm by converting —27 to floating point.

(b) Draw a state diagram for the controller. Assume that the start signal is present for only one
clock time. (Two states are sufficient.)

(¢) Write a VHDL description of the system.

7.4 This problem concerns the design of a divider for floating point numbers:

E EN _ E
(F, x 2EDI(F, x 2F2) = Fx2

Assume that F, and F, are properly normalized fractions (or 0), with negative fractions expressed in
2’s complement. The exponents are integers with negative numbers expressed in 2’s complement.
The result should be properly normalized if it is not zero.

(a) Draw a flowchart for the floating-point divider. Assume that a divider is available that will
divide two binary fractions to give a fraction as a result. Do not show the individual steps in the
division of the fractions on your flowchart, just say “divide.” The divider requires that 1F2| > IF1I
before division is carried out.

(b) Tlustrate your procedure by computing

0.111 x 23%/1.011 x 22

When you divide F| by F,, you don’t need to show the individual steps, just the result of the
division.

(¢) Write a VHDL description for the system.

7.5

(a) State the steps necessary to carry out floating-point subtraction, including special cases. Assume
that the numbers are initially in normalized form, and the final result should be in normalized form.

(b) Subtract the following (fractions are in 2’s complement):

(1.0111 x273) — (1.0101 x 2°5)
(¢) Write a VHDL description of the system.

7.6 Two floating-point numbers are added to form a floating-point sum:

(F,x 251) + (Fyx 2E5) = Fx 2
Assume that F| and F, are normalized, and the result should be normalized.
(a) List the steps required to carry out floating-point addition, including all special cases.

(b) [Ilustrate these steps for F, = 1.0101, E| = 1001, F, = 0.1010, E, = 1000. Note that the
fractions are 5 bits, including sign, and the exponents are 4 bits, including sign.

(¢) Write a VHDL description of the system.

Problems 263

7.7 A floating-point number system uses a 4-bit fraction and a 4-bit exponent with negative numbers
expressed in 2's complement. Design an efficient system that will multiply the number by —4 (minus
four). Take all special cases into account, and give a properly normalized result. Assume that the
initial fraction is properly normalized or zero. Note: This system multiplies only by —4.

(a) Give examples of the normal and special cases that can occur (for multiplication by —4).
(b) Draw a block diagram of the system.
(c) Draw an SM chart for the control unit. Define all signals used.

7.8 Twoexponents are added: 11011 (-5) and 00111 (7). What is the result, and is there an overflow?
Explain your answer.

7.9 Redesign the floating-point multiplier in Figure 7-2 using a common 5-bit full adder connected
to a bus instead of two separate adders for the exponents and fractions.

(a) Redraw the block diagram and be sure to include the connections to the bus and inciude all
control signals.

(b) Draw a new SM chart for the new control.

(©) Write the VHDL description for the multiplier or specify what changes need to be made to an
existing description.

7.10 This problem concerns the design of a network to find the square of a floating-point number,
Fx2E Fisanormalized 5-bit fraction, and E is a 5-bit integer; negative numbers are represented in
2’s complement. The result should be properly normalized. Take advantage of the fact that (—F)? = F2.

(a) Draw a block diagram of the network. (Use only one adder and one complementer.)

(b) State your procedure, taking all special cases into account. Illustrate your procedure for

F=1.0110, E =00100

() Draw an SM chart for the main controller. You may assume that multiplication is carried out
using a separate control network, which outputs Mdone = 1 when multiplication is complete.

(d) Write a VHDL description of the system.

CHAPTER

ApbpitioNaL Torics IN VHDL

Up to this point, we have described the basic features of VHDL and how it can be used in
the digital system design process. In this chapter, we describe additional features of VHDL
that illustrate its power and flexibility. Then we will show how VHDL code can be used as
an input to synthesis tools that automatically design digital logic for implementation with
PGAs, CPLDs, or ASICs (application-specific integrated circuits).

.1 ATTRIBUTES

An important feature of the VHDL language is attributes. Table 8-1 gives some examples
of attributes that can be associated with signals. In this table, S represents a signal name,
and S is separated from an attribute name by a tick mark (single quote). In VHDL, an event
on a signal means a change in the signal. Thus, SEVENT (read as “S tick EVENT™)
returns a value of TRUE if a change in § has just occurred. If S changes at time 7, then
S'EVENT is true at time 7 but false at time T + A. A transaction occurs on a signal every
time itis evaluated, regardless of whether the signal changes or not. Consider the concurrent
VHDL statement A <= B and C.If B=0, then a transaction occurs on A every time
C changes, since A is recomputed every time C changes. If B = 1, then an event and a
transaction occur on A every time C changes. S'ACTIVE returns true if $ has just been re-
evaluated, even if S does not change.

Table 8-1 Signal Attributes That Return a Value

Attribute Returns

S'EVENT True 1f an event occurred during the current
delta, else false

S'ACTIVE True if a transaction occurred during the
current delta, else false

S'LAST_EVENT Time elapsed since the previous event on S

S'LAST_VALUE Value of S before the previous event on S

S*LAST_ACTIVE Time elapsed since previous transaction on S

Table 8-2 gives signal attributes that create a signal. The brackets around (time)
indicate that (time) is optional. If (time) is omitted, then one delta is used. The attribute
S'delayed(time) creates a signal identical to S, except it is shifted by the amount of time
specified. The example in Figure 8-1 illustrates use of the attributes listed in Table 8-2.

266 CHAPTER 8 ® ADpDITIONAL Topics IN VHDL

The signal C_delayed5 is the same as C shifted right by 5 ns. The signal A_trans toggles
every time B or C changes, since A has a transaction whenever B or C changes. The initial
computation of A <= B and C produces a transaction on A at time = A, so A_trans
changes to '1" at that time. The signal A'stable(time) is true if A has not changed during the
preceding interval of length (time). Thus, A_stable5 is false for 5 ns after A changes, and it
is true otherwise. The signal A'quiet(time) is true if A has had no transactions during the
preceding interval of length (time). Thus, A_guiet5 is false for 5 ns after A has had a
transaction. SSEVENT and not S'STABLE both return true if an event has occurred during
the current delta; however, they cannot always be used interchangeably, since the former

just returns a value and the latter returns a signal.

Table 8-2 Signal Attributes That Create a Signal

Attribute

Creates

S'DELAYED [(time)]* |Signal same as S delayed by specified time
S'STABLE [(time)]* Boolean signal that is true if S had no

S'QUIET [(time)]™

S ' TRANSACTION

events for the specified time

Boolean signal that is true if S had no
transactions for the specified time
Signal of type BIT that changes for every
transaction on S

* Delta is used if no time is specified.

Figure 8-1 Examples of Slgnal Attributes

entlty attr ex is
port (B,C : in bit);
‘end attr_ex;

iarchitecture test of attr_ex is
signal A, C_delayedb5, A_trans : bit;
signal A_stableb, A_qguietb : boolean;

begln
A <= B and C;

C_delayedb <= C'delavyed(5 ns);
A_trans <= A'transaction;
A_stableb <= A'stable(5 ns);
A_quieth <= A'quiet (5 ns);

‘end test;

(a) VHDL code for attribute test

B []
C! 1 !
A } i :
C_delayeds5 | N I T 1
A_trans | L 1 I
A_stable5]

A_quiets W

(b) Waveforms for attribute test

8.1 ¢ Attributes 267

Table 8-3 gives array attributes. In this table, A can either be an array name or an
array type. In the examples, ROM1 is a two-dimensional array for which the first index
range is O to 15, and the second index range is 7 downto 0. ROM1'LEFT(2) is 7, since the
left bound of the second index range is 7. Although ROM 1 is declared as a signal, the array
attributes also work with array constants and array variables. In the examples, the results
are the same if ROM/ is replaced with its type, ROM. For a vector (a one-dimensional
array), N is 1 and can be omitted. If A is a bit_vector dimensioned 2 to 9, then A'LEFT is
2 and ALENGTH is 8.

Table 8-3 Array Attributes

Type ROM is array (0 to 15, 7 downto 0) of bit;
Signal ROM1 ROM;
Attribute Returns Examples
A'LEFT(N) left bound of Nth ROM1'LEFT(1) = 0
index range) ROM1'LEFT(2) = 7
A'RIGHT (N) right bound of Nth ROM1'RIGHT (1) = 15
index range ROM1'RIGHT(2) = 0
A'HIGH (N) largest bound of ROM1'HIGH(1l) = 15
Nth index range ROM1'HIGH(2) = 7
A'LOW (N) smallest bound of ROM1'LOW(1l) = 0
Nth index range ROM1'LOW(2) = O
A'RANGE (N) Nth index range = 0 to 15

A'REVERSE_RANGE (N)

reversed
Nth index range

ROML1 'RANGE (1)
ROMI1 'RANGE (2) = 7 downto O
ROM1 'REVERSE-RANGE (1) =

15 downto 0
ROML1 'REVERSE_RANGE (2) =

0 to 7
A'LENGTH (N) size of Nth index ROM1'LENGTH(1l) = 16
range ROM1'LENGTH(2) = 8

Attributes are often used together with assert statements (see p. 116) for error checking.
The assert statement checks to see if a certain condition is true and, if not, causes an error
message to be displayed. As an example of using the assert statement together with an
attribute, consider the following process, which checks to see if the setup and hold times
are satisfied for a D flip-flop:

check: process
begin
wait until rising_edge (Cik);
agsert (D'stable(setup_time))
report ("“Setup time violation”)
geverity error;
wait for hold_time;
assert (D'stable(hold_time))
report ("Hold time violation")
geverity error;
end process check;

268

CHAPTER 8 ® ADDITIONAL TOPICS IN VHDL

In the check process, after the active edge of the clock occurs, the D input is checked to see
if has been stable for the specified setup_time. If not, a setup-time violation is reported as
an error. Then, after waiting for the hold time, D is checked to see if it has been stable
during the hold-time period. If not, a hold-time violation is reported as an error.

The procedure Addvec given in Figure 2-23 requires that the two bit-vectors to be
added both be dimensioned N ~ 1 downto 0 and that N be included in the procedure call.
By using attributes, we can write a similar procedure that places no restrictions on the
range of the vectors other than the lengths must be the same. When procedure Addvec2
(Figure 8-2) is executed, it creates a temporary variable, C, for the internal carry and
initializes it to the input carry, Cin. Then it creates aliases nl, n2, and S, which have the
same length as Addl, Add2, and Sum, respectively. These aliases are dimensioned from
their length minus 1 downto 0. Even though the ranges of Add1, Add2, and Sum might be
downto or to and might not include 0, the ranges for the aliases are defined in a uniform
manner to facilitate further computation. If the input vectors and Sum are not the same
length, an error message is reported. The sum and carry are computed bit by bit in a loop,
as in Figure 2-23. Since this loop must start with i =0, the range of i is the reverse of the
range for S. Finally, the carry output, Cout, is set equal to the corresponding temporary
variable, C.

Figure 8-2 Procedure for Adding Bit-Vector

" —— This procedure adds two bit_vectors and a carry and returns a sum
-- and a carry. Both bit_vectors should be of the same length.

' procedure Addvec?2
(Addl,2dd2: in bit_vector;
Cin: in bit;
signal Sum: out bit_vector;
signal Cout: out bit) is

variable C: bit := Cin;

alias nl bit_vector (addl'length-1 downto 0} is Addl;
alias n2 bit_vector (Add2'length-1 downto 0) is Add2;
alias S bit_vector (Sum'length-1 downto 0) is Sum;

begin
assert ((nl'length = n2'length) and (nl'length = S'length))

report "Vector lengths must be equal!l"

geverity error;

for i in s'reverse_range loop

S(i) <= nl(i) xor n2(i) xor C;

C := (nl(i) and n2(i)) or (nl(i) and C) or (n2(i) and C);
end loop;
Cout <= C;

end Addvec?2;

8.2 = Transport and Inertial Delays 269

8.2 TRANSPORT AND INERTIAL DELAYS

VHDL provides for two types of delays—transport delays and inertial delays. The transport
delay, which is intended to model the delay introduced by wiring, simply delays an input
signal by the specified delay time. The inertial delay, which is the default delay type for
VHDL, is intended to model gates and other devices that do not propagate short pulses
from the input to the output. If a gate has an ideal inertial delay 7, the input signal is
delayed by time 7, but any pulse with a width less than 7'is rejected. For example, if a gate
has an inertial delay of 10 ns, a pulse of width 10 ns would pass through, but a pulse of
width 9.999 ns would be rejected. Real devices do not behave in this way. In general, the
maximum width of a pulse rejected by a device will be less than the delay time. VHDL can
model such devices by adding a reject clause to the assignment statement. A statement of
the form

signal_name <= reject pulse-width expression after delay-time

evaluates the expression, rejects any pulses whose width is less than pulse width, and then
sets the signal equal to the result after a delay of delay-time. In statements of this type, the
rejection pulse width must be less than the delay time.

Figure 8-3 illustrates the difference between transport and inertial delays. Consider
the following VHDL statements:

71 <= transeport X after 10 ns; -- transport delay
72 <= X after 10 ns; -- 1nertial delay
73 <= reject 4 ns X after 10 ns; -- delay with specified

-- rejection pulse width

Z1 is the same as X, except that it is shifted 10 ns in time. Z2 is similar to Z/, except the
pulses in X shorter than 10 ns are filtered out and do not appear in Z2. Z3 is the same as Z2,
except that only the pulses of width less than 4 ns have been rejected. In general, using
reject is equivalent to using a combination of an inertial delay and a transport delay. The
statement for Z3 given here could be replaced with the concurrent statements

Figure 8-3 Transport and Inertial Delays

[t t t
! 10ns ! ! 3ns Sns !

|

1 2ns :

1 i I
| | !
Z1| 1] . I I |
’ ‘\ 1 i | 1
l I I 1 I
f i 1 ! 1
I I] I
z2, l I | I
: 7 | | ¥)
i : I
Z3 | | : | I
I | |
:’ | | l I |
! : i L 1 :
0 10 20 30 40 50

270

CHAPTER 8 * ApDITIONAL Torics iIn VHDL

zm <= X after 4 ns; -- inertial delay rejects short pulses
73 <= transport Zm after 6 ns; -- total delay is 10 ns

Suppose that the following sequential statements are executed at time T

A <= transport B after 1 ns;
A <= transport C after 2 ns;

The result is that A is scheduled to receive the value of B at time T + 1 ns, and A is also
scheduled to receive the value of C at time 7 + 2 ns.
Now suppose that the following sequential statements are executed at time T

A <= B after 1 ns; -- inertial delay implied
A <= C after 2 ns; -- inertial delay implied

First, A is scheduled to receive the value of B at time T + 1 ns. Then, A is scheduled to
receive the value of C at T + 2 ns. Since this implies an inertial delay of 2 ns, the first
scheduled change is preempted. That is, the change to B is removed from the queue, and
only the change to C occurs.

If a signal is scheduled to change at a given time and then a second change is scheduled
to occur at an earlier time, the first change is deleted from the queue. For example, suppose
that the following sequential statements are executed at time 7:

A <= transport B after 2 ns;
A <= transport C after 1 ns;

First A is scheduled to change to B at time T + 2 ns. Then A is scheduled to change to C at
time 7 + 1 ns, and the previous change to B is removed from the queue.

8.3 OPERATOR OVERLOADING

The VHDL arithmetic operators, + and —, are defined to operate on integers, but not on bit-
vectors. In previous examples, we called a function or a procedure when we needed to add
two bit-vectors. By using operator overloading, we can extend the definition of "+" so that
using the "+" operator will implicitly call an appropriate addition function, which eliminates
the need for an explicit function or procedure call. When the compiler encounters a function
declaration in which the function name is an operator enclosed in double quotes, the compiler
treats this function as an operator overloading function. The package shown in Figure 8-4
defines two "+" functions. The first one adds two bit-vectors and returns a bit-vector. This
function uses aliases as in Figure 8-2 so that it is independent of the ranges of the bit-
vectors, but it assumes that the lengths of the vectors are the same. It uses a for loop to do
the bit-by-bit addition. The second function in the package adds an integer to a bit-vector
and returns a bit-vector.

When a "+" operator is encountered, the compiler automatically checks the types of
the operands and calls the appropriate functions. Consider the statement

8.3 e Operator Overloading 271

A <= B + C + 3;
and assume that the bir_overload package of Figure 8-4 is being used. If A, B, and C are of
type integer, integer arithmetic is used. If A, B, and C are of type bit_vector, the first

function in the package is called to add B and C, then the second function is called to add
3 to the sum of B and C. The statement

A <=3+ B+ C

would cause a compile-time error, since we have not defined an overloading function for
"+" when the first operand is an integer and the second operand is a bit-vector.

Figure 8-4 VHDL Package with Overloaded Operators for Bit-Vectors

§—— This package provides two overloaded functions for the plus operator
%package bit_overload is
‘ function "+" (Addl, Add2: bit_vector) return bit_vector;

function "+" (Addl: bit_vector; Add2: integer) return bit_vector;
cend bit_overload;

!
! 1ibrary BITLIB;
‘use BITLIB.bit_pack.all;

Epackage body bit_overload is

-- This function returns a bit_vector sum of two bit_vector operands
-- The add is performed bit by bit with an internal carry
function "+" (Addl, Add2: bit_vector) return bit_vector is

variable sum: bit_vector (Addl'length-1 downto 0);

variable c: bit := ‘0'; ~- no carry in

alias nl: bit_vector (Addl'length-1 downto () is Addl;

alias n2: bit_vector(Add2'length-1 downto 0) is Add2;

begin
for i in sum'reverse range loop
sum(i) := nl(i) xor n2(i) xor c;
¢ := (n1(i) and n2(i)) or (nl(i) amd c) or (n2(i) and c);
end loop;
return (sum);
end "+";

-- This function returns a bit_vector sum of a bit_vector and an integer
-- using the previous function after the integer is converted.
function "+" (Addl: bit_vector; Add2: integer) return bit_vector is
begin

return (Addl + int2vec(Add2 , Addl'length));

end "+";
‘end bit_overload;

L272 CHaPTER 8 @ ADDITIONAL Torics IN VHDL

Overloading can also be applied to procedures and functions. Several procedures can
have the same name, and the type of the actual parameters in the procedure call determines
which version of the procedure is called.

8.4 MULTIVALUED LOGIC AND SIGNAL RESOLUTION

In previous chapters, we have used two-valued bit logic in our VHDL code. In order to
represent tristate buffers and busses, we need to introduce a third value, 'Z', which represents
the high-impedance state. We also introduce a fourth value, "X', which represents an
unknown state. This unknown state may occur if the initial value of a signal is unknown,
or if a signal is simultaneously driven to two conflicting values, such as '0' and '1". If the
input to a gate is 'Z, the gate output may assume an unknown value, X',

Figure 8-5 shows two tristate buffers with their outputs tied together, and Figure 8-6
shows the VHDL representation. All the signals in this example are of type X01Z and can
assume the four values: X', ‘0%, ', and 'Z'. The tristate buffers have an active-high output
enable, so that when b =1 andd=0,f=a; whenb=0andd=1,f=c; and whenb=d=
0, the f output assumes the high-Z state. If » = d = 1, an output conflict can occur. Two
VHDL architectures are shown. The first one uses two concurrent statements, and the
second one uses two processes. In either case, fis driven from two different sources, and
VHDL uses a resolution function to determine the actual output. For example, ifa=c=4d
=1and b =0, fis driven to 'Z' by one concurrent statement or process, and fis driven to 'l’
by the other concurrent statement or process. The resolution function is automatically
called to determine that the proper value of fis 'l'. The resolution function will supply a
value of 'X' (unknown) if f is driven to both '0" and '1" at the same time.

Figure 8-5 Tristate Buffers with Active-High Output Enable

VA v
j

8.4 « Multivalued Logic and Signal Resolution

273

Figure 8-6 VHDL Code for Figure 8-5

use WORK.fourpack.all;
entity t_buff_exmpl is
port (a,b,c,d : in X017Z; ~- signals are four-valued
f: out X017);
end t_buff_exmpl;

architecture t_buff_conc of t_buff_exmpl is

begin
f <= a when b = 'l' elge 'Z';
f <= cwhen d = '1l' else 'Z';

end t_buff_conc;

architecture t_buff_bhv of t_buff exmpl is
begin
buffl: process (a,b)
begin
if (b='1') then
fe=a;
else
f<='72'; --"drive" the output high Z when not enabled
end if;
end process buffl;

buff2: process (c,d)

begin
if (d='1') then
f<=c;
else
f<='2'; --"drive" the output high Z when not enabled
end if;

end process buff2;
end t_buff_bhv;

VHDL signals may either be resolved or unresolved. Resolved signals have an
associated resolution function, and unresolved signals do not. We have previously used
signals of type bit, which are unresolved. If we drive a bit signal B to two different values
in two concurrent statements (or in two processes), the compiler will flag an error, since
there is no way to determine the proper value of B.

Consider the following three concurrent statements, where R is a resolved signal of
type X01Z:

R <= transport '0' after 2 ns, 'Z' after 6 ns;
R <= transport 'l' after 4 ns;
R <= transport 'l' after 8 ns, '0' after 10 ns;

i

Assuming that R is initialized to 'Z’, three drivers would be created for R, as shown in
Figure 8-7. Each time one of the unresolved signals s(0), s(1), or s(2) changes, the resolution
function is automatically called to determine the value of the resolved signal, R,

|274

CHAPTER 8 ® AppiTioNaL Torics IN VHDL

Figure 8-7 Resolution of Signal Drivers

s(0)

I'Z'@6ns ' '0'@ 2ns FZ'

driver 0 Tesolution™ Resolved signal
[I 1"@4ns | 'Z function R
daver 1 "resolve4”
[0 @10ns| T@8ns | Z
driver 2

Figure 8-8 shows how the resolution function for X01Z logic is defined in a package
called fourpack. First, an unresolved logic type u_X01Z is defined, along with the
corresponding unconstrained array type, u_X01Z_vector. Then a resolution function, named
resolved, is declared. Resolved X01Z logic is defined as a subtype of u_X01Z. The subtype
declaration contains the function name resolve4. This implies that whenever a signal of
type X01Z is computed, function resolve4 is called to compute the correct value.

The resolution function, which is based on the operation of a tristate bus, is specified
by the following table:

[X' 0 1 g
XXt Xt X X
o | 'xr oo 'xe 00
1| orxrorxe 1oLy
AN BD SEEERE SRR

This table gives the resolved value of a signal for each pair of input values: Z resolved
with any value returns that value, X resolved with any value returns X, and 0 resolved with
1 returns X. The function resolve4 has an argument, s, which represents a vector of one or
more signal values to be resolved. If the vector is of length 1, then the first (and only)
element of the vector is returned. Otherwise, the return value (the resolved signal) is
computed iteratively by starting with result = "Z' and recomputing result by a table lookup
using each element of the s vector in turn. In the example of Figure 8-7, the s vector has
three elements, and resolve4 would be called at 0, 2, 4, 6, 8, and 10 ns to compute R. The
following table shows the result:

Time s (0) s (1) s(2) R
0 'z 'z 'z 'z
2 0’ ‘z" 'z 0!
4 o vl A &
6 A 1 'z 1
8 'z "1 1 1
10 'z’ "1 0! X

8.4 » Multivalued Logic and Signal Resolution 275

Figure 8-8 Resolution Function for X01Z Logic

package fourpack is

type u_x01z is ('X','0','1','Z2"); -— u_x01z is unresolved

type u_x01lz_vector is array (natural range <>) of u x0lz;

function resolved (s:u_x0lz_vector) returm u_x01lz;

subtype x01z is resolved u_x01z;

-- x01z is a resolved subtype which uses the resolution function resolve4d
. type x0lz_vector is array (natural range <>) of x01z;
- end fourpack;

. package body fourpack is
type x01z_table is array (u_x01z,u_x01z) of u_x01z;
constant resolution_table : x01lz_table := (
(*X', X, K, XYY,
(*X','0','x','0"),
("X, X, 1,1y,
('x','0, 1,z) ;
function resolved (s:u_x01lz_vector) return u_x0lz is
variable result : u_x0lz := 'Z';
begin
if (s'length = 1) then
return s(s'low);

else
for i in s'range loop
result := resolution_tabla(result,s(i));
end loop;
end if;

return result;
end resolved;
end fourpack;

In order to write VHDL code using X01Z logic, we need to define the required
operations for this type of logic. For example, AND and OR may be defined using the
following tables:

AND | 'X' 'Q' '1' 'z OR['X' '0' '1' 'g"
- U IS SEENED SIED 4 XUl X 1o
o' | o' 0 0t rO RN D SEREEEE RN &
‘1t {x 0 1 0 xe "1vof 1 or1rorlr Ly
AN G S & AN SIS SR R’ &

The first table corresponds to the way an AND gate with 4-valued inputs would work. If
one of the AND gate inputs is 0, the output is always 0. If both inputs are 1, the output is 1.
In all other cases, the output is unknown (X), since a high-Z gate input may act like either
a0 or 1. For an OR gate, if one of the inputs is 1, the output is always 1. If both inputs are
0, the output is 0. In all other cases, the output is X. AND and OR functions based on these
tables can be included in the package fourpack to overload the AND and OR operators.

|276 CHaPTER 8 ® ApDiTiONAL Torics in VHDL

-5 |EEE-1164 STANDARD LOGIC

The IEEE-1164 Standard specifies a 9-valued logic system for use with VHDL. The nine
logic values defined in this standard are

U Uninitialized

X' Forcing unknown
0 Forcing 0

T Forcing 1

VA High impedance
A Weak unknown
T Weak 0

'H' Weak 1

! Don't care

The unknown, 0, and 1 values come in two strengths—forcing and weak. If a forcing
signal and a weak signal are tied together, the forcing signal dominates. For example if '0'
and 'H’ are tied together, the result is '0". The output of a pull-up resistor could be represented
by a value of 'H'. The nine-valued logic is useful in modeling the internal operation of
certain types of ICs. In this text, we will normally use only a subset of the IEEE values—
X', '0°, ', and 'Z'.

The IEEE-1164 standard defines the AND, OR, NOT, XOR, and other functions for
9-valued logic. It also specifies a number of subtypes of the 9-valued logic, such as the
X017 subtype, which we have already been using. Table 8-4 shows the resolution function
table for the IEEE 9-valued logic. The row index values have been listed as comments to
the right of the table. The resolution function table for X01Z logic is a subset of this table,
as indicated by the black rectangle.

8.5 « |[EEE-1164 Standard Logic 277

Table 8-4 Resolution Function Table for IEEE 9-valued Logic

CONSTANT resolution_table : stdlogic_table := (

-- | U X 0 1 z W L H - (R
('v', ‘v, 'u', 'uv', 'y', 'u', 'v', 'v', 'v'), -- | UI
(o, [x,xr, x, x)ox, R, XY, 'K), -- X
('ur, |'x', '0', 'x*, "0} 'O', '0', '0', 'X'), —— | O |
(‘o, |'x', 'x', 1, 1, '1v, 1t 1, XU), -- L1
('ur, 'x*, '0', 1Y, 'z, 'W', 'L', 'H', 'X'), -- | 2 |
(Ut XU, 0N, 1Y, W', W, W, W', XU), - LW
('u’, 'x', '0', '1', 'L', 'W', 'L', 'W', 'X'), -- | L |
('u', 'x', '0', '1', 'H', 'W', 'W', 'H', 'X'), -- | H |
('u', 'X', 'X', 'X', 'X', 'X', 'X', X', 'X') -- | - |

The table for the standard logic and operation is shown in Table 8-5. The and functions
given in Figure 8-9 use this table. These functions provide for operator overloading. This
means that if we write an expression that uses the and operator, the compiler will
automatically call the appropriate and function to evaluate the and operation depending
on the type of the operands. If and is used with bit variables, the ordinary and function is
used, but if and is used with std_logic variables, the std_logic and function is called.
Operator overloading also automatically applies the appropriate and function to vectors.
When and is used with bit-vectors, the ordinary bit-by-bit and is performed, but when
and is applied to std_logic vectors, the std_logic and is applied on a bit-by-bit basis. The
first and function in Figure 8-9 computes the and of the left (/) and right (r) operands by
doing a table lookup. The second and function works with std_logic vectors. Aliases are
used to make sure the index range is the same direction for both operands. If the vectors
are not the same length, the assert false always causes the message to be displayed.
Otherwise, each bit in the result vector is computed by table lookup.

Table 8-5 And Table for IEEE 9-valued Logic

CONSTANT and_table : stdlogic_table := (

T NP oNXC

()
()
()
()
('u, 'xe, v0r, XY, XY X', 0, XY, XN), --
{)
()
()
()

278 CHAPTER 8 ® AppiTIoNAL Topics IN VHDL

Figure 8-9 And Function for std_logic_vectors

| function "and" (1 : std_ulogic; r : std_ulogic) returmn UX0l is
| begin
return (and_table(l, r));
. end "and";
;function “and* { 1,r : std_logic_vector) return std_logic_vector is

alias 1lv : std_logic_vector (1 -to 1'LENGTH) is 1;

alias rv : std_logic_vector (1 to r'LENGTH) is r;
§ variable result : std_logic_vector (1 to 1'LENGTH });
' begin

if (1'LENGTH /= r'LENGTH) then

assert FALSE

; report "arguments of overloaded ‘and' operator are not of the same
. length"

severity FAILURE;

else
for i in result'RANGE loop
result (i) := and_table (1lv{(i), rv(i}));
end loop;
end if;

return result;

.end "and";

The rising_edge function for standard logic is as follows:

function rising_edge (Bignal s : std_ulogic) return BOOLEAN is

begin
return (s'EVENT and (To_X0l(s) = '1') and
(To_X01(s'LAST_VALUE) = '0'));

end;

The To_X01 converts s to the three values, 'X', '0’, and '1'. Only a change from '0' to 'l' is
recognized as a rising edge.

In Figure 3-11, we used the function PLAout to determine the output of a PLA from
its input and the PLA table. The function call does not explicitly pass the dimensions of the
input and output vectors as parameters. Instead, these dimensions are determined within
the function body using signal attributes. The PLAout function is given in Figure 8-10.
Input'length is the length of the Input vector. PLA'length(2) gives the width of the PLA
table. The high index of the Output vector is then (PLA'length(2) — Input'length — 1). The
outer loop (LP1) processes the PLA table row by row. Since the Input column range is
from left to right, we must make sure that we also step through the PLA table columns
from left to right. Since the PLA column range can either be high downto low or low to
high, we define a step that is —1 or 1, respectively. Loop LP2 copies the current row of the
PLA table into the variable PLArow in such a way that the index range of PLArow is
always high downto 0. PLAco! is initially set to the left column index of the PLA table and
incremented or decremented depending on the value of step. After exiting LP2, the input
part of the PLA row is copied to PLAinp. Loop LP3 checks the input part of each row to

8.5 ¢ |IEEE-1164 Standard Logic 279

see if it matches the PLA inputs. If we get an input match, then we do a bit-by-bit or
between the PLA output vector (Output) and the output part of the PLA table.

Flgure 8-10 Function to Determine a PLA Output

:—— The follow1ng functlon produces the PLA output accordlng to the PLA
-- specification (PLAmtrx) and the PLA inputs.

-- The steps in this function are as follows:

-- 1) Start at the first row of the PLAmtrx

:—— 2) Determine whether the given inputs match the PLA inputs in the
== current row

P-— 3) If the inputs match current PLA row, then OR the current outputs
- with the PLA outputs

P—- 4) Repeat steps (2) and (3) for all rows in the PLA matrix

type PLAmtrx is array (integer range <>, integer range <>) of std_logic;
functlon PLAout {(PLA: PLAmtrx; Input: std_logic_vector)
return std_logic_vector is
alias Inl: std_logic_vector (Input' length 1 downto 0) is Tnput;
variable match: std_logic;
variable PLAcol, step: integer;
variable PLArow: std_logic_vector{(PLA'length(2)-1 downto 0)
variable PLAinp: std_logic_vector (Input'length-1 downto 0);
variable Output:
std_logic_vector ((PLA'length(2)-Input'length-1) downto 0);

begln
] Output := (others=>'0"); -- Tnitialize output to all zeros
if PLA'left(2) > PLA'right(2) then step := -1; else step := 1;
end if;
LPl: for row in PLA'range loop --Scan each row of PLA
match := '1"'; -- Assume match for now
PLAcol := PLA'left(2);

LP2: for col in PLArow'range loop-- Copy row of PLA table

PLAarow(col) := PLA(row, PLAcol);
PLAcol := PLAcol + step;
end loop LP2;
PLAinp := PLArow{PLArow'high downto PLArow'high-Input'length+1);
LP3: for col in Inl'range loop -- Scan each input column
if INl{(col) /= PLAinp(col) and PLAInp{col) /= 'X' then
match := '0'; exit; -- mismatched row
end if;

end loop LP3;

if {(match = '1') then
Output := Output or PLArow (Output 'range);
end if;
end loop LP1;
return Output;
‘end PLAocut;

[280

CHarTER 8 * ApDITIONAL Torics IN VHDL

‘We have placed the PLAmtrx type definition and the PLAout function in a multivalued
logic library called MVLLIB. The VHDL code in Figure 8-11 tests the operation of PLAout
using the PLA table of Table 3-2. When PLAout is called with ABC = "110", the computation

proceeds as follows:

IN1 = "110", Output = "0000", 6 > 0 so step =
LP1l: row = 0, PLAcol = 6
LP2: PLArow = "00X1010"; PLAinp = "00X"
LP3: col = 2, IN1(2) = '1', PLAinp(2) = '0°',
(LP1) row = 1, match = '1l', PLAcol = 6
LP2: PLArow = "1X01100"; PLAinp = "1X0"
LP3: c¢col = 2, IN1(2) = '1l', PALinp(2) = '1°
col = 1, IN1(1) '1', PALinp(l) = 'X'
col = 0, IN1(0) = '0', PALinp{0) 0!
OQutput = *0000" or "“1100" = "1100"
(LP1) row = 2, etc.
Figure 8-11 Test of PLAout Function
/library ieee;
‘use ieee.std_logic_1164.all;
' library MVLLIB;
iuge MVLLIB.mvl_pack.all;
§entity PLAtest is
i port (ABC: in std_logic_vector (2 downto 0);
! F: out std_logic_vector(3 downto 0));
| end PLAtest;
éarchitecture PLAl of PLAtest is
| constant PLA3_2: PLAmtrx(0 to 4, 6 downto 0) :=
! ("00x1010", "1x01100", "X1X0101", "X100010", "1X10001");
ibegin
F <= PLAout (PLA3_2, ABC);
iend PLAL;

8.6 GENERICS

-1

match = '0°

-- row matches

Generics are commonly used to specify parameters for a component in such a way that the
parameter values may be specified when the component is instantiated. For example, the
rise and fall times for a gate could be specified as generics, and different numeric values
for these generics could be assigned for each instance of the gate. The example of Figure
8-12 describes a two-input nand gate whose rise and fall delay times depend on the number
of loads on the gate. In the entity declaration, Trise, Tfall, and load are generics that specify
the no-load rise time, the no-load fall time, and the number of loads. In the architecture, an
internal nand_value is computed whenever a or b changes. If nand_value has just changed

8.6 » Generics 281

to a'l', arising output has occurred, and the gate delay time is computed as
Trise + 3 ns * load

where 3 ns is the added delay for each load. Otherwise, a falling output has just occurred
and the gate delay is computed as

Tfall + 2 ns * load
where 2 ns is the added delay for each load.

Figure 8-12 Rise/Fall Time Modeling Using Generic Statement

~entity NAND2 is
E generic (Trise, Tfall: time; load: natural);
port (a,b : in bit;
c: out bit);
end NAND2;

iarchitecture behavior of NAND2 is
signal nand_value : bit;

begin
nand_value <= a nand b;
¢ <= nand_value after (Trise + 3 ns * load) when nand_value = '1'

else nand_value after (Tfall + 2 ns * load);
end behavior;

i entity NAND2_test is

. port (inl, in2, in3, in4 : in bit;
: outl, out2 : out bit);

end NAND2_test;

.architecture behavior of NAND2_test is
component NAND2 is
generic (Trise: time := 3 ns; Tfall: time := 2 ns;
load: natural := 1);
port (a,b : in bit;
c: out bit);
end component;
begin
Ul: NAND2 generic map (2 ns, 1 ns, 2) port map (inl, in2, outl);
U2: NAND2 port map (in3, in4, out2);
end behavior;

The entity NAND2_test tests the NAND2 component. The component declaration in
the architecture specifies default values for Trise, Tfall, and load. When Ul is instantiated,
the generic map specifies different values for Trise, Tfall, and load. When U2 is instantiated,
no generic map is included, so the default values are used.

IABZ CHapTer 8 @ AppiTionaL Torics in VHDL

8.7 GENERATE STATEMENTS

In the example of Figure 2-4 we instantiated four full-adder components and interconnected
them to form the 4-bit adder of Figure 2-3. Specifying the port maps for each instance of
the full adder would become very tedious if the adder had 8 or more bits. When an iterative
array of identical components is required, the generate statement provides an easy way of
instantiating these components. The example of Figure 8-13 shows how a generate statement
can be used to instantiate the 4-bit adder of Figure 2-4. The notation is the same as in the
figure, except a 5-bit vector represents the carries, with Cin the same as C(Q) and Cout the
same as C(4). The for loop generates four copies of the full adder, each with the appropriate
port map to specify the interconnections between the adders.

Figure 8-13 Adderd4 Using Generate Statement

:
‘entity Adder4 is

port (A, B: in bit_vector(3 downto 0); Ci: im bit; -- Inputs
‘ S: out bit_vector(3 downto 0); Co: out bit); -- Outputs
end Adderd; ’

architecture Structure of Adder4d is
component FullAdder

port (X, Y, Cin: in bit; -- Inputs
| Cout, Sum: out bit); -- Qutputs
. end component ;

signal C: bit_vector (4 downto 0);

begin
C(0) <= Ci;
-- generate four copies of the FullAdder
FullAdd4d: for i imn 0 to 3 generate
begin
FAx: FullAdder port map (A(i), B(i), C(i), C(i+1), S(i));
end generate Fulladd4;
Co <= C(4);
end Structure;

In the preceding example, we used a generate statement of the form

generate_label: for identifier in range generate
(begin]

concurrent statement(s)
end generate [generate_label];

Atcompile time, a set of concurrent statement(s) is generated for each value of the identifier
in the given range. In Figure 8-13, one concurrent statement—a component instantiation
statement—is used. A generate statement itself is defined to be a concurrent statement, so
nested generate statements are allowed.

8.8 = Synthesis of VHDL Code 283

A generate statement with an if clause may be used to conditionally generate a set of
concurrent statement(s). This type of generate statement has the form

generate_label: if condition generate
[begin]

concurrent statement (s)
end generate [generate_labell];

In this case, the concurrent statements(s) are generated at compile time only if the condition
is true.

8.8 SYNTHESIS OF VHDL CODE

A number of CAD tools are now available that take a VHDL description of a digital system
and automatically generate a circuit description that implements the digital system. The

' output from such synthesis tools may be a logic schematic, together with an associated
wirelist, which implements the digital system as an interconnection of gates, flip-flops,
registers, counters, multiplexers, adders, and other basic logic blocks. Some synthesis
tools are capable of implementing the digital system described by the VHDL code using a
PGA or CPLD.

Even if VHDL code compiles and simulates correctly, it will not necessarily synthesize
correctly. And even if the VHDL code does synthesize correctly, the resulting implementation
may be inefficient. In general, synthesis tools will accept only a subset of VHDL as input.
Other changes must be made in the VHDL code so the synthesis tool “understands” the
intent of the designer. Further changes in the VHDL code may be required in order to
produce an efficient implementation.

In VHDL, a signal may represent the output of a flip-flop or register, or it may represent
the output of a combinational logic block. The synthesis tool will attempt to determine
which is intended from the context. For example, the concurrent statement

A <= B and C;

implies that A should be implemented using combinational logic. On the other hand, if the
sequential statements

wait for clock'event and clock = 'l';
A <= B and C;

appear in a process, this implies that A represents a register (or flip-flop) that changes state
on the rising edge of the clock.

When integer signals are used, specifying the integer range is important. If no range
is specified, the VHDL synthesizer may interpret an integer signal to represent a 32-bit
register, since the maximum size of a VHDL integer is 32 bits. When the integer range is
specified, most synthesizers will implement integer addition and subtraction using binary
adders with the appropriate number of bits.

[284 CHAPTER 8 ® ADDITIONAL Topics IN VHDL

In general, when a VHDL signal is assigned a value, it will hold that value until it is
assigned a new value. Because of this property, some VHDL synthesizers will infer a latch
when none is intended by the designer. Figure 8-14 shows an example of a case statement
that creates an unintended latch. Since the value of b is not specified if a is not equal to 0,
1, or 2, the synthesizer assumes that the value of & should be held in a latch if a = 3. When
aequals0,1,0r2, b= agysoD= ay When a = 3, the previous value of B should be held in
the latch, so G should be 0 when a = 3. Thus G = (a,a,)". The latch can be eliminated by
replacing the word null in the VHDL code withb <= '0'.

Figure 8-14 Example of Unintentional Latch Creation

entity latch_example is

port(a: in integer range 0 to 3;
b: out bit);

iend latch_example;

architecture testl of latch_example is

begin
process (a)
begin
case a is
when 0 => b «= '1';
when 1 => b <= '0';

when 2 => b <= '1"';
when others => null;
end case;
end process;
iend testl;

(a) VHDL code that infers a latch

a[0] Dc D T O

a[l]

a[1:0]

(b) Synthesized network

When if statements are used, care should be taken to specify a value for each branch.
For example, if a designer writes

if 2 = '1' then Nextstate <= 3;
end if;

he or she may intend for Nextstate to retain its previous value if A #'1', and the code will
simulate correctly. However, the synthesizer might interpret this code to mean if A #'1’,

8.8 ¢ Synthesis of VHDL Code 285

then Nextstate is unknown ('X"), and the result of the synthesis may be incorrect. For this
reason, it is always best to include an else clause in every if statement. For example,

if A = 'l' then Nextstate <= 3;
else Nextstate <= 2;
end if;

is unambiguous.

Most VHDL synthesizers do a line-by-line translation of the VHDL into gates,
registers, multiplexers, and other general components with very little optimization up front.
Then the resulting design is optimized and mapped into a specific implementation
technology, such as PGAs or CPLDs. Some VHDL synthesizers allow the design to be
optimized for speed, for chip area, or for some compromise between maximum speed and
minimum area. When optimizing for speed, the number of components may be increased
in order to reduce the length of the path that has the maximum propagation delay. For
example, converting from a three-level gate network to a two-level network generally
increases the number of gates, but it reduces the propagation delay. When optimizing for
area, the number of components is generally reduced, which in turn reduces the required
chip area. During the initial translation of the VHDL code and during the optimization
phase, the synthesis tool will select components from those available in its library. Several
différent component libraries may be provided to allow implementation with different
technologies.

The example of Figure 8-15 shows how the Synopsis Design Compiler implements a
case statement using a multiplexer and gates. The integers a and b are each implemented
with 2-bit binary numbers. The MUX symbol uses one control input for each data input.
The three data inputs to the MUX are 01, 11, and 00. The three corresponding control
inputs are formed by encoding the two bits of a. Figure 8-15(c) shows the resulting circuit
after optimization. Because the MUX inputs are constants, elimination of the MUX and
several gates was possible. The final equations are b, = a;a, and b, = a, + a,.

The example of Figure 8-16 shows how the Synopsis Design Compiler implements
an if-then-elsif-else statement using a multiplexer and gates. Since the signals C, D, E,
and Z are each 3 bits wide, a 3-bit-wide multiplexer is used. This multiplexer has three
separate control inputs to select C, D, or E. Cis selected if A = 1; D is selected if A =0 and
B=0;and Eis selectedif A=0and B=1.

Standard VHDL Synthesis Package

Since standard VHDL does not provide for arithmetic operations on bit-vectors, we have
used functions and procedures such as Add4 and Addvec to perform addition on bit-vectors.
Every VHDL synthesis tool provides its own package of functions for operations commonly
used in hardware models. IEEE is developing a standard synthesis package, which includes
functions for arithmetic operations on bit_vectors and std_logic vectors.

|286

CHAPTER 8 @ ApDITIONAL Torics IN VHDL

The numeric_bit package defines arithmetic operations on bit_vectors. The package
defines two unconstrained array types to represent unsigned and signed binary numeric
values:

type unsigned is array (natural range <>) of bit;
type signed is array (natural range <>) of bit;

Signed numbers are represented in 2’s complement format. The package contains overloaded
versions of arithmetic, relational, logical, and shifting VHDL operators as well as conversion
functions. The numeric_std package defines similar operations on std_logic vectors. The
types unsigned and signed are defined as arrays of std_logic vectors instead of bit arrays.

Figure 8-15 Synthesis of a Case Statement

entity
port (
é;
: end cas
archite
begin
proce
begin
cas

end
end p
end tes

when
when
when
when

case_example is

a: in integer range 0 to 3;

b: out integer range 0 to 3);
e_example;

cture testl of case_example 1is

gs (a)

e a is

Il
\%

W N o
il
v
oooo
A
I

non
VoV
AAA
onon
oW

case;
rocess;
tl;

(a) VHDL code for case example

DATAI[1]

DATA1[0]

. DATA2[1:0]
logic_1 b[1:0]
DATA3[1:0]

a[1:0]

a[0] a[1] CONTROL.1[0]

=
|/ CONTROL2[0]

CONTROL3[0]

11

(b) Synthesized case statement before optimization

8.8 » Synthesis of VHDL Code 287
a[l]
b[1]
> bl1:0]
a[0] b[0]
all:0] > {>o
{c) After optimization
Figure 8-16 Synthesis of an if Statement
%entity if_example is B
port(A,B: in bit;
C,D,E: in bit_vector (2 downto 0);
Z: out bit_vector(2 downto 0));
end if_example;
architecture testl of if_example is
begin
¢ process(A,B)
g begin
! if A = '1' then Z <= C;
elgif B = '0' then Z <= D;
else 7 <= E;
end if;
end process;
‘end testl;
(a) VHDL code for if example
cr:o] >
D[2:0] > Z[2:0]
E[2:0] >

CONTROL1[0]

I
L~
B>))O CONTROL2[0]

AD—¢>—[>O ™
J CONTROL3[0]

(b) Synthesized VHDL code before optimization

288

CHAPTER 8 @ ADDITIONAL Torics IN VHDL

The numeric_bit and numeric_std packages define the following overloaded operators:

¢ Unary: abs, —
» Arithmetic: +, —, *, /, rem, mod
* Relational: >, <, >=, <=, =, /=

* Logical: not, and, or, nand, nor, xor, xnor
« Shifting: shift_left, shift_right, rotate_left, rotate_right,
sll, srl, rol, ror

The unary operations require a single signed operand. The arithmetic, relational, and logical
operators (except not) each require a left operand and a right operand. For arithmetic and
relational operators, the following left and right operand pairs are acceptable: signed and
signed, signed and integer, integer and signed, unsigned and unsigned, unsigned and natural,
natural and unsigned. For logical operators, left and right operands must either both be
signed or both unsigned.

If the left and right signed operands are of different lengths, the shortest operand will
be sign-extended before performing an arithmetic operation. For unsigned operands, the
shortest operand will be extended by filling in Os on the left. For example,

signed: *01101i* + "1011* becomes "01101" + 11011 = "01000"
unsigned: "01101" + "1011" becomes "01101" + "01011" = "11000"

When addition is performed on unsigned or signed operands, the final carry is discarded,
and overflow is ignored. If a carry is needed, an extra bit can be added to one of the
operands. For example,

constant A: unsigned(3 downto 0) := "1101";
congtant B: signed(3 downto 0) := "1011";
variable Sumu: unsigned(4 downto 0);
variable Sums: signed(4 downto 0);

variable Overflow: boolean;

Sumu := '0' & A + unsigned' ("0101");

-- result ig "10010" (sum = 2, carry = 1)
Sums := B(3)& B + signed' ("1101");

-- result is "11000" (sum = -8, carry = 1)
Overflow := Sums(4) /= Sums(3); -- Overflow is false

In this example, the notation unsigned' ("0101") is a type qualification that assigns
the type unsigned to the bit_vector "0101".

The shifting operators require a signed or unsigned operand together with a shift
count. A shift_right on an unsigned operand is with a 0 fill, and a right-shift on a signed
operand is with a sign-extend. For example,

A = "1001"
unsigned: shift_right{(a, 2) = "0010"
signed: shift_right(a, 2) = "1110"

8.9 # Synthesis Examples 289

The function To_Integer converts Signed or Unsigned to Integer. The function
To_Unsigned converts Integer to Unsigned, and the function 7o_Signed converts Integer
to Signed.

CAD tools for synthesis have design libraries that include components to implement
the operations defined in the numeric packages. The example of Figure 8-17 uses a standard
logic arithmetic package. When this code is synthesized, the result includes library
components that implement a 4-bit comparator, a 4-bit binary adder with a 4-bit accumulator
register, and a 4-bit counter. Some synthesis tools will implement the counter with a 4-bit
adder with an "0001" input and then optimize the result to eliminate unneeded gates.

Figure 8-17 VHDL Code Example for Synthesis

. library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity examples is
port (sigmal clock: in bit;
signal A, B: in signed(3 downto 0);
signal ge: out boolean;
signal acc: inout signed(3 downto 0) := "0000";
signal count: inout unsigned(3 downto 0) := "0000");
end examples;

architecture x1 of examples is

 begin
E ge <= (A »>= B); -- 4-bit comparator
process
begin
wait until clock'event and clock = '1°';
acc <= acc + B; -- 4-bit register and 4-bit adder
count <= count + 1; -- 4-bit counter
end process;
i end;

8.9 SYNTHESIS EXAMPLES

In this section, we show the results of synthesizing some of the VHDL code we have
previously written. We discuss what code changes were needed to achieve synthesis and
compare the results of synthesis with our previous design. In testing the examples in this
section, we used two different CAD systems: the Synopsis Design Compiler with the
XACT libraries and the Altera Max-Plus II VHDL compiler.

The first example is the sequential machine of Figure 1-17, starting with the VHDL
code of Figure 2-13. The corresponding synthesizable code is shown in Figure 8-18. We
had to make a number of changes in the original code in order to complete the synthesis
and obtain an economical result. First, we specified a range for the integer signals that
represent State and Nextstate. In order to specify a state assignment, we replaced the integer

290

CHAPTER 8 ® ApDITIONAL Torics IN VHDL

Figure 8-18 VHDL Code for Synthesis of State Machine

%entity SM1_2 is

i
H

i

state names with constant names SO, S1, . . ., S6. Then we defined the constants to match
the state assignment we used in Figure 1-18. We replaced each pair of if statements for X
= '0'and X = '1' with asingle if-then-else statement. Even though the VHDL code
is correct for simulation, the synthesizer required that we replace clock = '1' with
clock = '1l' and clock'event.

Using the VHDL code in Figure 8-18, the circuit synthesized by the Synopsis Design
Compiler using generic libraries requires 3 flip-flops and 13 gates, whereas the circuit
designed in Chapter 1 requires only 7 gates. One reason for the discrepancy is that the
optimizer apparently does not take don’t care next states and outputs into account. We
tried to improve the synthesis results by changing to IEEE standard logic and introducing
don’t cares, and we were able to reduce the number of gates to 12. Using the Xilinx libraries
and choosing the XC4000 PGA as a target, two CLBs are required. The equivalent gate
realization (Figure 8-19) requires 9 gates, one of which is an XNOR. Replacing the XNOR
gate with 3 gates for comparison purposes, the result is 11 gates.

port (X, CLK: in bit;

‘end SM1_

‘architec
subtype s_type is integer range 0 to 7;

|

signa
const
const
const
const
const
const
const
begin

proce
begin

Z <

cas

wh

wh

wh

wh

7Z: out bit);
2;

ture Table of SM1_2 is

1 State, Nextstate: s_type;

ant SO0: s_type := 0; -- state assignment

ant Sl: s_type := 4;

ant S2: s_type := 5;

ant S3: s_type := 7;

ant S4: s_type := 6;

ant S5: s_type := 3;

ant s6: s_type := 2;

a8 (State, X) --Combinational Network
= '0'; Nextstate <= 80; -- added to avoid latch
e State is

en S0 =>

if X='0' then Z<='l'; Nextstate<=851;
else Z<='0'; Nextstate<=$82; end if;
en S1 =>

if X='0' then Z<='1l'; Nextstate<=853;
else 7Z<='0'; Nextstate<=S4; end if;
en S2 =>

if X='0' then Z<='0'; Nextstate<=84;
else 7<='1'; Nextstate<=S4; end if;
en S3 =>

if X='0' then Z<='0Q'; Nextstate<=85;
elge Z<='l'; Nextstate<=S5; end if;

8.9 e Synthesis Examples 291

§ when S4 =>
: if X='0' then Z<='l'; Nextstate<=S85;
else Z<='0'; Nextstate<=386; end if;
when S5 =->
if X='0' then Z<='0'; Nextstate<=S0;
else Z<='1l'; Nextstate<=S0; end if;
when S6 =>
if ¥='0' then Z<='1l'; Nextstate<=30; end if;
when others -> null;
end case;
end process;

process (CLK) -- State Register
begin
if CLK='1l' and CLK'event then -- rising edge of clock
State <= Nextstate;
end if;
! end process;
i end Table;

Figure 8-19 State Machine Synthesized from Figure 8-18

x | Fre FDC q:)Do_?
J_l

>

CLK

We also synthesized the code of Figure 8-18 using the Altera Max-Plus II VHDL
compiler with the MAX 7000 CPLD series as the target. The result was very inefficient,
requiring 9 logic cells. We then changed the code by deleting the first line after begin in
the first process and then replacing the code for when S6 and when others with

when S6 =>
if X = '0' then 2 <= '0Q'; Nextstate <= S0;
else 7 <= '0'; Nextstate <= S0;
when others =>

7 <= '0'; Nextstate <= S0;

The result of synthesis then required only four logic cells, which is the minimum number.
As illustrated in this example, a small change in the code can result in a large change in the
amount of resources used.

|292

CHAPTER 8 ® ApDITIONAL Torics IN VHDL

The second example is the dice game based on Figures 5-11 and 5-13. Using the
Synopsis Design Compiler, synthesis of the counter from the VHDL code of Figure 5-24
was straightforward. We added and Clk'event after C1k = '1'.In order to synthesize
the behavioral model of the dice game (Figure 5-15), we replaced rising_edge (CLK)
with CLK'event and CLK = '1', and we added

Nexstate <= '0' ;

to the third line of the first process to eliminate an unwanted latch, The synthesized version
of the dice game including the counter requires 27.5 CLBs, which is the same as that
derived from the schematic diagrams of Figures 6-15 through 6-17. If we substitute the
data flow model of the dice-game controller for the behavioral model, the result requires
only 25 CLBs, which is better than the one derived from schematic diagrams.

Next we synthesized the dice game using the Altera Max-Plus IT compiler with the
MAX 7000 series as a target. The synthesis results for the behavioral model were rather
inefficient, requiring 39 logic cells and 34 shareable expanders. We obtained similar results
for the data flow model, with the result requiring 38 logic cells and 25 shareable expanders.
After examining the synthesizer output, we discovered the reason for the inefficient results.
For each comparison in the VHDL code such as (Sum = 11), the synthesizer inserted a
comparator. Even though one side of the comparator had constant inputs, no optimization
was performed to remove unneeded gates. With this insight, we eliminated the comparisons
from the VHDL code and used the following logic equations instead:

D7 <= Sum(2) and Sum(l) and Sum(Q);
D711 <= (Sum(2) and Sum(l) and Sum(0))
or (Sum(3) and Sum{(1l) and Sum(0));
D2312 <= {(not Sum(3) and not Sum(2)) or {(Sum(3) and Sum(2));

With this change, the synthesized circuit required only 31 logic cells and 13 shareable
expanders, and it fit into a 7032.

The third synthesis example is based on the floating-point multiplier of Figure 7-2
and the VHDL code of Figure 7-5. Significant changes were required in order to produce
good synthesis results. The revised VHDL code is shown in Figure 8-20. The original
VHDL code used the Addvec procedure and the Add4 function, which are not available in
the synthesis libraries. For this reason, we changed the bit_vectors to the UNSIGNED
type so that we could use the overloaded "+" and "-" operators defined for this type. The
UNSIGNED type is based on IEEE standard logic, and we also changed all bit logic to
STD_LOGIC type. Since the original VHDL could not be synthesized, the state registers
were moved to the update process. This move eliminated the wait for 0-ns statements,
which cannot be synthesized. As aresult, combinational logic was left in two processes, so
the sensitivity lists for these processes had to be modified to include all input signals. The
output signals V, Done, and F were set to zero at the beginning of the process to eliminate
unwanted latches.

When the VHDL code of Figure 8-20 was synthesized for the Xilinx XC4003 using
the Synopsis Design Compiler, the result was 45 CLBs, which compares favorably with
the results obtained from the schematics given in Section 7.2.

8.9 » Synthesis Examples 293J

In order to synthesize the code of Figure 8-20 using the Altera software, further
changes were required. In the rmain_control process, we deleted the three lines after begin.
For the case statement, we made appropriate changes within each when clause so that all
control signals and outputs were assigned appropriate values. For example, the case when
PS1 equals 0 was changed to

when 0 =» Result <= "00000000"; done <= '0'; V <= '0';
if St = '1l' then Load <= '1l'; NS1 = 1;
else NS1 <= 0; Load <= '0';
end if;
Adx <= '0'; SM8 <= '0'; RSOAB <= '0'; LSAB <= '0';

Similar changes were made in the mul2c process. Synthesis of the revised code using an
EPM7096L.C68 as a target and with the parallel expanders option turned on required 94
logic cells and 47 shareable expanders.

Figure 8-20 Revised VHDL Code for Floating-Point Multiplier

-- library BITLIB;
i —— use BITLIB.bit_pack.all;

| library IEEE;
' use IEEE.std_logic_1164.all;
‘use IEEE.std_logic_arith.all;

" entity FMUL is
port (CLK, St: in std_logic;
F1,E1,F2,E2: in UNSIGNED(3 downto 0);
F: out UNSIGNED (6 downto 0);
VvV, done:out std_logic);
end FMUL;

i architecture FMULB of FMUL is

1 8ignal A, B, C: UNSIGNED(3 downto 0); -~-fraction registers
signal X, Y: UNSIGNED(4 downto 0); --exponent registers
i signal Load, Adx, SM8, RSF, LSF: std_logic;

signal AdSh, Sh, Cm, Mdone: std_logic;

signal PS1, NSl: integer range 0 to 3; -- present and next state
signal State, Nextstate: integer range 0 to 4;-- mulitplier control state
begin
main_control: process(PSl, St,Mdone,X,A,B)

begin

Load <= '0'; Adx <= '0'; NS1 <= 0; --clear control signals

SM8 <= '0'; RSF <= '0'; LSF <= '0'; V <= '0'; F <= "0000000";

done <= '0';

case PS1 is

294

CHAPTER 8 » ADDITIONAL Torics IN VHDL

: when 0 => F <= "0000000"; --clear outputs
| done<='0"'; V <='0";
if st = '1l' then Load <= '1'; NS1 <= 1; end if;
: when 1 => Adx <= '1'; NS1 <= 2;
; when 2 =>
) if Mdone = '1' then --wait for multiply
if A = 0 then --zero fraction
SM8 <= '1';
! elsif A = 4 and B = 0 then
RSF <= '1'; --shift AB right
elsif A(2) = A(1l) then --test for unnormalized
LSF <= '1'; --ghift AR left
end if;
NSl <= 3;
end if;
i when 3 => --test for exp overflow
if X(4) /= X(3) then V <= '1'; else V <= '0'; end if;
§ done <= '1';
; F <= A(2 downto 0) & B; --output fraction
if ST = '0' then NS1<=0; end if;
. end case;
j end process main_control;
émulZc:'process(State,Adx,B) --2's complement multiply
. begin
! AdSh <= '0'; Sh <= '0'; Cm <= '0'; Mdone <= '0';--clear control signals
| Nextstate <= 0;
| case State is
! when 0=> --gtart multiply
: if Adx='1' then
if B(0) = '1' then AdSh <= '1'; else Sh <= '1'; end if;
] Nextstate <= 1;
! end if;
: when 1 | 2 => --add/shift state
3 if B{0) = *1' then AdSh <= 'l'; else Sh <= 'l'; end if;
Nextstate <= State + 1;
i when 3 =>
| if B(0) = '1' then Cm <= '1'; AdSh <= 'l'; else Sh <='1"';
: end if;

Nextstate <= 4;

when 4 =>

i Mdone <=
g end case;

! end process mul2c;

'1'; Nextstate <= 0;

8.10 ¢ Files and TEXTIO 295

update: process --update registers
variable addout: UNSIGNED({(3 downto 0);
begin
wait until (CLK = '1' and CLK'event);
PS1 <= NS1;
State <= Nextstate;
if Cm = '0' then addout := A + C;
else addout := A - C; end if; --add 2's comp. of C
if Load = '1l' then X <= E1(3)&El; Y <= E2(3)&EZ2;
A <= "0000"; B <= Fl; C <= F2; end if;
if ADX = 'l' then X <= X + Y; end if;
if sM8 = '1l' then X <= "11000"; end if;
if RSF = '1' then 2 <= '0'&A(3 downto 1);
B <= A(0)&B{3 downto 1);
X <= X + 1; end if; -- increment X
if LSF = '1' then
A <= A(2 downto 0)&B(3); B <= B(2 downto 0)&'0';
X <= X + 31; end if; -- decrement X
if AdSh = 'l' then '
A <= {(C(3) xor Cm) & addout(3 downto 1); -- load shifted adder
B <= addout(0) & B(3 downto 1); end if; -- output into A & B
if Sh = '1' then
A <= A(3) & A(3 downto 1); -- right shift A & B
B <= A{0) & B(3 downto 1); -- with sign extend
end if;
end process update;

end FMULB;

8.490 FILES AND TEXTIO

This section introduces file input and output in VHDL. Files are frequently used with test
benches to provide a source of test data and to provide storage for test results. VHDL
provides a standard TEXTIO package that can be used to read or write lines of text from or

to a file.
Before a file is used, it must be declared using a declaration of the form

file file-name: file-type [open mode] is "file-pathname";

For example,

file test_data: text open read mode is "c:\testl\test.dat"

declares a file named test_data of type text that is opened in the read mode. The physical
location of the file is in the testl directory on the c: drive.

A file can be opened in read_mode, write_mode, or append_mode. In read_mode,
successive elements in the file can be read using the read procedure. When a file is opened
in write_mode, a new empty file is created by the host computer’s file system, and successive

296

CHarTER 8 ® ApDITIONAL ToPIcs IN VHDL

data elements can be written to the file using the write procedure. To write to an existing
file, the file should be opened in the append_mode.

A file can contain only one type of object, such as integers, bit-vectors, or text strings,
as specified by the file type. For example, the declaration

type bv_file is file of bit_vector;

defines bv_file to be a file type that can contain only bit_vectors. Each file type has an
associated implicit endfile function. A call of the form

endfile(file_name)

returns TRUE if the file pointer is at the end of the file.

The standard TEXTIO package that comes with VHDL contains declarations and
procedures for working with files composed of lines of text. The package specification for
TEXTIO (see Appendix C) defines a file type named text:

type text is file of string;

The TEXTIO package contains procedures for reading lines of text from a file of type text
and for writing lines of text to a file.

Procedure readline reads a line of text and places it in a buffer with an associated
pointer. The pointer to the buffer must be of type line, which is declared in the TEXTIO
package as

type line iB access string;

When a variable of type line is declared, it creates a pointer to a string. The code
variable buff: line;
ééédline (buff, test_data);

reads a line of text from test_data and places it in a buffer that is pointed to by buff. After
reading a line into the buffer, we must call a version of the read procedure one or more
times to extract data from the line buffer. The TEXTIO package provides overloaded read
procedures to read data of types bit, bit_vector, boolean, character, integer, real, string,
and time from the buffer. For example, if 5v4 is a bit_vector of length four, the call

read (buff, bvd);
extracts a 4-bit vector from the buffer, sets bv4 equal to this vector, and adjusts the pointer

buff to point to the next character in the buffer. Another call to read then extracts the next
data object from the line buffer.

8.10 = Files and TEXTIO 297

A call to read may be of one of two forms:

read (pointer, value);
read (pointer, value, good);

where pointer is of type line and value is the variable into which we want to read the data.
In the second form, good is a boolean that returns TRUE if the read is successful and
FALSE if it is not. The size and type of value determines which of the read procedures in
the TEXTIO package is called. For example, if value is a string of length five, then a call to
read reads the next five characters from the line buffer. If value is an integer, a call to read
skips over any spaces and then reads decimal digits until a space or other nonnumeric
character is encountered. The resulting string is then converted to an integer. Characters,
strings, and bit-vectors within files of type text are not delimited by quotes.

To write lines of text to a file, we must call a version of the write procedure one or
more times to write data to a line buffer and then call writeline to write the line of data to
a file. The TEXTIO package provides overloaded write procedures to write data of types
bit, bit_vector, boolean, character, integer, real, string, and time to the buffer. For example,
the code

variable buffw: line;
variable intl: integer;
variable bv8: bit_vector(7 downto 0);

write (buffw, intl, right, 6);
write (buffw, bv8, right, 10);
writeline (buffw, output_file};

converts int! to a text string, writes this string to the line buffer pointed to by buffw, and
adjusts the pointer. The text will be right-justified in a field six characters wide. The second
call to write puts the bit_vector #v8 in a line buffer, and adjusts the pointer. The 8-bit
vector will be right-justified in a field ten characters wide. Then writeline writes the buffer
to the output_file. Each call to write has four parameters: (1) a buffer pointer of type line,
(2) a value of any acceptable type, (3) justification (left or right), which specifies the
location of the text within the output field, and (4) field_width, an integer that specifies
the number of characters in the field.

As an example, we write a procedure to read data from a file and store the data in a
memory array. This procedure will later be used to load instruction codes into a memory
module for a computer system. The computer system can then be tested by simulating the
execution of the instructions stored in memory. The data in the file will be of the following
format:

address N comments

bytel byte2 byte3...byteN comments

The address consists of four hexadecimal digits, and N is an integer that indicates the
number of bytes of code that will be on the next line. Each byte of code consists of two

298

CHaPTER 8 » Appimional Torics v VHDL

hexadecimal digits. Each byte is separated by one space, and the last byte must be followed
by a space. Anything following the last space will not be read and will be treated as a
comment. The first byte should be stored in the memory array at the given address, the
second byte at the next address, and so forth. For example, consider the following file:

12AC 7 (7 hex bytes follow)

AE 03 B6 91 C7 00 0C (LDX imm, LDA dir, STA ext)
005B 2 (2 hex bytes follow)

01 FC<space>

When the fill_memory procedure is called using this file as an input, AE is stored in 12AC,
03in 12AD, B6 in 12AE, 91 in 12AF, etc.

Figure 8-21 gives VHDL code that calls the procedure fill_memory to read data from
a file and store it in an array named mem. Since TEXTIO does not include a read procedure
for hex numbers, the procedure fill_memory reads each hex value as a string of characters
and then converts the string to an integer. Conversion of a single hex digit to an integer
value is accomplished by table lookup. The constant named lookup is an array of integers
indexed by characters in the range '0’ to 'F'. This range includes the 23 ASCII characters:
0,'1,'2, .. L9, L ST '@ A, B 'CH, DY, B 'FY The corresponding array
values are 0,1,2,...,9,-1,-1,-1,-1,-1,-1,-1, 10, 11, 12, 13, 14, 15. The —1 could be
replaced with any integer value, since the seven special characters in the index range
should never occur in practice. Thus, lookup('2') is the integer value 2, lookup('C') is 12,
and so forth.

Procedure fill_memory calls readline to read a line of text that contains a hex address
and an integer. The first call to read reads the address string from the line buffer, and the
second call to read reads an integer, which is the byte count for the next line. The integer
addr1 is computed using the lookup table for each character in the address string. The next
line of text is read into the buffer, and a loop is used to read each byte. Since data_s is three
characters long, each call to read reads two hex characters and a space. The hex characters
are converted to an integer and then to a std_logic_vector, which is stored in the memory
array. The address is incremented before reading and storing the next byte. The procedure
exits when the end of file is reached. Another example of using TEXTIO is given in Figure
9-28.

8.10 » Files and TEXTIO 299

Figure 8-21 VHDL Code to Fill a Memory Array from a File

E1ibrary ieee;

use ieee.std_logic_1164.all;

use iece.std_logic_arith.all; -- CONV_STD_LOGIC_VECTOR (int, size)
use std.textio.all;

entity testfill is
end test;

architecture fillmem of testfill is
type RAMtype is array (0 to 2047) of std_logic_vector (7 downto 0):;
signal mem: RAMtype:= (others=>(others=> '0'));

procedure fill_ memory({signal mem: inout RAMType) 1is
type HexTable is array(character range <>) of integer;
-- valid hex chars: 0, 1, ... A, B, C, D, E, F (upper-case only)
constant lookup : HexTable('0' to 'F'):=
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1,
-1, -1, -1, -1, 10, 11, 12, 13, 14, 15});

file infile: text is open read mode "meml.txt"; -- open file for
reading .
-- file infile: text is in "meml.txt"; -- VHDL '87 version

variable buff: line;
. variable addr_s: string(4 downto 1);
%variable data_s : string(3 downto 1); -- data_s(1l) has a space
variable addr, byte_cnt: integer;
variable data: integer range 255 downto 0;
begin

while (not endfile(infile)) loop

readline ({(infile, buff);

read (buff, addr_s); -- read addr hexnum
read{(buff, byte_cnt); -- read number of bytes to read
addrl := lookup{addr_s(4))*4096 + lookup(addr_s{(3))*256

+ lookup(addr_s(2))*16 + lookup(addr_s(1l));
readline (infile, buff);
for i in 1 to byte_cnt loop
read (buff, data_s); -- read 2 digit hex data and a space
data:= lookup(data_s(3))*16 + lookup(data_s(2));
mem(addrl) <= CONV_STD_LOGIC_VECTOR (data, 8);
addr:= addrl + 1;
end loop;
. end loop;
gend £fill_memory;

|

' begin

' testbench: process begin

£ill_memory (memn) ;

-- insert code which uses memory data
end process;

'end fillmem;

i

i

300 CraPTER 8 * AppiTIONAL ToPIcs IN VHDL

This chapter has introduced several important features of VHDL. Attributes associated
with signals allow checking of setup and hold times and other timing specifications.
Attributes associated with arrays allow us to write procedures that do not depend on the
manner in which the arrays are indexed. Proper use of inertial and transport delays enables
us to more accurately model the types of delays that occur in real systems. Operator
overloading can be used to extend the definition of VHDL operators so that they can be
used with different types of operands. Multivalued logic and the associated resolution
functions allow us to model tristate busses and other systems where a signal is driven from
more than one source. The IEEE Standard 1164 defines a system of 9-valued logic that is
widely used with VHDL.. Generics enable us to specify parameter values for a component
when the component is instantiated. Generate statements provide an efficient way to describe
systems that have an iterative structure. The TEXTIQ package provides a convenient way
of doing file input and output. Many of the VHDL features described in this chapter are
used in the memory and bus models developed in Chapter 9.

This chapter has introduced the synthesis of digital systems directly from the VHDL
code. In general, VHDL code must be written in specific ways in order for the code to be
synthesizable, and the way in which the code is written can have a major effect on the
amount of logic produced by the synthesis tool. The use of standard packages for signed
and unsigned arithmetic facilitates the writing of synthesizable code. Two major examples
of synthesis of digital systems from VHDL code are given in Chapter 11.

Problems

8.1 Write a VHDL function that will take two integer vectors, A and B, and find the dot product
C =13 a,* b,. The function call should be of the form DOT (A, B), where A and B are integer
vector signals. Use attributes inside the function to determine the length and ranges of the vectors.
Make no assumptions about the high and low values of the ranges. For example:

A3 downto 1) =(1, 2, 3), B(3downto 1)=(4,5,6),C=3*6+2*5+1%4=32
Output a warning if the ranges are not the same.

8.2 Write a VHDL description of an address decoder. One input to the address decoder is an 8-bit
address, which can have any range with a length of 8, for example: bit_vector addr (8 teo
15). The second input is check: x01lz_vector(5 downto 0). The address decoder will
output Sel = '1" if the upper 6 bits of the 8-bit address match the 6-bit check vector. For example, if
addr = "10001010" and check = "1000XX" then Sel ='1". Only the 6 leftmost bits of addr will be
compared; the remaining bits are ignored. An X' in the check vector is treated as a don’t care.

8.3 A VHDLentity has inputs A and B, and outputs C and D. A and B are initially high. Whenever
A goes low, C will go high 5 ns later, and if A changes again, C will change 5 ns later. D will change
if A has not had any transactions for 5 ns.

(a) Write the VHDL architecture with a process that determines the outputs C and D.

(b) Write another process to check that B is stable 2 ns before and 1 ns after A goes high. The
process should also report an error if B goes low for a time interval less than 10 ns.

8.4 Write an overloading function for the "<" operator for bit vectors. Return a boolean TRUE if
A is less than B, otherwise FALSE. Report an error if the bit vectors are of different lengths.

Problems 301

8.5 An open-collector bus with pull-up resistors can be modeled using TEEE standard logic. A
pull-up resistor acts like a weak '1'. Write a VHDL model for a buffer that accepts IEEE std_logic as
an input and outputs a std_logic signal that can drive an open-collector bus.

8.6 Consider the following concurrent statements in VHDL:

A <= transport 'l' after 5 ns, '0' after 10 ns, 'Z' after
15 ns;

B <= transport 'X' after 8 ns, '0' after 4 ns, 'l' after 12
ns, 'Z' after 10 ns;

C <= A after 6 ns;

C <= transport A after 5 ns;

C <= reject 3 ns B after 4 ns;

(a) Draw drivers (see Figure 2.12) for signals A and B.

(b) Draw the three drivers s0, s1 and s2 for C (similar to Figure 8-7), and draw a timing chart for
each.

(¢) List the value for C each time it is resolved by the drivers, and draw a timing chart for C.

8.7 Wirite a VHDL model for one flip-flop in a 74HC374 (octal D-type flip-flop with 3-state
outputs). Use the IEEE-standard 9-valued logic package. Assume that all logic values are 'x','0','1’
or 'z'. Check setup, hold, and pulse width specs using assert statements. Unless the output is 'z', the
output should be 'x' if CLK or OC is '/, or if an 'x' has been stored in the flip-flop.

8.8 Write a VHDL function to compare two IEEE std_logic_vectors to see if they are equal. Report
an error if any bit in either vector is not '0/, '1', or '-' (don’t care), or if the lengths of the vectors are
not the same. The function call should pass only the vectors. The function should return TRUE if
the vectors are equal, else FALSE. When comparing the vectors, consider that '0' ="', and 'l' ='-".
Make no assumptions about the index range of the two vectors (for example, one could be 1 to 7 and
the other 8 downto 0).

8.9 Write a VHDL model for an N-bit comparator using an iterative network. In the entity, use the
generic parameter N to define the length of the input bit-vectors A and B. The comparator outputs
should be EQ ='1'if A = B, and GT ="1"if A > B. Use a for loop to do'the comparison on a bit-by-
bit basis, starting with the high-order bits. Even though the comparison is done on a bit-by-bit basis,
the final values of EQ and GT apply to A and B as a whole.

8.10 Write a VHDL model for an N-bit bidirectional shift register using a generate statement. N is
a generic parameter that defines the length of the register (default length = 8). Define a component
that represents one bit of the shift register. The component port should be
port (L, R, CLR, CLK, Pin, Lin, Rin: in bit; Q: out bit);
L and R are control inputs that operate as follows:
LR =00, do nothing; LR = 01, shift right; LR = 10, shift left; LR = 11, parallel load

CLR is a direct clear input, Pin is the parallel input, Lin is the serial input for left shift, and Rin is the
serial input for right shift.

302

CHAPTER 8 ® ApDiTioNAL Topics IN VHDL

8.11

(a) Write a model for a D flip-flop with a direct clear input. Use the following generic timing
parameters: £, £, o fys andz, .. The minimum allowable clock periodis¢,,,. . Report appropriate
errors if timing violations occur.

(b) Write a test bench to test your model. Include tests for every error condition.

8.12

(a) Make any necessary changes in the VHDL code for the traffic light controller (Figure 3-19) so
that it can be synthesized using whatever synthesis tool you have available. Synthesize the code
using a suitable FPGA or CPLD as a target.

(b) Using the same synthesis tool and target device as in (a), try to find a more efficient
implementation of traffic light controller that uses fewer logic cells in the target device. For example,
try different state assignments, or try writing the VHDL code in terms of logic equations.

8.13 Figure 4-23 gives the VHDL code for a 32-bit signed divider. Make necessary changes in the
code so it can be synthesized using whatever synthesis tool you have available. Instead of using the
procedure Addvec, use an appropriate arithmetic package. Synthesize the code using a suitable
FPGA or CPLD as a target. Try different options on your synthesis tool, such as optimize for speed
and optimize for area, and compare the results.

CHAPTER 9

VHDL MobDELs FOR MEMORIES AND BUSSES

In this chapter we first describe the operation of a static RAM memory and develop VHDL
models that represent the operation and timing characteristics of that memory. Then we
describe the operation of a microprocessor bus interface and develop a VHDL timing
model for it. Finally, we design an interface between memory and the microprocessor bus.
We will use the VHDL memory and bus models to verify that the timing specifications for
the memory and bus interface have been satisfied.

9.4 STATIC RAM MEMORY

Read-only memories were discussed in Chapter 3, and now we discuss read-write memories.
Such memories are usually referred to as RAMs. RAM stands for random-access memory,
which means that any word in memory can be accessed in the same amount of time as any
other word. Strictly speaking, ROM memories are also random-access, but the term RAM
is normally applied only to read-write memories. Figure 9-1 shows the block diagram of a
static RAM with n address lines, m data lines, and three control lines. This memory can
store 2" words, each m bits wide. The data lines are bidirectional in order to reduce the
required number of pins and the package size of the memory chip. When reading from the
RAM, the data lines are outputs; when writing to the RAM, the data lines serve as inputs.
The three control lines function as follows:

CS When asserted low, chip select selects the memory chip so that
memory read and write operations are possible.

OE When asserted low, output enable enables the memory output onto
an external bus.

WE When asserted low, write enable allows data to be written to the
RAM.

(We say that a signal is asserted when it is in its active state. An active-low signal is
asserted when it is low, and an active-high signal is asserted when it is high.)

304 CHAPTER 9 ® VHDL MopeLs FOR MEMORIES AND BUsses

Figure 9-1 Block Diagram of Static RAM

n
Address sy 2N word
CS —O by m bits ¢ \m >

OE —O static Data
WE RAM input / output

The term static RAM means that once data is stored in the RAM, the data remains
there until the power is turned off. This is in contrast with a dynamic RAM, which requires
that the memory be refreshed on a periodic basis to prevent data loss. A detailed discussion
of dynamic RAMs is beyond the scope of this book.

The RAM contains address decoders and a memory array. The address inputs to the
RAM are decoded to select cells within the RAM. Figure 9-2 shows the functional equivalent
of a static RAM cell that stores one bit of data. The ce_ll contains a transparent D latch,
which stores the data. When SEL is asserted low and WR is high, G = 0, the cell is in the
read mode, and Data Out = Q. When SEL and WR are both low, G =1 and data can enter
the transparent latch. When either SEL and WR goes high, the data is stored in the latch.
When SEL is high, Data Out is high-Z.

Figure 9-2 Functional Equivalent of a Static RAM Cell

N Dataln— D Q -&— Data Out G =1 —-Qfollows D

SEL —cD G G = 0 —data is latched
WR —

Static RAMs are available that can store up to several million bytes of data. For
purposes of illustration, we describe a 6116 static CMOS RAM that can store 2K bytes of
data, but the principles illustrated here also apply to large static RAMs. Figure 9-3 shows
the block diagram of a 6116 static RAM, which can store 2048 8-bit words of data This
memory has 16,384 cells, arranged in a 128 x 128 memory matrix. The 11 address lines,
which are needed to address the 2!! bytes of data, are divided into two groups. Lines A10
through A4 select one of the 128 rows in the matrix. Lines A3 through A0 select 8 columns
in the matrix at a time, since there are 8 data lines. The data outputs from the matrix go
through tristate buffers before connecting to the data I/O lines. These buffers are disabled
except when reading from the memory.

The truth table for the RAM (Table 9-1) describes its basic operation. High-Z in the
1/0O column means that the output buffers have high-Z outputs, and the data inputs are not
used. In the read mode, the address lines are decoded to select eight of the memory cells,
and the data comes out on the I/O lines after the memory access time has elapsed. In the
write mode, input data is routed to the latch inputs in the selected memory cells when WE
is low, but writing to the latches in the memory cells is not completed until either WE goes
high or the chip is deselected. The truth table does not take memory timing into account.

9.1 » Static RAM Memory 305 |

Table 9-1 Truth Table for Static RAM

CS | OE | WE || Mode | /O pins
H X X not selected high-Z
L H H output disabled | high-Z
L L H read data out
L X L write data in

Figure 9-3 Block Diagram of 6116 Static RAM

A
10 o Memory Matrix
[Row :
* Decoder | e 128 X 128
A4
___I ® o o
[]
/07 Tnput * Column I/O
[]
. Data Column Decoder
0N o Control T [[I
0 A3 Ay Ap Ag l_ﬁ
.
[]

=

Memory timing diagrams and specifications must be considered when designing an interface
to the memory.

Figure 9-4(a) shows the read cycle timing for the case where CS and OE are both
low before the address changes. In this case, after the address changes, the old data remains
at the memory output for a time #,,;; then there is a transition period during which the data
may change (as indicated by the cross-hatching). The new data is stable at the memory
output after the address access time, #,,. The address must be stable for the read cycle
time, ..

Figure 9-4(b) shows the timing for the case where the OE is low and the address is
stable before CS goes low. When CS is high, Dout is in the high-Z state, as indicated by a
line halfway between '0' and '1'. When CS goes low, Dout leaves high-Z after time Loy
there is a transition period during which the data may change, and the new data is stable at
time 1, ¢ after CS changes. Dout returns to high-Z at time toy after CS goes high,

306 CHAPTER 9 ® VHDL MODELS FOR MEMORIES AND Busses

Figure 9-4 Read Cycle Timing

Address j/<)(
ton o fon

Dout previous data valid data valid 2(

(a) With CS =0, OE = 0, WE =1

tacs ' [‘—tCHZ
foz
Dout data valid

(b) With address stable, OE = 0, WE =1 :

The timing parameters for CMOS static RAMs are defined in Table 9-2 for both read
and write cycles. Specifications are given for the 6116-2 RAM, which has a 120-ns access
time, and also for the 43258 A-25 RAM, which has an access time of 25 ns. A dash in the
table indicates that either the specification was not relevant or that the manufacturer did
not provide the specification.

Table 9-2 Timing Specifications for Two Static CMOS RAMs

Parameter Symbol 6116-2 43258A-25

min max min max
Read cycle time tee 120 — 25 —
Address access time Lia — 120 — 25
Chip select access time Lics — 120 — 25
Chip selection to output in low-Z torz 10 — 3 —
Output enable to output valid top — 80 — 12
Output enable to output in low-Z torz 10 — 0 —
Chip deselection to output in high-Z tewz 10* 40 3* 10
Chip disable to output in high-Z tonz 10* 40 3% 10
Output hold from address change oy 10 — 3 —
Write cycle time twe 120 — 25 —
Chip selection to end of write tew 70 — 15 —
Address valid to end of write Law 105 — 15 —
Address setup time L 0 — 0 —
Write pulse width typ 70 — 15 —
Write recovery time twr 0 — 0 —
Write enable to output in high-Z tanz 10* 35 3* 10
Data valid to end of write tow 35 — 12 —
Data hold from end of write b 0 — 0 —
Output active from end of write tow 10 — 0 —

*Estimated value, not specified by manufacturer.

9.1 ¢ Static RAM Memory 307

Figure 9-5 shows the write cycle timing for the case where OE is low during the
entire cycle and where writing to memory is controlled by WE. In this case, it is assumed
that CS goes low before or at the same time as WE goes low, and WE goes high before or
at the same time as CS does. The cross-hatching on CS indicates the interval in which it
can go from high to low (or from low to high). The address must be stable for the address
setup time, ¢ 1,» before WE goes low. After time tyxz» the data out from the tristate buffers
go to the high-Z state and input data may be placed on the I/O lines. The data into the
memory must be stable for the setup time ¢,,,,, before WE goes high, and then it must be
kept stable for the hold time 7;,,,. The address must be stable for #,, after WE goes high.
When WE goes high, the memory switches back to the read mode. After #,,, (min) and
during region (a), Dout goes through a transition period and then becomes the same as the
data just stored in the memory. Further change in Dout may occur if the address changes or
if CS goes high. To avoid bus conflicts during region (a), Din should either be high-Z or
the same as Dout.

Figure 9-5 WE-controlled Write Cycle Timing (OE = 0)

Address >< = |
AN 7//sssssisia
R N\\\\\ e

Al ‘t@ tow region (a)

tpw —— lpy —

Din [/7,\ valid data %@M

Figure 9-6 shows the write cycle timing for the case where OE is low during the
entire cycle and where writing to memory is controlled by CS. In this case, it is assumed
that WE goes low before or at the same time as CS goes low, and CS goes high before or
at the same time as WE does. The address must be stable for the address setup time, ¢,
before CS goes low. The data into the memory must be stable for the setup time ¢ oW
before CS goes high, and then it must be kept stable for the hold time ¢,,,,. The address
must be stable for 7, after CS goes high. Note that this write cycle is very smular to the
WE-controlled cycle In both cases, writing to memory occurs when both CS and WE are
low, and writing is completed when either one goes high.

L308 CHAPTER 9 ® VHDL MoDELS FOR MEMORIES AND BussEs

Figure 9-6 CS-controlied Write Cycle Timing (OE = 0)

Address)()(
tas tew a—
CS \\ 4
LEANAVINANIA (7777777777
Dout (high - 7)

Ipy —— tpy —
Din old data or high-Z : new data %ee%&

We now write a simple VHDL model for the memory that does not take timing
considerations into account. Then we add timing information to obtain a more accurate
model, and we write a process to check some of the more important timing specifications.
We assume that OE is permanently tied low, so it will not appear in the models. We also
assume that timing is such that writing to memory is controlled by WE. To further simplify
the model, we have reduced the number of address lines to 8 and the size of the memory to
256 bytes. We will model only the external behavior of the memory and make no attempt
to model the internal behavior. In the VHDL code we use WE_b to represent WE (WE-
bar).

In Figure 9-7, the RAM memory array is represented by an array of standard logic
vectors (RAM1). Since Address is typed as a bit-vector, it must be converted to an integer
in order to index the memory array. The RAM process sets the /O lines to high-Z if the
chip is not selected. Otherwise, the data on the I/O lines is stored in RAM! on the rising
edge of We_b. If Address and We_b change simultaneously, the old value of Address
should be used. Address'delayed is used as the array index to delay Address by one delta to
make sure that the old address is used. The wait for O ns is needed so that the data will be
stored in the RAM before it is read back out. If We_b ="'1", the RAM is in the read mode,
and /O is the data read from the memory array. If We_b = '0', the memory is in the write
mode, and the I/O lines are driven to high-Z so external data can be supplied to the RAM.

9.1 e Static RAM Memory 309

Figure 9-7 Simple Memory Model

-- Simple memory model
library IEEE;

use IEEE.std_logic_1l164.all;
library BITLIB:

use BITLIB.bit_pack.all;

entity RAM6116 is
port (Cs_b, We_b: in bit;
Address: in bit_vector {7 downto 0);
I0: inout std_logic_vector (7 downto 0));
end RAM6116;

architecture simple_ram of RAM6116 is
type RAMtype is array (0 to 255) of std_logic_vector (7 downto 0);
signal RAM1: RAMtype:={others=>(others=>'0"'}});
-- Initialize all bits to '0

begin
process
begin
if Cs_b = '1' then IO <= "ZZZ27277ZZ"; -- chip not selected
else
i1f We_b'event and We_b = '1' then -- rising-edge of We_b
RAM1 (vec2int (Addresgs'delayed)) <= I0; -- write
wait for 0 ns; -- wait for RAM update
end if;
if We_b = '1' then
TO <= RAMI1 (vec2int (Address)); --read
else IO <= "ZZZZ7727Z"; --drive high-2Z
end if;
end if;

wait on We_b, Cs_b, Address;
end process;
end simple_ram;

To test the RAM model, we implement the system shown in Figure 9-8. This system
has a memory address register (MAR) that holds the memory address and a data register to
store data read from the memory. The system reads a word from the RAM, loads it into the
data register, increments the data register, stores the result back in the RAM, and then
increments the memory address. This process continues until the memory address equals
8. Required control signals are /d_data (load data register from Data Bus), en_data (enable
data register output onto Data Bus), inc_data (increment Data Register), and inc_addr
(increment MAR). Figure 9-9 shows the SM chart for the system. The memory data is
loaded in Data Register during the transition to S1. Data Register is incremented during
the transition to S2. WE is an active-low signal, which is asserted low only in S2, so that
WE is high in the other states. Thus, writing to the RAM is initiated in S2 and completed
on the rising edge of WE, which occurs during the transition from S2 to S3.

L31 0 CHAPTER 9 @ VHDL MoDELS FOR MEMORIES AND Busses

Figure 9-8 Block Diagram of RAM System

Data Bus
1d_data _ \L
“ WE
P Data en_data » Memory
Register - Control
lnC_data address T
inc_addr MAR

Figure 9-9 SM Chart for RAM System

Figure 9-10 shows the VHDL code for the RAM system. The first process represents
the SM chart, and the second process is used to update the registers on the rising edge of
the clock. A short delay is added when the address is incremented to make sure the write to
memory is completed before the address changes. A concurrent statement is used to simulate
the tristate buffer, which enables the data register output onto the /O lines.

Figure 9-10 Tester for Simple Memory Model
. —— Tester for simple ram model
:library ileee;

‘use ieee.std_logic_1164.all;

library bitlib;
use bitlib.bit_pack.all;

~entity RAME116_system is
‘end RAM6116_system;

9.1 Static RAM Memory 311

architecture RAMtest of RAM6116_system is
component RAM6116 is
port (Cs_b, We_b: in bit;

Address: in bit_vector (7 downto 0);
I0: inout std_logic_vector (7 downto 0));

end component RAM6116;

signal state, next_state: integer range 0 to 3;

signal inc_adrs, inc_data, 1d_data, en_data, Cs_b, clk, done: bit;

signal We_b: bit := '1"'; -- initialize to read mode
signal Data: bit_vector (7 downto 0); -- data register
signal Address: bit_vector(7 downto 0); -- address register
signal I0: std_logic_vector(7 downto 0); -- I/0 bus
begin

RAM1: RAM6116 port map(Cs_b, We_b, Address, IO);

control: process(state, Address)

begin
--initialize all control signals (RAM always selected)
1d_data<='0'; inc_data<='0"'; inc_adrs<='0'; en_data <='0"';
done <= '0'; We_b <='1'; Cs_b <= '0';
--start SM chart here
case (state) is

when 0 => ld_data <= 'l'; next_state <= 1;
when 1 => inc_data <= 'l'; next_state <= 2;
when 2 => We_b <= '0'; en_data <= 'l'; inc_adrs <= '1';
when 3 => if (Address = "00001000") then done <= '1';
else next_state <= 0;
end if;
end case;

end process control;

--The following process is executed on the rising edge of a clock.
register_update: process

begin
wait until clk = '1';
state <= next_state;
if (inc_data = 'l') then data <= int2vec(vec2int(data)+1,8); end if;
if (ld_data = 'l') then data <= To_bitvector(IO); end if;
if (inc_adrs = '1l') then
Address <= int2vec(vec2int (Address)+1,8) after 1 ns;
-- delay added to allow completion of memory write
end if;

end process register_update;

-- Concurrent statements
clk <= not clk after 100 ns;
IO <= To_StdLogicVector(data) when en_data = '1'
else "77Z77Z777Z";
end RAMtest;

|312

Crarter 9 ¢ VHDL Mobeis For Memories aND Busses

Figure 9-11 VHDL Timing Model for 6116 Static CMOS RAM

Next, we revise the RAM model to include timing information based on the read and
write cycles shown in Figures 9-4, 9-5, and 9-6. We still assume that OFE = 0. The VHDL
RAM timing model in Figure 9-11 uses a generic declaration to define default values for the
important timing parameters. Transport delays are used throughout to avoid cancellation
problems, which can occur with inertial delays. The RAM process waits for a change in
CS_b, WE_b, or the address. If a rising edge of WE_b occurs when CS_b is ‘0, or a rising
edge of CS_b occurs when WE_b is '0', this indicates the end of write, so the data is stored in
the RAM, and then the data is read back out after 7,,,,. I a falling edge of WE_b occurs when
CS_b="0', the RAM switches to write mode and the data output goes to high-Z.

If a rising edge of CS_b has occurred, the RAM is deselected, and the data output
goes to high-Z after the specified delay. Otherwise, if a falling edge of CS_b has occurred
and WE_b is 1, the RAM is in the read mode. The data bus can leave the high-Z state after
time ., , (min), but it is not guaranteed to have valid data out until time 7, .; (max). The
region in between is a transitional region where the bus state is unknown, so we model! this
region by outputting X' on the I/O lines. If an address change has just occurred and the
RAM is in the read mode (Figure 9-4(a)), the old data holds its value for time 7. Then the
output is in an unknown transitional state until valid data has been read from the RAM
after time ¢, ,.

The check process, which runs concurrently with the RAM process, tests to see if
some of the memory timing specifications are satisfied. NOW is a predefined variable that
equals the current time, To avoid false error messages, checking is not done when NOW =
0 or when the chip is not selected. When the address changes, the process checks to see if
the address has been stable for the write cycle time (¢,,-) and outputs a warning message if
itis not. Since an address event has just occurred when this test is made, Address'stable(t,,.)
would always return FALSE. Therefore, Address'delayed must be used instead of Address
so that Address is delayed one delta and the stability test is made just before Address
changes. Next the timing specifications for write are checked. First, we verify that the
address has been stable for t,,,. Then we check to see that WE_b has been low for 7.
Finally, we check the setup and hold times for the data.

i—— nmemory model with timing (OE_b=0)

’library ieee;

use ieee.std_logic_1164.all;
library bitlib;

iuse bitlib.bit_pack.all;

entity static_RAM is

generic (constant tAA: time := 120 ns; -- 6116 static CMOS RAM
congtant tACS:time := 120 ns;
congtant tCLZ:time := 10 ns;
constant tCHZ:time := 10 ns;

congtant tOH:time := 10 ns;

9.1 e Static RAM Memory 313
constant tWC:time := 120 ns;
constant tAW:time := 105 ns;
congtant tWP:time := 70 ns;
constant tWHZ:time := 35 ns;
constant tDW:time := 35 ns;
congtant tDH:time := 0 ns;
congtant tOW:time := 10 ns);
port (CS_b, WE_b, OFE_b: in bit;
Address: in bit_vector (7 downto 0);
Data: inout std_logic_vector (7 downto 0) := (others => 'Z'));
end Static_RAM;
architecture SRAM of Static_RAM is
type RAMtype is8 array(0 to 255) of bit_vector (7 downto 0);
signal RAM1: RAMtype := (others => (others => '0'));
begin
RAM: process
begin
1f (rising_edge(WE_b) and CS_b'delayed = '0')
or (rising_edge{CS_b) and WE_b'delayed = '0') then
RAM1 (vec2int (Address'delayed)) <= to_bitvector(Data'delayed); --write
Data <= transport Data'delayed after tOW; -- read back after write
-- Data'delayed is the value of Data just before the rising edge
end if;
if falling_edge(WE_b) and CS_b = '0' then ~- enter write mode
Data <= transport "ZZZzZ7z7777" after tWHZ;
end if;
if CS_b'event and OE_b = '0' then
if CS_b = '1l' then ~- RAM is deselected

Data <= transport "ZZzzzzzz" after tCHZ;
elsif WE_b = 'l' then ~-read
Data <= "XXXXXXXX" after tCLZ;
Data <= transport to_stdlogicvector (RAMI (vec2int (Address)))
after tACS;
end if;
end if;

if Address'event and CS_b ='0' and OE_b ='0' and WE_b ='1' then --read

Data <= "XXXXXXXX" after tOH;

Data <= transport to_stdlogicvector (RAMI (vec2int (Address)))

after tAA;
end if;
wait on CS.b, WE_b, Address;
end process RAM;

314 CHAPTER 9 ® VHDL MobeLs For MeMORIEs AND Bussks

. check: process

{ begin

if CS b'delayed = '0' and NOW /= 0 ns then

; if address'event then

i asgert (address'delayed'stable(tWC)) -- tRC = tWC assumed

: report "Address cycle time too short"”

; severity WARNING;

; end if;

{ if rising_edge (WE_b) then

§ assert (address'delayved'stable(taAwW))

g report "Address not valid long enough to end of write"

! severity WARNING;

asgert (WE_b'delayed'stable(tWP))
report "Write pulse too short”
gseverity WARNING;

assert (Data'delayed'stable (tDW))

! report "Data setup time too short"
geverity WARNING;

wait for tDH;

assert (Data'last_event >= tDH)
report "Data hold time too short”

| severity WARNING;

: end if;

: end if;

; wait on WE_b, address, CS_b;

. end process check;

‘end SRAM;

VHDL code for a partial test of the RAM timing model is shown in Figure 9-12. This
code runs a write cycle followed by two read cycles. The RAM is deselected between
cycles. Figure 9-13 shows the test results, We also tested the model for cases where
simultaneous input changes occur and cases where timing specifications are violated, but
these test results are not included here.

Figure 9-12 VHDL Code for Testing the RAM Timing Model
§1ibrary TIEEE;

‘use IEEE.std_logic_1164.all;

{ library BITLIB;

luse BITLIB.bit_pack.all;

{entity RAM timing_tester is

fend RAM_timing_tester;

' architecture testl of RAM timing_tester is

component static_RAM is

| port (CS_b, WE b, OE_b: in std_logic;
Address: in bit_vector (7 downto () ;

! Data: inout std _logic_vector(7 downto 0));

! end component Static_RAM;

9.1 e Static RAM Memory

315 |

signal Cs_b, We_b:
signal Data:
signal Address:

begin
SRAM1 :
process
begin
walt for 100 ns;

std_logic :=
std_logic_vector (7 downto 0)
bit_vector (7 downto 0);

Ill;

Static_RAM port map (Cs_b, We_b,

101’

-- active low signals
"ZZELLELLZLL" ;

Address, Data);

-- write(2) with CS pulse

after 140 ns;

Address <= "00001000";

Cs_b <= '0';

We_b <= transport '0' after 20 ns;

Data <= transport "11100011"

Cs_b <= transport 'l' after 200 ns;

We_b <= transport 'l' after 180 ns;

Data <= transport "7Z2z77277277" after 220 ns;
wait for 200 ns;

Address <=
wait for 200 ns;

Address <=
Cs_b <= '0';

walt for 200 ns;
Address <=
Cs_b <= '1"
wait for 200 ns;

Address <=
wait for 200 ns;
end process;
end testl;

"00011000";

"00001000";

"0001000Q0";
after 200 ns;

"00011000";

Figure 9-13 Test Results for RAM Timing Model

-- RAM deselected

-- Read cycles

-- RAM deselected

/address | 00000000 X 00001000 —X00011000
fes_b ———L |
meb| | [
Jdata | 22277277 XXXXXXXXXXZZZZ7Z77 X 11100011 X ZZZZ7Z77.

(a) Write cycle

316

CHaprTER 9 ® VHDL MoDELs FOR MEMORIES AND Busses

Jaddress | (00007000 XG0010000 08011000
/es b LL [————
/we_b
fdata XXXXXXXXX Y11100011 X XXXXXXXX X 00000000 X

(b) Two read cycles

9.2 A SIMPLIFIED 486 BUS MODEL

Figure 9-14

Memories and input-output devices are usually interfaced to a microprocessor by means
of a tristate bus. To assure proper transfer of data on this bus, the timing characteristics of
both the microprocessor bus interface and the memory must be carefully considered. We
have already developed a VHDL timing model for a RAM memory, and next we will
develop a timing model for a microprocessor bus interface. Then we will simulate the
operation of a system containing a microprocessor and memory to determine whether the
timing specifications are satisfied.

Figure 9-14 shows a typical bus interface to a memory system. The normal sequence
of events for writing to memory is: (1) The microprocessor outputs an address on the
address bus and asserts Ads (address strobe) to indicate a valid address on the bus; (2) the
processor places data on the data bus and asserts W/R (write/Tead) to initiate writing the
data to memory. The memory system asserts Rdy (ready) to indicate that the data transfer
is complete. For reading from memory, step (1) is the same, but in step (2) the memory
places data on the data bus and these data are stored inside the processor when the memory
system asserts Rdy .

Microprocessor Bus Interface
Address >
Bus
inter- % Memory
CPU face e System

unit . >

| WR |

< Rdy

As an example, we develop a simplified model for a 486 microprocessor bus interface.
The actual 486 bus interface is very complex and supports many different types of bus
cycles. Figures 9-15 and 9-16 illustrate two of these bus cycles. In Figure 9-15, one word
of data is transferred between the CPU and the bus every two clock cycles. These clock
cycles are labeled T1 and T2, and they correspond to states of the internal bus controller.
In addition, the bus has an idle state, Ti. During Ti and between data transfers on the bus,

9.2 ¢ A Simplified 486 Bus Model 317

the data bus is in a high-impedance state (indicated on the diagram by DATA being halfway
between 0 and 1). The bus remains in the idle state until the bus interface receives a bus
request from the CPU. In T1, the interface outputs a new address on the bus and asserts
Ads low. For a read cycle, the read-write signal (W/R) is also asserted low during T1 and
T2. During T2 of the read cycle, the memory responds to the new address and places data
on the data bus (labeled “to CPU” on the diagram). The memory system also asserts Rdy
low to indicate that valid data is on the bus. At the rising edge of the clock that ends T2, the
bus interface senses that Rdy is low and the data is stored inside the CPU.

Figure 9-15 Intel 486 Basic 2-2 Bus Cycle

525K,

I

The next bus cycle in Figure 9-15 is a write cycle. As before, the new address is
output during T1 and Ads goes low, but W/R remains high. During T2, the CPU places
data on the bus. Near the end of T2, the memory system asserts Rdy low to indicate
completion of the write cycle, and the data is stored in the memory at the end of T2 (rising
edge of the clock). This is followed by another read and another write cycle.

Figure 9-16 shows 486 read and write bus cycles for the case where the memory is
slow and reading one word from memory or writing one word to memory requires three
clock cycles. The read operation is similar to that in Figure 9-15, except at the end of the
first T2 cycle, the bus interface senses that Rdy is high, and another T2 cycle is inserted.
At the end of the second T2 cycle, Rdy is low and the read is complete. The write operation
is also similar to that in Figure 9-15, except at the end of the first T2 cycle, Rdy is high and
a second T2 cycle is inserted. At the end of the second T2, Rdy is low and writing to
memory is complete. The added T2 states are often referred to as wait states, since the
processor is waiting on the memory.

318 CHAPTER 9 ® VHDL MODELS FOR MEMORIES AND BUSSES

Figure 9-16 Intel 486 Basic 3-3 Bus Cycle

i , T , T2 , T2 , TL , T2 |, T2 , T

|
Address))L

|

|

b - - 4 = - =] -

A
/

F__

v XXCRXXRIXERY TR | AR TR, AKX

|
1 1 1 /T0\ 1L/ >
DATA FROM CPU
| &/ T S—— .

READ WRITE

We now develop a model for a simplified 486 bus interface unit. This unit is the part
of the 486 microprocessor that provides an interface between the external 486 bus and the
rest of the processor. Our bus model is based on the 486 data sheet, and it is intended to
represent the external behavior of the 486 bus interface. The block diagram in Figure 9-17
shows the interface signals we include in our model. The actual 486 bus interface is much
more complex. It has external interface signals for transferring data 8, 16, or 32 bits at a
time, for running burst memory cycles, which allow transferring blocks of data at a faster
rate, for allowing other devices to take control of the external bus, etc. In our simplified
model, we include only those signals needed to run the basic read and write bus cycles, as
illustrated in Figures 9-15 and 9-16. We do not attempt to develop an accurate model for
the 486 CPU. The internal bus interface in Figure 9-17 shows only those signals needed
for transferring data between the bus interface unit and the CPU. If the CPU needs to write
data to a memory attached to the external bus interface, it requests a write cycle by setting
br (bus request) to 1 and wr (write) to 1. If the CPU needs to read data, it requests a read
cycle by setting br = 1 and wr = 0. When the write or read cycle is complete, the bus
interface unit returns done = 1 to the CPU.

9.2 « A Simplified 486 Bus Model 319

Figure 9-17 Simplified 486 Bus Interface Unit

CPU 1486_bus interface unit

clk clk _ N\

done | done WR ——»
std std Ads —»

Rdy e
br »| br > external bus
Wr wr interface
address[31:01|_32, g, | address[31:01 ghys[31:0]|_32

w_data[31:0] _3%» w_data[31:0] dbus[31:0] 32 J

r_data[31:0] lg—33<— r_data[31:0]

internal bus interface.

The 486 bus interface unit contains a state machine to control the bus operation.
Figure 9-18 is a modified SM chart that represents a simplified version of this state machine.
In state Ti, the bus interface is idle, and the data bus is driven to high-Z. When a bus
request (br) is received from the CPU, the controller goes to state T1. In T1, the new
address is driven onto the address bus, and Ads is set to 0 to indicate a valid address on the
bus. The write-read signal (W/R) is set low for a read cycle or high for a write cycle, and
the controller goes to state T2. In T2, Ads returns to 1. For a read cycle, wr = 0 and the
controller waits for ITdy =0, which indicates valid data is available from the memory, and
then std (store data) is asserted to indicate that the data should be stored in the CPU. For a
write cycle, wr = 1 and data from the CPU is placed on the data bus. The controller then
waits for Rdy = 0 to indicate that the data has been stored in memory. For both read and
write, the done signal is turned on when Rdy = 0 to indicate completion of the bus cycle.
After read or write is complete, the controller goes to Ti if no bus request is pending,
otherwise it goes to state T1 to initiate another read or write cycle. The done signal remains
on in Ti.

I320 CrHAPTER 9 ® VHDL MODELS FOR MEMORIES AND BUssES

Figure 9-18 SM Chart for Simplified 486 Bus Interface

bus = new address
dbus = high-Z
Ads="'0'
W/R =wr

VI,

Gbus = same addresﬁ
Ads="I'

1

0 W
{read} {write}
4
1 @ 0 @bus = data from CP@

std 0 1
data to CPU = dbus

N

The 486 processor bus is synchronous, so all timing specifications are measured
with respect to the rising edge of the clock. When the bus interface senses Rdy, Rdy must
be stable for the setup time before the rising edge of the clock and for the hold time after
the rising edge. These setup and hold times are designated as #, and #,, in Figure 9-19.
During a read cycle, the data to the CPU must also satisfy setup and hold time requirements.
The data must be stable ¢,, before and ,, after the active clock edge.

9.2 » A Simplified 486 Bus Model 321

Figure 9-19 486 Setup and Hold Time Specifications

:

pata XXXXX

When the output signals from the bus interface change, a delay occurs between the
active clock edge and the time at which the signals are stable. When the address changes
from one valid address to the next, after the clock edge, there is a minimum time (z, .
and a maximum time (¢,) during which the address can change, as shown in Figure
9-20. The crosshatched region indicates the region in which the address can change.
Similarly, when the data is changing from one value to the next, the change can occur any
time between #;, . and ¢, . ‘When the data bus is changing from valid data to high-Z,
the data remains valid for at least 200 min? and the change to high-Z occurs some time
betweent,, . and ¢, after the clock edge. All the clock cycles in the figure are labeled Tx,
but the address and data transitions can only occur between certain clock cycles. Address
changes are always initiated by the rising clock edge at the transition between Tiand T1 or
between T2 and T1, whereas write data transitions are initiated at the end of a T1 cycle.
The transition from valid data out to high-Z is initiated at the end of the write cycle at the
transition from T2 to T1 or Ti.

Figure 9-20 486 Bus Timing Specifications for Address and Data Changes

Tx Tx Tx
t() max
t6 min
Address, K05, WR ~ _VALIDn (VALID n+1
t th max
10 min
Data (Write)
(successive cycles) VALID n XXXXXXX VALID n+1
T tll
10 min
Data (Write)
to High-Z VALID)

322

CHAPTER 9 ® VHDL MoDEeLs FOR MEMORIES AND BUSSES

The VHDL model for the 486 bus interface, based on the SM chart of Figure 9-18
and the block diagram of Figure 9-17, is given in Figure 9-21. The 486 comes in several
different speeds, and the default values of the generic timing specifications are for the 50-
MHz version of the 486. The bus state machine is modeled by two processes, and a third
process is used to check some of the critical timing parameters. The bus state is initialized
to Ti and dbus (data bus) is driven to high-Z after time ¢, . . When the bus interface state
machine enters state T1, ads_b (Ads) is driven low, w_rb (W/R) is driven to the appropriate
value, and the address is driven onto the address bus (abus). In each case, the appropriate
delay time is included. In state T2, for a write cycle (wr = 1) the write data from the CPU
(w_data) is driven onto dbus. For a read cycle (wr = 0) the data from dbus is sent to the
CPU as r_dara (read data), and std is asserted to indicate that the data should be stored in
the CPU on the next rising edge of the clock.

Figure 9-21 VHDL Model for 486 Bus Interface Unit

LIBRARY iecee;
-use ieee.std_logic_1164.all;

entity 1486_bus is

port

generic (-- These specs are for the i1486DX 50

constant t6_max:time:=12 ns;
constant t10_min:time:=3 ns;
congtant t10_max:time:=12 ns;
constant tll_max:time:=18 ns;
constant tl6_min:time:=5 ns;
constant tl7_min:time:=3 ns;
constant t22_min:time:=5 ns;
constant t23_min:time:=3 ns);

(--external interface

abus: out bit_vector (31 downto 0);

dbus: inout std_logic_vector (31 downto 0) := (others => 'Z2');
w_rb, ads_b: out bit := '1';

rdy_b, clk: in bit;

--internal interface

" end 1486_bus;

address, w_data: in bit_vector (31 downto 0);
r_data: out bit_vector (31 downto () ;

wr, br: in bit;

std, done:out bit);

‘__**

garchitecture simple_486_bus of 1486_bus is
‘type state_t is (Ti, T1, T2);

. Bignal state, next_state:state_t:=Ti;
L _kkkkkkkkkkkkkkkkkk ok ok ok kkkkkk kA khkkkkxhkhhkkkhkkkkhkhkkkrhkkhkhkhkhkhkhhkhhxhkxk

gbegin

The following process outputs the control signals and address of
i —— the processor during a read/write operation.The process also drives

. —— or tristates the data bus depending on the operation type.
-- During the execution of a read/write operation, the done signal
-- 1s low. When the bus is ready to accept a new reqguest, done is high.

9.2 » A Simplified 486 Bus Model 323 |

i comb_logic: process

begin
std <= '0"';
case (state) is
when Ti=> done<="'1";
if (br = '1l') then next_state <= T1;
else next_state <= Ti;
end if;
dbus <= transport (others =>'Z') after tl1l0_min;
when Tl=> done <= 'Q';

ads_b <= transport '0' after t6_max;
w_rb <= transport wr after t6_max;
abus <= transport address after t6_max;
dbus <= transport (others =>'Z') after tl1l0_min;
next_state <= T2; .
when T2=>
ads_b <= tramnsport 'l' after t6_max;
if (wr = '0') then -- read
if (rdy_b ='0*} then
r_data <= to_bitvector (dbus) ;
std <= '1';
done <= '1"';
if (br = '0') then next_state <= Ti;
else next_state <= TI1;
end if;
else next_state <= T2;
end if;
else -- write
dbus <= tramsport to_stdlogicvector{w_data) after tl0_max;
if (rdy_b = '0') then

done<="'1";
if (br = '0') then next_state <= Ti;
else next_state <= Tl;
end if;
else next_state <= T2;
end if;

end if;
end case;
wait on state, rdy_b, br, dbus;

end process comb_logic;
PR RS S S AR SRR R R R RS R R R AR R R RS R R R RRRRRR R RRER R RS RR R RS R R R R RRE R R R R RE S

--The following process updates the current state on every rising clock edge
seq _logic: process(clk)

begin
if (clk = '1') then state <= next_state; end if;

end process seq_logic;
— ko odkok kv ke vk ke ke e e ke sk ok ke kR e ok Kk sk sk % %k e e kb %k e % sk ek ok b sk b e sk e % ke sk ok e %k dk b sk ok % ke ke ok % %k ke ke ke

324 CHAPTER 9 ® VHDL MobeLs FOR MEMORIES AND Busses

é——The following process checks that all setup and hold times are
. -—- met for all incoming control signals.
{ —— Setup and hold times are checked for the data bus during a read only
‘wave_check: process (clk, dbus, rdy_Db)
variable clk_last_rise:time:= 0 ns;

:begin
f if (now /= 0 ns) then
§ if clk'event and clk = 'l' then --check setup times
: --The following assert assumes that the setup for RDY
: -- 1s equal to or greater than that for data
; asgert (rdy_b /= '0') OR (wr /= '0') OR
§ (now - dbus'last_event >= t22_min)
report "i486 bus:Data setup too short"
severity WARNING;
! assert (rdy_b'last_event »>= tl6_min)
: report "i486 bus:RDY setup too short"
: severity WARNING;
clk_last_rise := NOW;
end if;
if (dbus'event) then --check hold times
--The following assert assumes that the hold for RDY
-~ 1s equal to or greater than that for data
assert (rdy_b /= '0') OR (wr /= '0') OR
| {now - clk_last_rise >= t23_min)
§ report "i486 bus:Data hold too short"
severity WARNING;
f end if;
f if (rdy_b'event) then
j assert (now - clk_last_rise »>= tl7_min)
! report "1486 bus: RDY signal hold too short"
severity WARNING;
end if;
end if;

| end process wave_check;
' end simple_486_bus;

The check process checks to see that the setup times for reading data and for rdy_b
are satisfied whenever the rising edge of the clock occurs. To avoid false error messages,
checking is done only when the chip is selected and now # 0. The first assert statement
checks the data setup time if rdy_b ='0" and wr = ‘0’ and reports an error if

(now — dbus'event) < minimum setup time

where now is the time at which the clock changed and dbus'event is the time at which the
data changed. The process also checks to see if the read data hold time is satisfied whenever
the data changes and reports an error if

(now — clock_last_rise) < minimum hold time
where now is the time when the data changed, and clock_last_rise is the time at which the

last rising edge of clk occurred. The process also checks to see if the rdy_b hold time is
satisfied whenever rdy_b changes.

9.3 ¢ Interfacing Memory to a Microprocessor Bus 325

9.3 INTERFACING MEMORY TO A MICROPROCESSOR BUS

In this section we discuss the timing aspects of interfacing memory to a microprocessor
bus. In order to design the interface, the timing specifications for both the memory and
microprocessor must be satisfied. When writing to memory, the setup and hold time
specifications for the memory must be satisfied, and when reading from memory, the
setup and hold time specifications for the microprocessor bus must be satisfied. If the
memory is slow, it may be necessary to insert wait states in the bus cycle.

We design the interface between a 486 bus and a small static RAM memory, and then
we write VHDL code to test the interface timing. We use the static RAM and 486 bus
interface models that we have already developed. Figure 9-22 shows how the bus interface
is connected to the static RAM memory. The memory consists of four static RAM chips,
and each RAM chip contains 2'° = 32,768 8-bit words. The four chips operate in parallel
to give a memory that is 32 bits wide. Data bits 31-24 are connected to the first chip, bits
23~16 to the second chip, etc. The lower 15 bits of the address bus are connected in parallel
to all four chips. The system includes a memory controller that generates WE and CS
signals for the memory and returns a Rdy signal to the bus interface to indicate completion
of aread or write bus cycle. We will assign the address range 0 through 32,767 to the static
RAM. In general, a complete 486 system would have a large dynamic RAM memory and
/0 interface cards connected to the address and data busses. To allow for expansion of the
system, we use an address decoder, so the static RAM is selected only for the specified
address range. When an address in the range 0 to 32,767 is detected, the decoder outputs
CS1 = 1, which activates the memory controller.

Figure 9-22 486 Bus Interface to Static RAM System

CPU (or Tester) i486_bus interface unit memory controller
clk clk clk e
done | done W/R W/R WE
td td _ J—
e : Ads »{ Ads _
— — Cs |
Rdy |« Rdy
br br Y
WI WI T
address[31:0] 4‘_» address(31:0] abus[31:0] |32 | abus[31:0] csl
w_data[31:0] 32 ‘ . w_data[31:0] dbus[31:0]
r_data[31:0] 32 r_data[31:0] 32 ¥¥15 address decoder
32,
8
15,

o I O O I

data[31:24] addr[14:0] {data[23:16] addr[14:0) | data[15:8] addr[14:0]| | data[7:0] addr[14:0]

Ram3 Ram?2 Raml RamQ

326

CHaPTER 9 ® VHDL MopeLs For MemORIES AND Busses

Figure 9-23

Table 9-2 gives the timing characteristics of the 43258A-25, which is a fast static
CMOS RAM, with a 25-ns access time. We use this RAM in our design so we can illustrate
the insertion of wait states in the bus cycle. (If we use a faster RAM, we can eliminate the
need for wait states and run 2-2 bus cycles.) In general, a detailed timing analysis is necessary
in order to determine how many wait states (if any) must be inserted so that both the 486
bus and the RAM timing specifications are met. Figure 9-23 shows the signal paths for
reading data from the RAM. We want to do a worst-case analysis, so we must find the path
with the longest delay. Since #,, =1, ., the total propagation delay along the CS path will
be longer than for the address path. Also, since Ads and the address become stable at the
same time, the longest path includes the address decoder. Using the start of T1 as a reference
point, the delays along the longest path are

» Time from clock high to address valid=¢,, =12ns

* Propagation delay through address decoder=t¢,, ., =5 ns

* Propagation delay through memory controller =¢, =5 ns

* Memory access time =¢, .. = 25 ns

* Data setup time for 486 bus =t¢,, =5 ns

« Total delay = 52 ns '

Propagation delays of 5 ns were assumed for both the address decoder and memory
controller. These values may have to be changed when the design of these components is
completed. If the 486 is operated at its maximum clock rate of 50 MHz, the clock period is
20 ns, and three clock periods are required to complete a read cycle.

Signal Paths for Memory Read

Ads ~_
~ TS ¢

486 the — \AQS\ Data
bus ~ —_— out

Address - — 7 taA

Decoder Csl Memory

Controller Memory

1 Address

The SM chart in Figure 9-24 shows one possible design of the memory controller for
read cycles. The controller waits in state SO until Ads is asserted to indicate a valid address
in bus state T1 and until CS! is asserted by the address decoder to indicate that the address
isin the range for the static RAM. Then CS is asserted to select the RAM, and the controller
goes to S1. In S2, the controller also asserts R_dy to indicate that this is the last T2. The
timing requirements will still be satisfied if CS is not asserted until S1. In this case, the
propagation delays measured with respect to the end of T1 are:

* Propagation delay through memory controller =/, . =5 ns

* Memory access time = ¢, .. = 25 ns

* Data setup time for 486 bus =¢,, =5 ns

¢ Total delay = 35 ns

l

9.3 ¢ Interfacing Memory to a Microprocessor Bus 327

Since the clock period is 20 ns, valid data is available at 2 X 20 ns — 5 ns = 35 ns, which is
5 ns before the end of the second T2 state.

Figure 9-24 Memory Controller SM Chart for Read Cycles

————— bus state = Ti or T1

— — — —bus state = first T2

S2/(—3_S'R_dyj_ — — —bus state = second T2

Next, we check the data setup time for writing to RAM. Using the start of T2 as a
reference point, the worst-case delays along the data path are

* Time from clock high to data valid (486) =¢,, =12 ns

* Data valid to end of write (RAM) =1,,,,= 12 ns

« Total time = 24 ns
Since the total time from the start of T2 to completion of write must be at least 24 ns, one
T2 cycle (20 ns) is not sufficient, and a second T2 cycle is required. This means that three
clocks (T1 and two T2s) are required to complete the write cycle.

The data hold time for the 486 read cycle is £,, = 3 ns minimum. After CS goes high,
the data out of the RAM is valid for at le;ast teyz minimum, which is O ns. Therefore, tys
will be satisfied if 7, _is at least 3 ns, so CS goes high and the RAM is deselected at least
3 ns after the rising clock edge.

The write to RAM can be controlled by either CS or WE. Both CS and WE must go
low, and the first one to go high completes the write operation. We will set WE = (W/R)'
and use CS to control the write cycle. Since £, =15 ns, CS must be low for at least 15 ns.
This requirement is satisfied if CS goes low for one clock period.

Since the memory data hold time is #,,,, = 0 ns, we must make sure that the data
remains valid until CS goes high. The 486 bus spec indicates that the write data may go
invalid as soon as ¢, . = 3 ns after the end of the last T2. This presents a problem if cs
goes high at the end of the second T2, and the propagation delay in the memory controller
(t,,.) is greater than 3 ns. In this case, as illustrated by CS waveform (a) in Figure 9-25, CS
goes high after the data to the RAM becomes invalid. One solution is to use faster logic in
the memory controller. Another solution is to have CS go high at the end of the first T2, as
shown by CS waveform (b). As long as ¢, 24 ns, the data setup time £, will be satisfied.

L328 ChapTer 9 ® VHDL MODELS FOR MEMORIES AND Busses

Figure 9-25 Chip Select Timing for Write to RAM

[« ——20ns—=
bus state T1 T2 T2 Tx
12ns 12ns _J
{6 max—t—DWI— ~—£10min (3n8)
data to RAM ALID

CS (a)] Ans —wf |e— — {: t;ngns
— t
CS (b) | Tl

The SM chart for a memory controller that meets the timing requirements for both
read and write bus cycles is shown in Figure 9-26. The write timing is based on Figure 9-25,
CS (b). The VHDL code for the memory controller (Figure 9-27) is based on the SM chart
and follows the standard pattern for a state machine, except that delays have been added to
the output signals, CS, WE, and Rdy.

Figure 9-26 SM Chart for Memory Controlier

bus state = Ti or T1

9.3 # Interfacing Memory to a Microprocessor Bus 329

Figure 9-27 VHDL Code for Memory Controller

- Memory Controller for fast CMOS SRAM w/ one walt state

entity memory_control is
port (clk, w_rb, ads_b, csl: in bit;
rdy_b, we_b, cs_b: out bit := '1');
. end memory_control;

 architecture behavel of memory_control is

constant delay: time := 5 ns;

signal state, nextstate: integer range 0 to 2;

signal new_we_b, new_cs_b, new _rdy_b: bit := '1';
begin

process (state,ads_b,w_rb,csl)

begin

new_cs_b <= 'l'; new_rdy_b <= 'l'; new we_b <= '1l';
case state is

when 0 => if ads_b = '0' and csl = '1l' then nextstate <= 1;
else nextstate <= 0;
end if;
when 1 => new _cs_b <= '0';
nextstate <= 2;
when 2 => if w_rb = 'l' then new cs_b <= '1';
else new_cs_b <= '0';
end if;

new_rdy_b <= '0';
nextstate <= 0;
end case;
end process;

process(clk)
begin

if clk = '1' then state <= nextstate; end if;
end process;

we_b <= not w_rb after delay;

Cs_b <= new_cs_b after delay;

rdy_b <= new_rdy_b after delay:;
end behavel;

In order to test the 486 bus interface to the static RAM system, we write a tester
module to take the place of the CPU in Figure 9-22. The tester needs to verify that the
memory controller works correctly in conjunction with the 486 bus interface and the RAM
memory. Since both the bus model and memory model have built-in timing checks, the
tester needs to verify only that the system is fully functional, that data written to RAM is
read back correctly, and that no bus conflicts occur. Each time a bus cycle is completed,
the tester must supply values of br, wr, address, and data for the next bus cycle. To make
it easy to change the test data, we place the test data in a text file and have the tester read
the test data from the file. Each line of the test file contains values for the following:

br(bit) wr(bit) address (integer) data (integer)

330 CHAPTER 9 ® VHDL MoDELS FOR MEMORIES AND Busses

with each field separated by one or more spaces. We have chosen integer format for the
address and data, since integer fields are compact and easy to read using the standard
TEXTIO routines (see Section 8.10),

The tester (Figure 9-28) interacts with the bus interface state machine (Figure 9-18).
Since the bus interface senses Rdy just before the end of the T2 bus state, the tester should
check Done just before the rising clock edge that ends T2. To facilitate this, we have
defined a test clock (restclk) within the tester. The bus clock (Clk) is the same as testclk,
except that it is delayed by a short time. In this way, we can check the value of Done just
after the rising edge of testclk, which occurs just before the rising edge of Clk. The process
read_test_file waits for the rising edge of testclk and then tests Done. If Done is'1' and a
read cycle has just been completed, data has been read from memory and std = '1". In this
case, the tester verifies that the data read from memory (r_data) is the same as the data
previously read from the test file (dataint). Then the tester reads a line from the test file
and reads the values of br, wr, data, and address from the read buffer. These values define
the next bus cycle. If the next cycle is a write, the data from the test file is output as
w_data. The value of br is checked by the bus state machine to determine if the next bus
state should be Ti or T1. '

Figure 9-28 VHDL Code for 486 Bus System Test Module

. —- Tester for Bus model
E1ibrary BITLIB;

;use BITLIB.bit_pack.all;
juse std.textio.all;

%entity tester is

: port (address, w_data: out bit_vector (31 downto 0);
r_data: in bit_vector (31 downto 0);

! clk, wr, br: out bit;

! std, done: in bit := '0');

gend tester;

larchitecture testl of tester is

constant half_period: time := 10 ns; -- 20 ns clock period
signal testclk: bit := '1';

'begin

' testclk <= not testclk after half_period;
clk <= testclk after 1 ns; -- Delay bus clock

| read_test_file: process(testclk)

i file test_file: text open read mode is "testZ.dat";
| variable buff: line;

; variable dataint, addrint: integer;

variable new_wr, new _br: bit;

f begin
¢ if testclk = *1' and done = 'l' then
f if std = '1' then

agsert dataint = vec2int(r_data)
report "Read data doesn't match data filel"
severity error;
end if;

9.3 » Interfacing Memory to a Microprocessor Bus

331 |

if

not endfile(test_file) then|

readline(test_file, buff);

read (buff, new_br);

read(buff, new wr);

read(buff, addrint);

read (buff, dataint);

br <= new_br;

Wr <= New_Wr;

address <= int2vec(addrint,32);

if new wr = 'l' and new_br = '1l' then
w_data <= intZvec(dataint,32);

else w_data «= (others => '0');

end if;

end if;
end if;
end process read_test_file;
‘end testl;

The VHDL for the complete 486 bus system with static RAM is shown in Figure
9-29. This model uses the tester, 486 bus interface unit, memory controller, and static
RAM as components and instantiates these components within the architecture. A generate
statement is used to instantiate four copies of the static RAM. In addition to the port map
for the RAM, a generic map is used to specify the timing parameters for the 43258 A-25
CMOS static RAM. Since our RAM model uses only 8 address lines, we have reduced the
number of address lines from 15 to 8. The address decoder is implemented by a single

concurrent statement.

Flgure 9-29 VHDL Code for Complete 486 Bus System with Static RAM

11brary IEEE;
uge IEEE.std logic_1164.all;

ientlty 1486_bus_sys is
'end i486_bus_sys;
(

iarchltecture bus_sys_bhv of i486_bus_sys is

i

— Kk Y % dk Kk ek %k e e kK ok K vk b ek ok ok e ok e ke kK ok ke ke ok ok ok v ke e % ok ke ok ok vk e ke ke ok ok ke ke ke ke ok ok ok

COMPONENTS

: P S P E R R SRS RS AR SRS RS RS E LR R SRS RSE R R R RERE R SRR R EEE]

tcomponent 1486_bus

port

(--external interface

abus: out bit_vector (31 downto 0);

dbus: inout std_logic_vector (31 downto 0);
w_rb, ads_b: out bit;

rdy_b, clk: in bit;

--internal interface

address, w_data: in bit_vector (31 downto 0);
r_data: out bit_vector{31 downto 0);

wr, br: in bit;

std, done:out bit);

' end component ;

332 CHaPTER 9 © VHDL MobeLs FOR MEMORIES AND BusSEs

. component static_RAM
; generic (constant tAA,tACS, tCLZ,tCHZ,tOH, tWC, tAW, tWP, tWHZ, tDW, tDH, tOW:
% time) ;
| port | C5_b, WE b, OE_b: in bit;
| Address: in bit_vector (7 downto 0);
! Data: inout std_logic_vector (7 downto 0));
. end component ;
component memory_control
port (clk, w_rb, ads_b, csl: in bit;
rdy_b, we_b, cs_b: out bit);
' end component;
component tester
port (address, w_data: out bit_vector (31 downto 0);
r_data: in bit_vector (31 downto 0);
clk, wr, br: out bit;
std, done: in bit);
end component;

- SIGNALS ,
C_khkkkkkkhkhkhkkkhkkhkhhhkhkhkhkkdkhkkhkdhhbhkhkkhhhkhhhkhhkkhhdhdhdhhkhkhkhdhdhkihkihhkkxkxk
. constant decode_delay: time := 5 ns;

constant addr_decode: bit_vector (31 downto 8) := (others => '0');

§ signal csl: bit;
. --signals between tester and bus interface unit
gsignal address, w_data, r_data: bit_vector (31 downto 0);
. signal clk, wr, br, std, done: bit;
--external 486 bus signals
signal w_rb, ads_b, rdy_b: bit;
signal abus: bit_vector (31 downto 0);
signal dbus: std_logic_vector (31 downto 0);
--signals to RAM
signal cs_b, we_b: bit;
ek ke e ek e de e ek e ok ek ok ke ke de e sk ke e ok ke ke sk ke ek ke b ok ke ok ok ek e e ok ke ok ek ke ke ok ok ko ok ok ok ke
begin
busl: i486_bus port map (abus, dbus, w_rb, ads_b, rdy_b, clk, address,
w_data, r_data, wr, br, std, done);
controll: memory_control port map (clk, w_rb, ads_b, csl, rdy_b, we_b,
cs_b);
RAM32: for 1 in 3 downto (0 generate
ram: static_RAM
generic map(25 ns,25 ns,3 ns,3 ns,3 ns,25 ns,15 ns,15 ns
10 ns,12 ns, 0 ns,0 ns)
port map{cs_b, we_b, '0', abus(7 downto 0), dbus(8*i+7 downto 8*i));
end generate RAM32;
test: tester port map(address, w_data, r_data, clk, wr, br, std, done);
ke k ek ok ok k ko ok ke ok ke sk ke Yo sk de e e sk ke ke s ke ke sk ke e e ke sk ok sk ok e gk ke ek ke ok ok ek ke ok ok ke ok ke ko ke ke ok ke ke ok ok
-- Address decoder signal sent to memory controller
csl <= 'l' after decode_delay when (abus(31 downto 8) = addr_decode)

else '0' after decode_delay;
ek hkkhk kA khkhkhkhkhkhk hkhkhk bk bk ko bk bk bk bk bk hkhkh bk bk bk hkhrh bbbk bbbk bbb hhhhhhhhhhhdrx

 end bus_sys_bhv;

9.3 e interfacing Memory to a Microprocessor Bus 333

Table 9-3 shows a data file that was used to test various sequences of bus cycles,
including idle followed by read or write, two successive writes, two successive reads, read
followed by write, and write followed by read. The last line of test data contains an address
that is outside of the RAM address range. When this bus cycle is executed, the memory
controller should remain inactive, no R%Ty should be generated, and the 486 bus interface
should continue to insert wait states until the simulation is terminated.

Table 9-3 Test Data for 486 Bus System

br wr addr Data Bus action
0 1 7 23 Idle

1 1 139 4863 Write

1 1 255 19283 Write

1 0 139 4863 Read

1 0 255 19283 Read

0 0 59 743 Idle

1 0 139 4863 Read

1 1 139 895 Write

1 0 139 895 Read

1 1 2483 0 Bus hang

The simulator output is shown in Figure 9-30. The performance of the memory, 486
bus, and memory controller are as expected. Since r_data is represented by an integer
signal, r_data is 0 when Dbus is in the high-Z state. When interpreting the simulation
results, we should keep in mind that the results are only as good as the models we have
used. Although both the memory model and the 486 model are adequate for simulating
these components, the models are not complete. Not all the timing specifications have
been checked in the VHDL code. In many cases, only the maximum or minimum delay
was selected to correspond to a worst-case condition. Under different conditions, the other
limit on the delay may become significant. When simulating the memory controller, we
used only a nominal delay. Before completing the memory controller design, we should
go back and determine the maximum and minimum controller delays that are acceptable
and make sure that the design conforms to this requirement.

In this chapter, we developed a simple VHDL model for a static RAM memory. Then
we developed a more complex model, which included timing parameters and built-in checks
to verify that setup and hold times and other timing specifications are met. Next we
developed a timing model for a microprocessor bus interface, including checks to verify
that timing specifications are met. Then we interfaced the bus to static RAMs and designed
a memory controller to meet the timing requirements. We simulated the entire system to
verify that the timing specs were satisfied for both the memory and the bus interface. In
this example, we demonstrated the principles for designing an interface to meet worst-
case timing specifications, and we demonstrated how to use VHDL to verify that the design
is correct.

CHAPTER 9 ® VHDL MoODELS FOR MEMORIES AND BuSSES

|334

008 00

1

00t
RN RN ER N

00T

______________________.____________.___

001 0

_

S e I

| S N S

TZEEN XX Z)XE98¥

[

[q oM/

L

XX__ZX

E8C6I X Z): €98 X | Snqp/

TZXSE8X__ XX ZX_ 68X Z)XE9sm(_ XX
F A

6EIX_ -

9744

6E1X

:
1 o

Z

0

. snqe/

YA 6E1 X

[S B

1

g Apy

31

1

1

_

QI m/

s IO S QTSP
uE

- 159/

1
1
A
L
LI
—

P/
M | auopy
ey

[W

€987 XX

£98¥ X+

0l eep Yy

S68 X

+ £8T6TC

€861 £98¥ X 0} Eop M/

({41

§6TX

554 DL 0 Suppe

k66X

: JA1/

wasAs sng 98 104 S}Ns3Y 1591 Q-6 amnFiy

Problems 335

Problems

9.1 Answer the following questions for the 6116-2 and 43258A-25 static CMOS RAMs. Refer to
the timing specifications in Table 9-2.

(a) What is the maximum clock frequency that can be used?
(b) What is the minimum time after a change in address or CS at which valid data can be read?

(¢) Fora WE-controlled write cycle, what is the earliest and latest time new data can be driven
after WE goes low?

(d) For a CS-controlled write cycle, what is the earliest and latest time new data can be driven
after an address change?

9;2 This problem concerns a simplified memory model fora 6116 CMOS RAM. Assume that both
CS and OE are always low, so memory operation depends only on the address and WE.

(a) Writea s1mple VHDL model for the memory that ignores all timing information. (Your model
should not contain CS or OE.)

(b) Add the following timing specs to your model: ¢, ,, ¢4, tyyz- and ¢, For read, Dout should
go to "XXXXXXXX" (unknown) after t,y and then to valid data out after ¢,,. For write, Dout
should go to high-Z after t;,,,, and it should go to unknown after ¢,

(¢) Add another process that gives appropriate error messages if any of the following specs are
not satisfied: #yp, 1y, and ¢,

9.3 VHDL code that describes the operation of the 6116 memory is given in Figure 9-11.

(a) Add code that will report a warning if the data setup time for writing to memory is not met, if
the data hold time for writing to memory is not met, or if the minimum pulse width spec for WEP is
not met.

(b) Indicate the changes and additions to the original VHDL code that are necessary if OF_b (OE)
is taken into account. Note that for read, if OE_b goes low after CS_b goes low, the #,,. access time
must be considered. Also note that when OE_b goes high, the data bus will go high-Z after time

Yonz:

9.4 What modifications must be made in the check process in the VHDL 6116 RAM timing model
(Figure 9-11) in order to verify the address setup time (¢,,) and the write recovery time (t,,.)
specifications?

9.5 Consider the CS-controlled write cycle for a static CMOS RAM (Figure 9-5.) What VHDL
code is needed in the check process in the timing model (Figure 9-11) to verify the correct operation
of a CS-controlled write? You must check timing specifications such as z.,,, ¢y, and ¢,

9.6 Design a memory-test system to test the first 256 bytes of a 6116-2 static RAM memory. The
system consists of simple controller, an 8-bit counter, a comparator, and a memory as shown below.
The counter is connected to both the address and data (I0) bus so that 0 will be written to address 0,
1 to address 1, 2 to address 2, . . ., and 255 to address 255. Then the data will be read back from
address 0, address 1, . . ., address 255 and compared with the address. If the data does not match, the
controller goes to the fail state as soon as a mismatch is detected; otherwise, it goes to a pass state
after all 256 locations have been matched. Assume that OE_b =0 and CS_6 =0.

336

CHAPTER 9 * VHDL MoDELS FOR MEMORIES AND Busses

(a) Draw an SM chart or a state graph for the controller (5 states). Assume that the clock period is
long enough so that one word can be read every clock period.

(b) For this system, determine the minimum clock period for satisfactory read operation. Assume
the following delays:

clock rising edge to counter output stable — 15 ns
clock rising edge to control signal from state machine stable ~ 20 ns

comparator delay — 15 ns

clk

4 K
counter

inc

Eq
comparator » control

8 J
i AR -
address data) r\8
K =1 when counter is in state 255

 — Eq =1 when counter output = data from memory
RAM WEb =0 enables tristate buffer
256x 8

9.7 Design a memory tester that verifies the correct operation of a 6116 static CMOS RAM. The
tester should store a checkerboard pattern (alternating Os and 1s in the even addresses, and alternating
1s and Os in the odd addresses) in all memory locations and then read it back. The tester should then
repeat the test using the reverse pattern.

(@ Draw a block diagram of the memory tester. Show and explain all control signals.

(b) Draw an SM chart or state graph for the control unit. Assume you are using a simple RAM
model and disregard timing.

(¢) Write VHDL code for the tester and use a test bench to verify its operation.

9.8

(a) Consider the simplified VHDL model for the 486 bus (Figure 9-21). As indicated by the
cross-hatching in Figure 9-20, following the rising edge of the clock, the address can change from
the current value (VALID n) to the next value (VALID n+1) at any time between f, . and 7., .
Thus, the value of the address can be considered as unknown ('X") during this time interval. A more
accurate model of the bus should include this unknown region. Indicate on the VHDL code listing

for the bus model the change(s) needed for the bus to be driven to X' in this region.

(b) A similar situation occurs with respect to the data bus. During a write cycle, there is a time
interval between #,, . and f,, where the data assumes an unknown ('X") value before the data
assumes its final value. Also, when the T2 bus state is terminated, there is a time interval between
?10min @04 £, where the data assumes an unknown value {X") before the bus enters the high-Z
state. Indicate on the VHDL code listing for the bus model the necessary changes to take these 'X'
regions into account.

Problems 337

(¢c) The clock period must be 2 ¢, . and <7, . Add VHDL code to the wave_check process,
which will report "clock pulse width error" if the clock pulse is not within bounds.

9.9 Determine an upper and lower bound for the delay used in the memory controller of Figure
9-26. Use a simulator to verify that a timing violation occurs on either side of the boundary.

9.10 Redesign the memory controller of Figure 9-26 using a slower clock so that no wait state is
required, allowing a 2-2 bus cycle to be used. Assume state T1 follows state T2 after a read or write
cycle, and make sure the data and control signals meet the timing specs.

(a) What is the fastest clock speed that can be used with the 43258A-25 static CMOS RAM with
no wait states?

(b) Draw the SM chart for the new memory controller.
(¢) Write VHDL code for the memory controller and verify its operation with the bus model.

9.11 Redesign the memory controller from Figure 9-26 using a 43258A-15 static RAM with a 2-2
bus cycle and no wait states. The timing specifications for the 43258 A-15 are as follows: f,.=1,, =
Lics = twe= 1518, by, = 1o = bopr = Ly = 3 08 (min), 7, = 10 ns (max), £, = 8 ns (max), 7,
=ty =typ = 12 ns, tDW=9. -

(a) What is the longest propagation delay allowed for the memory controller?
(b) Draw the SM chart for the new memory controller.
(¢) Write VHDL code for the memory controller and verify it by simulation with the bus model.

9.12 A simple microprocessor transfers one byte of data during every clock cycle, as shown in the
following timing diagram. The internal registers in the microprocessor include a 16-bit Maddress
register, an 8-bit Rdata register (which stores input data read from memory), an 8-bit Wdata register
(which contains data to be written to memory) and a RWFF (read-write flip-flop), which is set to 1
during a read cycle and to 0 during a write cycle. These registers change state in response to the
rising edge of the clock.

(a) Write VHDL code that describes the operation of the microprocessor bus interface. Assume
there already exists a process that updates the internal registers on the rising edge of the clock, so
you do not need to write this process. Your VHDL code should output the bus signals at the proper
time.

338

CHaPTER 9 ® VHDL Mobeis FOrR MEMORIES AND Busses

(b) Write a process that verifies the setup and hold times are satisfied during a read cycle.

tpg — [+ lpn

| [y
Data — o | | Datafrom CFU |
t I - fhy —» —_— |4— ton
[

16
[Maddress | iy

| Rdata : < ‘8\ -

|RWFF= >

Addr

Data

RW

CHapTer |(0)

HARDWARE TESTING AND DESIGN FOR TESTABILITY

This chapter introduces digital system testing and design methods that make the systems
easier to test. We have already discussed the use of testing during the design process. We
have written VHDL test benches to verify that the overall design and algorithms used are
correct. We have used simulation at the logic level to verify that a design is logically
correct and that it meets specifications. After the design of an IC is completed, additional
testing can be done by simulating it at the circuit level to verify that the design has been
correctly implemented and that the timing is correct.

When a digital system is manufactured, further testing is required to verify that it
functions correctly. When multiple copies of an IC are manufactured, each copy must be
tested to verify that it is free from manufacturing defects. This testing process can become
very expensive and time consuming. With today’s complex ICs, the cost of testing is a
major component of the manufacturing cost. Therefore, it is very important to develop
efficient methods of testing digital systems and to design the systems so that they are easy
to test.

In this chapter, we first discuss methods of testing combinational logic for the basic
types of faults that can occur. Then we describe methods for determining test sequences
for sequential logic. One of the problems encountered is that normally we have access
only to the inputs and outputs of the circuit being tested and not to the internal state. To
remedy this problem, internal test points may be brought out to additional pins on the IC.
To reduce the number of test pins required, we introduce the concept of scan design, in
which the state of the system can be stored in a shift register and shifted out serially.
Finally, we discuss the concept of built-in self-test. By adding more components to the IC,
we can generate test sequences and verify the response to these sequences internally without
the need for expensive external testing. '

9.4 TESTING COMBINATIONAL LOGIC

Two common types of faults are short circuits and open circuits. If the input to a gate is
shorted to ground, the input acts as if it is stuck at a logic 0. If the input to a gate is shorted
to a positive power supply voltage, the gate input acts as if it is stuck at a logic 1. If the
input to a gate is an open circuit, the input may act as if it is stuck at 0 or stuck at 1,
depending on the type of logic being used. Thus, it is common practice to model faults in
logic circuits as stuck-at-1 (s-a-1) or stuck-at-0 (s-a-0) faults. To test a gate input for s-a-0,

340

CHAPTER 10 ® HARDWARE TESTING AND DESIGN FOR TESTABILITY

Figure 10-1

the gate input must be 1 so a change to O can be detected. Similarly, to test a gate input for
s-a-1, the normal gate input must be 0 so a change to 1 can be detected.

We can test an AND gate for s-a-0 faults by applying 1s to all inputs, as shown in
Figure 10-1(a). The normal gate output is then 1, but if any input is s-a-0, the output
becomes 0. The notation 1—0 on the gate input 2 means that the normal value of a is 1, but
the value has changed to O because of the s-a-0 fault. The notation 1—0 at the gate output
indicates that this change has propagated to the gate output. We can test an AND gate input
for s-a-1 by applying O to the input being tested and 1s to the other inputs, as shown in
Figure 10-1(b). The normal gate output then is 0, but if the input being tested is s-a-1, the
output becomes 1. To test OR gate inputs for s-a-1, we apply Os to all inputs, and if any
input is s-a-1, the output will change to 1 (Figure 10-1(c)). To test an OR gate input for
s-a-0, we apply a 1 to the input under test and Os to the other inputs. If the input under test
is s-a-0, the output will change to 0 (Figure 10-1(d)). In the process of testing the inputs to
a gate for s-a-0 and s-a-1, we also can detect s-a-0 and s-a-1 faults at the gate output.

Testing AND and OR Gates for Stuck-at Faults

1
I/Oa 0" a]
L b ° 1 b 0”
1 c 1 ¢
() (b)
1 0
0/ a 1 1”7 _a
0O b 0/ 0 1/0
0 ¢ 0 ¢
(c) (d)

The two-level AND-OR network of Figure 10-2 has nine inputs and one output. We
assume that the OR gate inputs (p, g, and r) are not accessible, so the gates cannot be tested
individually. One approach to testing the network would be to apply all 2° = 512 different
input combinations and observe the output. A more efficient approach is based on testing
for all s-a-0 and s-a-1 faults, as shown in Table 10-1. To test the abc AND gate inputs for
s-a-0, we must apply 1s to a, b, and ¢, as shown in Figure 10-2(a). Then, if any gate input
is s-a-0, the gate output (p) will become 0. In order to transmit the change to the OR gate
output, the other OR gate inputs must be 0. To achieve this, we can set d = 0 and g =0 (e,
f, h, and i are then don’t cares). This test vector will detect p0 (p stuck-at-0) as well as a0,
b0, and ¢0. In a similar manner, we can test for d0, €0, f0, and g0 by settingd=e =f=1 and
a=g=0. Athird test with g = h =i =1 and a = d = 0 will test the remaining s-a-0 faults.
To test a for s-a-1 (al), we must set a =0 and b = ¢ =1, as shown in Figure 10-2(b). Then,
if a is s-a-1, p will become 1. In order to transmit this change to the output, we must have
g=r=0, as before. However, if we setd=g=0ande=f=h=i= 1, we can test for d1 and
g1 at the same time as a1. This same test vector also tests for p1, g1, and r1. As shown in
the table, we can test for b1, 1, and A1 with a single test vector and test similarly for cl, f1,
and i1. Thus we can test all s-a-0 and s-a-1 faults with only six tests, whereas the brute-

10.1 ® Testing Combinational Logic 341

force approach would require 512 tests. When we apply the six tests, we can determine
whether or not a fault is present, but we cannot determine the exact location of the fault. In
the preceding analysis, we have assumed that only one fault occurs at a time. In many
cases the presence of multiple faults will also be detected.

Figure 10-2 Testing an AND-OR Network

0

17 a,

=D

1 /0

0 dj 0

X e \ 0 9 i

X f) 0 T

Q g,

X h

s

(a) Stuck-at-0 test
1
7 a
=
o

0 d, 1

L e \ 0 9 ”
S

1__f__/

0 g

1 h]

1 j]

(b) Stuck-at-1 test

Table 10-1 Test Vectors for Figure 10-2

abcde fghi Faults Tested
1110XX0ZXZX a0, b0, <0, po
0XXx1110ZXX d0, e0, f0, g0
0 XX 0XX111 g0, hO, i0, rO
011011011 al, di, gl, pl, gl, rl
101101101 bl, el, hl, pl, gl, rl
110110110 cl, f1, i1, pl, gl, rl

Testing multilevel networks is considerably more complex than testing two-level
networks. In order to test for an internal fault in a network, we must choose a set of inputs
that will excite that fault and then propagate the effect of that fault to the network output.
In Figure 10-3, a, b, ¢, d, and e are network inputs. If we want to test for gate input n

342 CHAPTER 10 ® HARDWARE TESTING AND DESIGN FOR TESTABILITY

s-a-1, n must be 0. This can be achieved if we make ¢ =0, a =0, and b =1, as shown. In
order to propagate the fault n s-a-1 to the output F, we must make d =1 and e = 0. With this
set of inputs, if a, m, n, or p is s-a-1, the output F will have the incorrect value and the fault
can be detected. Furthermore, if we change a to 1 and gate input a, m, n, or p is s-a-0, the
output F will change from 1 to 0. We say that the path through a, m, n, and p has been
sensitized, since any fault along that path can be detected. The method of path sensitization
allows us to test for a number of different stuck-at faults using one set of network inputs.

Figure 10-3 Fault Detection Using Path Sensitization

o 01 o
b = n 01
] C p
1 0—~1
jjo ADﬁDF
1
' 0
(a) s-a-1 tests
b = n 1~0
1 c P P 1-0
0 —Tﬂ F
0

(b) s-a-0 tests

Next, we try to determine a minimurm set of test vectors to test the network of Figure
10-4 for all single stuck-at-1 and stuck-at-0 faults. We assume that we can apply inputs to
A, B, C, and D and observe the output F and that the internal gate inputs and outputs
cannot be accessed. Suppose that we want to test input p for s-a-1. In order to do this, we
must choose inputs A, B, C, and D such that p =0, and if p is s-a-1, we must propagate this -
fault to the output F so it can be observed. In order to propagate the fault, we must make ¢
=0and w= 1. We can make w = 1 by making = 1 or u = 1. To make u = 1, we must have
both D and r = 1. Fortunately, our choice of C = 0 makes r = 1. To make p = 0, we choose
A =0. By choosing B = 1, we can sensitize the path A-a-p-v-f-F so that the set of inputs
ABCD = 0101 will test for faults al, p1, v1, and f1. This set of inputs also tests for ¢ s-a-1.
We assume that ¢ s-a-1 is a fault internal to the gate, so it is still possible to have g = 0 and
r=1if ¢ s-a-1 occurs.

10.1 e Testing Combinational Logic 343

Figure 10-4 Example Network for Stuck-at Fault Testing

0

1
B
CO
Dl

To test for s-a-0 inputs along the path A-a-p-v-f-F, we can use the inputs ABCD =
1101. In addition to testing for faults a0, p0, v0, and f0, this input vector also tests the
following faults: 50, w0, 0, r0, g1, and d0. To determine tests for the remaining stuck-at
faults, we can select an untested fault, determine the required ABCD inputs, and then
determine the additional faults that are tested. Then we can repeat this procedure until tests
are found for all of the faults. Table 10-2 lists a set five test vectors that will test for all
single stuck-at faults in Figure 10-4.

Table 10-2 Tests for Stuck-at Faults in Figure 10-4

Normal Gate Inputs

ABCDlabpcgrdstuv w]Faults Tested
0101010001101 101jal p1 c1 v1 f1

110121111 001110111]a0 b0 p0 gl r0 d0 ul0 v0 w0 fO
10111120011 0101011}bl co0 el t0 v0 wl f0
1100121212001 010010]a0 b0 dl s0 tl1 ul wl f1
1111117111101 10010la0 b0 g0 r1 0 t1 ul wl f1

In addition to stuck-at faults, other types of faults, such as bridging faults, may occur.
A bridging fault occurs when two unconnected signal lines are shorted together. For a
large combinational network, finding a minimum set of test vectors that will test for all
possible faults is very difficult and time consuming. For networks that contain redundant
gates, testing for some of the faults may be impossible. Even if a comprehensive set of test
vectors can be found, applying all of the vectors may take too much time and cost too
much. For these reasons, it is common practice to use a relatively small set of test vectors
that will test most of the faults. In general, determining such a set of vectors is a difficult
and computationally intensive problem. Many algorithms and corresponding computer
programs have been developed to generate such sets of test vectors. Computer programs
have also been developed to simulate faulty networks. Such programs allow the user to
determine what percentage of possible faults are tested by a given set of input vectors.

| 344

CHAPTER 10 ® HARDWARE TESTING AND DESIGN FOR TESTABILITY

10.2 TESTING SEQUENTIAL LOGIC

Testing sequential logic is generally much more difficult than testing combinational logic,
because we must use sequences of inputs for testing. If we can observe only the input and
output sequences and not the state of the flip-flops in a sequential network, a very large
number of test sequences may be required. Basically, the problem is to determine if the
network under test is equivalent to a correctly functioning network. We will assume that
the sequential network being tested has a reset input so we can reset it to a known initial
state. If we attempted to test the network using the brute-force approach, we would reset
the network to the initial state, apply a test sequence, and observe the output sequence. If
the output sequence was correct, then we would repeat the test for another sequence. In
theory, according to the definition of state equivalence, we would have to try all possible
input sequences, which is an infinite number, to verify that the initial state of the network
under test is equivalent to the initial state of the correct network. In practice, if we know
that the network has N or fewer states, then we have to apply only input sequences of
length less than or equal to 2N — 1.

As an example, consider a sequential network that has five inputs, one output, and
four states. If we used the brute-force approach, we would have to apply all input sequences
of length seven or less. At time = 1, we could apply any one of the 2° input combinations,
and similarly at times 2 through 7. Thus, the total number of test sequences required is

@))% = 2%

Even in this simple example, the number of test sequences would be prohibitive.

Since the brute-force approach is totally impractical, the question then arises, Can
we derive a relatively small set of test sequences that will adequately test the network?
One way to derive test sequences for a sequential network is to convert it to an iterative
network. Since the iterative network is a combinational network, we could then derive
test vectors for the iterative network using one of the standard methods for combinational
networks.

Figure 10-5 shows a standard Mealy sequential network and the corresponding
iterative network. In these figures, X, Z, and Q can either be single variables or vectors.
The iterative network has k identical copies of the Comb. network used in the sequential
network, where £ is the length of the sequence used to test the sequential network. For the
sequential network, X(¢) represents a sequence of inputs in time. In the iterative network,
X(0) X(1) ... X(k) represents the same sequence in space. Each cell of the iterative network
computes Z(t) and Q(t + 1) in terms of Q(r) and X(¢). The leftmost cell computes the values
for t =0, the next cell for t = 1, etc. After the test vectors have been derived for the iterative
network, these vectors then become the input sequences used to test the original sequential
network. The number of cells in the iterative network depends on the length of the sequences
required to test the sequential network.

10.2 » Testing Sequential Logic 345

Figure 10-5 Sequential and iterative Networks

X

Comb. | Q@D | Dflip- |Q®

logic flops
Z(t) Clk
X(0) X(1) X(k)
Q) Comb. QM) Comb. QY Qb Comb.
logic logic logic
Z(0) Z(1) Z(k)

Derivation of a small set of test sequences that will adequately test a sequential network
is generally difficult to do. Consider the state graph shown in Figure 10-6 and the
corresponding state table (Table 10-3). We assume that we can reset the network to state
S0. It is certainly necessary that the test sequence cause the network to go through all
possible state transitions, but this is not an adequate test. For example, the input sequence

X=010110011
traverses all the arcs connecting the states and produces the output sequence
Z=001011110

If we replace the arc from S3 to SO with a self-loop, as shown by the dashed line, the
output sequence will be the same, but the new sequential machine is not equivalent to the
old one.

Figure 10-6 State Graph for Test Example

0/0 '

346

CHAPTER 10 @ HARDWARE TESTING AND DESIGN FOR TESTABILITY

Table 10-3 State Table for Figure 10-6

0102 State Next State Output
X=0 1 X=0 1
SO SO Si1 0 0
10 S1 SO S2 1 1
01 S2 S3 S3 1 1
11 S3 S2 SO 1 0

A state graph in which every state can be reached from every other state is referred to
as strongly connected. A general test strategy for a sequential network with a strongly
connected state graph and no equivalent states is to first find an input sequence that will
distinguish each state from the other states. Such an input sequence is referred to as a
distinguishing sequence. Given a distinguishing sequence, each entry in the state table can
be verified. For the example of Figure 10-6, one distinguishing sequence is 11. If we start
in SO, the input sequence 11 gives the output sequence 01; for S1 the output is 11; for S2,
10; and for 83, 00. Thus, we can distinguish the four states by using the input sequence 11.
We can then verify every entry in the state table using the following sequences, where R
means reset to state SO:

Input Output Transition Verified
RO11 001 (SO to SO)
R111 011 (S0 to S1)
R1011 0oto01 (S1to S0)
R1111 0110 (S1to S2)

R11011 01100 (82 to S3)
R11111 01100 (S2to S3)
R110011 011110 (S3t0S2)
R110111 011010 (S3t0oS0)

Another approach to deriving test sequences is based on testing for stuck-at faults.
Figure 10-7 shows the realization of Figure 10-6 using the following state assignment:
S0, 00; S1, 10; S2, 01; S3, 11. If we want to test for @ s-a-1, we must first excite the fault
by going to state S3, in which Q702 = 10 and then setting X = 0. In normal operation, the
next state will be SO. However, if a is s-a-1, then next state is 0702 = 01, which is S2. This
test sequence can then be constructed as follows:

* To go to S1: reset followed by X = 1.

*» Totestas-a-1: X=0.

« To distinguish the state that is reached: X = 11.

The final sequence is R1011. The normal output is 0101, and the faulty output is 0110.

10.3 ® Scan Testing 347

Figure 10-7 Realization of Figure 10-6

T) e
Q | FF1
> Qt—ar
Xlar— @
Q1
i D Q—Q2
X @ FF2
Ql':DT ? @
CLK
X A
QZ'j >
z

T
Q— /

We have shown some simple examples that illustrate some of the methods used to
derive test sequences for sequential networks. As the number of inputs and states in the
network increases, the number and length of the required test sequence increases rapidly,
and the derivation of these test sequences becomes much more difficult. This, in turn,
means that the time and expense required to test the networks increases rapidly with the
number of inputs and states.

10©.3 SCAN TESTING

The problem of testing a sequential network is greatly simplified if we can observe the
state of all the flip-flops instead of just observing the network outputs. For each state of the
flip-flops and for each input combination, we need to verify that the network outputs are
correct and that the network goes to the correct next state. One approach would be to
connect the output of each flip-flop within the IC being tested to one of the IC pins. Since
the number of pins on the IC is very limited, this approach is not very practical. So the
question arises, how can we observe the state of all the flip-flops without using up a large
number of pins on the IC? If the flip-flops were arranged to form a shift register, then we
could shift out the state of the flip-flops bit by bit using a single serial output pin on the IC.
This leads to the concept of scan path testing.

Figure 10-8 shows a method of scan path testing based on two-port flip-flops. In the
usual way, the sequential network is separated into a combinational logic part and a state
register composed of flip-flops. Each of the flip-flops has two D inputs and two clock
inputs. When C/ is pulsed, the DI input is stored in the flip-flop. When C2 is pulsed, D2
is stored in the flip-flop. The Q output of each flip-flop is connected to the D2 input of the
next flip-flop to form a shift register. The next state (Q; Q7 . . . Q;) generated by the
combinational logic is loaded into the flip-flops when C1 is pulsed, and the new state
(Q, Q, ... Q) feeds back into the combinational logic. When the network is not being

348 CHAPTER 10 ® HARDWARE TESTING AND DESIGN FOR TESTABILITY

tested, the system clock (SCK = C1) is used. A set of inputs (XX, . . . X) is applied, the
outputs (Z,Z, . .. Z) are generated, SCK is pulsed, and the network goes to the next state.

Figure 10-8 Scan Path Test Circuit Using Two-port Flip-flops

Xy —» —» 7
X2 ——]
Combinational Logic — 2
Xp —> Zm
]
Qt Q] | «Q + *
. rr, 2 Q FF, Q«
D1 D1 - D1
SbI ———{D2 Q D2 Q w —1D2 Q SDO
>C1 b c1 . & C1
—>C2 >C2 >C2
SCK *
TCK
SDI is scan data input SDQ is scan data output
SCK is system clock TCK is test clock

‘When the network is being tested, the flip-flops are set to a specified state by shifting
the state code into the register using the scan data input (SD/I) and the test clock (TCK). A
test input vector (X X Xn) is applied, the outputs (ZZ,... Zm) are verified, and SCK is
pulsed to take the network to the next state. The next state is then verified by pulsing TCK
to shift the state code out of the scan data register via the scan data output (SDO). This
method reduces the problem of testing a sequential network to that of testing a combinational
network. Any of the standard methods can be used to generate a set of test vectors for the
combinational logic. Each test vector contains (n + k) bits, since there are » X inputs and K
state inputs to the combinational logic. The X part of the test vector is applied directly, and
the Q part is shifted in via the SDI. In summary, the test procedure is as follows:

1. Scan in the test vector Q, values via SDI using the test clock TCK.
. Apply the corresponding test values to the X; inputs.

3. After sufficient time for the signals to propagate through the combinational network,
verify the output Z, values.

4. Apply one clock pulse to the system clock SCK to store the new values of J7 into the
corresponding flip-flops.

5. Scan out and verify the Q, values by pulsing the test clock TCK.

6. Repeat steps 1 through 5 for each test vector.

Steps 5 and 1 can overlap, since it is possible to scan in one test vector while scanning out
the previous test result.

10.3 ¢ Scan Testing 349

We will apply this method to test a sequential network with two inputs, three flip-
flops, and two outputs. The network is configured as in Figure 10-8 with inputs X, X,,, flip-
flops @,0,0;, and outputs Z, Z,. One row of the state transition table is as follows:

Q1Q2Q3 r ;Q; ZIZZ
X, X,=00 01 11 10 00 01 11 10
101 010 110011 111 10 11 00 01

Figure 10-9 shows the timing diagram for testing this row of the transition table. First, 101
is shifted in using TCK, least significant bit (Q,) first. The input X, X, = 00 is applied, and
Z,Z, =10 s then read. SCK is pulsed and the network goes-to state 010. As 010 is shifted
out using 7CK, 101 is shifted in for the next test. This process continues until the test is
completed.

Figure 10-9 Timing Chart for Scan Test

| | | I ' [| |

£SO e e e A e s O e e s A s e O o

o = S

e B e T B e s B T
X2 |] i 0:] : lf—_l—J:_l : : | 1 | | :
SDITi| 0TI 1i| 0] 1?1 XTI ool xi L1
SDO ' xi X[371 o [11 o[™l ol 1T 1T 1. 1. 0.
Zl . Il I 4ol
R
: : : *: Q3+: Q" : Q1+: *: Q3+: Qf: Q1+: *: Q3+: Q?-+: Q1+:

* Read output (output at other times not shown)

In general, a digital system implemented by an IC consists of flip-flop registers
separated by blocks of combinational logic, as shown in Figure 10-10(a). In order to apply
scan test to the IC, we need to replace the flip-flops with two-port flip-flops (or other types
of scannable flip-flops) and link all the flip-flops into a scan chain, as shown in Figure 10-
10(b). Then we can scan test data into all the registers, apply the test clock, and then scan
out the results.

350 CHAPTER 10 ® HARDWARE TESTING AND DESIGN FOR TESTABILITY

Figure 10-10 System with Flip-flop Registers and Combinational Logic Blocks

X(1) X(2)
[
: Comb. : Comb. .
: logic : logic :

1 2
l 1

Z(1) Z(2)

(a) Without scan chain

SDI X(1) X(2)

Y

Comb. Comb.
logic

logic
1 2
SDO

: l

Z(1) Z2)

(b) With scan chain added

When multiple ICs are mounted on a PC board, it is possible to chain together the
scan registers in each IC so that the entire board can be tested using a single serial access
port (Figure 10-11).

Figure 10-11 Scan Test Configuration with Multiple ICs

IC1 IC2 ICn
SDI p SDO SDI . SDO SDI ; SDO
scan register scanregister ——— ——— — - — | scanregister
TCK
SCK Test Controller
SDI

10.4 » Boundary Scan 351

19.4 BOUNDARY SCAN

As ICs have become more complex, with more and more pins, printed circuit boards have
become denser, with multiple layers and very fine traces. Testing these PC boards after
they have been loaded with complex ICs has become very difficult. Testing a board by
means of its edge connector does not provide adequate testing and may require very long
test sequences. When PC boards were less dense with wider traces, testing was often done
using a bed-of-nails test fixture. This method used sharp probes to contact the traces on the
board so test data could be applied to and read from various ICs on the board. Bed-of-nails
testing is not practical for high-density PC boards with fine traces and complex ICs.

Boundary scan test methodology was introduced to facilitate the testing of complex
PC boards. A standard for boundary scan testing was developed by the Joint Test Action
Group (JTAG), and this standard has been adopted as ANSI/IEEE Standard 1149.1,
“Standard Test Access Port and Boundary-Scan Architecture.” Many IC manufacturers
make ICs that conform to this standard. Such ICs can be linked together on a PC board so
that they can be tested using only a few pins on the PC board edge connector.

Figure 10-12 shows an IC with added boundary scan logic. One cell of the boundary
scan register (BSR) is placed between each input or output pin and the internal core logic.
Four or five pins of the IC are devoted to the test-access port, or TAP. The TAP controller
and additional test logic are also added to the core logic on the IC. The functions of the
TAP pins are as follows:

DI Test data input (this data is shifted serially into the BSR)

TCK Test clock

™S Test mode select

DO Test data output (serial output from the BSR)

TRST Test reset (resets the TAP controller and test logic; optional pin)

Figure 10-12 IC with Boundary Scan Register and Test-access Port

onnonn boundary

) 7 scan cells

Core
logic

[1 01 [1 01 f1
| IR I

[[[1
Test logic and
TAP controller

Test-access port

352 CHAPTER 10 ® HARDWARE TESTING AND DESIGN FOR TESTABILITY

A PC board with several boundary scan ICs is shown in Figure 10-13. The boundary
scan registers in the ICs are linked together serially in a single chain with input 7DI and
output 7DO. TCK, TMS, and TRST (if used) are connected in parallel to all of the ICs.
Using these signals, test instructions and test data can be clocked into every IC on the
board.

Figure 10-13 PC Board with Boundary Scan ICs

/ ImE MM rrin o I o I o e B

ooy
nmnirnnin
| N 5 Ry i
o0 n
| I Iy

TDI
TCK
™S

TRST
TDO

e T

/HJL‘JL‘JLJL Coooo

Figure 10-14 shows a typical boundary scan cell. When in the normal mode, data
from the input pin is routed to the internal core logic in the IC, or data from the core logic
is routed to the output pin. When in the shift mode, serial data from the previous cell is
clocked into flip-flop Q1 at the same time as the data stored in Q! is clocked into the next
boundary scan cell. After Q2 is updated, test data can be supplied to the internal logic or to
the output pin.

Figure 10-14 Typical Boundary Scan Cell

TDQ Serial Out
Input pin
(or data from
core logic) v
=] D Qi D Q2 To core logic
TDI = (or Output pin)
Serial In > Ql'— l_> Q2'+-
Clk Update
Mode Mode

Shift/Load Test/Normal

10.4 = Boundary Scan 353

Figure 10-15 shows the basic boundary scan architecture that is implemented on
each boundary scan IC. The boundary scan register is divided into two parts. BSR1
represents the shift register, which consists of the ¢/ flip-flops in the boundary scan cells.
BSR2 represents the Q2 flip-flops, which can be parallel-loaded from BSR1 when an
update signal is received. The serial input data (TDI) can be shifted into the boundary scan
register (BSR1), through a bypass register, or into the instruction register. The TAP controller
on each IC contains a state machine (Figure 10-16). The input to the state machine is TMS,
and the sequence of Os and 1s applied to TMS determines whether the TDI data is shifted
into the instruction register or through the boundary scan cells. The TAP controller and the
instruction register control the operation of the boundary scan cells.

Figure 10-15 Basic Boundary Scan Architecture

From pins or To pins or
core logic core logic

to TDO

MUX

|
i-Finstruction shift reg. J[
b
TAP Controller
state machine

P 1
TMS TCLK

354 CHAPTER 10 ® HARDWARE TESTING AND DESIGN FOR TESTABILITY

Figure 10-16 State Machine for TAP Controller

1

C Test-Logic-Reset |«
10

0

Run-Test/Idle 1‘ Select DR-Scan L Select IR-Scan !
10 19
1 1
| Capture-DR Capture-IR
0
lO 0 l 0

f SufDR Shift-IR Q
b 3!

> Exitl-DR Exitl-IR
: 0
10 0 ! 0

Pause-DR :) Pause-IR D
B i

0 . 0 .
— Exit2-DR — Exit2-IR
¢! P!
Update-DR 1« Update-IR

ll 0 IT To
l

The following instructions are defined in the IEEE standard:

* BYPASS: This instruction allows the TDI serial data to go through a 1-bit
bypass register on the IC instead of through the boundary scan register. In this
way, one or more ICs on the PC board may be bypassed while other ICs are
being tested.

» SAMPLE/PRELOAD: This instruction is used to scan the boundary scan
register without interfering with the normal operation of the core logic. Data is
transferred to or from the core logic from or to the IC pins without interference.
Samples of this data can be taken and scanned out through the boundary scan
register. Test data can be shifted into the BSR.

» EXTEST: This instruction allows board-level interconnect testing, and it also
allows testing of clusters of components that do not incorporate the boundary
scan test features. Test data is shifted into the BSR and then it goes to the output
pins. Data from the input pins is captured by the BSR.

» INTEST (optional): This instruction allows testing of the core logic by shifting
test data into the boundary scan register. Data shifted into the BSR takes the
place of data from the input pins, and output data from the core logic is loaded
into the BSR.

10.4 » Boundary Scan 355J

« RUNBIST (optional): This instruction causes special built-in self-test (BIST)
logic within the IC to execute. (Section 10.5 explains how BIST logic can be
used to generate test sequences and check the test results.)

Several other optional and user-defined instructions may also be included.

The following simplified example illustrates how the connections between two ICs
can be tested using the SAMPLE/PRELOAD and EXTEST instructions. The testis intended
to check for shorts and opens in the PC board traces. Both ICs have two input pins and two
output pins, as shown in Figure 10-17. Test data is shifted into the BSRs via TDI. Then
data from the input pins is parallel-loaded into the BSRs and shifted out via TDO. We
assume that the instruction register on each IC is three bits long with EXTEST coded as
000 and SAMPLE/PRELOAD as 001. The core logic in IC1 is an inverter connected as a
clock oscillator and two flip-flops. The core logic in IC2 is an inverter and XOR gate. The
two ICs are interconnected to form a 2-bit counter.

Figure 10-17 Interconnection Testing Using Boundary Scan

ICI IC2
I e e

DI Ql—[]—:}—{—[‘j;'—-bcr—
| l—[><f | |

>

—
|

|

l

"[i.J.L
P >
|

l

|

|

o

TDI TDO

The steps required to test the connections between the ICs are as follows:

1. Reset the TAP state machine to the Test-Logic-Reset state by inputting a sequence of
five 1s on TMS. The TAP controller is designed so that a sequence of five 1s will
always reset it, regardless of the present state. Alternatively, TRST can be asserted if
it is available. '

2. Scan in the SAMPLE/PRELOAD instruction to both ICs using the sequences for
TMS and TDI given here. The state numbers refer to Figure 10-16.

State: 0 1 2 9 10 11 11 11 11 11 11 12 15 2
™S 611 0 0 0 0 0 0 0 1 1 1
TDI: - - - - -1 0 0 1 0 0 - -

|356

CHaPTER 10 ® HARDWARE TESTING AND DEesiGN FOR TESTABILITY

The TMS sequence 01100 takes the TAP controller to the Shift-IR state. In this state,
copies of the SAMPLE/PRELOAD instruction (code 001) are shifted into the
instruction registers on both ICs. In the Update-IR state, the instructions are loaded
into the instruction decode registers. Then the TAP controller goes back to the Select
DR-scan state.

Preload the first set of test data into the ICs using the following sequences for TMS
and TDI:

TMS :

State: 2
0
TDI: -

[]
I = @

3
0

O O ™
= O
O O
O O
O O ™
= O
O O ™
O o

Data is shifted into BSR1 in the Shift-DR state, and it is transferred to BSR2 in the
Update-DR state. The result is as follows:

BSR1.
NCo , 10 11

TDI 0({0/1 o{olir}o TDO
00110

|

Scan in the EXTEST instruction to both ICs using the following sequences:

oo

;

7
BSR2”

State: 2 9 10 11 11 11 11 11 11 12 15 2
TMS: TF 60 0 0 0 0 0 1 1 1
TDI: - - - 0 0 0 0O 0 0 - -

The EXTEST instruction (000) is scanned into the instruction register in state Shift-
IR and loaded into the instruction decode register in state Update-IR. At this point,
the preloaded test data goes to the output pins, and it is transmitted to the adjacent IC
input pins via the printed circuit board traces.

Capture the test results from the IC inputs. Scan this data out to 7DO and scan the
second set of test data in using the following sequences:

State: 2 3 4 4 4 4 4 4 4 45 8 2
™S : 00000O0O0O0O01 1
TDI: -~-10001000 -
TDO: - -xx10xx10- -

The data from the input pins is loaded into BSR1 in state Capture-DR. At this time, if
no faults have been detected, the BSRs should be configured as shown below, where
the Xs indicate captured data that is not relevant to the test.

10.4 Boundary Scan 357

V4
3

BSRI.
h 0 41 10 11
01

TDI—= 0| 1 | X TDO

>~
>~
>~

[}
—
o
o
—
(=7

E

'd
BSR2/

The test results are then shifted out of BSR1 in state Shift-DR as the new test data is
shifted in. The new data is loaded into BSR2 in the Update-IR state.

6. Capture the test results from the IC inputs. Scan this data out to 7DO and scan all Os
in using the following sequences:

State: 2 3 4 4 4 4 4 44458290
™S : 0co000QCODOO0O1T1111
TDI: --00Q0CQ0ODO0DO0O0O0 -~ - -
TDO: - -xx01xx01- - -

The data from the input pins is loaded into BSR1 in state Capture-DR. Then it is
shifted out in state Shift-DR as all Os are shifted in. The Os are loaded into BSR2 in
the Update-IR state. The controller then returns to the Test-Logic-Reset state, and
normal operation of the ICs can then occur. The interconnection test passes if the
observed TDO sequences match the ones given above.

VHDL code for the basic boundary scan architecture of Figure 10-15 is given in
Figure 10-18. Only the three mandatory instructions (EXTEST, SAMPLE/PRELOAD,
and BYPASS) are implemented using a 3-bit instruction register. These instructions are
coded as 000, 001, and 111, respectively. The number of cells in the BSR is a generic
parameter. A second generic parameter, CellType, is a bit_vector that specifies whether
each cell is an input cell or output cell. The case statement implements the TAP controller
state machine. The instruction code is scanned in and loaded into IDR in states Capture-
IR, Shift-IR, and Update-IR. The instructions are executed in states Capture-DR, Shift-
DR, and Update-DR. The actions taken in these states depend on the instruction being
executed. The register updates and state changes all occur on the rising edge of TCK. The
VHDL code implements most of the functions required by the IEEE boundary scan standard,
but it does not fully comply with the standard.

Figure 10-18 VHDL Code for Basic Boundary Scan Architecture

-- VHDL for Boundary Scan Architecture of Figure 10-15

entity BS_arch is
generic (NCELLS: natural range 2 to 120 := 2);
-- number of boundary scan cells
port (TCK, TMS, TDI: in bit;
TDO: out bit;
BSRin: in bit_vector{l to NCELLS};
BSRout: inout bit_vector{l to NCELLS);
CellType: bit_vector(l to NCELLS));
-- '0' for input cell, '1l' for output cell
end BS_arch;

358 CHAPTER 10 ® HARDWARE TESTING AND DESIGN FOR TESTABILITY

-architecture behavior of BS_arch is

gsignal IR,IDR: bit_vector(l to 3}; -- instruction registers
signal BSR1,BSR2: bit_vector{l to NCELLS); -- boundary scan cells
signal BYPASS: bit; -- bypass bit

type TAPstate is (TestlLogicReset, RunTest_Idle,

SelectDRScan, CaptureDR, ShiftDR, ExitlDR, PauseDR, Exit2DR, UpdateDR,
SelectIRScan, CaptureIR, ShiftIR, ExitlIR, PauseIR, Exit2IR, UpdatelR);

gignal St: TAPstate; -- TAP Controller State
 begin

process (TCK)

begin

if (TCK='1l') then
-- TAP Controller State Machine
case St is
when TestLogicReset =>

if TMS='0' then St<=RunTest_Idle; else St<=TestLogicReset; end if;
when RunTest_TIdle =>
if TMS='0' then St<=RunTest_Idle; else St<=SelectDRScan; end if;
when SelectDRScan =>
if TMS='0' then St<=CaptureDR; else St<=SelectIRScan; end if;
: when CaptureDR =>
5 if IDR = "111" then BYPASS <= '0';
| elgif IDR = "000" them -- EXTEST (input cells capture pin data)
BSR1 <= (mot CellType and BSRin) or (CellType and BSR1);
elgif IDR = "001" then -- SAMPLE/PRELOAD
BSR1 <= BSRin; end if; -- all cells capture cell input data
if T™MS='0' then St<=ShiftDR; else St<=ExitlDR; end if;
: when ShiftDR =»>
! if TDR = "111" them BYPASS <= TDI; -- shift data through bypass reg.
elge BSR1 <= TDI & BSR1(1 to NCELLS-1); end if;
-- shift data into BSR
if T™S='0"' then St<=ShiftDR; else St<=Exitl1DR; end if;
when Exitl1DR =>
if TMS='0' then St<=PauseDR; else St<=UpdateDR; end if;
when PauseDR =>
if TMS='0' then St<=PauseDR; else St<=Exit2DR; end if;
when Exit2DR =>
if TMS='0' then St<=ShiftDR; else St<=UpdateDR; end if;
when UpdateDR =>
if TDR = "000" then -- EXTEST (update output reg. for output cells)
; BSR2 <= (CellType and BSR1) or (not CellType and BSR2);
elsgif IDR = "001" then -- SAMPLE/PRELOAD
: BSR2 <= BSR1; end if; -- update output reg. in all cells
if TMS='0' then St<=RunTest_Idle; else St<=SelectDRScan; end if;
when SelectIRScan =>
if TMS='0' then St<=CapturelR; elpe St<=TestLogicReset; end if;
when CaptureIR =>
: IR <= "001"; -- load 2 LSBs of IR with 01 as required by the
f standard
if TMS='0' then St<=ShiftIR; else St<=ExitlIR; end if;

10.4 Boundary Scan 359

i
H

when ShiftIR =>

IR <= TDI & IR(1 to 2); -- shift in instruction code

if TMS='0' then St<=ShiftIR; else St<=ExitlIR; end if;
when ExitlIR =>

if TMS='0' them St<=PauselR; elese St<=UpdatelR; end if;
when PauselR =>

if TMS='0' then St<=PauselR; else St<=Exit2IR; end if;
when Exit2IR =>

if TMS='0' then St<=ShiftIR; else St<=UpdatelR; end if;
when UpdateIR =>

IDR <= IR; -- update instruction decode register

if TMS='0' then St<=RunTest_Idle; else St<=SelectDRScan; end if;
end case;

end if;

end process;

TDO <= BYPASS when St = ShiftDR and IDR = "111" -- BYPASS
else BSR1 (NCELLS) when St=ShiftDR -- EXTEST or SAMPLE/PRELOAD
else IR(3) when St=ShiftIR;

BSRout <= BSRin when (St = TestLogicReset or not (IDR = "000"))
else BSR2; -- define cell outputs

‘end behavior;

VHDL code that implements the interconnection test example of Figure 10-17 is
given in Figure 10-19. The TMS and TDI test patterns are the concatenation of the test
patterns used in steps 2 through 6. A copy of the basic boundary scan architecture is
instantiated for IC1 and for IC2. The external connections and internal logic for each IC
are then specified. The internal clock frequency was arbitrarily chosen to be different than
the test clock frequency. The test process runs the internal logic, then runs the scan test,
and then runs the internal logic again. The test results verify that the IC logic runs correctly
and that the scan test produces the expected results.

Figure 10-19 VHDL Code for Interconnection Test Example

-- Boundary Scan Tester

entity system is
end system;

architecture IC_test of system is
component BS_arch is
generic (NCELLS:natural range 2 to 120 := 4);

(TCK, TMS, TDI: in bit;
TDO: out bit;
BSRin: in bit_vector(l to NCELLS);
BSRout: inout bit_vector(l to NCELLS) ;
CellType in bit_vector(l to NCELLS));
-- '0' for input cell, 'l' for output cell

end component;

360 CHAPTER 10 ® HARDWARE TESTING AND DESIGN FOR TESTABILITY

signal TCK,TMS, TDI,TDC,TDOLl: bit;

signal Q0, Ql1, CLK1l: bit;

signal BSR1lin, BSRlout, BSR2in, BSR2out: bit_vector(l to 4);
signal count: integer := 0;

constant TMSpattern: bit_vector(0 to 62) :=
"011000000011100000000011110000000111000000000111000000000121211";

constant TDIpattern: bit_vector(0 to 62) :=
*000001001000000010001000000000000000001000100000000000000000000";

 begin

! BSl: BS_arch port map (TCK, TMS, TDI, TDCOl, BSRlin, BSRlout, "0011");

BS2: BS_arch port map(TCK, TMS, TDOl, TDCG, BSR2in, BSR2out, "0011");

-- each BSR has two input cells and two output cells

. BSR1in(1) <= BSR2out (4); -- ICl external connections
| BSR1in(2) <= BSR2out (3);
| BSR1in(3) <= Q1; -- IC1 internal logic

BSR1in (4) <= QO0;

CLK1l <= not CLKl after 7 ns; -- internal clock

process (CLK1)

begin

if (CLK1='1l') then -- D flip-flops

Q0 <= BSRlout(1l);
Q1 <= BSRlout (2);
end if;
end process;

. BSR2in(1) <= BSRlout (4); -- IC2 external connections
i BSR2in(2) <= BSRlout(3);
i BSR2in(3) <= BSR2out(l) xor BSR2out(2}; -- IC2 internal logic
| BSR2in(4) <= mot BSR2out (1);
; TCK <= not TCK after 5 ns; -- test clock
process
begin
T™S <= '1"';
wait for 70 ns; -- run internal logic
wait until TCK='1"';
for i in TMSpattern'range loop -- run scan test

TMS <= TMSpattern(i);
TDI <= TDIpattern(i):
wait for 0 ns;

count <= 1i+1; -- count triggers listing output
wait until TCK='1"';

end loop;

wait for 70 ns; -- run internal logic

wait; -- stop

end process;
;end TC_test;

10.5 ¢ Built-In Self-Test 361

10©.5 BUILT-IN SELF-TEST

As digital systems become more and more complex, they become much harder and more
expensive to test. One solution to this problem is to add logic to the IC so that it can test
itself. This is referred to as Built-In Self-Test, or BIST. Figure 10-20 illustrates the general
method for using BIST. When the test mode is selected by the test-select signal, an on-chip
test generator applies test patterns to the circuit under test. The resulting output is observed
by the response monitor, which produces an error signal if an incorrect output pattern is
detected.

Figure 10-20 Generic BIST Scheme

Inputs ——
Circuit R
MUX to be I\TP o L Error signal
onitor
tested
Test
Generator
Outputs

Test Select

BIST is often used for testing memory. The regular structure of a memory chip makes
it easy to generate test patterns. Figure 10-21 shows a block diagram of a self-test circuit
for a RAM. The BIST controller enables the write-data generator and address counter so
that data is written to each location in the RAM. Then the address counter and read-data
generator are enabled, and the data read from each RAM location is compared with the
output of the read-data generator to verify that it is correct.

Figure 10-21 Self-test Circuit for RAM

|| Write-data Address Read-data
generator counter generator
Data in Address
BIST
-
Controller RAM
Data out
] ’
] Compare

BGZ CHAPTER 10 ® HARDWARE TESTING AND DESIGN FOR TESTABILITY

The test circuit can be simplified by using a signature register. The signature register
compresses the output data into a short string of bits called a signature, and this signature
is compared with the signature for a correctly functioning component. A multiple-input
signature register (MISR) combines and compresses several output streams into a single
signature. Figure 10-22 shows a simplified version of the RAM self-test circuit. The read-
data generator and comparator have been eliminated and replaced with a MISR. One type
of MISR simply forms a check sum by adding up all the data bytes stored in the RAM.
When testing a ROM, Figure 10-22 can be simplified further, since no write-data generator

is needed.

Figure 10-22 Self-test Circuit for RAM with Signature Register

| Write-data Address
| generator counter
¥ A i
Data in Address
BIST .
Controller | | RAM
Data out
e MISR

Linear feedback shift registers (LFSRs) are often used to generate test patterns. Figure
10-23 shows an example of a LFSR. The outputs from the first and fourth flip-flops are
XORed together and fed back into the D> input of the first flip-flop. The general form of a
LFSR is a shift register with two or more flip-flop outputs XORed together and fed back
into the first flip-flop. The name linear comes from the fact that exclusive OR is equivalent

to modulo-2 addition, and addition is a linear operation.

Figure 10-23 4-bit Linear Feedback Shift Register (LFSR)

—=

D QI

> Q4

— F> Q2

— F> Q3

J7> Qr
CLK

10.5 » Built-In Self-Test 363

By proper choice of the outputs that are fed back through the exclusive OR gate, it is
possible to generate 2"— 1 different bit patterns using an »-bit shift register. All possible
patterns can be generated except for all Os. The patterns generated by the LFSR of Figure
10-23 are:

1000, 1100, 1110, 1111, 0111, 1011, 0101, 1010, 1101, 0110, 0011,
1001, 0100, 0010, 0001, 1000, . . .

These patterns have no obvious order, and they have certain randomness properties. Such
a LFSR is often referred to as a pseudo-random pattern generator, or PRPG. PRPGs are
obviously very useful for BIST, since they can generate a large number of test patterns
with a small amount of logic circuitry. Table 10-4 gives one feedback combination that
will generate all 2" — 1 bit patterns for some LFSRs with lengths in the range n = 4 to 32.

Table 10-4 Feedback for Maximum-length LFSR Sequence

n Feedback
4,6,7 Q,€Q,
5 Q,®Q,@Q;
8 Q,®Q®QdQ,
12 QeQeQYUeQ,
14,16 Q369Q4®Q569Qn
A Q,©Q,8Q,@Q,,
32 Q,9Q,8Q,9Q,;

If the all-Os test pattern is required, an n-bit LFSR can be modified by adding an
AND gate with n — 1 inputs, as shown in Figure 10-24 for n = 4. When in state 0001, the
next state is 0000; when in state 0000, the next state is 1000; otherwise, the sequence is the
same.

Figure 10-24 Modified LFSR with 0000 State

7
— =

D Q1 D Q2 D Q3 D 4

> QI ,—> Qb > r> Qe

CLK — : ‘

364 CrarTER 10 ® HARDWARE TESTING AND DESIGN FOR TESTABILITY

A MISR can be constructed by modifying a LFSR by adding XOR gates, as shown in
Figure 10-25. The test data (Z,Z,Z.Z,) is XORed into the register with each clock, and the
final result represents a signature that can be compared with the signature for a known
correctly functioning component. This type of signature analysis will catch many, but not
all, possible errors. An n-bit signature register maps all possible input streams into one of
the 2" possible signatures. One of these is the correct signature, and the others indicate that
errors have occurred. The probability that an incorrect input sequence will map to the
correct signature is of the order of 1/2".

Figure 10-25 Multiple-input Signature Register (MISR)

Z1 2‘2 Z|3 74
l

P L)):>'Dczz~LD>T |:)D'DQ4

D Q3
I'— > Q@ L Q= > Q4
= [[I
CLK ¢ ‘ b

For the MISR of Figure 10-25, assume that the correct input sequence is 1010, 0001,
1110, 1111, 0100, 1011, 1001, 1000, 0101, 0110, 0011, 1101, 0111, 0010, 1100. This
sequence maps to the signature 1010. Any sequence that differs in one bit will map to a
different signature. For example, if 0001 in the sequence is changed to 1001, the resulting
sequence maps to 1000. Most sequences with two errors will be detected, but if we change
0001 to 1001 and 0010 to 0110 in the original sequence, the result maps to 1010, which is
the correct signature, so the errors would not be detected.

To adapt the scan test scheme of Figure 10-10(b) for BIST, the scan register is modified
so each part of the register can serve as a state register, pattern generator, signature register,
or shift register. When used as a shift register, the test data can be scanned in and out in the
usual way. Then part of the scan register can be used as a pattern generator (PRPG) and
part as a signature register (MISR) to test one of the combinational blocks. The roles can
then be changed to test another combinational block. When the testing is finished, the scan
register is placed in the state register mode for normal operation.

One such scheme is referred to as BILBO (built-in logic block observation). Figure
10-26 shows the placement of BILBO registers for testing a network with two combinational
blocks. Comb. network 1 is tested when the first BILBO is used as a PRPG and the second
as a MISR. The roles of the registers are reversed to test Comb. network 2. In the normal
operating mode, both BILBOs serve as registers for the associated combinational logic.
To scan data in and out, both BILBOs operate in the shift register mode.

10.5 o Built-In Self-Test 365

Figure 10-26 BIST Using BILBO Registers

O Comb. Q Comb.
> g = Network =P g P Network
2 1 m 2
S T TN
PRPG MISR

O Comb. o) Comb.
g | Network = ij | Nietwork
= m 2

(b) Testing combinational network 2

Figure 10-27 shows the structure of one version of a 4-bit BILBO register. The
control inputs B, and B, determine the operating mode. Si and So are the serial input and
output for the shift register mode. The Zs are inputs from the combinational logic. The
equations for this BILBO register are

D, =Z B, ® (SiB)+FBB,) (B|+B,

D, =ZB ®Q, (B/+By) (i>1)
When B, = B, =0, these equations reduce to
D,=§i and D,;=Q,, (i>1)

which corresponds to the shift register mode. When B, = 0 and B, = 1, the equations
reduce to '

D, = FB, D;=Q,,
which corresponds to the PRPG mode, and the BILBO register is equivalent to Figure
10-23. When B, = 1 and B,=0, the equations reduce to

D, =Z, D=2

which corresponds to the normal operating mode. When B, = B, = 1, the equations reduce

to
D,=Z,®FB, D,=2,®0,,

366 CHAPTER 10 ® HARDWARE TESTING AND DESIGN FOR TESTABILITY

which corresponds to the MISR mode, and the BILBO register is equivalent to Figure
10-25. In summary, the BILBO operating modes are as follows:

BIB2Z | Operating Mode

00 shift register
01 PRPG

10 normal

11 MISR

Figure 10-27 4-bit BILBO Register

FB
Si B A —e
B2 L
Ay
FED—JD‘ D2 Q2
1) t
'l—_D_«)DT D3 Q3
“) t
D4 Q4 So
zﬂ —
B1
B1 B2

Figure 10-28 shows the VHDL description of an n-bit BILBO register. NBITS, which
equals the number of bits, is a generic parameter in the range 4 through 8. The register is
functionally equivalent to Figure 10-27, except that we have added a clock enable (CE).
The feedback (FB) for the LFSR depends on the number of bits.

The system shown in Figure 10-29 illustrates the use of BILBO registers. In this
system, registers A and B can be loaded from the Dbus using the LDA and LDB signals.
Then the registers are added and the sum and carry are stored in register C. When B1B2 = 10,
the registers are in the normal mode (Zes? = 0), and loading of the registers is controlled by

10.5 @ Built-In Self-Test 367

LDA, LDB, and LDC. To test the adder, we first set B/B2 = 00 to place the registers in the
shift register mode and scan in initial values for A, B, and C. Then we set BIB2 = 10,
which places registers A and B in PRPG mode and register C in MISR mode. After 15
clocks, the test is complete. Then we can set B/B2 = 00 and scan out the signature.

Figure 10-28 VHDL Code for BILBO Register of Figure 10-27
entity BILROC is -- BILBO Register
generic (NBITS: natural range 4 to 8 := 4);
port (Clk, CE, Bl, B2, Si: im bit;
So: out bit;
Z: in bit_vector(l to NBITS);
Q: inout bit_vector(l to NBITS));
end BILBO;

architecture behavior of BILBO is
signal FB: bit;
begin
FB <= Q{2) xor Q(3) xor Q(4) xor Q(NBITS) when (NBITS=8)
else Q(2) xor Q(NBITS) when (NBITS=5)
else Q(1) xor Q(NBITS);
process (Clk)
variable mode: bit_vector (1l downto 0);

begin
if (Clk = '1l' and CE = '1') then
mode := Bl & B2;
cagse mode is
when "00" => -~ Shift register mode
Q <= Si & Q(1 to NBITS-1);
when "01" => -- Pseudo Random Pattern Generator mode
Q <= FB & Q(1 to NBITS-1);
when "10" => -- Normal Operating mode
Q <= Z;
when "11" => -— Multiple Input Signature Register mode
Q <= Z(1 to NBITS) xor (FB & Q(1 to NBITS-1));
end case;
end if;

end process;
So <= Q(NBITS);
end;

BGB CHAPTER 10 ® HARDWARE TESTING AND DESIGN FOR TESTABILITY

Figure 10-29 System with BILBO Registers and Tester

System
r——_——_-—— - —_— —_— —— — — — — — — — — |
| Dbus 1dA Scan path
| Test i ['
4 L
| cx D—L
Test
L+ ® A of=t = |
l B2 Carry | :
— 4 z
l LdB Adder '+'>f Co —I—
| Test > Sum
| CE Bl l
I z B 0 o B2 l
| Bl |
B2
| |
| |
B1| |B2 Si So
Tester

The VHDL code for the system is given in Figure 10-30, and a test bench is given in
Figure 10-31. The system uses three BILBO registers and the 4-bit adder of Figure 8-12.
The test bench scans in a test vector to initialize the BILBO registers, then it runs the test
with registers A and B used as PRPGs and register C as a MISR. The resulting signature is
shifted out and compared with the correct signature.

Figure 10-30 VHDL Code for System with BILBO Registers and Tester

lentity BILBO_System 1is
| port (Clk, LdA, LAB, LAC, B1, B2, Si: in bit;
So: out bit;
DBus: in bit_vector (3 downte 0);
_ Output: inout bit_vector (4 downto 0));
{ end BILBO_System;

10.5 ¢ Built-In Self-Test 369

architecture BSysl of BILBO_System is
component Adderd is
port (A, B: in bit_vector (3 downto 0); Ci: in bit;
S: out bit_vector(3 downto 0); Co:out bit);
end component;
component BILBO is
generic (NBITS: natural range 4 to 8 := 4);
port (Clk, CE, Bl, B2, Si : in bit;
So: out bit;
Z: in bit_vector(l to NBITS);
Q: inout bit_vector(l to NBITS));
end component;

signal Aout, Bout: bit_vector (3 downto 0);
signal Cin: bit_vector(4 downto 0);

allas Carry: bit is Cin(4);

alias Sum: bit_vector is Cin(3 downto 0);

: signal ACE, BCE, CCE, CBl, Test, Sl, S2: bit;
begin

i Test <= not Bl or B2;

ACE <= Test or LdA;

BCE <= Test or LdB;

CCE <= Test or LAC;

CBl <= Bl xor B2;

RegA: BILBO generic map (4) port map(Clk, ACE, Bl, B2, S1, S2, DBus,

Aout) ;

RegB: BILBO generic map (4) port map(Clk, BCE, Bl, B2, Si, S1, DBus,
Bout) ;

RegC: BILBO generic map (5) port map(Clk, CCE, CB1l, B2, $2, So, Cin,
Qutput) ;

Adder: Adder4 port map (Aout, Bout, '0', Sum, Carry);

end BSysl;

Figure 10-31 Test Bench for BILBO System

-- System with BILBO test bench

entity BILBO_ test is
end BILBO_test;

architecture Btest of BILBO_test is
component BILBO_System is
port (Clk, Lda, LdB, LdC, Bl, B2, Si: in bit;
So: out bit;
DBus: in bit_vector (3 downto 0);
Output: inout bit_vector (4 downto 0));
end component;

370 CHAPTER 10 ® HARDWARE TESTING AND DESIGN FOR TESTABILITY

signal Clk: bit := '0';

signal LdAa, LdB, LdC, Bl, B2, Si, So: bit := '0';
signal DBus: bit_vector(3 downto 0);

signal Output: bit_vector(4 downto 0);

signal Sig: bit_vector(4 downto 0);

constant test_vector: bit_vector(l2 downto 0) := "1000110000000";
; constant test_result: bit_vector(4 downto 0) := "01011";
;begin

clk <= not clk after 10 ns;
Sys: BILBO_System port map(Clk,Lda,LdB,LdC,Bl,B2,5i,S0,DBus,Qutput);
process
begin
Bl <= '0'; B2 <= '0'; -- Shift in test wvector
for i in test_vector'right teo test_vector'left loop
Si <= test_vector(i);

wait until (clk = '1');
end loop;
Bl <= '0'; B2 <= '1"'; -- Use PRPG and MISR
for i in 1 to 15 loop
wait until (clk = '1');
end loop;
Bl <= '0'; B2 <= '0'; -- Shift signature out

for 1 in 0 to 5 loop
Sig <= So & Sig(4 downto 1);
wait until (clk = '1');

end loop;

! if (Sig = test_result) then -- Compare signature
i report "System passed test.";
? else
E report "System did not pass test!";
end if;

wait;
end process;
end Btest;

In this chapter, we introduced the subject of testing hardware, including combinational
networks, sequential networks, complex ICs, and PC boards. Use of scan techniques for
testing and built-in self-test has become a necessity as digital systems have become more
complex. It is very important that design for testability be considered early in the design
process so that the final hardware can be tested efficiently and economically.

Problems 371

 Problems

10.1
(a) Determine the necessary inputs to the following network to test for u stuck-at-0.
(b) For this set of inputs, determine which other stuck-at faults can be tested.

(¢©) Repeat (a) and (b) for r stuck-at-1.

A 2 r
p q v
BW o
b w F

Ce) >
D=3

10.2 Find a minimum set of tests that will test all single stuck-at-0 and stuck-at-1 faults in the
following network. For each test, specify which faults are tested for s-a-0 and for s-a-1.

a

b g

c i VA
h

d

e

f

10.3 For the following network, find a minimum number of test vectors that will test all s-a-0 and
s-a-1 faults at the AND and OR gate inputs. For each test vector, specify the values of A, B, C and D,
and the stuck-at faults that are tested.

A S |
£
BT , g |
VYA |
|
' h
| = Pk >+
C | 1J |
| |A |
| K |
1
D— m |

— e — e — o — — —_— e —

10.4 Find a test sequence to test for b s-a-0 in the sequential network of Figure 10-7.

372

CHAPTER 10 ® HARDWARE TESTING AND DESIGN FOR TESTABILITY

10.5

(@ Redraw the code converter network of Figure 1-20 in the form of Figure 10-8 using dual-port
flip-flops.

(b) Determine a test sequence that will verify the first two rows of the transition table of Figure
1-18. Draw a timing diagram similar to Figure 10-9 for your test sequence.

10.6
(@) Write VHDL code for a dual-port flip-flop.
(b) Write VHDL code for your solution to Problem 10.5(a).

(¢) Write atest bench that applies the test sequence from Problem 10.5(b), and compare the resulting
waveforms with your solution to Problem 10.5(b).

10.7 State graphs for two sequential machines are given below. The first graph represents a correctly
functioning machine, and the second represents the same machine with a malfunction. Assuming
that the two machines can be reset to their starting states (SO and TO0), determine the shortest input
sequence that will distinguish the two machines.

01 ot 0/t
(G0l —(o__T(el__Ts=))™

/0 1/0 1/0

01 o~ 01 0/1 o1
1/1(gTOI 'ngz '; Tzi i:!)1/0

1/0 1/0

10.8 Simulate the boundary scan tester of Figure 10-19 and verify that the results are as expected.
Change the code to represent the case where the lower input to IC1 is shorted to ground, simulate
again, and interpret the results.

10.9 Write VHDL code for the boundary scan cell of Figure 10-14. Rewrite the VHDL code of
Figure 10-18 to use this boundary scan cell as a component in place of some of the behavioral code
for the BSR. Use a generate statement to instantiate NCELLS copies of this component. Test your
new code using the boundary scan tester example of Figure 10-19.

10.10

(a) Draw aschematic diagram for an LFSR with n = 5 that generates a maximum length sequence.
(b) Add logic so that 00000 is included in the state sequence.

(¢c) Determine the actual state sequence.

10.11

(a) Write VHDL for an 8-bit MISR that is similar to Figure 10-25.

(b) Design a self-test circuit, similar to Figure 10-22, for a 6116 static RAM. The write-data
generator should store data in the following sequence: 00000000, 10000000, 11000000, .. ., 11111111,
01111111, 00111111, . . ., 00000000.

(¢) Write VHDL code to test your design. Simulate the system for at least one example with no
errors, 1 error, 2 errors, and 3 errors.

CHAPTER 4] 9]

DEesiGN EXAMPLES

Up to this point, we have used simple design examples that illustrate how to use VHDL in
the design process. In this chapter, we present some realistic design examples that show
how VHDL, together with synthesis tools, can be used to design complex digital systems.
We first design a receiver-transmitter for a serial data port, and then we design a simple
microcontroller similar to the Motorola M68HCOS.

149.1 UART DESIGN

Figure 11-1

Most computers and microcontrollers have one or more serial data ports used to com-
municate with serial input/output devices such as keyboards and serial printers. By using
a modem (modulator-demodulator) connected to a serial port, serial data can be transmitted
to and received from a remote location via telephone lines (see Figure 11-1). The serial
communication interface, which receives and transmits serial data, is often called a UART
{Universal Asynchronous Receiver-Transmitter). RxD is the received serial data signal
and 7xD is the transmitted data signal.

Serial Data Transmission
U IRxD M telephone M RxD U
COMPUTER Al 0 line - 0 "1 A | COMPUTER
R » D D R
T TxD E E TxD T
M M

Figure 11-2 shows the standard format for serial data transmission. Since there is no
clock line, the data (D) is transmitted asynchronously, one byte at a time. When no data is
being transmitted, D remains high. To mark the start of transmission, D goes low for one
bit time, which is referred to as the start bit. Then eight data bits are transmitted, least
significant bit first. When text is being transmitted, ASCII code is usually used. In ASCII
code, each alphanumeric character is represented by a 7-bit code. The eighth bit may be
used as a parity check bit. In the example, the letter U, coded as 1010101, is transmitted
followed by a O parity bit, so that the total number of 1s is even (even parity). After eight

374

CHAPTER 11 @ DESIGN EXAMPLES

Figure 11-2

bits are transmitted, D must go high for at least one bit time, which is referred to as the stop
bit. Then transmission of another character can start at any time. The number of bits
transmitted per second is frequently referred to as the BAUD rate.

Standard Serial Data Format

8 data bits
., N
b ~ =~
oli1jog1jojl1tof1jol]1
- _/ 1
gl o .
Start Bit 7-bit ASCII code Parity bit Stop bit
LSB first (even)

When transmitting, the UART takes eight bits of parallel data and converts the data
to a serial bit stream that consists of a start bit (logic '0"), 8 data bits (least significant bit
first), and one or more stop bits (logic '1"). When receiving, the UART detects the start bit,
receives the 8 data bits, and converts the data to parallel form when it detects the stop bit.
Since no clock is transmitted, the UART must synchronize the incoming bit stream with
the local clock. '

We now design a simplified version of a UART similar to the one used within the
MC6805, MC6811, and other microcontrollers. Figure 11-3 shows the UART connected
to the 8-bit data bus. The following six 8-bit registers are used:

RSR Receive shift register

RDR Receive data register

TDR Transmit data register

TSR Transmit shift register

SCCR Serial communications control register
SCSR Serial communications status register

The following discussion assumes that the UART is connected to a microcontroller data
and address bus so that the CPU can read and write to the registers. RDR, TDR,.SCCR, and
SCSR are memory-mapped; that is, each register is assigned an address in the microcontroller
memory space. RDR, SCSR, and SCCR can drive the data bus through tristate buffers;
TDR and SCCR can be loaded from the data bus.

11.1 » UART Design 375

Figure 11-3 UART Block Diagram

_ Data Bus 8
- Ar ~ Ar Ar _____________ >
r—— - —-—- 1 ! 4 :
| |
: | RDR | sccr Ld— TDR |
| 4 I [relrEe SEL] S]I:L SEL] | * |
RxD T RSR | T IEI TSR [1H-TxD
|
I [!
: Receiver] BAUD Rate | Transmitter [
| Control 1} BClkx8| Generator | BClk| Control :
T 1 -t ____
SCSR i
gl%r-nl l ‘ |0E| FEI 8 Transmitter
Receiver

Beside the registers, the three main components of the UART are the BAUD rate
generator, the receiver control, and the transmitter control. The BAUD rate generator divides .
down the system clock to provide the bit clock (BCIk) with a period equal to one bit time
and also BCIkX8, which has a frequency eight times the BClk frequency.

The TDRE (transmit data register empty) bit in the SCSR is set when TDR is empty.
When the microcontroller is ready to transmit data, the following occurs:

1. The microcontroller waits until 7DRE ='1" and then loads a byte of data into TDR
and clears TDRE.

2. The UART transfers data from TDR to TSR and sets TDRE.

3. The UART outputs a start bit ('0") for one bit time and then shifts TSR right to transmit
the eight data bits followed by a stop bit ('1').

Figure 11-4 shows the SM chart for the transmitter. The corresponding sequential
machine (SM) is clocked by the microcontroller system clock (CLK). In the IDLE state,
the SM waits until 7DR has been loaded and TDRE is cleared. In the SYNCH state, the
SM waits for the rising edge of the bit clock (BclkT) and then clears the low-order bit of
TSR to transmit a '0' for one bit time. In the TDATA state, each time BclkT is detected, TSR
is shifted right to transmit the next data bit and the bit counter (Bct) is incremented. When
Bcet =9, 8 data bits and a stop bit have transmitted. Bcet is then cleared and the SM goes
back to IDLE.

[376 CHAPTER 11 @ DESIGN EXAMPLES

Figure 11-4 SM Chart for UART Transmitter

, start bit

shift TSR
inc Bet

{cl)

{clear Bet } W

The VHDL code for the UART transmitter (Figure 11-5) is based on the SM chart of
Figure 11-4. The transmitter contains the TDR and TSR registers and the transmit control.
It interfaces with TDRE and the data bus (DBUS). The first process represents the
combinational network, which generates the nextstate and control signals. The second
process updates the registers on the rising edge of the clock. The signal Bclk_rising is '1'
for one system clock time following the rising edge of Bclk. To generate Bclk_rising, Belk
is stored in a flip-flop named Bclk_Dlayed. Then Bclk_rising is '1' if the current value of
Bclk is '1' and the previous value (stored in Bclk_Dlayed) is '0'. Thus,

Bclk_rising <= Bclk and not Bclk_Dlayed

Figure 11-5 VHDL Code for UART Transmitter

library icee;
use ieee.std_logic_1ll64.all;

 entity UART_Transmitter is

port (Bclk, sysclk, rst_b, TDRE, 1loadTDR: imn std_logic;
DBUS:in std_logic_vector (7 downto 0);
setTDRE, TxD: out std_logic);

end UART_Transmitter;

architecture xmit of UART_Transmitter is

11.1 « UART Design 377

type stateType is (IDLE, SYNCH, TDATA):;

| signal state, nextstate stateType;
Esignal TSR std_logic_vector (7 downto 0);
?signal TDR std_logic_vector (7 downto 0);
:signal Bct: integer range (0 to 9;

. signal inc, clr, loadTSR, shftTSR, start:

i signal Bclk_rising, Bclk_Dlayed: std_logic;
i begin

ITXD <= TSR(0);

' SetTDRE <= loadTSR;

~- Transmit Shift Register
~- Transmit Data Register

-—- counts number of bits sent
std_logic;

'Bclk_rising <= Bclk and (not Bclk Dlayed);
-- indicates the rising edge of bit clock
Xmit_Control: process{state, TDRE, Bct, Bclk rising)
begin
inc <= '0'; c¢lr <= '0'; loadTSR <= '0'; shftTSR <= '0'; start <= '0';
-- reset control signals
case state is
when IDLE => if (TDRE = '0') then
loadTSR <= 'l'; nextstate <= SYNCH;
else nextstate <= IDLE; end if;
when SYNCH => -- synchronize with the bit clock
if (Bclk rising = '1') then
start <= 'l'; nextstate <= TDATA;
else nextstate <= SYNCH; end if;
when TDATA =>
if (Bclk rising = '0') then nextstate <= TDATA;
elsif (Bct /= 9) then
shftTSR <= '1l'; inc <= 'l'; nextstate <= TDATA;
else clr <= '1l'; nextstate <= IDLE; end if;
end case;
end process;
Xmit_update: process (sysclk, rst_b)
begin
. if (rst_b = '0') then
% TSR <= "111111111"; state <= IDLE; Bct <= 0; Bclk_Dlayed <= '0';
elgif (sysclk'event and sysclk = '1') then
state <= nextstate;
i1f (clr = '1') then Bct <= 0; elsif (inc = 'l') then
Bct <= Bet + 1; end if;
if (loadTDR = 'l') then TDR <= DBUS; end if;
if (loadTSR = '1l') then TSR <= TDR & 'l'; end if;
if (start = '1') then TSRout <= '0'; end if;
if (shftTSR = '1l') then TSR <= 'l' & TSR(8 downto 1); end if;
-- gshift out one bit
Bclk_Dlayed <= Bclk; -- Bclk delayed by 1 sysclk

I end if;
i end process;
‘end xmit;

378

CHAPTER 11 » Desicn ExampLes

Figure 11-6

The operation of the UART receiver is as follows:

1. When the UART detects a start bit, it reads in the remaining bits serially and shifts
them into the RSR.

2. When all the data bits and the stop bit have been received, the RSR is loaded into the
RDR, and the Receive Data Register Full (RDRF) flag in the SCSR is set.

3. The microcontroller checks the RDRF flag, and if 1t is set, the RDR is read and the
flag is cleared.

The bit stream coming in on RxD is not synchronized with the local bit clock (Bclk).
If we attempted to read RxD at the rising edge of Bclk we would have a problem if RxD
changed near the clock edge. We could have setup and hold time problems. If the bit rate
of the incoming signal differed from Bclk by a small amount, we could end up reading
some bits at the wrong time. To avoid these problems, we will sample RxD eight times
during each bit time. (Some systems sample 16 times per bit.) We will sample on the
rising edge of BclkX8. The arrows in Figure 11-6 indicate the rising edge of BclkX8. Ideally,
we should read the bit value at the middle of each bit time for maximum reliability. When
RxD first goes to 0, we will wait for four BclkX8 periods, and we should be near the middle
of the start bit. Then we will wait eight more BclkX8 periods, which should take us near
the middle of the first data bit . We continue reading once every eight BclkX8 clocks until
we have read the stop bit.

Sampling RxD with BclkX8

start bit 1st data bit 2nd data bit

* * .|
seoxs [[[TTTTTIITLTTTTITTTITTTITTTTTT

4 clocks 8 clocks 8 clocks
* Read data at these points.

Figure 11-7 shows an SM chart for the UART receiver. Two counters are used. Ct/
counts the number of BclkX8 clocks. Ct2 counts the number of bits received after the start
bit. In the IDLE state, the SM waits for the start bit (RxD = '0") and then goes to the Start
Detected state. The SM waits for the rising edge of BclkX8 (BclkX8T) and then samples
RxD again. Since the start bit should be '0" for eight BclkX8 clocks, we should read '0". Ct/
is still 0, so Ctl is incremented and the SM waits for Belkx8T.1f RxD = ‘1", this is an error
condition and the SM clears Ct/ and resets to the IDLE state. Otherwise, the SM keeps
looping. When RxD is 0" for the fourth time, Ctl = 3, so Ctl is cleared and the state goes
to Receive Data. In this state, the SM increments Ct/ after every rising edge of BclkXS.
After the eighth clock, Ctl =7 and Cr2 is checked. If it is not 8, the current value of RxD
is shifted into RSR, C12 is incremented, and Ct! is cleared. If Ct2 = 8, all 8 bits have been
read and we should be in the middle of the stop bit. If RDRF = 1, the microcontroller has
not yet read the previously received data byte, and an overrun error has occurred, in which

11.1 « UART Design 379

case the OF flag in the status register is set and the new data is ignored. If RxD ='0', the
stop bit has not been detected properly, and the framing error (FE) flag in the status register
is set. If no errors have occurred, RDR is loaded from RSR. In all cases, RDRF is set to
indicate that the receive operation is completed and the counters are cleared.

The VHDL code for the UART receiver (Figure 11-8) is based on the SM chart of
Figure 11-7. The receiver contains the RDR and RSR registers and the receive control. The
control interfaces with SCSR, and RDR can drive data onto the data bus. The first process
represents the combinational network, which generates the nextstate and control signals.
The second process updates the registers on the rising edge of the clock. The signal
BclkX8_rising is '1' for one system clock time following the rising edge of BclkX8.
BclkX8_rising is generated the same manner as Bclk_rising.

Figure 11-7 SM Chart for UART Receiver

shift RSR
inc2

stop bit -~

380 CHAPTER 11 ® DESIGN EXAMPLES

Figure 11-8 VHDL Code for UART Receiver

library ieee;
use ieee.std_logic_1164.all;

entity UART Receiver is
port (RxD, BclkX8, sysclk, rst_b, RDRF: in std_logic;
i RDR: out std_logic_vector (7 downto 0);
setRDRF, setOE, setFE: out std_logic);
end UART_Receiver;

architecture rcvr of UART_Receiver is

type stateType is (IDLE, START_DETECTED, RECV_DATA) ;
signal state, nextstate: stateType;

signal RSR: std_logic_vector (7 downto 0); -- receive shift register
signal ctl : integer range 0 to 7; ~- indicates when to read the RxD input
signal ct2 : integer range 0 to §; -- counts number of bits read

signal incl, inc2, clrl, clr2, shftRSR, loadRDR : std_logic;
signal BclkX8_Dlayed, BclkX8_rising : std_logic;

begin
BclkX8_rising <= BclkX8 and (not BclkX8_Dlayed);
-- indicates the rising edge of bitX8 clock
Rcvr_Control: process (state, RxD, RDRF, ctl, ct2, BclkX8_rising)
begin
-- reset control signals
incl <= '0'; inc2 <= '0'; clrl <= '0'; clr2 <= '0';
shftRSR <= 'Q0'; loadRDR <= '0'; setRDRF <= '0'; setOE <= 'Q'; setFE <=
0
case state is
when IDLE => if (RxD = '0') then nextstate <= START_DETECTED;
else nextstate <= IDLE; end if;
when START DETECTED =>
if (BclkX8_rising = '0') then nextstate <= START_DETECTED;
elsgif (RxD = '1') then clrl <= 'l'; nextstate <= IDLE;
elsif (ctl = 3) then clrl <= 'l'; nextstate <= RECV_DATA;
else incl <= 'l'; nextstate <= START_DETECTED; end if;
when RECV_DATA =>
if (BclkX8_rising = '0') then nextstate <= RECV_DATA;
else incl <= '1"';
if (ctl /= 7) then nextstate <= RECV_DATA;
-- wait for 8 clock cycles
elgif (ctZ2 /= 8) then
shftRSR <= '1l'; inc2 <= 'l'; clrl <= '1l'; -- read next data bit
nextstate <= RECV_DATA;

11.1 ¢ UART Design

381

else
nextstate <= IDLE;
SetRDREF <= '1'; clrl
if (RDRF = '1') then
elsif (RxD = '0') the
else loadRDR <= 'l1l';
end if;
, end if;
. end case;
' end process;

%Rcvr_update: process (sysclk, rs
| begin
! if (rst_b = '0') then state <=
ctl <= 0; ct2 <= 0;
elsif (sysclk'event and sysclk
state «<= nextstate;

if (clrl = '1') then ctl <«=
ctl <= ctl + 1; end if;

if (clr2 = '1') then ct2 <=
ct2 <= ¢ct2 + 1; end if;

if (shftRSR = '1l') then RSR
-- update shift reg.

if (locadRDR = '1') then RDR

BclkX8_Dlayved <= BclkX8;
end if;
i end process;
‘end rcvr;

<= '1"; clr2 <= '1';

setOE <= '1"'; -- overrun error
n setFE <= 'l'; -- framing error
end if;

t_b)

IDLE; BclkX8_Dlayed <= '0';
= '1l') then

0; elsif (incl = '1l') then
0; elgif (inc2 = '1') then

<= RxD & RSR(7 downto 1);

<= RSR; end if;
-- BclkX8 delayed by 1 sysclk

end if;

-- load recv data register

Figure 11-9 shows the result of synthesizing the UART receiver using the Xilinx
4000 series as a target. The resulting implementation requires 26 flip-flops and 18 function

generators.

Next we will design a programmable BAUD rate generator. Three bits in the SCCR
are used to select any one of eight BAUD rates. We will assume that the system clock is 8
MHz and we want BAUD rates 300, 600, 1200, 2400, 4800, 9600, 19200, and 38400. The
maximum BclkX8 frequency needed is 38400 x 8 = 307200. To get this frequency, we
should divide 8 MHz by 26.04. Since we can divide only by an integer, we need to either
accept a small error in the BAUD rate or adjust the system clock frequency downward to

7.9877 MHz to compensate.

382

CHAPTER 11 @ DesiGN ExAmPLES

E

g i 3d 3
1 = T

G0
L

Figure 11-9 Synthesized UART Receiver
LDFD_.)_

= SARINN

11.1 » UART Design

Figure 11-10 shows a block diagram for the BAUD rate generator. The §-MHz system
clock is first divided by 13 using a counter. This counter output goes to an 8-bit binary
counter. The outputs of the flip-flops in this counter correspond to divide by 2, divide by
4, . .., and divide by 256. One of these outputs is selected by a multiplexer. The MUX
select inputs come from the lower 3 bits of the SCCR. The MUX output corresponds to
BclkX8, which is further divided by 8 to give Bclk. Assuming an 8-MHz clock, the

frequencies generated are given by the following table:

Select Bits BAUD Rate (Bclk)
000 38462
001 19231
010 9615
011 4808
100 2404
101 1202
110 601
111 300.5

Figure 11-10 Baud Rate Generator

The VHDL code for the BAUD rate generator is given in Figure 11-11. The first
process increments the divide-by-13 counter on the rising edge of the system clock. The
divide-by-256 counter on the rising edge of Clkdivi3. A
the MUX output, BclkX8. The third process increments

second process increments
concurrent statement general

8 MHz clk
—

divide by 13

BcelkX8

Clkdivl3

T Belk

divide by 8

' BelkX8

MUX

l—
le— select
ja—

A

4 4 3

\

divide by 256

o)

the divide-by-8 counter on the rising edge of BclkXS§ to generate Bclk.

383

384 CHAPTER 11 ® DESIGN ExAMPLES

Figure 11-11 VHDL Code for BAUD Rate Generator
§1ibrary ieee;

guse ieece.std _logic_1164.all;

iuse ieee.std_logic_unsigned.all; -- use '+' operator, CONVER_INT func.

'entity clk_divider is

 port (Sysclk, rst_b: in std_logic;

: Sel: in std_logic_vector{2 downto 0);
Bclkx8: buffer std_logic;
Bclk: out std_logic);

tend clk_divider;

architecture baudgen of clk_divider is

;. signal ctrl: std _logic_vector (3 downto 0):= "0000"; ~- divide by 13

i counter

. signal ctr2: std_logic_vector (7 downto 0):= "00000000"; -- div by 256 ctr

"msignal ctr3: std_logic_vector (2 downto 0):=. "000"; -- divide by 8
counter

' signal Clkdivi3: std_logic;

 begin
§process (Sysclk) -- first divide system clock by 13
| begin
| if (Sysclk'event and Sysclk = '1') then
if (ctrl = "1100") then ctrl <= "0000";

else ctrl <= ctrl + 1; end if;
. end if;
iend process;
Clkdivl3 <= ctrl(3); -- divide Sysclk by 13
?process (Clkdivi3) -- ¢lk_divdr is an 8-bit counter
begin

if (rising_edge(Clkdivl3)) then
ctr2 <= ctr2 + 1;

end if;

end process;

' BclkX8 <= ctr2 (CONVERT_INT(sel)); -- select baud rate

process (BclkX8)
gbegin

if (rising_edge(BclkX8)) then
ctrd <= ctr3d + 1;
epd if;
end process;
' Bclk <= ctr3(2); -- Bclk is BclkX8 divided by 8

end baudgen;

11.1 » UART Design 385

To complete the UART design, we need to interconnect the three components we
have designed, connect them to the control and status registers, and add the interrupt
generation logic and the bus interface. Figure 11-12 gives the VHDL code for the complete
UART.

SCI_IRQ is an interrupt signal that interrupts the CPU when the UART receiver or
transmitter needs attention. When the RIE (receive interrupt enable) is set in SCCR, SCI_{RQ
is generated whenever RDRE or OF is 'l'. When TIE (transmit interrupt enable) is set in
SCCR, SCI_IRQ is generated whenever TDRE is '1'.

The UART is interfaced to a microcontroller address and data busses so that the CPU
can read and write to the UART registers when the UART is selected by SCIsel = '1". The
last two bits of the address (ADDR2), together with the R_W signal, are used for register
selection as follows:

ADDR2 RW Action
00 1 DBUS « RDR
00 0 TDR « DBUS
01 1 DBUS « SCSR
01 0 DBUS ¢« hi-Z
1- 1 DBUS « SCCR
1- 0 SCCR « DBUS

When the UART is not selected for reading, the data bus is driven to high-Z.

Figure 11-12 VHDL Code for Complete UART
Elibrary ieee; ’ ‘
ugse ieece.std_logic_1164.all;

i entity UART is

port (SCI_sel, R_W, clk, RxD : in std_logic;
ADDR2: in std_logic_vector (1l downto 0);
DBUS : inout std_logic_vector (7 downto 0);
SCI_IRQ, TxD : out std_logic);

end UART;

architecture uartl of UART is
. component UART_Receiver
port (RxD, BclkX8, sysclk, rst_b, RDRF: in std_logic;
RDR: out std_logic_vector ({7 downto 0);
setRDRF, setOE, setFE: out std_logic);
end component;
f component UART_Transmitter
. port(Bclk, sysclk, rst_b, TDRE, loadTDR: in std_logic;
DBUS: in std_logic_vector(7 downto 0);
setTDRE, TxD: out std_logic);
‘end component ;

386 CHAPTER 11 ® DESIGN EXAMPLES

component clk_divider

port (Sysclk, rst_b: in std_logic;
Sel: in std_logic_vector (2 downto 0);
BclkX8, Belk: out std_logic);

end component;

signal RDR : std_logic_vector(7 downto 0); -- Receive Data Register
signal SCSR : std_logic_vector (7 downto 0); -- Status Register
signal SCCR : std_logic_vector(7 downto 0); -- Control Register

signal TDRE, RDRF, OE, FE, TIE, RIE : std_logic;
signal BaudSel : std_logic_vector (2 downto 0);

signal setTDRE, setRDRF, setOE, setFE, 10adTDR, loadSCCR : std_logic:
signal clrRDRF, Bclk, BclkX8, SCI_Read, SCI_Write : std_logic;

begin

RCVR: UART_Receiver port map (RxD, BclkX8, ¢lk, rst_b, RDRF, RDR, 'setRDRF,
setOE, setFE);

XMIT: UART_Transmitter port map(Bclk, clk, rst_b, TDRE, loadTDR, DRUS,
setTDRE, TxD);

CLKDIV: clk_divider port map(clk, rst_b, BaudSel, Bclkx8, Bclk);

-- This process updates the control and status registers
process (clk, rst_b)
begin
if (rst_b '0') then
TDRE <= '1l'; RDRF <= '0'; OE<= '0'; FE <= '0"';
TIE <= '0'; RIE <= '0';
elsif (rising_edge(clk)) then
TDRE <= (setTDRE and not TDRE) or (not loadTDR and TDRE) ;
RDRF <= (getRDRF and not RDRF) or (mot clrRDRF and RDRF);
OF <= (setOE and not OE) or (mot clrRDRF and OE);
FE <= (setFE and not FE) or (mot clrRDRF and FE);

if (loadSCCR = '1') then TIE <= DBUS(7); RIE <= DBUS(6);
BaudSel <= DBUS(2 downto 0); end if;
end if;

end process;

-- IRQ generation logic

SCI_TIRQ <= '1' when ((RIE = 'l' and (RDRF = 'l' or OE = '1"'))
or (TIE = 'l' and TDRE = '1'"))
else '0';

-- Bus Interface

ESCSR <= TDRE & RDRF & "0000" & OE & FE;
| SCCR <= TIE & RIE & "000" & Baudsel;
! SCI_Read <= 'l' when (SCI_sel = 'l' and R W = '0') else '0';

SCI_Write <= '1l' when (SCI_sel = 'l' and R W = '1l') else '0';

11.2 * Description of the M68HCO05 Microcontroller 387 J

EcerDRF <= 'l' when (SCI_Read = '1' and ADDR = "00") else '0';

EloadTDR <= 'l' when (SCI_Write = 'l' and ADDR = "00") else '0';

1 10adSCCR <= 'l' when (SCI_Write = 'l' and ADDR = "10") elge '0';

éDBUS <= "ZZZZZZZZ" when (SCI_Read = '0')-- tristate bus when not reading
else RDR when (ADDR = "00") -- write appropriate register to the bus
else SCSR when (ADDR = "01")
else SCCR; -- dbus = sccr, if addr is "10" or *11"

Eend uartl;

The VHDL code in Figure 11-12 was synthesized using the Xilinx 4000 series as a
target. The resulting implementation required 90 FG function generators and 74 flip-flops
and fits into an XC4003. When synthesized using the ALTERA 7000E series as a target,
120 logic cells and 74 flip-flops were required.

14.2 DESCRIPTION OF THE M68HC05 MICROCONTROLLER

A microcontroller typically contains a CPU, RAM, and ROM memory and various serial
and parallel input-output interfaces, all on a single IC chip. As a final example, we will
design a microcontroller similar to the Motorola MC68HCOS. This type of microcontroller
is widely used in simple control applications such as thermostats, appliance controllers,
keyless entry systems, and so forth. These applications typically require much I/O capability
and relatively little computational capability. Low cost is much more important than high
speed. Motorola manufactures a whole family of 6805 microcontrollers, which differ mainly
in the amount and type of memory and I/O capability.

A simplified version of the MC68HCO5 microcontroller is shown in Figure 11-13.
The block diagram shows the CPU core, RAM, ROM, two 8-bit parallel I/O ports (Port A
and Port B), and a UART, which provides a serial communications interface. The actual
6805 has additional parallel and serial I/O ports and an on-chip timer. The chip has an
internal address and data bus, which connects the CPU to the internal RAM and ROM and
to the I/O interfaces. In the sections that follow, we design a CPU similar to the 6805 CPU
and then integrate this CPU into the system shown in Figure 11-13.

388 CHAPTER 11 ® DESIGN EXAMPLES

Figure 11-13 Simplified Block Diagram for M68HCO5 Microcontroller

| RAM

| ROM

CPU

Control ALU

M68HCO05 CPU

[Accumulator |

CPU Registers

Index register |

[o]oJoJoJol1]1] Stack pointer |
[Program counter . |
Condition code register| 1] 1] 1[H] I[N][Z]C]

Next we describe the operation of the 6805 CPU from the programmer’s point of
view. We assume that the reader is familiar with assembly language programming for
microprocessors, so0 we do not explain the terminology in detail. The 6805 data bus is 8
bits wide, and this version of the 6805 has a 13-bit address bus, so it is capable of addressing

213 = 8192 bytes of memory.

Figure 11-14 shows the register structure for the MC68HCO05C4 programming model.
The accumulator (4), the index register (X), and the condition code register (CCR) are 8
bits long. The left 3 bits of the CCR are permanently set to 111 and the remaining bits are

used as follows:

t 14

Data direction B { |Data direction A

Port A

PAO
e—-PA1
l—-PA2
l—PA3
l—PA4
l—=PAS
le—sPA6
l—PA7

Port B

l«—PBO
l«—PB1
l—PB2
l—PB3
PB4
l—-PB5
=—PB6
l«—PB7

i

UART

~—Rxd
—=Txd

¢ C (carry flag) Stores the carry or borrow that results from an

arithmetic operation.

* H (half-carry flag) Used for BCD arithmetic (not discussed in

this text).
* N (negative flag) Set to 1 if the result of an operation is negative.
» Z (zero flag) Set to 1 if the result of an operation is 0.
* | (interrupt mask) When set to 1, prevents hardware interrupts from

interrupting the processor.

11.2 * Description of the M68HCO5 Microcontroller 389

Figure 11-14 MC68HC05C4 Programming Model

r7|6lsl4’3|2,1,0—, Accumulator (A)

7 6 54 3 2 1 0
l l I 1 I I , I—llndex register (X)

211109 87 6 5 4 3 2 10
lofofoJolo [t T [[T [| stackpointer(sp)

121110 9 8 7 6 5 4 3 2 1 O
l I I ‘ | l | I l I lProgramcounter(PC)

7 6 5§ 4 3 2 10
[1 | 1 | IIH| IlNI Z C—l Condition code register (CCR)

Half-carry flag
Interrupt mask
Negative flag
Zero flag
Carry/borrow flag

The program counter (PC), which is 13 bits long, addresses the instructions in memory
as they are executed. In the 6805, a portion of the RAM memory is reserved for the stack.
This stack is used for storing subroutine return addresses, and the PC, A, X, and CCR
registers are pushed onto the stack when an interrupt is processed. The programmer has no
direct access to the stack. The MC6805C4 stack always starts at address 0000011111111
and grows downward in memory. The stack pointer (SP) is 6 bits wide, so the maximum
stack size is 64 bytes. When addressing memory, SP is prefixed by 0000011 to give a 13-
bit address. SP always points to the first empty location on the stack, and it is decremented
after a byte is pushed onto the stack. Therefore, SP must be incremented before a byte is
popped off the stack.

Each MC6805 instruction is from one to three bytes long. The first byte is always the
opcode, which specifies the operation to be executed and the addressing mode. The next
one or two bytes generally contain addressing information. Table 11-1 shows the mnemonics
for the opcodes and corresponding hexadecimal codes. The four most significant bits of
the opcode determine the addressing mode. The hex equivalents of these bits and the
corresponding addressing modes are listed across the top of the table. The second four
opcode bits, which are listed in hex on the side of the table, determine the operation to be
performed. Thus opcode B4h (h indicates hexadecimal) specifies an AND operation with
direct (dir) addressing, and FCh specifies a jump (JMP) instruction with indexed (ix)
addressing.

%3] siyy ur pajuswsfdwir 10u,

CHAPTER 11 ® DESIGN EXAMPLES

XIS XIS XLS X1S XLS VXL | «LIVM | ¥TO qJ1o J1o a1 qJ1o *HIE | «LATOH]-Ld10¥Y| A
Xd1 Xa1 Xa1 XdT1 Xal Xa »dOLS « 119 «LLASH|+LLAS¥d| H
dqsr st A4S ASr qst «dSH dON ISL ISL LSL LSL LSL SINE | «9¥1D09]«9d10dd] d
dAIT dAT dIAT dINT dT dsy ONI ONI ONI ONI ONI OWE | «91dSH|x91dSdd| O
aav aav aav aav aqv aav JENY NG | «S¥TDd|«su1Oud|
Y3io Vio Yvio Va0 vViao vio jgte) oda oHd | oHa odd o:C J 1dd | «SLASH|«S1ASYd| V
oav oav oav oav oav oav ods 104 104 104 g (0} 104 +*SOHH { «PATIOH|+dTOdd| 6
4od p: (0} p: (0} (6} q0d p: (0128 10 18T 181 181 1871 1871 «OOHH | «PLASH|»VLHSUL| 8§
VLS VIS VIS VIS VIS XVL SV asv dsv dsv dsv 0HE | «£910d|«cyT1O¥g] L
Va1 Va1 vai Va1 vail vai qod (o)1 40" qod k(02 NG | «€LdSd|«E1dS¥d| 9
L1d LI 114 L1g LId LId SOd | «TAIOE|x2ATOUd] €
aNVv aNVv aNVv ANV anNVv aNv dsT dsT ds1 sl s 204 | «21dSd|«cLasdd| ¥
XdD Xdo Xdo XdD XdD XdO ImS WOD | WOD WOD | WOD | WOD S1d | «1IT09|« 19 T109d| €
ods ods odSs odS oHs ogs «TNN IHE | +LLASH | «113S¥d| ¢
dND dWD dIND dIWD dWD dND SLA NI | 04109001099 |
a0s a0s ans ans qns ans JAR.| DAN OIAN DAN OAN OAN via | «01dsd|«01as94al 0
d | a 0 d v 6 8 L 9 s v £ z I N
X1 IXI X1 IXd Ala WAL CHNI THNI NXI WIXI | XHNI | VHNI | WMIA 194 osd qa1d
KIOUIBA/IN SIS0y [onuo) - QMM /AJIPOJAL/PEY youelg |uonepndruey ng

|390

G089DW 10} sapoadO L-LL JqeL

11.2 e Description of the M68HCO5 Microcontroller 391 l

Table 11-2 defines the operations performed by four groups of 6805 instructions. In
this table, M represents data read from memory (or data to be written to memory), and R
represents A, X, or M. NZ in the last column indicates that the N and Z flags are updated,
and the new value of C is given whenever C is updated. The effective address (EA) is
determined by the addressing mode. When the program counter is pushed onto the stack,
it is divided into a high byte (PCH) and a low byte (PCL).
- The branch instructions in Table 11-2(d) test a condition. If the condition is false, the
next instruction in sequence is executed. If the condition is true, the next instruction is

fetched from the branch address.

Table 11-2 6805 Instructions

(a) Register-memory instructions

Symbol Instruction Operation Flags
ADD add A« A+M NZ, C « carry
ADC add with carry A A+M+C NZ, C ¢ carry
SUB subtract A< A-M NZ, C « borrow
SBC subtract with borrow A A-M-C NZ, C «borrow
CMP compare A A-M NZ, C « borrow
CPX compare X X-M NZ, C « botrow
AND and A« Aand M NZ
BIT bit test Aand M NZ
ORA or A« AorM NZ
EOR exclusive-or A« AxorM NZ
LDA load A A M NZ
LDX load X XM NZ
STA store A M« A NZ
STX store X M X NZ
JMP jump jump to EA
JSR Jjump to subroutine push PC on stack, jump to EA

(b) Read-modify-write instructions
Symbol Instruction Operation Flags
NEG negate R« 0-R NZ, C « borrow
COM complement — R « notR NZ, Ce1
TST test R-0 NZ
CLR clear Re 0 NZ
INC increment R« R+1 NZ
DEC decrement Re R-1 NZ
LSR logical shift left R « R(6 downto 0)&'0f NZ,C« R()
ROL rotate left R « R(6 downto 0)&C NZ,C « R(7)
ASR arithmetic shift right R « R(7)&R(7 downto 1) NZ, C « R(0)
LSR logical shift right R « '0'&R(7 downto 1) NZ, C « R(0)
ROR rotate right R « C&R(7 downto 1) NZ, C « R(0)

CHAPTER 11 @ DESIGN EXAMPLES

(¢) Control instructions

Symbol Instruction Operation

TAX transfer A to X X« A

TXA transfer X to A A« X

CLC clear carry Ce 0

SEC set carry Ce'I

CLI clear I T 'O

SEI set | ['l

RSP reset SP SP« "111111"

NOP no operation

RTI return from interrupt pop CCR, A, X, PCH, PCL return to address in PC

RTS return from subroutine pop PCH, PCL return to address in PC

SWI software interrupt push PCL, PCH, X, A, CCR jump to address from
interrupt vector table

(d) Branch instructions

Symbol Instruction Branch if
BRA branch always always

BRN branch never never

BHI branch if higher CorZ)="0
BLS branch if lower or same (CorZ)="1"
BCC branch if carry clear C="0

BCS branch if carry set C="1"

BNE branch if not equal Z="0

BEQ branch if equal Z="l

BPL branch if plus N=0

BMI “branch if minus N="1

BMC branch if int. mask clear I1="0

BMS branch if int. mask set I="1

Each 6805 instruction is one to three bytes long. The first byte is always the opcode,
and any remaining bytes contain an address or an offset. The address of the data (or of the
next instruction for jumps) is called the effective address, or EA. The 6805 has the following
addressing modes for register-memory instructions:

e immediate (imm): data is in byte 2 of the instruction.

« direct (dir): EA is byte 2 of instruction.

* extended (ext): EA is bytes-2.and 3 of instruction (high byte first).

« indexed, no offset (ix): EAisin X.

* indexed, 1-byte offset (ix1): offset is in byte 2 of instructions; EA = X + offset.

* indexed, 2-byte offset rgix2): offset is bytes 2 and 3 of instructions;

EA = X + offset.
Read-modify-write instructions (Table 11-1(b)) use direct (dirm), indexed with no offset
(ixm), igdexed with1-byte offset (ix1m), and inherent (inha or inhx) addressing modes.
For modes inha and inhx, the data is in the A and X registers, respectively. The dirm, ixm,
and ix1m modes work the same way as dir, ix, and ix1 modes; however, we have given

11.2 e Description of the M68HC05 Microcontroller 393

Table 11-3

them different names, since they apply to different groups of instructions. Control instruc-
tions use inherent addressing (inh1 or inh2), since the 1-byte opcode implies the address
of the operands. Branch instructions use relative addressing. The opcode is at the original
PC address, and the second byte of the instruction is a relative address, which is sign-
extended and added to the original PC + 2 to get the branch address. Table 11-3 summarizes
the 6805 addressing modes. The length of the instruction is given in the bytes column.

6805 Addressing Modes

Mode Name Bytes | Examples Effective Address

imm immediate 2 ADD ii data = byte 2 of instructions
dir, direct 2 ADD dd EA =dd

dirm INC dd)

ext extended ADDhh 1l EA=hhll

ix indexed, no offset 1 ADD ,X EA=X

ixm INC X

ixl, indexed, 1-byte offset | 2 ADD ff X EA=ff+X

ixIm INC ff, X

ix2 indexed, 2-byte offset | 3 ADD ee ff, X EA=(eeff) + X

rel relative BRA 1r EA=PC+2 +1r*

inha, inherent 1 INCA datais in A

inhx INCX datais in X

inhl, inherent 1 RTI TAX opcode implies location of
inh2 operands

*rr is sign-extended before addition.

When a hardware interrupt, software interrupt, or reset occurs, the 6805 uses an
interrupt vector table, which is stored at the high end of memory, to find the starting addresses
of the corresponding interrupt subroutines. The starting addresses are stored at the following
hex locations, with the high byte stored first:

reset 1FFEh, 1FFFh
software interrupt (SWI) 1FFCh, 1IFFDh
ext. hardware int. (IRQ) 1FFAh, 1FFBh
serial comm. int. (SCI_int) 1FF6h, 1FF7h

When an /RQ interrupt occurs, PCL, PCH, X, A, and CCR are pushed onto the stack. Then
the PC is loaded with the address stored at IFFAh and 1FFBh, which causes the processor
to jump to the /RQ interrupt subroutine.

|394

~CHAPTER 11 ® DESIGN EXAMPLES

11.3 DESIGN OF A MICROCONTROLLER CPU

In this section, we design the CPU for a microcontoller that is similar to the 6805 CPU. We
have omitted several of the 6805 instructions given in Table 11-1 to reduce the complexity
of this example. For a few of the instructions, the timing in our design is different than that
of the Motorola 6805. Starting with the specifications for the CPU given in Section 11-2,
we determine the cycle-by-cycle operations necessary to implement different types of
instructions and addressing modes. Then we write behavioral level VHDL code and verify
that our design meets specifications. After constructing block diagrams for the CPU, we
rewrite the VHDL code in terms of register transfers and control signals. After simulating
the CPU, we synthesize it from the VHDL code to fit into an FPGA and a CPLD.

In addition to the registers used in programmer’s model (Figure 11-14), three additional
registers are needed to implement the CPU. An 8-bit register (Opcode) is needed to hold
the opcode while an instruction is executing. A 13-bit memory address register (MAR) is
needed to hold the effective address of the data that is to be read from or written to memory.
An 8-bit memory data register (Md) is needed to hold the data after it is read from memory.

The next step in designing the CPU is to determine what actions should take place
during each clock cycle. In a simple processor like the 6805, the internal clock period is
the same as the memory cycle time. That is, during one clock cycle we can read or write a
byte to memory, or we can complete an internal CPU operation such as addition. Each
instruction takes from two to ten clock cycles to execute, depending on its complexity.
The first cycle of every instruction is used to fetch the opcode from memory. At the start of
the cycle, the program counter is pointing to the first byte of an instruction in memory,
which is the opcode. The PC goes out on the address bus, and the memory returns the
opcode on the data bus. At the end of the cycle, the opcode is loaded into the opcode
register and the program counter is incremented. We designate these actions as follows:

Opcode < mem(PC);

PC«PC+1;

where mem is an array of bytes that represents the memory.

Table 11-4 shows the actions that should take place during each clock cycle for typical
instructions. In this table, MARH is the high byte of MAR, and MARL is the low byte. The
names in braces at the top of each box represent state names, which are discussed later.
The ADD instruction is typical of all register-memory instructions. Thus, the SUB
instruction is identical to the ADD instruction, except for the action that occurs during the
final clock cycle. Similarly, the cycle-by-cycle timing for the INC instruction is the same
for all other read-modify-write instructions. The first cycle of each instruction, which is
always fetch the opcode, has been omitted from the table. During the second cycle, short
instructions that require no further memory operation complete execution. For example,
INC A adds 1 to the A register. Those instructions that require a second byte from memory
read the byte and either load it into Md (memory data register) or MAR (memory address
register). Any time a byte is read from memory, the PC is incremented so that it points to
the next instruction byte. The second cycle for ADD imm is

A4 3« Design of 3 Microcontroier CRU

295

Md « mem(PC);

PC«PC+1;

During the last cycle of every ADD instruction, the data from memory is added to A. This
addition is actually completed during the fetch cycle of the next instruction, so ADD imm
requires only two clock cycles to execute. This overlap of the ALU operation and opcode
fetch is possible because the old opcode is still in the register during the fetch cycle, and
the new opcode is not loaded until the end of the cycle.

Table 11-4 Cycle-by-Cycle Operations for 6805 Instructions

1st cycle is {fetch} for all instructions

-- get immediate data from memory

2nd cycle 3rd cycle 4th cycle 5th cycle 6th cycle
ADD immy {addr1}
Md «mem(PC) (A <A +Md)*
PC «PC+1
ADD dir {addr1} {data}
MARL «mem(PC) | Md «mem(MAR) | (A «A +Md)*
PC «PC+1 :
ADD ix {addr1} {data}
MARL «X Md «mem(MAR) | (A <A +Md)*
ADD ix1 {addrl} {addx} {data}
MARL ¢mem(PC) | MAR «MAR+ X |Md «mem(MAR) | (A «A + Md)*
PC«PC+1
ADD ext {addr1} {addr2} {data}
MARH <mem(PC) | MARL < mem(PC)| Md «mem(MAR) | (A <A +Md)*
PC«PC+1 PC «PC +1
ADD ix2 {addr1} {addr2} {addx} {data}
MARH <mem(PC) | MARL «mem(PC)| MAR «MAR + X | Md «<mem(MAR) | (A <A + Md)*
PC«PC+1 PC«PC+1
STA ext {addr1} faddr2} {data}
MARH <mem(PC) | MARL <mem(PC)| mem(MAR) <A
PC«PC+1 PC«PC+1
INCA {addr1}
AA+1
INC dir {addr1} {data} {rd_mod_wr} {writeback}
MARL <mem(PC) | Md «mem(MAR) |Md «Md + 1 mem(MAR) «Md
PC<PC+1
INC ix {addr1} {data} {rd_mod_wr} {writeback]}
MARL <X Md «<mem(MAR) |Md «Md + 1 mem(MAR) «Md
INC ix1 {addr1} {addx} {data} {rd_mod_wr} {writeback]}
MARL «mem(PC) | MAR «MAR+ X |Md «mem(MAR) | Md «Md+1 mem(MAR) «Md
PC«PC+1
JMP dir {addr1}
PCL «mem(PC)
JMP ix {addr1}
PCL «X

396

CHAPTER 11 ® DESIGN EXAMPLES

JMP ix1 {addr1} {addx}
MARL «mem(PC) | PC «MAR+ X
PC<PC+1
JMP ext {addrl} {addr2}
MARH ¢<mem(PC)} PCL «mem(PC)
PC«PC+1 PCH «MARH
IMP ix2 {addrl} {addr2} {addx]}
MARH «mem(PC)| MARL «mem(PC) {PC «MAR + X
PC «PC+1 PC«PC+1
ISR dir {addrl} {push1} {push2}
MARL ¢<mem(PC) | mem(SP) «PCL |mem(SP) «PCH
PC «PC+1 SP «SP-1 SP«SP-1
PC «MAR
JSR ix {addrl} {push1} {push2}
MARL «X mem(SP) «PCL |mem(SP) « PCH
SP«SP-1 SP«SP-1
PC «MAR
JSR ix1 {addr1) {addx} {push1} {push2}
MARL «mem(PC) | MAR «<MAR+ X |mem(SP) «<PCL |mem(SP) «PCH
PC«PC+1 SP«SP-1 SP«SP-1
PC «MAR
JSR ext {addrl} {addr2} {pushl} {push2}
MARH «mem(PC)| MARL «mem(PC) |mem(SP) «PCL |mem(SP) «PCH
PC«PC+1 PC«PC+1 P«SP-1 SP«SP-1
PC «MAR
JSR ix2 {addrl} {addr2} {addx]} {push1} {push2}
MARH «mem(PC)}| MARL «mem(PC) [MAR <« MAR + X |mem(SP) «<PCL |mem(SP) «PCH
PC«PC+1 PC«PC+1 SP«SP-1 SP«SP-1
PC «MAR
RTS {addrl} {pop2} {pop1}
SP«SP+1 PCH <mem(SP) |PCL «mem(SP)
SP«SP+1
BRA rel {addrl} {BRtest)
Md «mem(PC) PC «PC +
PC«PC+1 sign_ext&Md
SWI {addrl1) {push1} {push2} {push3} {push4}
no action mem(SP) «<PCL |mem(SP) < PCH |mem(SP) <X mem(SP) <A
SPvSP-1 SP «SP- 1 SP«SP-1 SP«SP-1
SWI (7th cycle) (8th cycle) (9th cycle) (10th cycle)
continued| {push5} {cycle8} {cycle9} {cycle10}
mem(SP) «CCR MAR «vector addr. |PCH «mem(MAR) |PCL «mem(MAR)
SP«SP-1 11 MAR «MAR +1
RTI {addr1} {pop5} {popd} {pop3} 6th and 7th
SP«SP+1 CCR «<mem(SP) |A «mem(SP) X «mem(SP) cycles same as
SP«SP+1 SP«SP+1 SP«SP+1 3rd and 4th
cycles of RTS

*Completion of ALU operation overlaps fetch of next instruction.

11.3 ¢ Design of a Microcontroller CPU 397

For instructions with direct addressing, such as ADD dir, the direct address is read
from memory and loaded into MAR during the second cycle:

MARL < mem(PC); Get direct address from memory.

and MARH is also cleared. During the third cycle, the address in MAR goes out on the
address bus, and the data from memory is loaded into Md:

Md «— mem(MAR),

For extended addressing (such as ADD ext), the high byte of the data address is read
during cycle 2, the low byte is read during cycle 3, and the data is read during cycle 4. For
indexed addressing with no offset (such as ADD ix), X is loaded into MAR at the end of
cycle 2. Indexed addressing with a one-byte or two-byte offset is similar to direct or extended
addressing with an extra cycle required to add X to MAR.

The STA and STX instructions are similar to the ADD instructions with the
corresponding addressing modes, except during the last cycle data is stored in memory
rather than being read from memory.)

The read-modify-write-to-memory instructions, such as INC dirm, INC ixm, and
INCix1m, start out the same way as the corresponding ADD instructions. However, instead
of doing the ALU operation during the next fetch cycle, two extra cycles must be added for
the INC instruction. During the first added cycle, the INC operation is completed, and
during the second added cycle, the result is written back to memory.

The JMP instructions are similar to the ADD instructions with the corresponding
addressing modes. For JMP, during the cycle in which the address calculations are
completed, the address is loaded into the PC instead of the MAR. For example, for JMP
ext, the following action occurs during the 3rd cycle:

PC « MARH&mem(PC);

The low byte of the jump address is read from memory, and the high byte is already in
MARH. Thus the two bytes of the jump address are loaded into the PC, and the next
instruction is fetched from the jump address.

The JSR instructions are similar to JMP, except the return address must be pushed
onto the stack. After the jump address has been determined and loaded into MAR, the low
and high bytes of the PC are pushed onto the stack using two cycles:

mem(SP) « PCL;
SP<=SP-1;
mem(SP) « PCH,

SP« SP-1;

Initially, SP is pointing to the first empty location on the stack, so PCL is written to that
location. At the end of the cycle, the SP is decremented in preparation for the next push. At
the end of the second push cycle, MAR (which contains the jump address) is loaded into
PC to accomplish the jump.

398 CHAPTER 11 ® DesiGN ExAMPLES

For RTS, SP is incremented during the 2nd cycle. During the 3rd cycle, the high byte
of the return address is read from memory and loaded into PCH. During the 4th cycle, the
low byte of the return address is read and loaded into PCL. In the fetch cycle that follows,
the opcode is read from the return address.

For software interrupt (SWI), no action occurs during the 2nd cycle, except to check
the opcode and go to the proper next state to begin a sequence of stack operations. PCL,
PCH, X, A, and CCR are pushed onto the stack in the 3rd through 7th cycles. The interrupt
vector address is loaded into MAR during the 8th cycle. The interrupt vector high and low
bytes are loaded into the PC during the 9th and 10th cycles in preparation to jumping to
the interrupt subroutine. The return from interrupt instruction (RTT) is similar to RTS except
CCR, A, and X are popped off the stack before the return address is popped. The sequence
of actions for a hardware interrupt is very similar to SWI except that the fetch cycle and
2nd cycle are skipped.

The following example illustrates the sequence of operations for an ADD instruction
with direct addressing followed by STA with direct addressing. Initially, assume the
following is stored in memory starting at address 300h: BBh 43h B7h 57h 4Ch. Also
assume that PC = 300h, A = 12h, and memory location 0043h contains 36h. Table 11-5
shows the sequence of operations that occur in successive memory cycles, with all data in
hex. The relevant registers are updated at the end of each cycle. For example, during the
first cycle the opcode BBh is read from location 0300h, and at the end of the cycle PC is
incremented and BBh is loaded into the opcode register.

Table 11-5 Example of Cycle-by-Cycle Instruction Execution

Address Data Opcode
PC MAR Bus Bus Reg. A Md

0300 xxxx 0300 BB XX 12 XX fetch opcode

0301 xxxx 0301 43 BB 12 XX get direct address

0302 0043 0043 36 BB 12 XX read memory data

0302 0043 0302 B7 BB 12 36 do addition, fetch next opcode
0303 0043 0303 42 B7 48 36 get direct address

0304 0057 0057 48 B7 48 36 store data in memory

0305 0057 0305 4C B7 48 36 fetch next opcode

Design of the CPU Controller

Once the cycle-by-cycle timing chart for executing instructions has been determined, we
can design a state machine to control the CPU. We need to associate states with the various
actions listed in Table 11-4. We have placed state names in braces at the top of each box in
the table. We could have used one state for each of the clock cycles listed at the top of the
chart. If we did that, we would have to test the opcode in each state to determine the
required actions. A better approach is to define states so that specific actions are associated
with each state. For example, we have used one state {addrl} to read the first byte of the
address or offset, one state {addx} to add X to the MAR, one state {data} to read data from
memory, one state {pushl} to push PCL onto the stack, etc.

11.3 * Design of a Microcontroller CPU 399

Figure 11-15 shows a partial state graph for the controller. In most cases, the sequence
of states depends on the addressing mode. Paths for JMP and JSR instructions have been
omitted from the graph except for IMP_dir and JSR_dir. The state graph includes a {reset}
state, which is entered whenever the microcontroller is reset. After {reset}, the controller
goes to states {cycle8}, {cycle9}, and {cyclel10} to get the starting address of the user
code from the interrupt vector table.

Execution of each instruction begins in the {fetch} state, where the opcode is read
from memory. The opcode is loaded into the Opcode register and the PC is incremented at
the same time the change to the next state occurs. When in the {fetch} state, if the previous
instruction was a register-memory instruction such as ADD, the ALU operation is completed
and the result is loaded into A or X at the same time the new opcode is loaded.

Figure 11-15 Partial State Graph for CPU Controller

Since the opcode is not available in the Opcode register until we reach the second
state, the second state must be the same for all instructions. We have called this state
{addrl}, since the first byte of the address is often read during this state. All the actions
listed under “2nd cycle” in Table 11-4 are performed in state {addrl}.

400

CHAPTER 11 @ DesiGN ExampLEs

The state following {addrl} depends on the addressing mode and type of instruction
being executed. The state sequences for the different modes and instruction types can be
read from the rows in Table 11-4. The next state following the last state in each row is
always {fetch}.

At this point, we write behavioral level VHDL code for the 6805 CPU based on
Table 11-4 and Figure 11-15. This code defines state sequences for the control state machine
based on the addressing modes and types of instructions being executed. The code also
specifies the actions to be taken in each state. We can use this code to simulate the CPU
and verify that all of the instructions and addressing modes execute properly according to
the specifications given in Section 11.2. For convenience in testing, a memory array (mem)
is defined within the architecture even though it is not part of the CPU.

A complete listing of the behavioral code for the CPU is given in Appendix D. The
main sections of the code are

1. Signal and control declarations;

2. Procedure ALU_OP, which performs ALU operations for register-memory instructions,
including all two-operand instructions;

3. Procedure ALU_I, which performs ALU and shifting operations for read -modify-
write instructions, which have a single operand;

4. Procedure fill_memory, which fills the memory with instructions and data for test
purposes;

5. Process cpu_cycles, which specifies the state sequence for the CPU controller and
the actions that occur in each state.

After declaring signals to represent the PC, MAR, SP, Opcode, and other registers,
aliases are used to split PC and MAR into high and low bytes. The Opcode is split into the
lower four bits (OP) and the upper four bits (mode). To make the code more readable, we
have used constant declarations to associate the opcode and addressing mode mnemonics
with the corresponding four-bit (hex) codes from Table 11-1. For example,

-- lower 4 bits of opcode (specifies operation)
subtype ot is std_logic_vector (3 downto 0);
constant SUB: ot:="0000"; comnstant CMP: ot:="0001";

-— upper 4 bits of opcode (specifies addressing mode)
constant REL: ot:="0010"; constant DIRM: ot:="0011";

Procedure ALU_OP (see Figure 11-16) is called in the {fetch) state to complete the
execution of register-memory instructions. The procedure defines the operation of the
ALU based on Table 11-2(a). All arithmetic is carried out on unsigned bytes. The variable
res, which is 9 bits long to allow for a carry, represents the result of the ALU operation.
Depending on the operation, A or X is loaded with res(7 downto 0) and the carry (C) is
loaded with res(8). The N and Z flags are updated based on the value of res.

11.3 ¢ Design of a Microcontroller CPU

401

Figure 11-16 ALU Operations for Register-Memory Instructions

%procedure ALU_OP
(Md : in std_logic_vector (7 downto 0);
signal A, X inout std_logic_vector (7 downto 0);
signal N, 2, C inout std_logic) is

-- perform ALU operation with 2 operands

‘variable res

i variable updateNZ

;begin

k case OP is
when LDA => res

Boolean

when ANDa => res :=

when BITa => res :=

when ORA => res :=

when EOR => res

when others => updateNZ
end case;

i1f res{(7 downto 0) =
’ end if;
‘end ALU_OP;

std_logic_vector (8 downto 0);
:= TRUE;

'0'& (A and Md) ;
'0'& (A and Md) ;
'0'&{A or Md);
'0'& (A xor Md);

-- result of ALU operation
-- update NZ flags by default

‘0'&Md; A <= res(7 downto 0);

when ILDX => res := '0'&Md; X <= res(7 downto 0);
when ADD => res := ('0'&A) + ('0'&Md);

C <= res(8); A <= res(7 downto 0);
when ADC => res:= ('0'&A) + ('0'&Md) + C;

C <= res{B); A <= res(7 downto 0);

when SUB => res:= ('0'&A) - ('0'&M4d);

C <= res(8); A <= res(7 downto 0);
when SBC => res:= ('0'&A) - ('0'&Md) - C;

C <= res(8); A <= res(7 downto 0); .
when CMP => res:= ('0'&A) - ('0'&Md); C <= res(8);
when CPX => res:= ('0'&X) - ('0'&Md); C <= res(8);

A <= res(7 downto 0);

A <= res(7 downto 0);
A <= res (7 downto 0);
FALSE;

if updateNZ then N <= res{(7);
"00000000"

then 7 <= '1'; else Z <= '0'; end if;

Procedure ALUI defines ALU and shifting operations for the read-modify-write
instructions defined in Table 11-2(b). The single operand, opl, may be A, X, or Md,
depending on the addressing mode. The 8-bit result of each operation is placed in the
variable res8, with the exception of NEG, where a ninth bit is required for the carry.

For convenience in testing, a procedure called fill_memory, which is not part of the
CPU, has been added to load the memory array with test instructions and data. This
procedure is called when the processor is reset, and it reads the instruction codes and data
from a test file. Reading from memory is simulated by reading from the mem array, and
writing to memory is simulated by storing data in the mem array. Since mem is defined
with an integer index, the function CONV_INTEGER is called to convert the address in
PC, MAR, or SP to an integer whenever memory is referenced.

402 CHAPTER 11 ® DESIGN EXAMPLES

The process cpu_cycles (Figure 11-17) represents the state machine (Figure 11-15),
which controls the CPU and specifies the actions that occur in each state. State changes
and register updates occur on the rising edge of the clock. If the reset signal rsz_bis'0’, the
process goes to the {reset} state; otherwise, the case statement tests ST to determine the
appropriate actions for each state.

In the {fetch} state, ALU_OP is called for register-memory instructions. If a hardware
interrupt has occurred, control goes to state {pushl} to initiate pushing registers onto the
stack; otherwise, the next opcode is read and control goes to state {addrl}.

Figure 11-17 Partial Listing of cpu_cycles Process

cpu_cycles: process
variable reg_mem, hw_interrupt, BR: Boolean;
variable sign_ext: std_logic_vector (4 downto 0);

begin

reg_mem:= (mode = imm) or {mode = dir) or (mode = ext) or (mode = ix) or
(mode = ix1) or (mode = ix2);

hw_interrupt := (I = '0') and (IRQ = 'l' or SCint = '1");

wait until rising_edge (CLK) ;
if (rst_ b = '0') then ST <= reset; fill_memory (mem) ;
else
case ST 1s
when reset =>» SP <= "111111";
1f (rst_b = '1') then ST <= cycle8; end if;
when fetch =>
if reg_mem then ALU OP(Md, A, X, N, Z, C); end if;
-- complete previous operation
if hw_interrupt then ST <= pushl;
else Opcode <= mem(CONV_INTEGER(PC)); PC <= PC+1l; -- fetch opcode
ST <= addrl; end 1if;

when addrl =»>
case mode is

when inha => ALUl(A, N, Z, C); ST <= fetch; -- do operation on A
when inhx => ALUI(X, N, 7, C); ST <= fetch; -- do operation on X
when imm => Md <= mem(CONV_INTEGER (PC)) ; -- get immediate data

PC <= PC+1; ST <= fetch;
when inhl =>
if OP = SWI then ST <= pushl;
elsif OP = RTS then ST<= popZ2; SP <= SP+1;
elsif OP = RTI then ST <= popb5; SP <= SP+1;
end if;

11.3 ¢ Design of a Microcontroller CPU 403

when inh2 =>
case OP is
when TAX => X <= A4;
when CIC => C <= '0';
when SEC => C <= 'l"';
when CLI => I <= '0';
when SEI => I <= 'l";
when RSP => SP <= "111111";
when TXA => A <= X;
when others =>
agggert (false) report “illegal instruction, mode = inh2”;
end case;
ST <= fetch;
when dir =>
if OP = JMP then PC <= zero&mem(CONV_INTEGER(PC)); ST <= fetch;
else MAR <= zero&mem(CONV_INTEGER(PC)); PC <=PC+1;
-- get direct address
if (OP=JSR) then ST <= pushl; else ST <= data; end if;
end if;
... ({remainder of process omitted - see Appendix D)

In state {addrl}, the addressing mode is tested in a case statement. For inha and inhx
modes, procedure ALU1 is called to perform the required operation on A or X and control
returns to {fetch}. For imm mode, Md is loaded with immediate data from memory. For
inh2 mode, the control instructions defined in Table 11-2(c) are executed. For dir mode,
the direct address is read from memory, prefixed with zero, and loaded into the MAR for
most instructions. When JMP_dir is being executed, the direct address is loaded into PC
instead of MAR. For other addressing modes, the actions listed in Table 11-4 are carried
out as shown in Appendix D.

Branch instructions defined in Table 11-2(d) are executed in state {testBR}. The
boolean variable BR is set to TRUE or FALSE, depending on the instruction being executed
and the flags that are set. If BR is true, then the relative address, which is in Md, is sign-
extended and added to the current PC. Part of the VHDL code for {testBR} is as follows:

when testBR =>
cage OP is

when BRA => BR := TRUE; -- branch always
when BRN => BR := FALSE; -- branch never
when BHI => BR := (C or Z) = '0';-- branch if higher
when BLS => BR := (Cor Z) = 'l'; -- branch i1f lower or same
when BCC => BR := C = '0'; -- branch if carry clear
when BCS => BR := C = '1'; -~ branch if carry set
- (other branch instructions omitted here)
end case;
if Md(7) = '1l' then sign_ext := "11111"; else sign_ext :=

zero; end if;
if BR then PC <= PC + (sign_ext&Md); end if;
ST <= fetch;

404

CHAPTER 11 @ DesIGN EXAMPLES

Reading and writing memory data takes place in state {data}. For STA or STX, A or
X is written into the memory location addressed by MAR, and the flags are updated. For
other instructions, data from the memory location addressed by MAR is loaded into Md.
The actions taken in the other states correspond to the actions given in Table 11-4.

When an interrupt occurs, PCH, PCL, X, A, and CCR are pushed onto the stack in
states {pushl} through {pushS5}. Then MAR is loaded with the interrupt vector address in
{cycle8}, and the PC is loaded with the starting address of the interrupt subroutine in
states {cycle9} and {cycle10}.

We verified that the behavioral VHDL code for the CPU correctly executes the
instructions given in Table 11-2 with the addressing modes given in Table 11-3. We did
this by loading the memory array from a file, simulating the instruction execution, and
observing the resulting waveforms. We did not attempt to synthesize the CPU from the
behavioral VHDL code for several reasons. First, the address and data busses and the
interface to the memory are not defined in the code, and memory timing is not taken into
account. In particular, reading from memory requires that the address go out on the bus
early in the clock cycle so the data from memory can be loaded into a register at the end of
the clock cycle. Second, when we wrote the VHDL code, we did not write it so it could be
efficiently realized in hardware.

Hardware Design and Synthesizable VHDL Code

Next, we work out some of the details of the hardware design and then attempt to write
VHDL code that will result in an economical hardware realization when it is synthesized.
‘We draw block diagrams for the hardware based on the required register transfers listed in
Table 11-4 and on the corresponding behavioral VHDL code. Then we define the control
signals that must be generated in each state and rewrite the VHDL code to explicitly generate
these control signals. '

The hardware is naturally divided into three sections—a control unit, an addressing
unit that computes the addresses that go out on the address bus, and a data unit that performs
arithmetic, logic, and shifting operations. The functions performed by the addressing unit
include adding X to MAR for indexed addressing, adding sign-extended Md (SX&Md) to
PC for relative addressing, loading PC and MAR with the proper addresses, and in-
crementing SP, PC, and MAR. Figure 11-18 shows the block diagram for one possible
configuration for the addressing unit. This design uses a single adder with multiplexers to
select the adder inputs. MARH, MARL, PCH, and PCL can be loaded from the data bus,
from the adder output, or from the vector address table (VAH and VAL). To avoid additional
MUX inputs, PC can be loaded from MAR by selecting MAR and 0 as adder inputs. Also,
PC or MAR can be loaded with X by selecting 0 and 0&X as adder inputs. Additional logic
(not shown) is required for incrementing PC, MAR, and SP and for decrementing SP.

11.3 = Design of a Microcontroller CPU 405

Figure 11-18 Addressing Unit

Address Bus
| 00000111 sP | |MARH! MARL | [pcH | pcL |
t 1
L
> 8
MUX MUX
dous | VAH LI L
XADDH XADDL
ADDER
13 13
—/Mux \ —/MuUx
ENERA
PC SX&Md

Next, we consider design of the data unit. We could use one ALU for the two-operand
arithmetic operations such as ADD and SUB and a separate ALU for single-operand
operations such as INC and COM. Alternatively, we could use a single ALU for both types
of operations. We chose the latter approach because it reduces the total amount of logic
required and simplifies setting the N, Z, and C flags. Figure 11-19 shows a block diagram
for one possible configuration for the data unit. When two operands are used, MUX1
selects A or X and the MUX2 selects Md. When a single operand is used, MUX1 selects A,
X, or Md and MUX2 selects 0. We have placed a shifter at the ALU output. For all operations
except shifting, the ALU output passes straight through the shifter. For shifting operations,
Opl (A, X, or Md) passes through the ALU and is shifted left or right by the shifter. With
this configuration, the result of all data operations always comes from one place (shiftout),
and this result can be loaded into A, X, or Md. Shiftout can also be tested to determine the
proper settings for the N and Z flags.

406 CHAPTER 11 ® DESIGN ExampLES

Figure 11-19 Data Unit

Data Bus

I
]]
X

shiftout ? 8

<
[
8
~

—> SHIFTER] cc
logic
Opcode ALU /f9 4
—pp CORtrol
alu9
i ALU
Opl Op2
8 8
MUX1 MUX2
A XMdoO Md 0
The ALU input MUXes can be described in VHDL as follows:
-- define ALU input operand MUXes
opl <= A when selA = '1° -- MUX for opl
elgse X when selX = '1°
elge Md when selMdl = '1'
else "(00000000";
op2 <= Md when selMd2 = '1' -- MUX for op?2

else "00000000";

The control signals selA, selX, selMdI, and selMd2 depend on the opcode and are generated
by the ALU control.

Figure 11-20 shows more details of the ALU. All the ALU operations, except for
AND, OR, and XOR, can be implemented using an adder and complementers. Com-
plementers are required at both adder inputs, since the COM operation on a single operand
requires complementing opl, and subtraction requires complementing op2. When control
signal and2 ='1", the ALU output is (op! and op2). When or2 ="1', the output is (op! or
op2). When xor2 ='1", the output is (ep/ xor op2). Otherwise, the ALU output is the sum
of opl_com, op2_com, and Cin. The VHDL code that describes the ALU is as follows:

11.3 * Design of a Microcontroller CPU 407

opl_com <= not opl when coml='l' else opl; -- complementers
op2_com <= not op2 when com2='1l' else op2;
alu <= '0'&(opl_com and op2_com) when and2 ='1l' -- logic
operations
else '0'&(opl_com or op2_com) when or2 ='1"
else '0'&(opl_com xor op2_com) when xor2 ='1"
else ('0'&opl_com) + ('0'&op2_com) + Cin; -- adder

The ALU output (alu9), which is 9 bits wide, consists of the carry from the adder followed
by the 8-bit sum. For logic operations, the carry is set to '0’. The signals com1, com2, Cin,
and2, or2, and xor2 are generated by the ALU control.

Figure 11-20 ALU Detail

* alu9

d2 '
a‘;rz.: ADDER and _
logic operations «—Cin
X012 —»
opl _comf op2_com *

coml——b! complementerJ !complementeJ‘— com2

opl * op2 *

The VHDL code for the SHIFTER is

shiftout <= shiftin&alu9(7 downto 1) when rsh='1' -- right
shift
else alu9(6 downto 0)&shiftin when lsh='1l' -- left shift
else alu9(7 downto 0); -- pass through

If rsh="1", the ALU output is shifted right and if Ish ='1", the ALU output is shifted left;
else the ALU passes straight through. The variable shiftin is ‘0, C, or the sign bit of the
adder output, depending on the type of shift being done.

Synthesizable VHDL code for the CPU is given in Appendix E. We describe further
details of the CPU design as we discuss this code. The entity CPU6805 makes the address
bus and data bus explicit so we can connect the CPU to a RAM memory and other system
components. The architecture CPU1 has the following sections:

1. Declarations of signals and constants
Concurrent statements for the bus interface, ALU input MUXes, ALU and shifter
operations, address adder, and operation decoder

3. Process ALU_control, which generates control signals for the ALU and for loading
the A, X, and Md registers

408

CHaPTER 11 @ DesioN ExampLes

4. Process CPU_control, which implements the control state machine (Figure 11-15)
and generates control signals for loading registers
5. Process update_reg, which updates the registers on the rising edge of the clock

The signal declarations for the registers and states in the CPUI architecture are
essentially the same as in the behavioral level VHDL code (Appendix D). In CPU! we use
concurrent statements, which imply tristate buffers, to drive the address and data busses.
Code for the data bus interface is

-- drive the data bus with tristate buffers
dbus <= A when A2db='l' else hi_z;

dbus <= X when X2db='1l' else hi_7;

dbus <= Md when Md2db='1l' else hi_Z%;

dbus <= "000"&PCH when PCH2db='1l' else hi_27;
dbus <= PCL when PCL2db='1l' else hi_Z;

dbus <= "1110"&CCR when CCR2db='1' else hi_7Z;

Control signals such as A2db (A to data bus) and PCL2db (PCL to data bus) are generated
in CPU_control.

In the behavioral code, the operation (OP) was tested in several case statements, and
many other places. Generally, the synthesizer instantiates a 4-bit comparator each time OP
is tested. To avoid this, we rewrote the code so that a single 4-to-16-line decoder is implied
by the VHDL code. The input to this decoder is OP = Opcode(3 downto 0), and the output
is the signal opd, which is a 16-bit vector. We implemented the decoder by indexing into a
constant array named decode using the following code:

type decode_type is array(0 to 15) of bit_vector(l5 downto 0);
signal opd : bit_vector(l5 downto 0);
constant decode: decode_type :=
(X"0001", xX"0002", X"0004", X"0008", X"0010", X"0020",
X"0040", X"0080",
X"0100", X"0200", X"0400", X"0800", X"1000", X"2000",
X"*4000", X"8000");

opd <= decode (TO_INTEGER(Opcode(3 downto 0))); -- 4-to-16
decoder

If OP ="0000", then opd(0) ='1'; if OP ="0001", then opd(1) ='1"; etc. To make the code
more readable, the opcode names are aliased to bits of opd. Thus SUB is opd(0), CMP is
opd(1), etc. Then in the code, each time we test the opcode, we have to test only a single
bit, which leads to more efficient logic. In contrast, we chose not to explicitly decode the
addressing mode and left the tests for the mode the same as in the behavioral code.

The ALU_control process generates signals necessary to execute most register-
memory, read-modify-write, and inherent instructions. At the start of the process, control
signals are initialized to their most common values. For example, updateNZ and updateC
are set to '1’, since the N, Z, and C flags are updated for most operations. Control signals
selA, selMd2, and ALU2A are set to '1', since for many operations, the ALU inputs come

11.3 Design of a Microcontroller CPU 409 I

from A and Md, and the ALU output is stored in A. For reg_mem instructions, additional
signals are turned on or off as required. For example, for SBC (subtract with borrow),
com?2 is set to '1' to complement op2, and Cin <= net C, since the borrow is stored in C.
For CPX, Md must be subtracted from X, so selX <= "'1', selA <= "0' to select X as the
MUX1 output. Also, com2 <="'1", and Cin <="1" to add the 2’s complement of Md to X.
Partial VHDL code for ALU_control is

-- set default values of control signals
Cin <= '0'; coml <= '0'; com2 <= '0'; updateNz<«='1l"';
updateC«='1"; .
ALU2A <= '1'; ALU2X <= '0'; ALU2Md <= '0';
seld <= '1l'; selX «= '0'; selMdl <= '0'; selMd2 <= '1l';

if SUBC='1' then com2<='1'; Cin<= not C; end if;
if CPX = '1l' then selX <= '1l'; selAd <= '0'; com2 <= '1';
Cin <= '1'; ALU2A<='0'; end if;

For rd_mod_wr instructions, selMd2 <= "', since op2 should always be zero. For
inha addressing mode, the default selections (selA ='1' and ALU2A ='1") select A as opl
and store the result in A. For inhx, selX <="1'and ALU2X <="1" so the operation is performed
on X. For other rd_mod_wr addressing modes, selMdl <="'1"and ALU2Md <="1", so the
operation is performed on Md. Other control signals are turned on and off as needed. For
example, for rotate right (ROR1), rsh < ="'1" and shiftin <= C. For DEC, updateC <="0',
since the C flag is not updated. Also, com2 <="1"so "11111111" (-1) is added to op!I. For
CLR, and2 <="1"' so op2 = 0 is ANDed with op! to give an ALU output of 0, which is
loaded into the appropriate register.

The CPU_cycles process in the behavioral code has been split into two processes—
CPU_control and update_reg. The CPU_control process implements the control state
machine, and the sequence of states is identical to that for the CPU_cycles process. However,
instead of specifying the register transfers directly, CPU_control is a combinational process
that generates the control signals for loading the Opcode, PC, MAR, and SP registers, for
doing address computations, and for contolling the address and data bus interfaces.

Figure 11-21 gives the VHDL code for part of the CPU_control process. The code
for each state is derived from the corresponding state in CPU_cycles. For example, in state
{fetch}, the code

Opcode <= mem(PC), PC <= PC+l; ST <= addrl;
is replaced with

PC2ab<='1"'; db2opcode<='1"'; incPC<='1'; nST <= addrl;
The signal PC2ab enables the PC output to the address bus (ab), and the signal db2opcode
enables loading the opcode register from the data bus (db). Signals for updating A, X, Md,

and the flags are also generated in the ALU_control process. However, these registers
should be updated only under certain conditions. To accomplish this, an update signal is

410 CHAPTER 11 ® DESIGN EXAMPLES

set to '1' whenever updating A, X, Md, and the flags is allowed. Thus update is set to '1" in
{fetch} if a reg_mem instruction other that JMP or JSR is being executed. This replaces
the call to ALU_OP in the CPU_cycles process. '

Figure 11-21 Partial Listing of CPU_control Process

variable reg_mem, hw_interrupt, BR : boolean;

%begin
' nST <= reset; BR := FALSE; wr <= '0'; update <= '0°';
' xaddl <= (others => '0'); xadd2 <= (others => '0'); va <= "000";

édeA <= '0'; db2X <= '0'; dp2Md <= '0'; db2CCR <= '0'; dbZopcode <= '0';
(all control signals are set to '0' here)

freg_mem:: (mode = imm) or (mode = dir) or (mode = ext) or (mode = ix) or
: (mode = ix1l) or (mode = ix2);

‘hw_interrupt := (T = '0') and (IRQ = 'l' or SCint = '1');

iif (rst_b = '0') then nST <= reset;

else

case ST is
when reset =>
setSP <= '1';

if (rst_b = '1') then nST <= cycle8; end if;
when fetch =>
if (reg_mem and JMP = '0' and JSR = '0")
then update <= '1'; end if; -- update registers if not JMP or JSR
if hw_interrupt then nST <= pushl;
else PC2ab<='1"'; db2opcode<='1l'; incPC<='1l"'; -- read opcode

nST <= addrl; end if;

when addrl =>
case mode is
when inha | inhx => update <= 'l'; nST<= fetch;
when imm => PC2ab<= '1l'; db2Md<='l'; incPC<='1l"';
nST <= fetch;
when inhl =>

if SWI = 'l' then nST <= pushl;

elsif RTS = 'l' then nST <= pop2; incSP«='1l"';
elgif RTI = '1' then nST <= popb; incSP«='1l"';
end if;

when inh2 =»> update <= '1l'; nST <= fetch;
when dir => PC2ab<='1"';
if JMP='1l' then db2PCL<='1'; clrPCH<='1l'; nST<=fetch;
else db2MARL<='1l'; clrMARH<='1'; incPC <= '1';
if JSR='1' then nST<=pushl; else nST<=data; end if;
end if;
... (remainder of process omitted -- see Appendix E)

11.4 » Completion of the Microcontroller Design 411

The update_reg process updates the registers when the rising edge of the clock occurs.
The portion of the process that updates the PC is as follows:

wait until CLK'event and CLK='1l"';

if incPC = '1l' then PC <= PC + 1; end if;

if xadd2PC = '1' then PC <= xadd; end if;

if db2PCH = '1l' then PCH <= dbus(4 downto 0); end if;
if MARH2PCH = 'l' then PCH <= MARH; end if;

if MARL2PCL = 'l' then PCL <= MARL; end if;

if clrPCH = 'l' then PCH <= "00000"; end if;

if db2PCL = '1l' then PCL <= dbus; end if;

if X2PCL = 'l' then PCL <= X; end if;

We have not explicitly defined any multiplexers in this code. Instead, we allow the
synthesizer to infer multiplexers when a register must be loaded from several different
sources. If the synthesizer has a good optimizer, this may lead to an efficient implementation.
If it does not, we can probably improve the implementation by making the multiplexers
explicit.

The code for updating A, X, Md, and the flags is as follows:

1f (update = '1') then

1f (ALU2A = '1') then A <= Shiftout; end if;
if (ALU2X = '1') then X <= Shiftout; end if;
if (ALU2Md = '1') then Md <= Shiftout; end if;
if updateNZ='1' then N <= Shiftout(7);
if Shiftout = "00000000" then Z <= 'l'; else Z <= '0Q';
end if;
end if;
1f wupdateC='1' then C <= newC; end if;
end 1f;

The update signal is generated in CPU_control, and the other control signals are generated
in the ALU_control.

After completing the VHDL code given in Appendix E, we simulated and debugged
it using a test bench. We are now ready to integrate the CPU with the other microcontroller
components in preparation for synthesis of the complete system.

11.4 COMPLETION OF THE MICROCONTROLLER DESIGN

In this section, we complete the design of the microcontroller shown in Figure 11-13. In
Section 11.1 we designed the UART, and in Section 11.3 we designed the CPU. After
designing the parallel ports, we integrate the components to form the complete micro-
controller.

Each parallel port has eight bidirectional I/O pins and two 8-bit registers, as shown
in Figure 11-22. The contents of the data direction register (DDRA) determine which pins
are inputs and which are outputs. If a bit in DDRA is ', the corresponding pin is an output;
otherwise, it is an input. The port registers are memory-mapped so that the CPU can load

412 CHAPTER 11 ® DESIGN ExAMPLES

them or read them. Writing to the PORTA register loads data into the register, and this data
is transmitted to any I/O pins programmed as outputs. Reading from PORTA reads data
from the 1/0 pins. If a pin is programmed as an input, the data applied to the pin is read. If
programmed as an output, the data read is normally the same as the PORTA register.

Figure 11-22 Parallel Port Block Diagram

8 I/O pins

Pin Interface 8
Logic

T Port A data register

Data Direction Register A

} PORTA] | DDRA |

ig g \ts .

Figure 11-23 shows the VHDL code for the parallel port. Concurrent statements
generate the control signals for reading and writing to the registers. Port_Sel is '1' when
the port is selected for reading or writing. A single address bit, ADDRO, selects either the
PORTA or DDRA register. The generate statement labeled Portbits generates the logic
associated with each bit in the port. The process updates the port registers on the rising
edge of the clock. When the code was synthesized for the Xilinx 4000 series, 17 logic cells
were required; when synthesized for the Altera FLEX 10K series, 38 logic elements were
required.

data bus

Figure 11-23 VHDL Code for Parallel Port

élibrary leee;
use ieee.std_logic_1164.all;

‘entity PORT_A is

port (clk, rst_b, Port_Sel, ADDRO, R_W: in std_logic;
: DBUS: inout std_logic_vector(7 downto 0);

d PinA: inout std_logic_vector (7 downto 0));
Zend PORT_A;

iéarchitecture portl of PORT_A 1is
. signal DDRA, PORTA : std_logic_vector (7 downto 0);
i 8ignal 10adDDRA, loadPORTA, ReadPORTA, ReadDDRA : std_logic;

11.4 « Completion of the Microcontroller Design 413

i begin

| loadPORTA <= 'l1' when (Port_Sel='l' and ADDRO='0' and R W='1') else '0';
§loadDDRA <= '1' when (Port_Sel='1' and ADDRO='1l' and R W='1') else '0';
' ReadPORTA <= 'l' when (Port_Sel='1' and ADDRO='0' and R_W='0"') else '0';
- ReadDDRA <= '1' when (Port_Sel='1l' and ADDR(O='1' and R W='0') else '0';

%—— pin interface logic
' Portbits: for i in 7 downto (0 generate

. PinA(i) <= PORTA(i) when DDRA(i) = 'l' else 'Z'; -- set external pin
Estate
. DBUS(i) <= DDRA(i) when (ReadDDRA = 'l1'}) -- read data direction
éregister

else PinA(i) when (ReadPORTA = '1')

elge '7Z';

{ end generate;

. process (clk, rst_b) -- this process writes to the port registers
begin .
if (rst_b = '0') then DDRA <= "00000000"; -- set all pins to inputs
elgif (rising_edge(clk)) then
if (loadDDRA = 'l') then DDRA <= DBUS; end if;
if (loadPORTA = 'l') then PORTA <= DBUS;end if;
end if;
end process;
end portl;

At this point we are ready to link all of the components together to form the complete
microcontroller. The code shown in Figure 11-24 instantiates the cpu6805 component,
two copies of the PORT_A (parallel port), one UART, a low RAM, and a high RAM. For
test purposes, we have scaled down the memory size so that we can synthesize the entire
system using a Xilinx 4020E FPGA or an Altera FLEX 10K20 CPLD as a target . For the
FPGA implementation, we initially used one 32 X 8 RAM in low memory so that direct
addressing could be tested, and a second 32 X 8 RAM in high memory so that extended
addressing could be tested. The ram32X8_io component uses eight CLBs configured as
read/write memory cells (see Figure 6-24). A tristate buffer is used with each CLB to
provide a bidirectional /O line.

The memory map for the components is as follows:

* PortA is selected for addresses 0000h—0001h.

* PortB is selected for addresses 0002h—0003h.

* SCl is selected for addresses 0004h—0007h.

* Low RAM is selected for addresses 0020h—003Fh.

* High RAM is selected for addresses 1FEOh—1FFFh.

The address decoder is implemented using conditional assignment statements.

The write signal from the CPU (wr) is asserted for several clock cycles in a row
when pushing registers onto the stack. In order to write a byte to memory every clock
cycle, we generate the write enable to RAM (we) by ANDing wr with the clock so that a
write pulse is generated every cycle. The memory module we are using stores data on the
falling edge of the we signal. To avoid writing spurious data to the RAM, the write enable

414 CHAPTER 11 ® DesIGN EXAMPLES

signal (we) and the memory-enable signal (cs) should be high during the second half of the
clock cycle when the address and data lines are stable. Therefore,

csl <= SelLowRam and not clk; -- select on 2nd half of
clock cycle
we <= wr and not clk; -- write enable on 2nd half

of clock cycle

Figure 11-24 Top-level VHDL for 6805 Microcontroller

library ieee;
use ieee.std_logic_1164.all;

entity m68hc05 1s

port (clk, rst_b, irg, RxD : in std_logic;
PortA, PortB : inout std_logic_vector(7 downto 0);
TxD : out std_logic);

end m68hc05;

architecture M6805_64 of m68hc(5 is

component cpu6805

port (clk, rst_b, IRQ, SCint: im std_logic;
dbus : 1nout std_logic_vector (7 downto Q);
abus : out std_logic_vector (12 downto 0);
wr: out std_logic);

end component;

gcomponent ram32X8_io

eport (addr_bus: in std_logic_vector (4 downto 0);
data_bus: inout std_logic_vector (7 downto 0);
: cpu_wr: in std_logic);

: end component;

component PORT_A

;port (clk, rst_b, Port_Sel, ADDR, R_W : in std_logic;

‘ DBUS : inout std_logic-vector(7 downto 0);
PinA : inout std_logic_vector (7 downto 0));

end component;

component UART

port (SCI_sel, R_W, clk, rst_b, RxD : in std_logic;
ADDR : in std_logic_vector (1l downto 0);
DBUS : inout std_logic_vector (7 downto 0);
SCI_IRQ, TxD : out std_logic);

end component ;

signal SCint, wr, cs, we: std_logic;

signal SellLowRam, SelHiRAM, SelPA, SelPB, SelSC : std_logic;
signal addr_bus: std_logic_vector{(l2 downto 0) := (others => '0');
:signal data_bus: std_logic_vector(7 downto 0) := (others => '0');

11.4 ¢ Completion of the Microcontroller Design 415

begin

CPU: cpu6805 port map (clk, rst_b, irg, SCint, data_bus, addr_bus, wr);

! PA: PORT_A port map (clk, rst_b, SelPA, addr_bus(0), wr, data_bus, Porta);

| PB: PORT_A port map (clk, rst_b, SelPB, addr_bus(0), wr, data_bus, PortB);

Uartl: UART port map (SelSC, wr, clk, rst_b, RxD, addr_bus(l downto 0),
data_bus, SCint, TxD);

LOwRAM: ram32X8_io port map (addr_bus(4 downto 0), data_bus, csl, we);

HiRAM: ram32X8_io port map (addr_bus (4 downto 0), data_bus, cs2, we);

-- memory interface

csl <= SellowRam and not clk; -- select ram on 2nd half of clock cycle
cs2 <= SelHiRam and not clk;
we <= wr and not clk; -- write enable on 2nd half of clock cycle

-- address decoder
SelPA <= 'l' when addr_bus(12 downto 1)

"000000000000" else '0';

SelPB <= 'l' when addr_bus (12 downto 1) = "000000000001" else 'Q';
SelSC <= 'l' when addr bus(l2 downto 2) = "00000000001" else '0O°';
SellLowRam <= 'l' when addr_bus (12 downto 5) = "00000001" else '0O';
- 32 <= addr <= 63

SelHiRam <= 'l' when addr_bus (12 downto 5) = "11111111" else '0’';

-- addr >= 8160 (1FEOh)
end M6805_64;

When we synthesized our 6805 microcontroller VHDL code with the XC4020E as a
target, the resulting implementation required 692 F and G function generators and 178
flip-flops, plus 16 CLBs for the RAM. We simulated the system to verify correct execution
of the instructions, interrupts, and I/O interfaces. We then downloaded the bit file to a
4020 so that we could test the hardware. The exercises at the end of this chapter suggest
ways in which the design can be improved and expanded.

In order to synthesize the 6805 microcontroller for the FLEX 10K20, a number of
changes in the VHDL code were required. Since the 10K20 does not support internal tristate
bidirectional busses, we changed the CPU data bus structure and used multiplexers to select
the data going into and out of the CPU, as shown in Figure 11-25. We also changed the
memory components and used four of the 10K20 EABs to implement a 1024 x § RAM.
Except for the EABs, our design requires less than 50% of the resources on the 10K20.

Figure 11-25 Multiplexed Data Bus Structure

A —» dbus_out -
i o v ¥ v
CCR—»] [uarT | [PORTA| |PORTB | | RAM |
PCH —|
PCL—»! ‘
\ A J {

dbus_in

CPU < MUX

416 CHAPTER 11 ® DEesiGN EXAMPLES

In this chapter we designed and implemented a UART and a microcontroller using
VHDL and synthesis tools. We used the following steps in designing the microcontroller
CPU:

—

Define the register structure, instruction set, and addressing modes.

2. Construct a table that shows the register transfers that take place during each clock

cycle.

Design the control state machine.

4, Write behavioral VHDL code based on (1), (2), and (3). Simulate execution of the
instructions to verify that specifications are met.

5. Work out block diagrams for the major components of the CPU and determine the
needed control signals.

6. Rewrite the VHDL based on (5). Again, simulate execution of the instructions.

7. Synthesize the CPU from the VHDL code. Make changes in the VHDL code as
needed to improve the synthesis results.

8. Download the bit file to the actual hardware and verify the operation.

et

Once we have written and debugged our VHDL code, use of synthesis tools makes it
easy to develop a hardware prototype. After we have evaluated the prototype, it is relatively
easy to change the design at the VHDL level and then resynthesize it. Although we targeted
our design for a specific PLD, retargeting the design for different components is usually
straightforward, although changes in the VHDL code may be required.

Problems

11.1 Make necessary changes in the UART receiver VHDL code so that it uses a 16X bit clock
instead of an 8X bit clock. Using a faster sampling clock can improve the noise immunity of the
receiver.

11.2

(a) Write a VHDL test bench for the UART. Include cases to test overrun error, framing error,
noise causing a false start, change of BAUD rate, etc. Simulate the VHDL code.

(b) If suitable hardware is available, write a simpler test bench to allow a loop-back test with 7xD
externally connected to RxD. Synthesize the test bench along with the UART, download to the target
device, and verify correct operation of the hardware.

11.3 Make necessary changes to the VHDL code to add a parity option to the UART described in
Section 11.1. Add two bits (P, P,) to the SCCR that select the parity mode as follows:

P,P,=00 8 data bits, no parity bit

P,P,=01 7 data bits, 8th bit makes parity even
P,P,=10 7 data bits, 8th bit makes parity odd
PP, = 11 7 data bits, 8th bit is always 0

The transmitter should generate the even, odd, or '0' parity bit as specified. The receiver should
check the parity bit to verify that it is correct. If not, it should set a PE (parity error) flag in the SCSR.

Problems 417

11.4 The BSR instruction (branch to subroutine) works like JSR except that BSR uses relative
addressing. Add BSR to Table 11-4 and to the VHDL code in Appendix D or E.

11.5 The BSET n (bit set) instruction is two bytes long and always uses direct addressing. It sets bit
n (0 € n <7)in the specified memory location. BCLR # (bit clear) is similar, except that it clears bit
n. Add BSET and BCLR to Table 11-4 and to the VHDL code in Appendix D or E.

11,6 The BRSET n (branch if bit set) is three bytes long. Byte 2 is the direct address, and byte 3 is
the relative address (rel) for the branch. BRSET reads the data from memory and sets C equal to bit
n. If bit n is set, a branch to the original PC + 3 + rel occurs. BRCLR # (branch if bit clear) is similar,
except that the branch occurs if bit n is clear. Add BRCLR and BRSET to Table 11-4, to Figure
11-15, and to the VHDL code in Appendix D or E.

11.7 Add a WAIT (wait for interrupt) instruction that clears 7 and then stops the processor until a
hardware interrupt occurs. Add WAIT to Figure 11-15 and to the VHDL code in Appendix D or E.

11.8 Synthesize the CPU VHDL code (Appendix E) using different optimization options (such as
optimize for area or for speed) and compare the results.

11.9 Rewrite the VHDL code for the CPU (Appendix E) to produce a realization that requires
fewer logic elements when it is synthesized. Try the following:

(@) Write code to use a single decoder for the mode. Change all the tests for “mode = ..." to test a
single bit from the decoder output. (Do this by changing the aliases for the addressing modes.)

(b) Explicitly generate control signals for the MUXes in the addressing unit (Figure 11-18), and
write VHDL code to infer these MUXes.

(¢) Derive logic equations for each bit of the "ADDER and logic operations” block of Figure
11-20, and use these equations in the VHDL code.

11.10 Rewrite the VHDL code for the parallel port (Figure 11-23) using a process instead of
concurrent statements for the decoding and pin interface logic and compare the synthesis results.

APPENDIX /A

VHDL LANGUAGE SUMMARY

Reserved words are in boldface type. Square brackets enclose optional items. Curly brackets
enclose items that are repeated zero or more times. A vertical bar (|) indicates or.
Disclaimer: This VHDL summary is not complete and contains some special cases. Only
VHDL statements used in this text are listed. For a complete description of VHDL syntax,
refer to references [7] and [17].

signal assignment statement: (sequential or concurrent statement)

signal <= [reject pulse-width | transport] expression [after delay_time];
Note: If concurrent, signal value is recomputed every time a change occurs on the right-
hand side. If after time-spec is omitted, signal is updated after delta time.

variable assignment statement: (sequential statement only)

variable := expression;
Note: This can be used only within a process, function, or procedure. The variable is
always updated immediately.

conditional assignment statement: (concurrent statement only)
signal <= expressionl when conditionl
else expression2 when condition2

[else expression];
selected signal assignment statement: (concurrent statement only)
with expression select
signal <= expressionl [after delay_time] when choicel,

expression? [after delay_time] when choice2,

[expression [after delay_time] when others];

420 ApPeNDIX A ® VHDL LANGUAGE SUMMARY

entity declaration:
entity entity-name is
[generic (list-of-generics-and-their-types);]
[port (interface-signal-declaration);]
[declarations]
end entity-name;

interface-signal declaration:

list-of-interface-signals: mode type [:= initial-value]

{; list-of-interface-signals: mode type [:= initial-value]}
Note: An interface signal can be of mode in, out, inout, or buffer.

architecture declaration:
architecture architecture-name of entity-name is
[declarations] -- variable declarations not allowed
begin
architecture-body
end architecture-name;
Note: The architecture body may contain component-instantiation statements, processes,
blocks, assignment statements, procedure calls, etc.

integer type declaration:
type type_name is range integer_range;

enumeration type declaration:
type type_name is (list-of-names-or-characters);

subtype declaration:
subtype subtype_name is type_name [index-or-range-constraint];

variable declaration:
variable list-of-variable-names : type_name [:= initial _value];

signal declaration:
signal list-of-signal-names : type_name [:= initial_value];

constant declaration:
constant constant_name : type_name := constant_value;

alias declaration:
alias identifier [:identifier-type] is item-name;
Note: Item-name can be a constant, signal, variable, file, function name, type name, etc.

array type and object declaration:
type array_type_name is array index_range of element_type;
signal | variable | constant array_name: array_type_name [:= initial_values];

VHDL LANGUAGE SuMMmARY ® APPENDIX A 421

process statement (with sensitivity list):
[process-label:] process (sensitivity-list)
[declarations] -- signal declarations not allowed
begin
sequential statements
end process [process-label];
Note: This form of process is executed initially and thereafter only when an item on the
sensitivity list changes value. The sensitivity list is a list of signals. No wait statements are
allowed.

process statement (without sensitivity list):
[process-label:] process
[declarations] -- signal declarations not allowed
begin
sequential statements
end process [process-label];
Note: This form of process must contain one or more wait statements. It starts execution
immediately and continues until a wait statement is encountered.

wait statements can be of the form:
wait on sensitivity-list;
wait until boolean-expression;
wait for time-expression;

if statement: (sequential statement only)
if condition then
sequential statements
{elsif condition then
sequential statements } --0 Wsif clauses may be included
[else sequential statements]
o
end if; P
case statement: (sequential statement only)
case expression is
when choicel => sequential statements
when choice2 => sequential statements

[when others => sequential statements]
end case;

for loop statement: (sequential statement only)
[loop-label:] for identifier in range loop
sequential statements
end loop [loop-label];
Note: You may use exit to exit the current loop.

422

APPENDIX A ® VHDL LANGUAGE SUMMARY

while loop statement: (sequential statement only)
[loop-label:] while boolean-expression loop
sequential statements
end loop [loop-label];

exit statement: (sequential statement only)
exit [loop-label] [when condition];

assert statement: (sequential or concurrent statement)
assert boolean-expression
[report string-expression}
[severity severity-level];

report statement: (sequential statement only)
report string-expression
[severity severity-level];

procedure declaration:
procedure procedure-name (parameter list) is
[declarations]
begin
sequential statements
end procedure-name;
Note: Parameters may be signals, variables, or constants.

procedure call:
procedure-name (actpal-parameter-list);
Note: An expression may/be used for an actual parameter of mode in; types of the actual
parameters must match tl/i/e types of the formal parameters; open cannot be used.
!
!
Sfunction declaration: //(
function function‘name (parameter-list) return return-type is
[declarations]
begin '
sequential statements -- must include return return-value;
end function-name;
Note: Parameters may be signals or constants.

Jfunction call:
function-name (actual-parameter list)
Note: A function call is used within (or in place of) an expression.

library declaration:
library list-of-library-names;

VHDL LANGUAGE SUMMARY ® APPENDIX A 423

use statement:
use library_name.package_name.item; (.item may be .all)

package declaration:
package package-name is
package declarations
end [package][package-name];

package body:
package body package-name is
package body declarations
end [package body][package name];

component declaration:
component component-name
[generic (list-of-generics-and-their-types);]
port (list-of-interface-signals-and-their-types);
end component;

component instantiation:
label: component-name
[generic map (generic-association-list);]
port map (list-of-actual-signals);
Note: Use open if a component output has no connection.

generate statements:
generate_label: for identifier in range generate
[begin]
concurrent statement(s)
end generate [generate_label];

generate_label: if condition generate
[begin]

concurrernt statement(s)
end generate [generate_label];

file type declaration:
type file_name is file of type_name;

file declaration:
file file_name: file_type [open mode] is "file_pathname";
Note: Mode may be read_mode, write_mode, or append_mode.

APPENDIX

BiT PACKAGE

-- Bit package for Digital Systems Design Using VHDL

package bit_pack is

function add4 (regl,reg2: bit_vector (3 downto 0);carry: bit)
return bit_vector;

function falling_edge(signal clock:bit)
return Boolean ;

function rising edge(signal clock:bit)
return Boolean ;

function vec2int(vecl: bit_vector)
return integer;

function int2vec(intl,NBits: integer)
return bit_vector;

procedure Addvec
{Add1l,Add2: im bit_vector;
Cin: in bit;
signal Sum: out bit_vector;
signal Cout: out bit;
n: in natural);

component Jjkff

generic(DELAY:time := 10 ns);

port (SN, RN, J,K,CLK: in bit; Q, QN: inout bit);
end component;

component dff

generic (DELAY:time := 10 ns);

port (D, CLX: imn bit; Q: out bit; QN: out bit := '1');
end component;

component and?2
generic (DELAY:time := 10 ns);
port (Al, A2: in bit; Z: out bit);
end component;

1426 AprPENDIX B @ Bit PACKAGE

component and3

generic (DELAY:time := 10 ns);

port (Al, A2, A3: imn bit; Z: out bit);
end component;

component and4

generic (DELAY:time := 10 ns);

port (Al, A2, A3, Ad: in bit; Z: out bit);
end component;

component or2
generic (DELAY:time := 10 ns):
port (Al, A2: imn bit; Z: out bit);
end component;

component or3

generic (DELAY:time := 10 ns);

port (Al, A2, A3: in bit; Z: out bit); .
end component;

component or4
generic (DELAY:time := 10 ns);
port (Al, A2, A3, Ad: in bit; Z: out bit);
end component;

component nand2
generic(DELAY:time := 10 ns);
port(Al, A2: in bit; Z: out bit);
end component ;

component nand3
generic (DELAY:time := 10 ns);
port (Al, A2, A3: in bit; Z: out bit);
end component;

component nand4

generic (DELAY:time := 10 ns});

port (Al, A2, A3, Ad: in bit; Z: out bit);
end component;

component nor?2
generic (DELAY:time := 10 ns);
port (Al, A2: in bit; Z: out bit);
end component;

component nor3

generic (DELAY:time := 10 ns);

port (Al, A2, A3: in bit; Z: out bit);
end component;

BiT PAackaGE ® APPENDIX B 427

component nord

generic (DELAY:time := 10 ns);

port (Al, A2, A3, Ad: in bit; Z: out bit);
end component;

component inverter
generic (DELAY:time := 10 ns);
port(A : imn bit; Z: out bit);
end component;

component xor2
generic (DELAY:time := 10 ns);
port(Al, A2: in bit; Z: out bit);
end component;

component ¢74163
port (LdN, ClrN, P, T, CK: in bit; D: in bit_vector(3 dowmnto 0);
Cout: out bit; Q: inmout bit_vector (3 downto 0)):
end component;

'end bit_pack;

package body bit_pack is

-- This function adds 2 4-bit numbers, returns a 5-bit sum

function add4 (regl,reg2: bit_vector(3 downto 0);carry: bit)
return bit_vector is

variable cout: bit:='0"';

variable cin: bit:=carry;

variable retval: bit_vector(4 downto 0):="00000";

begin
lpl: for i in 0 to 3 loop
cout :={regl(i) and reg2(i)) or (regl{(i) and cin) or
(reg2(i) and cin);
retval (i) := regl(i) xor reg2{i) xor cin;
cin := cout;
end loop Ipl;
retval (4) : =cout;

?return retval;
. end add4;

- -- Function for falling edge

function falling_edge(signal clock:bit)
return Boolean is
begin
return clock'event and clock = '0';
end falling_edge;

428 APPENDIX B ® BiT PACKAGE

-- Function for rising edge
function rising_edge(signal clock:bit)
return Boolean is
begin
return clock'event and clock = 'l';
end rising_edge;

-- Function vec2int (converts a bit vector to an integer)
function vec2int(vecl: bit_vector)
return integer is
variable retval: integer:=0;
alias vec: bit_vector(vecl'length-1 downto 0) is vecl;
begin
for i in vec'high downto 1 loop
if (vec(i)='1l') then
retval:=(retval+l)*2;
else
retval:=retval*2;
end if;
end loop;
if vec(0)='1" then
retval:=retval+l;
end if;
return retval;
end vec2int;

-- Function int2vec (converts a positive integer to a bit vector)
function int2vec(intl,NBits: integer)
return bit_vector is
variable N1: integer;
variable retval: bit_vector (NBits-1 downto O0);
begin
assert intl >= 0;
report "Function int2vec: input integer cannot be negative"
severity error;
Nl:=intl;
for i in retval'Reverse_Range loop
if (N1 mod 2)=1 then

retval(i):='1l";
else
retval(i):='0";
end if;
N1:=N1/2;
end loop;

return retval;
end int2vec;

BiT PAackace ® AppenDix B 429

-- This procedure adds two n-bit bit_vectors and a carry and

~- returns an n-bit sum and a carry.

Addl and Add2 are assumed

-- to be of the same length and dimensioned n-1 downto 0.

Eprocedure Addvec

{Addl,Aadd2: in bit_vector;
Cin: in bit;
signal Sum: out bit_vector;
signal Cout: out bit;
n:in natural) is
variable C: bit;

‘begin
. C o= Cin;
for i in 0 to n-1 loop
Sum(i) <= Addil (i) xor Add2 (i)
C := (Add1(i) and Add2(i)) or
end loop;
Cout <= C;

éend Addvec;

end bit_pack;

-- 2 input AND gate

‘entity And2 is

generic (DELAY:time) ;
port (Al,22: in bit;
Z: out bit);

‘end 2nd2;

‘architecture concur of aAnd2 is

- begin

Z <= Al and A2 after DELAY;

end;

1 -- 3 input AND gate
jentity And3 ige

generic (DELAY:time) ;
port (Al,a2, A3: in bit;

Z: out bit):
.end And3;
;architecture concur of And3 is
' begin

7Z <= Al and A2 and A3 after DELAY;
end;

xor C;

(Add1 (i)

and C)

or

(Add2 (1)

and C};

430 APPENDIX B ® BiT PAacKAGE

{-~4 input AND gate

ientity And4 is

generic (DELAY:time) ;

port (Al,A2,A3,Ad4: 1in bit;
7Z: out bit);

end And4;
architecture concur of And4 is
begin
7 <= Al and A2 and A3 and A4 after DELAY;
end;

j——2 input OR gate
gentity Or2 is

generic (DELAY:time) ;

port (Al,A2: in bit;

Z: out bit);

end Or2;
architecture concur of Or2 is
begin

7Z <= Al or A2 after DELAY;
end;

f——3 input OR gate

' entity Or3 is

generic (DELAY:time) ;
port (Al,A2,A3: imn bit;

Z: out bit);
end Or3;
architecture concur of Or3 is
begin

7Z <= Al or A2 or A3 after DELAY;
‘end;

;--4 input OR gate
entity Or4 is
generic (DELAY:time) ;
port (Al,A2,A3,A4: in bit;

Z: out bit);
tend Or4;
‘architecture concur of Or4 is
- begin

! Z <= Al or A2 or A3 or A4 after DELAY;
. end;

Bir Packace ® Appenpix B 431

{--2 input NAND gate

entity Nand2 is

' generic (DELAY:time) ;
port (Al,A2: in bit;

Z: out bit):;
end Nand2;
architecture concur of Nand2 is
begin
7Z <= not (Al and A2) after DELAY;
end;

--3 input NAND gate
entity Nand3 is
generic (DELAY:time) ;
port (Al,A2, A3: in bit;

Z: out bit);
end Nand3;
archlitecture concur of Nand3 is
begin
Z <= not (Al and A2 and A3) after DELAY;
end;

--4 input NAND gate
entity Nand4 is
generic (DELAY:time) ;
port (Al,A2,A3,A4: in bit;
Z: out bit);

- end Nand4;
§architecture concur of Nand4 is
! begin
Z <= not (Al and A2 and A3 and A4) after DELAY;
end;

--2 input NOR gate
entity Nor2 is
generic (DELAY:time) ;
port (Al,A2: in bit;

Z: out bit);
end Nor2;
architecture concur of Nor2 is

- begin
. Z <= not (Al or A2) after DELAY;
| end;

432 APPENDIX B ® BIT PACKAGE

--3 input NOR gate

entity Nor3 is
generic (DELAY:time) ;
port (Al,A2,A3: in bit;

Z: out bit);
end Nor3;
architecture concur of Nor3 is
begin

7Z <= not (Al or A2 or A3) after DELAY;
end;

--4 input NOR gate
entity Nor4d is

generic (DELAY:time);

port (Al,A2,A3,A4: in bit;

Z: out bit);

end Nord4;
architecture concur of Nor4 is
begin

Z <= not (Al or A2 or A3 or A4) after DELAY;
end;

--An INVERTER
entity Inverter is

generic (DELAY:time) ;

port (A: in bit;

Z: out bit);

end Inverter;
architecture concur of Inverter is
begin

Z <= not A after DELAY;
end;

--A 2 INPUT XOR2 GATE
entity XOR2 is

generic (DELAY:time) ;

port (Al,A2: 4in bit;

Z: out bit);

end XOR2;
architecture concur of XOR2 is
begin

Z <= Al xor A2 after DELAY;
end;

Bt PAckaGE ® AppenDIx B 433

! --JK Flip-flop
 entity JKFF is
. generic(DELAY:time);
port (SN, RN, J,K,CLK: in bit;
i Q, ON: inout bit);
(end JKFF;
'use work.bit_pack.all;
"architecture JKFF1 of JKFF is
begin
process (CLK, SN, RN)
begin
if RN='0' then
Q <= '0' after DELAY;
elgif SN='0' then
Q<='1' after DELAY;
elgif falling edge(CLK) then
Q <= (J and not Q) or (not K and Q) after DELAY;
end if;
end process;
; ON <= not Q;
{end JKFF1;
' --D Flip-flop
|entity DFF is
| generic (DELAY:time);
port (D, CLK: in bit;
: Q: out bit; ON: out bit := '1');
; -- initialize QN to 'l' since bit signals are initialized to '0' by .
1 default

' end DFF;
'architecture SIMPLE of DFF is
begin
: process (CLK)
| begin
! if CLK = 'l' then --rising edge of clock

Q <= D after DELAY;
! ON <= not D after DELAY;
| end if;
j end process;
end SIMPLE;

--74163 COUNTER
‘entity 74163 is

° port(LdN, CIlrN, P, T, CK: in bit; D: in bit_vector(3 downto 0);
! Cout: out bit; Q: inout bit_vector(3 downto Q));
'end c74163;

Euse work.bit_pack.all;

434 APPENDIX B ® BiT PACKAGE

architecture b74163 of c74163 is

begin
Cout <= Q(3) and Q(2) and Q(1) and Q(0) and T;
process
begin
wait until CK = '1'; -- change state on rising edge

if ClrN = '0' then Q <= "0000";
elsif LAN = '0' then Q <= D;
elgif (P and T) = 'l' then
Q <= int2vec(vec2int (Q)+1,4);
end if;
end process;
end b74163;

Appenpix €

TEXTIO PAckAGE

package TEXTIO is
! -- Type Definitions for Text I/0

type LINE is access STRING; -- a LINE is a pointer to a STRING value

type TEXT is file of STRING; -- a file of variable-length ASCIT records
type SIDE is (RIGHT, LEFT); -- for justifying output data w/in fields
subtype WIDTH is NATURAL; -- for specifying widths of output fields

-- Standard Text Files
file INPUT: TEXT open read_mode is "STD_INPUT";
file OUTPUT: TEXT open write_mode is "STD_OUTPUT";

-- Input Routines for Standard Types
procedure READLINE (file F: TEXT; L: out LINE);
procedure READ (L: imout LINE; VALUE: out BIT; GOOD: out BOOLEAN) ;
‘ procedure READ (L: inout LINE; VALUE: out BIT);
f procedure READ (L: inout LINE; VALUE: out BIT_VECTOR;
GOOD: out BOOLEAN) ;
procedure READ (L: imout LINE; VALUE: out BIT_VECTOR) ;
procedure READ (L: inout LINE; VALUE: out BOOLEAN; GOOD: out BOOLEAN) ;
procedure READ (L: inout LINE; VALUE: out BOOLEAN) ;
procedure READ (L: imout LINE; VALUE: out CHARACTER;
GOOD: out BOOLEAN) ;
inout LINE; VALUE: out CHARACTER) ;
inout LINE; VALUE: out INTEGER; GOOD: out BOOLEAN) ;
inout LINE; VALUE: out INTEGER) ;
inout LINE; VALUE: out REAL; GOOD: out BOOLEAN) ;
inout LINE; VALUE: out REAL);
inout LINE; VALUE: out STRING; GOOD: out BOOLEAN) ;
inout LINE; VALUE: out STRING) ;
inout LINE; VALUE: out TIME; GOOD: out BOOLEAN) ;
inout LINE; VALUE: out TIME);

procedure READ
procedure READ
procedure READ
procedure READ
procedure READ
procedure READ
procedure READ
procedure READ
procedure READ

| Y N N

436

ArpenDIx C @ TEXTIO PAckAGE

-- Output
procedure
procedure

procedure
procedure
procedure
procedure

procedure

procedure

procedure

| end package

Routines for Standard Types

WIDTH

WIDTH

WIDTH

WIDTH

WIDTH

WIDTH

WIDTH

BIT;
FIELD: in
BIT_VECTOR;
FIELD: in
BOOLEAN;
FIELD: in
CHARACTER;
FIELD: in
INTEGER;
FIELD: in
REAL;
FIELD: in
STRING;
FIELD: in
TIME;
FIELD: 1in

WRITELINE (file F: TEXT; L: inout LINE);
WRITE (L: inout LINE; VALUE: in
JUSTIFIED: in SIDE:= RIGHT;
WRITE (L: inout LINE; VALUE: in
JUSTIFIED: in SIDE:= RIGHT;
WRITE (L: inout LINE; VALUE: 1in
JUSTIFIED: in SIDE:= RIGHT;
WRITE (L: inout LINE; VALUE: in
JUSTIFIED: in SIDE:= RIGHT;
WRITE (L: inout LINE; VALUE: in
JUSTIFIED: in SIDE:= RIGHT;
WRITE (L: inout LINE; VALUE: in
JUSTIFIED: in SIDE:= RIGHT;
DIGITS: in NATURAL:= 0);
WRITE (L: inout LINE; VALUE: in
JUSTIFIED: in SIDE:= RIGHT:
WRITE (L: inout LINE; VALUE: in
JUSTIFIED: in SIDE:= RIGHT;
UNIT: in TIME:= ns});

TEXTIO;

WIDTH

AppenDIX D

BeHavioraL VHDL Cobe ror M6805 CPU

library ieee;

use ieee.std_logic_l164.all;

use ieece.std_logic_unsigned.all;

use ieee.std_logic_arith.CONV_STD_LOGIC_VECTOR
use std.textio.all;

entity M6805 is
port{(clk: in std_logic;

rst_b: in std_logic; -- active low reset signal
| IRQ, SCint: in std_logic); -- hardware interrupt signals
- end M6805;

architecture behv of M6805 is
type RAMtype is array (0 to 8191l) of std_logic_wvector(7 downto 0);

signal mem: RAMtype:= (others=>{others=> '0'})};
signal memory : std_logic_vector (7 downto 0);
signal Opcode,A,X,Md: std_logic_vector(7 downto 0) := (others => '0');

alias OP: std_logic_vector(3 downto 0) is Opcode(3 downto 0};
alias mode: std_logic_vector(3 downto 0) is Opcocde(7 downto 4});
type state_type is (reset, fetch, addrl, addr2, addX, data, rd_mod_wr,
writeback, testBR, pushl, push2, push3, push4, pushb, cycle8,

cycle8,cyclell, popb, popd, pop3, pop2, popl);
signal ST : state_type;

signal CCR: std_logic_vector (3 downto 0); -- H not implemented
alias I: std_logic is CCR(3); alias N : std_logic is CCR(2);
alias 7 : std_logic is CCR(1); alias C : std_logic is CCR(0);

signal BC, MAR: std_logic_vector (12 downto 0);
alias PCH : std_logic_vector(4 downto 0) is PC(12 downto 8);
alias PCL : std_logic_vector (7 downto 0) is PC(7 downto 0};
alias MARH : std_logic_vector (4 downto 0) is MAR(12 downto B);
alias MARL : std_logic_vector(7 downto 0) is MAR(7 downto 0);

signal SP: std_logic_vector (5 downto 0);

constant zero: std_logic_vector (4 downto 0) := "00000";

438 Arpenpix D @ BeHavioral VHDL Cobe For M6805 CPU

-- lower 4 bytes of opcode
subtype ot is std_logic_vector (3 downto 0);
constant SUB: ot:="0000"; constant CMP: ot:="0001";
constant SBC: ot:="0010"; comnstant CPX: ot:="0011";
constant ANDa: ot:="0100"; constamnt BITa: ot:="0101";
constant LDA: ot:="0110"; constant STA: ot:="0111";
constant EOR: ot:="1000"; constant ADC: ot:="1001";
constant ORA: ot:="1010"; constant ADD: ot:="1011";
constant JMP: ot:="1100"; comstant JSR: ot:= "1101";
constant LDX: ot:="1110"; constant STX: ot:="1111";
constant RTI: ot:="0000"; constant RTS: ot:="0001";
{constant values for remaining opcodes should be inserted here}

-- upper 4 bytes of opcode

constant REL: ot:="0010"; constant DIRM: ot:="0011";
constant INHA: ot:="0100"; constant INHX: ot:="0101";
constant IX1IM: ot:="0110"; constant IXM: ot:="0111";
constant INH1: ot:="1000"; comstant INH2: ot:="1001";
constant IMM: ot:="1010"; constant DIR: ot:="1011";
constant EXT: ot:="1100"; constant IX2: ot:="1101";
constant IX1: ot:="1110"; constant IX: ot:="1111";

iprocedure ALU_OP -- perform ALU operation
(MA : in std_logic_vector(7 downto 0);
signal A, X : inout std_logic_vector(7 downto 0);
gignal N, Z, C : inout std_logic) is

'variable res : std_logic_vector(8 downto 0); -- result of ALU operation
. variable updateNZ : Boolean := TRUE; -- update NZ flags by default
begin
case OP is
when LDA => res := '0'&Md; A <= res(7 downto 0);
when LDX => res := '0'&Md; X <= res(7 downto 0);
when ADD => res := ('0'&A) + ('0'&Md);
C <= res(8); A <= res(7 downto 0);
when ADC => res:= ('0'&a) + ('0'&Md) + C;
C <= res(8); A <= res(7 downto 0);
when SUB => res:= ('0'&A) - ('0'&Md);
C <= res(8); A <= res(7 downto 0);
when SBC => res:= ('0'&A) - ('0'&Md) - C;
C <= res{(8); A <= res(7 downto 0);
when CMP => res:= ('0'&A) - ('0'&Md); C <= res(B);
when CPX => res:= ('0'&X) - ('0'&Md); C <= res(B);
when ANDa => res := '0'&(A and Md) ; A <= res(7 downto 0);
when BITa => res := '0'&(A and Md);
when ORA => res := '0'&(A or Md); A <= res(7 downto 0);
when EQOR => res := '0'&(A xor Md); A <= res(7 downto 0);
when others => updateNZ := FALSE;
end case;

BexavioraL VHDL Cope ror ME6805 CPU » Appenpix D 439

if updateNZ then N <= res(7);
if res(7 downto 0) = "00000000" then Z <= '1l'; else 7z <= '0'; end if;
end if;
end ALU_OP;

Procedure AUl -- perform operation on single operand
(signal opl: inout std_logic_vector(7 downto 0);
signal N, Z, C : inout std_logic) is
‘variable res9 : std_logic_vector (8 downto 0);
 variable res8 : std logic_vector(7 downto 0);
| begin
case OP is
when NEG => resS

not ('0'&opl) + 1;

C <= res9(8); res8 := res9(7 downto 0);

when COM => res8 := not opl; C <= '1';

when LSR => res8 := '0'&opl(7 downto 1); C <= opl(0);
when RORX => regs8 := C&opl(7 downto 1l); C <= opl(0);
when ASR => res8 := opl(7)&opl(7 downto 1); C <= opl{(0);
when LSL => res8:= opl(6 downto 0)&'0'; C <= opl(7);
when ROLx => res8 := opl(6 downto 0}&C; C <= opl(7);
when DEC => res8 := opl - 1;
when INC => res8 := opl + 1;

when CLR => res8 "00000000";
when TST => res8 := opl; C <= '0';
when others => assert (false) report "illegal opcode";

1

 end case;

opl <= res8; N <= res8(7);

if (res8 = "00000000") then Z <= '1l'; else Z <= '0'; end if;
end ALUL;

iProcedure fill memory (signal mem: inout RAMType) is
; {insert procedure to fill memory here -- see Section 8.10}
end fill memory;

begin

‘cpu_cycles: process

: variable reg _mem, hw_interrupt, BR: Boolean;
variable sign_ext: std_logic_vector (4 downto 0);

begin

reg_mem:= {(mode = imm) or (mode = dir) or {(mode = ext) or (mode = 1ix) or
| (mode = ix1l) or (mode = ix2);

|hw_interrupt := (I = '0') and (IRQ = 'l' or sCint = '1'):

Iyo APPENDIX D @ BeHaviorar VHDL Cobe For M6805 CPU

wait until rising edge (CLK);
if (rst_b = '0') then ST <= reset; £fill_memory (mem);
else
case ST is
when reset => SP <= "111111";
if (rst_b = '1') then ST <= cycle8; end if;
when fetch =>
if reg_mem then ALU OP(Md, A, X, N, Z, C); end if;
-- complete previous operation
if hw_interrupt them ST <= pushl;
else Opcode <= mem(CONV_INTEGER(PC)); PC <= PC+1l; ~-- fetch opcode
ST <= addrl; end if;

when addrl =>
case mode is

when inha => ALU1(A, N, Z, C); ST <= fetch; -- do operation on A
when inhx => ALUl(X, N, Z, C); ST <= fetch; -- do operation on X
when imm => Md <= mem{CONV_INTEGER(PC)); -- get immediate data

PC <= PC+1; ST <= fetch;
when inhl =>
if OP = SWI them ST <= pushl;
elsif OP = RTS then ST<= pop2; SP <= SP+1;
elgif OP = RTI then ST <= pop5; SP <= SP+1;
end if;
when inh2 =>
case OP is
when TAX => X <= A;
when CLC => C <= '0';
when SEC => C <= '1';
when CLI => I <= '0';
when SEI => I <= '1';
when RSP => SP <= "111111";
when TXA => A <= X;
when others => assert (false)
report "illegal opcode, mode = inh2":
end case; ‘
ST <= fetch;
when dir =>
if OP = JMP then PC <= zero&mem(CONV_INTEGER (PC)); ST <= fetch;
else MAR <= zero&mem(CONV_INTEGER(PC}); PC <=PC+1;
-- get direct address
if (OP=JSR) then ST <= pushl; else ST <= data; end if;

end if;
when dirM => MAR <= zero&mem(CONV_INTEGER(PC)) ; PC <= PC+1;
ST <= data;

when ix =>
if OP = JMP then PC <= zero&X; ST <= fetch;
else MAR <= zero&X;
if (OP=JSR) then ST <= pushl; else ST <= data; end if;
end if;

BenavioraL VHDL Cobe For M6805 CPU e Appenpix D 441
when ixm => MAR <= zero&X; ST <= data;
when ext | ix2 => MARH <= mem(CONV_INTEGER(PC)) (4 downto 0);
~- get high byte
PC <= PC+1; ST <= addr2;
when ix]l | ixlm => MAR <= zero&mem{CONV_INTEGER(PC)); -- get offset
PC <= PC+1; ST <= addX;
when rel => Md <= mem(CONV_INTEGER(PC)); -- get offset

PC <= PC+1l; ST <= testBR;
when others => ST <= fetch;
agssert (false) report "address mode not implemented";
end case;

‘when addr2 =»>

if (mode = ix2) then MARL <= mem(CONV_INTEGER(PC)); PC <= PC+1l;
-- get low byte
ST <= addX;
elsif OP=JMP then PC <= MARH&mem (CONV_INTEGER(PC)); ST <= fetch;
else MARL <= mem(CONV_INTEGER(PC)); PC <= PC+l; -- get low byte

if OP=JSR then ST <= pushl; else ST <= data; end if;
end 1if;

when addX =»> 1f OP=JMP then PC <= MAR + (zero&X); ST <= fetch;
else MAR <= MAR + (zero&X):;
if OP=JSR then ST <= pushl; else ST <= data; end if;
end if;

when data =>
if OP = STA then mem(CONV_INTEGER(MAR)) <= A; N <= A(7);
Z

if (A = "00000000") then Z <= '1'; else <= '0'; end if;
elsif OP = STX then mem(CONV_INTEGER(MAR)) <= X; N <= X(7);
if X = "00000000" then Z <= 'l'; else Z <= '0'; end if;
else Md <= mem{CONV_INTEGER (MAR));
end if;
if ((mode = dirM) or {(mode = ixm) or (mode = ix1m)) then

ST <= rd_mod_wr; else ST <= fetch; end if;

when rd mod_wr => ALUl(Md, N, Z, C); ST <= writeback;
when writeback => mem(CONV_INTEGER{(MAR)) <= Md; ST <= fetch;

when testBR =>

case OP is

when BRA => BR := TRUE;

~when BRN => BR := FALSE;

when BHI => BR := (C or Z) = '0';

when BLS => BR := (Cor Z) = '1';

when BCC =»> BR := C

when BCS => BR := C

when BNE => BR := 2 = '0"';

when BEQ => BR := Z

when BPL => BR := N

[442 AppenDix D @ BeHavioral VHDL Cope For M6805 CPU

when BMI => BR := N = '1"';
when BMC => BR := I = '0';
when BMS => BR := I = '1';
when others => assert(false) report "illegal branch instruction";
end case;
if Md(7) = '1' then sign_ext := "11111"; else sign_ext := zero; end if;

if BR then PC <= PC + (sign_ext&Md); end if;
ST <= fetch;

when pushl => mem(CONV_INTEGER("0000011"&SP)) <= PCL; -- push LO byte
SP <= SP - 1; ST <= push2;

when push2 => mem(CONV_INTEGER("0000011"&SP)) <="000"&PCH;-- push HI byte
SP <= SP - 1;
if (hw_interrupt or OP = SWI) themn ST <= push3;

else PC <= MAR; ST <= fetch; end if; -- JSR
when push3 => mem(CONV_INTEGER("0000011"&SP)) <= X; -- push X
SP <= SP - 1; ST <= pushi;
when push4 => mem(CONV_INTEGER("0000011"&SP)) <= A; -- push A
SP <= SP - 1; ST <= pushb5;
when pushb => mem(CONV_INTEGER("0000011"&SP)) <= "0000"&CCR;-- push CCR

SP <= SP - 1; ST <= cycle8;

when cycle8 => I <= '1'; ST <= cycle9;
if OP = SWI then MAR <= "1111111111100";-- get interrupt vector addr.
elsif IRQ = 'l' then MAR <= "1111111111010";

elgif SCint = 'l' them MAR <= "1111111110110";
else MAR <= "1111111111111*"; -- reset vector addr.
end if;

! when cycle9 => PCH <= mem(CONV_INTEGER (MAR)) (4 downto 0);
-- get high byte
MAR <= MAR + 1l; ST <= cyclel0;
when cyclel0 => PCL <= mem(CONV_INTEGER(MAR)); ST <= fetch;
-- get low byte
when pop5 => CCR <= mem(CONV_INTEGER("0000011"&SP)) (3 downto 0);

-- pop CCR
SP <= SP + 1; ST <= pop4;
when pop4 => A <= mem(CONV_INTEGER("0000011"&SP)) ; -- pop A
SP <= SP + 1; ST <= pop3;
when pop3 => X <= mem(CONV_INTEGER("0000011"&SP)); -- pop X

SP <= SP + 1; ST <= pop2;
when pop2 =>

PCH <= mem (CONV_INTEGER("0000011"&SP)) (4 downto 0); -- pop HI byte
SP <= SP + 1; ST <= popl;
when popl => PCL <= mem(CONV_INTEGER("0000011"&SP)); -- pop LO byte

ST <= fetch;
when others => null;
end case;
end if; -- if (rst_b = '1")
end process;
end behv;

APPENDIX B

M6805 CPU VHDL CobDE FOR SYNTHESIS

. library ieee;

luse ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;
use ieee.numeric_bit: TO_INTEGER;
use std.textio.all;

%entity cpu6805 is

port (clk, rst_b, IRQ, SCint: in std_logic;
dbus : inout std_logic_vector (7 downto 0);

‘abus : out std_logic_vector (12 downto 0);

wr: out std_logic);
end cpu6805;

%architecture cpul of cpu6805 1is

-- define registers

signal Opcode : bit_vector(7 downto 0) := (others => '0');

signal A, X, Md : std_logic_vector(7 downto 0) := (others => '0');
alias mode : bit_vector(3 downto 0) is Opcode(7 downto 4);

signal CCR: std_logic_vector(3 downto 0}; -- CCR=INZC
alias I: std_logic is CCR(3); aliasa N : std_logic is CCR({2);

alias 7 : std_logic is CCR(l); alias C : std_logic is CCR(0);
signal PC, MAR, xadd, xaddl, xadd2: std_logic_vector (12 downto 0);
signal SP: std_logic_vector (5 downto 0);

alias PCH : std_logic_vector(4 downto 0) 1s PC(12 downto 8);

aliaa PCL : std_logic_vector(7 downto 0) is PC(7 downto 0);

alias MARH : std_logic_vector (4 downto 0) is MAR(12 downto 8j;
alias MARL : std_logic_vector(7 downto () is MAR(7 downto 0);
signal va : std_logic_vector(2 downto 0);

type state_type is (reset, fetch, addrl, addr2, addX, data,
rd_mod_wr, writeback, testBR, pushl, pushZ, push3, push4, push5,
cycle8, cycle9, cyclell, pop5, popéd, pop3, pop2, popl);

signal ST, nST : state_type;

444 Arpenpix E © M6805 CPU VHDL CobEe FOR SYNTHESIS

type decode_type is array(0 to 15) of bit_vector(l5 downto 0);

signal opd : bit_vector (15 downto 0);
constant decode: decode_type :=
(X"0001", X0002", X"0004", X"0008",
X"0100", x"0200", X"0400", X"0800",
alias SUB bit is opd(0); alias CMP
alias SUBC
alias ANDa
alias DA : bit is opd(6); alias STA

bit is opd(4); alias RBRITa

alias EOR : bit is opd(8); alias ADC
alias ORA : bit is opd(10); alias ADD :
alias LDX : bit is opd(14); alias STX :
alias BRA : bit is opd(0); alias BRN :
alias BHI : bit is opd(2); alias BLS
alias BCC : bit is opd(4); alias BCS
alias BNE : bit is opd(6); alias BEQ

alias BPL : bit is opd(10); alias BMI
alias BMC : bit is opd(1l2); alias BMS
alias BIL : bit is opd(l14); alias BIH
alias TAX : bit is opd(7); alias CLC
alias SEC : bit is opd(9); alias CLI
alias SEI : bit is opd(11l); alias RSP

aliag NOP : bit is opd(13); alias TXA :

alias NEG : bit is opd(0); alias COM :
alias LSR : bit is opd{(4); alias ROR1
alias ASR : bit is opd(7); alias LSL

alias ROL1 : bit is opd(9); alias DEC

alias INC bit is opd(12); alias TST
alias CLR : bit is opd(15); alias RTI
alias RTS bit is opd(l); alias SWI

X"1000",

bit is opd(2); alias CPX :

X*0010", X"0020",
X"2000",

bit is opd(l);
bit is opd(3);
bit is opd(5);

: bit is opd(7);
: bit is opd(9);

bit is opd(11l);
bit is opd(15);
bit is opd(1l);

: bit is opd(3);
: bit is opd(5);
: bit is opd(7);

bit is opd(11);
bit is.opd(13);

: bit is opd(15);

bit is opd(8);
bit is opd(10);

: bit is opd(12);

bit is opd(15);
bit is opd(3);

: bit is opd(6);

bit is opd(8);

: bit is opd(10);
: bit is opd(13);
: bit is opd(0);

bit is opd(3);

-- define adressing mode = upper 4 bits of opcode

subtype ot is bit_vector (3 downto 0);

constant REL: ot:="0010"; constant DIRM: ot:="0011";
constant INHA: ot:="0100"; constant INHX: ot:="0101";
constant IXIM: ot:="0110"; constant IXM: ot:="0111";
;constant INHl: ot:="1000"; comstant INH2: ot:="1001";

constant IMM: ot:="1010"; constant DIR:
constant EXT: ot:="1100"; constant IX2:

constant IX1l: ot:="1110"; constant IX:

ot:="1011";
ot:="1101";
ot:="1111";

X"0080",
X"8000");

M6805 CPU VHDL CoDE FOR SYNTHESIS ® APPENDIX E

445

signal shiftout, opl_com, op2_com, opl, op2 : std_logic_vector(7 downto 0);

signal alud : std_logic_vector (8 downto 0);
alias Cout : std_logic is alu9(8);

. signal shiftin, Cin, newC : std_logic;

signal com2, and2, or2, xor2, rsh, 1lsh, clear : std_logic;

signal incPC, xadd2PC, db2PCH, MARH2PCH, MARL2PCL, clrPCH, db2PCL, X2PCL

std_logic;

signal db2opcode, incSP, decSP, setSP, setSPl, setI, setIl, clrl
std_logic;

signal xadd2MAR, va2MAR, db2MARH, clrMARH, db2MARL, incMAR, X2MARL:
std_logic;

signal ALU2A, db2A, ALU2X, db2X, db2Md, db2CCR, updateNZ, updateC
std_logic;

signal ALU2Md, Md2db : std_logic;

signal A2db, X2db, PCH2db, PCL2db, CCR2db, PC2ab, MAR2ab, SP2ab
std_logic;

signal coml, selA, selX, selMdl, selMd2, update : std_logic;

signal setC, clrC : std_logic; -

constant hi_7 : std_logic_vector(7 downto 0) := (others => 'Z');
constant hi_713 : std_logic_vector (12 downto 0) := (others => 'Z');
constant zero: std_logic_vector ({4 downto 0) := "00000";

begin

-- drive the data bus with tristate buffers

dbus <= A when A2db='1' else hi_7;

dbus <= X when X2db='1' else hi_Z;

dbus <= Md when Md2db='l' else hi_7Z;

dbus <= "000"&PCH when PCH2db='1l' -else hi_¥Z;
dbus <= PCL when PCL2db='l' else hi_7;

dbus <= "1110"&CCR when CCR2db='1' else hi_7Z;

;—— drive the address bus
iabus <= MAR when MAR2ab='1"'

else "0000011"&SP when SP2ab='1l"'
else PC;

-- define ALU input operand MUXes

iopl <= A when selA = '1' -- MUX for opl
. else X when selX = 'l
else Md when selMdl = '1°'
. else "00000000";
. op2 <= Md when selMd2 = '1° -- MUX for op2

else "00000000";

446 ArpenDIX E ® M6805 CPU VHDL CobEe FOR SYNTHESIS

-- ALU and shifter operations

opl_com <= not opl when coml='1l' else opl; -- complementers
op2_com <= not op2 when com2='1' else op2;
alu9 <= '0's(opl_com and op2_com) when and2='1l' -- adder/logic operations

else '0'&{opl_com or op2_com) when or2='1"
else '0'&(opl_com xor op2_com)} when xor2='1l'
else ('0'&opl_com) + ('0'&op2_com) + Cin;
shiftout <= shiftin&alu9(7 downto 1) when rsh='1' -- shifter
else alu9(6 downto 0)&shiftin when lsh='1"
else "00000000" when clear = '1'
else alu9(7 downto 0);

newC <= alu9(0) when rsh='1" -- carry logic
else alu9(7) when lsh='1"
else 'l' when setC = '1'
else '0' when clrC = '1'

else Cout xor (coml or com2);

xadd <= xaddl + xadd2; : -- address adder
opd <= decode (CONV_INEGER (TO_INTEGER (Opcode (3 downto 0)))); -~ operation
decoder

ALU_control: process (opd, mode, C, alu9)
-- this process generates control signals for ALU operations
variable reg mem, rd _md_wr : boolean := FALSE;
begin
Cin <= '0'; shiftin<='0'; and2 <= '0'; or2 <= '0'; xor2 <= '0'; rsh<='0';
lsh<='0"'; coml <= '0'; com2 <= '0'; updateNZ<='1'; updateC<='1l"'; clrI <='0"';
setC <= '0'; clrC <= '0'; clear <= '0'; setIl<='0'; setS8Pl <= '0';
ALU2A <= '1'; ALU2X <= '0'; ALU2Md <= '0°';
selA <= '1l'; selX <= '0'; selMdl <= '0'; selMd2 <= '1‘';

reg_mem:= (mode = imm) or (mode = dir) or (mode = ext) or (mode = ix) or
(mode = ix1l) or (mode = ix2);

rd_md_wr := (mode = dirM) or (mode = inha) or (mode = inhx) or
(mode = ixlm) or (mode = ixm);

if reg_mem then -- control signals for reg-mem ALU operations
if ADD='1' then null; end if; -- use defaultsg

if ADC='1l' then Cin<=C; end if;
if SUB='1' then com2<='1l'; Cin<='l'; end if;
if SUBC='1' then com2<='1'; Cin<= not C; end if;
if CMP='1' then com2 <= 'l'; Cin <= 'l'; ALU22<='0'; end if;
if CPX = '1' then selX <= '1'; selA <= '0'; com2 <= '1';
Cin <= '1l'; ALU2A<='0'; end if;
if ANDa='1' then and2<= '1'; updateC<='0'; end if;
if BITa='1l' then and2<= '1'; ALU2A <='0'; updateC<='0'; end if;
if ORA='1"' then or2 <= 'l'; updateC<='0'; end if;
if FOR='1"' then xor2<= 'l'; updateC<='0'; end if;
if ILDA ='1' then updateC<='0'; selA <= '0'; end if;
if IDX ='1' then selA <= '0';
updateC<='0"'; ALU2A<='0"'; ALU2X<='l'; end if;

M6805 CPU VHDL Cope FOR SYNTHESIS ® AppenDIX E 447

if ((STA or STX) = 'l'}) then ALU2A <= '0'; updateC <= '0'; end 1if;
-- only update NZ flags
end if;

if rd_md_wr then
-~ control signals for rd_md_wr ALU/shifter operations

gselMd2 <= '0'; -- op2 is always zero for rd_md_wr

if (mode /= inha) then
ALUZ2A <= '0'; selA <= '0'; -- turn off defaults
if mode = inhx them ALU2X <= '1l'; selX <= '1'; -- opl = X
elge ALU2Md <= '1l'; selMdl <= '1'; end if; -- opl = Md

end if;

if NEG='1l' them C(Cin<='1l'; coml <= '1'; end if;

if COM='1' then coml <= 'l'; end if;

if DEC ='1' then updateC<='0'; com2 <= 'l'; end if; -- op2_com = -1

if ISR ='1l' then rsh<= 'l'; end if;

if ROR1 ='1" then rsh<='1'; shiftin<=C; -end if;

if ASR ='1' then rsh<='1l'; shiftin<=alu9(7); end if;

if ILSL ='1l' then lsh<='1l'; end if;

if ROL1 ='1l' then lsh<='l'; shiftin<=C; end if;

if INC ='1' then Cin<='1l'; updateC<='0'; end if;

if CLR ='1' then and2 <= '1'; updateC<='0'; end if; -- and with 0 to
clear

if TST ='1' then updateC<='0'; end if;

end if; -- rd_md_wr

if (mode = inh2) then

selMd2 <= '0'; updateC <= '0'; updateNzZ <= '0'; -- op2 is zero
-- A is always reloaded with A since ALU2A = '1°'

if TAX='1' then ALU2X<='l'; end if;
if TXA='1' then selX <= 'l'; selA <= '0'; end if;
if CLC='1"' then clrC <='1"'; updateC <='1'; end if;
if SEC='1' then setC <='1'; updateC <='1'; end if;
if CLI='1' then clrI<='1'; end if;
if SEI='1' then setIl<='1l'; end if;
if RSP='1l' then setSPl<='1l'; end if;

end if;

end process;

448 Arpenpix E ¢ M6805 CPU VHDL CobE FOR SYNTHESIS

CPU_control: process (ST, rst_b, opd, mode, IRQ, SCint, CCR, MAR, X,
PC, Md)

-- CPU state machine
variable reg_mem, hw_interrupt, BR : boolean;

zbegin
:nST <= reset; BR := FALSE; wr <= '0'; update <= '0';
xaddl <= (others => '0'); xadd2 <= (others =>.'0"'); va <= "000";

db2a <= '0'; db2X <= '0'; db2Md <= '0'; db2CCR <= '0'; dblopcode <= '0';
incPC <= '0'; xadd2PC <= '0'; db2PCH <= '0'; MARH2PCH <= '0°';

MARL2PCL <= '0';
clrPCH <= '0'; db2PCL <= '0'; X2PCL <= '0'; xadd2MAR <= '0';

va2MAR <= '0';
db2MARH <= '0'; CclrMARH <= '0'; db2MARL <= '0'; X2MARL <= '0';

incMAR <= '0';
A2db <= '0'; X2db <= '0'; CCR2db <= '0'; PCH2db <= '0'; PCL2db <= '0';
‘Md2db <= '0'; MAR2ab <= '0'; PC2ab <= '0'; SP2ab <= '0'; incSP <= '0';

{decSP <= '0'; setI <= '0'; setSP <= '0';

lreg_mem:= (mode = imm) or (mode = dir) or (mode = ext) or (mode = 1ixX) or
: (mode = ix1) or (mode = 1x2)};

hw_interrupt := (I = '0') and (IRQ = 'l' or SCint = '1');

if (rst_b = '0') then nST <= reset;

else

case ST is
éwhen reset =>

set8P <= '1°';

if (rst_b = '1') then nST <= cycle8; end if;
when fetch =>

if (reg_mem and JMP = '0' and JSR = '0Q')

then update <= '1'; end if; -- update registers if not JMP or JSR
if hw_interrupt then nST <= pushl;

else PC2ab<='1l'; db2opcode<='l"'; incPC«='1l"'; -- read next opcode

nST <= addrl; end if;

‘when addrl =>
icase mode is
i when inha | inhx => update <= 'l'; nST«= fetch;
| when imm => PC2ab<= '1'; db2Md<='1l'; incPC<='l';
j nST <= fetch;

when inhl =>

if SWI = 'l' then nST <= pushl;
elgif RTS = 'l' then nST <= pop2; incSP<«='1l';
elsif RTI = 'l' then nST <= popb; 1ncSP<='1l';

end if;

M6805 CPU VHDL Cobe FoR SyNTHESIS ® APPENDIX E 449

when inh2 => update <= '1'; nST <= fetch;

when dir => PC2ab<='l"';
if JMP='1"' then db2PCL<='l'; clrPCH<='l"'; nST<=fetch;
else db2MARL<='1l'; clrMARH<='1l'; incPC <= '1';

if JSR='1l' then nST<=pushl; else nST<=data; end if;

end if;

when dirM => PClab<='l'; db2MARL<='1l"'; clrMARH<='1l"';
incPC«="1"'; nST<=data;

when ix =>
if JMP='1l' then X2PCl<='1l'; clrPCH<='l'; nST<=fetch;
else X2MARL<='1l'; clrMARH<='1l"';

if JSR='1' then nST<=pushl; else nST<=data; end if;

end if;

when ixm => X2MARL<='1l'; clrMARH<='1l'; nST<=data;

when ext | ix2 => PC2ab<='1l'; db2MARH<«='1"';
incPC<='1"'; nST<=addr2;

when ixl | ixlm => PC2ab<='1'; db2MARL<='l'; clrMARH<='1"';
incPC«='1"'; nST<=addX;

when rel => PClab<x='l'; db2Md<='1"';
incPC<='1"'; nST<=testBR;

when others => null;

end case;
when addr2 => PC2ab<='1";
if (mode = ix2) then db2MARL<='l';incPC<='1'; nST <= addX; --all [ix2]
elsif (JMP = '1') then db2PCL<='1l'; MARH2FCH<='l"'; nST <= fetch;
-- JMP [ext]
else db2MARL<='1l"';incPC<='1"; ~-JSR/others [ext]
if (JSR = '1') then nST<=pushl; else nST <= data; end if;
end if;
when addX => xaddl«<=MAR; xadd2<=zero&X;
if JMP='1' then xadd2PC<='1'; nST <= fetch;

else xadd2MAR<='1"';
i if JSR='1l' then nST<= pushl; else nST<=data; end if;

. end if;

;when data => MAR2ab<='l'; --nST <= fetch;

. if STA = '1' then wr<='1'; A2db<='1l'; update <= 'l'; -- update NZ flags
elsif STX ='1' then wr<='1'; X2db<='1l"'; update <= '1'; -- update NZ flags
else db2Md <= 'l'; end if; -- read from data bus

g if ((mode = dirM) or (mode = ixm) or (mode = ixlm)) then
| nST <= rd_mod_wr; else nST <= fetch; end if;

when rd_mod_wr => update <= 'l'; nST <= writeback; -- update Md

when writeback => wr<='1l'; MAR2ab<='1l'; Md2db<='1l'; -- write Md to memory
nST <= fetch;

L450 Arpenpix E « M6805 CPU VHDL CobE FOR SYNTHESIS

. when testBR =>

if BRA = '1' then BR := TRUE; end if;

if BRN = 'l' then BR := FALSE; end if;

if BHI = '1' then BR := (Cor Z) = '0'; end if;

if BLS = '1' then BR := (Cor Z) = '1l'; end if;

if BCC = '1' then BR := C = '0'; end 1if;

if BCS = 'l' then BR := C = '1l'; end if;

if BNE = '1l' then BR := Z = '0'; end if;

if BEQ = '1l' then BR := Z = 'l'; end if;

if BPL = '1' then BR := N = '0'; end if;

if BMI = 'l' then BR := N = 'l'; end if;

if BMC = '1' then BR := I '0'; end if;

if BMS = 'l' then BR := I = '1l'; end if;

-- set inputs to address adder

xaddl<=PC; xadd2<=Md(7)&Md(7)&Md(7)&MA(7)aMd(7)&Md; -- sign extend Md
if BR then xadd2PC<='l'; end if; -- PC <= xaddl + xadd2

nST <= fetch;

when pushl => wr<='1'; SP2ab<='1l'; PCL2db<='1l"';
decSP <= 'l'; nST <= push2;
when pushZ => wr<='l'; SP2ab<='l'; PCH2db<='1l'; decSP <= '1°';
if (hw_interrupt or SWI = '1') then nST <= push3;
else MARH2PCH <= '1'; MARL2PCL <= '1'; nST <= fetch; end if;
-- PC <= MAR (execute JSR)
when push3 => wr<='1l'; SP2ab<='1l'; X2db<='1l"';
decSP <= 'l1l'; nST <= pushd;
when push4 => wr<='1l'; SP2ab<x='1'; A2db<='1l"';
decSP <= '1'; nST <= pushb;
when pushb5 => wr<='l'; SP2ab<='l'; CCR2db<='1l"';
decSP <= 'l'; nST <= cycle8;
when cycle8§ =>

if SWI = '1l' then va <= "110"; -- 3 bits of interrupt vector addr
elsif IRQ = 'l' then va <= "101";
elsif SCint = '1l' then va <= "01ll";
else va <= "111"; -- default for reset vector
end 1if;
vaz2MAR <= '1'; setI <= 'l'; nST <= cycle9;

when cycleS => MAR2Z2ab <= '1l'; db2PCH <= 'l'; -- get interrupt vector

incMAR <= '1'; nST <= cyclel0;

when cyclelQ => MAR2ab <= '1l'; db2PCL <= '1';
nsST <= fetch;

when pop5 => SP2ab<='1l'; db2CCR<='1l"'; -- restore registers
incSP<='1'; nST <=pop4;

when pop4d => SP2ab<='1'; db2a<='1"';
incSP<='1'; nST <=pop3;

when pop3 => SP2ab<='1l'; db2X<='1l"';
incSP<='1'; nST <=pop2;

when pop2 => SP2ab<='1'; db2PCH<='1l"';
incSP<='1'; nST <=popl;

M6805 CPU VHDL CobE FOR SYNTHESIS ® ApPENDIX E 451

!when popl => SP2ab<='1l'; db2PCL<='1"';
f nsST <=fetch ;

fend case;

lend if; -- if (rst_b = '0')

update_reg: process

begin

{wait until CLK'event and CLK='1l"';
| ST <= nST;

[if incPC = '1' then PC <= PC + 1; end if;

if xadd2pC = '1' then PC <= xadd; end if;

if db2PCH = '1®' then PCH <= dbus(4 downto 0); end if;

if MARH2PCH = 'l' then PCH <= MARH; end if;

if MARL2PCL = 'l1' then PCL <= MARL; end if;

if clrPCH = 'l' then PCH <= "00000"; end if;

if db2PCL = 'l' then PCL <= dbus; end if;

if X2PCL = '1' then PCL <= X; end if;

if db2opcode= '1l' then Opcode <= TO_BITVECTOR(dbus); end if;
if incSP = '1' then SP <= SP+1; end if;

if decSP = 'l' then SP <= SP ~ 1; end if;

if (setSP = 'l' or setSPl = 'l'}) then SP <= "111111"; end if;

if xadd2MAR = '1' then MAR <= xadd; end if;

if va2MAR = '1' then MAR <= "111111111"&va&'0'; end if;
:if db2MARH = 'l' then MARH <= dbus(4 downto 0)}; end if;
{if c1rMARH = '1' then MARH <= "00000"; end if;

if db2MARL = 'l' then MARL <= dbus; end if;

if X2MARL = 'l' then MARL <= X; end if;

if incMAR = 'l' then MAR(0) <= 'l'; end if;

-- MAR(0) is always '0' at this time so incrementer is not needed

if db2A='1' then A <= dbus; end if;
if db2X='1' then X<=dbus; end if;
if db2Md = 'l' then Md <=dbus; end if;

if db2CCR = '1' then CCR<= dbus{(3 downto 0); end if;
if (update = '1l') then
if (ALU2A = '1') then A <= Shiftout; end if;
if (ALU2X = '1') then X <= Shiftout; end if;
if (ALU2Md = '1l') thenm Md <= Shiftout; end if;
if updateNZ='1"' then N <= Shiftout(7);
if Shiftout = "00000000" then Z <= '1l'; elpe Z <= '0'; end if;
end if;
if wupdateC='1l' then C <= newC; end if;
‘end if;
f if (setI = 'l' or setlIl = '1l') then I <= '1'; end 1if;
| if clrI = '1' then I <= '0'; end if;

' end process;

end cpul;

APPENDIX [P

ProJECTS

For each of these projects, choose an appropriate FPGA or CPLD as a target device and
carry out the following steps:

1. Work out an overall design strategy for the system and draw block diagrams. Divide
the system into modules if appropriate. Develop an algorithm, SM charts, or state '
graphs as appropriate for each module.

2. Write VHDL code for each module, simulate it, and debug it.

Integrate the VHDL code for the modules, simulate, and test the overall system.

4. Make any needed changes and synthesize the VHDL code for the target device.
Simulate the system after synthesis.

5. Generate a bit file for the target device and download it. Verify that the hardware
works correctly.

w

P1 Design a push-button door lock that uses a standard telephone keypad as input. Use
the keypad scanner designed in Chapter 3 as a module. The length of the combination is 4
to 7 digits. To unlock the door, enter the combination followed by the # key. As long as #
is held down, the door will remain unlocked and can be opened. When # is released, the
door is relocked. To change the combination, first enter the correct combination followed
by the * key. The lock is then in the *“store” mode. The “store” indicator light comes on and
remains on until the combination has been successfully changed. Next enter the new
combination (4 to 7 digits) followed by #. Then enter the new combination a second time
followed by #. If the second time does not match the first time, the new combination must
be entered two times again. Store the combination in an a=ray of eight 4-bit registers or in
a small RAM. Store the 4-bit key codes followed by the code for the # key. Also provide
a reset button that is not part of the keypad. When the reset button is pushed, the system
enters the “‘store” state and a new combination may be entered. Use a separate counter for
counting the inputs as they come in. A four-bit code, a key-down signal (Kd), and a valid
data signal (V) are available from the keypad module.

454

APPENDIX F @ PROJECTS

P2 Design an SPI (synchronous serial peripheral interface) module suitable for use with
a microcontroller. The SPI allows synchronous serial communication with peripheral
devices or with other microcontrollers. The SPI contains four registers—SPCR (SPI control),
SPSR (SPI status), SPDR (SPI data), and SPSHR (SPI shift register). The following diagram
shows how two SPIs can be connected for serial communications. One SPI operates as a
master and one as a slave. The master provides the clock for synchronizing transmit and
receive operations. When a byte of data is loaded into the master SPSHR, it initiates serial
transmission and supplies a serial clock (SCK). Data is exchanged between the master and
slave shift registers in 8 clocks. As soon as transmission is complete, data from each SPSHR
is transferred to the corresponding SPDR, and the SPI flag (SPIF) in the SPSR is set.

MOSI .
\——1 SPSHR o o MISO] SPSHR !
| SPY)R ek SPDR]
T Nmsese T | e T

The function of the pins depends on whether the device is in master or slave mode:
MOSI—output for master, input for slave
MISO—input for master, output for slave
SCK—output for master, input for slave

The SPDR and SPSHR are mapped to the same address. Reading from this address reads
the SPDR, but writing loads the SPSHR. SPSR bit 7 is the SPI flag (SPIF). SPSR may also
contain error flags, but we will omit them from this design. The following sequence will
clear SPIF:

Read SPSR when SPIF is set.

Read or write to the SPDR address.

The SPCR register contains the following bits:

SPIE—enable SPI interrupt

SPE—enable the SPI

MSTR—set to '1' for master mode, '0' for slave mode

SPRI and SPRO—set SCLK rate as follows:
SPRI1&SPRO =00 SCK rate = Sysclk rate /2
SPR1&SPR0O =01 SCK rate = Sysclk rate /4
SPRI1&SPR0O =10 SCK rate = Sysclk rate /16
SPRI&SPRO =11 SCK rate = Sysclk rate /32

ProsecTs ® Appenpix F 455 l

P3 The digital system shown below will be used to keep score for a bowling game. The
score keeping system will score the game according to the following (regular) rules of
bowling: A game of bowling is divided into ten frames. During each frame, the player gets
two tries to knock down all of the bowling pins. At the beginning of a frame, ten pins are
set up. If the bowler knocks all ten pins down on his or her first throw, then the frame is
scored as a strike. If some (or all) of the pins remain standing after the first throw, the
bowler gets a second try. If the bowler knocks down all of the pins on the second try, the
frame is scored as a spare. Otherwise, the frame is scored as the total number of pins
knocked down during that frame.

N S i
fr(?m APD logic
pin]
machine APD TFT
AD it
UPD ——» : ———p» score register
NF
CONTROL ®| frame counter
| —LF |
Done

The total score for a game is the sum of the number of pins knocked down plus
bonuses for scoring strikes and spares. A strike is worth 10 points (for knocking down all
ten pins) plus the number of pins knocked down on the next two throws (not frames). A
spare is worth 10 points (for knocking down ten pins) plus the number of pins knocked
down on the next throw. If the bowler gets a spare on the tenth frame, then he/she gets one
more throw. The number of pins knocked down from this extra throw are added to the
current score to get the final score. If the bowler gets a strike on the last frame, then he/she
gets two more throws, and the number of pins knocked down are added to the score. If the
bowler gets a strike in frame 9 and 10, then he/she also gets two more throws, but the score
from the first bonus throw is added into the total twice (once for the strike in frame 9, once
for the strike in frame 10), and the second bonus throw is added in once. The maximum
score for a perfect game (all strikes) is 300. An example of bowling game scoring follows:

456 APPENDIX F ® PROJECTS

Frame First Second Result Score
Throw Throw

1 3 4 7 7

2 5 5 spare 7+10=17

3 7 1 8 17 + 7 (bonus for spare in 2) + 8 = 32
87
10 - strike 87+10=97

10 10 - strike 97 + 10 (for this throw) + 10 (bonus for

strike in 9)
- 6 3 - ' 117 + 6 (bonus for stroke in 9)

+ 6 (bonus for strike in 10)
+ 3 (bonus for strike in 10) = 32

The score keeping system has the form shown above. The control network has three
inputs: APD (All Pins Down), LF (Last Frame), and UPD (update). APD is 1 if the
bowler has knocked all ten pins down (in either one or two throws). LF is 1 if the frame
counter is in state 9 (frame 10). UPD is a signal to the network that causes it to update the
score. UPD is 1 for exactly one clock cycle after every throw the bowler makes. There are
many clock cycles between updates.

The control network has four outputs: AD, NF, FT, and Done. N represents the number
of pins knocked down on the current throw. If AD is 1, N will be added to the score register
on the rising edge of the next clock. If NF is 1, the frame counter will increment on the
rising edge of the next clock. FT is 1 when the first throw in a frame is made. Dore should
be set to 1 when all ten frames and bonus throws, if applicable, are complete.

Use a 10-bit score register and keep the score in BCD form rather than in binary.
That is, a score of 197 would be represented as 01 1001 0111 . The lower two decimal
digits of the register should be displayed using two 7-segment LED indicators, and the
upper two bits can be connected to two single LEDs. When ADD =1 and the register is
clocked, N should be added to the register. N is a 4-bit binary number in the range 0
through 10. Use a 4-bit BCD counter module for the middle BCD digit. Note that in the
lower four bits, you will add a binary number to a BCD digit to give a BCD digit and a

carry.

P4 Design a simple microcomputer for 8-bit signed binary numbers. Use a keypad for
data entry and a 256 X 8 static RAM memory. The microcomputer should have the following
8-bitregisters: A (accumulator), B (multiplier), MDR (memory data register), PC (program
counter), and MAR (memory address register). The IR (instruction register) may be 5to 8
bits, depending on how the instructions are encoded. The B register is connected to the A
register so that A and B can be shifted together during the multiply. Only one 8-bit adder
and one complementer is allowed. The microcomputer should have a 256-word-by-8-bit
memory for storing instructions and data. It should have two modes: (a) memory load and
(b) execute program. Use a DIP switch to select the mode.

Memory load mode operates as follows: Select mode = 0 and reset the system. Then
press two keys on the keypad followed by pushing a button to load each word in memory.
The first word is loaded at address 0, the second word at address 1, etc. Data should be

PrOJECTS ® APPENDIX F 457

loaded immediately following the program. Execution mode operates as follows: Select
mode = 1 and press reset. Execution begins with the instruction at address 0.

Each instruction will be one or two words long. The first word will be the opcode,
and the second word (if any) will be an 8-bit memory address or immediate operand. One
bit in the opcode should distinguish between memory address or immediate operand mode.
Represent negative numbers in 2’s complement. Implement the following instructions:

LDA <memadd> load A from the specified memory address

LDA <imm> load A with immediate data

STA <memadd> store A at the specified memory address

ADD <memadd> add data from memory address to A, set carry flag if carry,
set Vif 2’s complement overflow

ADD <imm> add immediate data to A, set carry flag if carry, set Vif
overflow

SUB <memadd> subtract data from memory address from A, set carry flag if
borrow, set Vif 2’s complement overflow

SUB <imm> subtract immediate data from A, set carry flag if borrow, set
Vif overflow

MUL <memadd> multiply data from memory address by B, resultin A & B

MUL <imm> multiply immediate data by B

SWAP swap A and B

PAUSE pause until a button is pressed and released
(note: Aregister should always be displayed on LEDs.)

JZ <target addr> jump to target address if A =0

JC <target addr> jump to target address if carry flag (CF) is set

JV <target addr> jump to target address if overflow flag (V) is set

The control module should be implemented as a linked state machine, with a separate

state machine for the multiplier control. Try to keep the number of states small. (A good
solution should have about ten states for the main control.) The multiplier control should
use a separate counter to count the number of shifts. Assume that the clock speed is slow
enough so that memory can be accessed in one clock period.

P5 Design a stack-based calculator for 8-bit signed binary numbers. Input data to the
calculator can come from a keypad or from DIP switches with a separate push-button to
enter the data. The calculator should have the following operations:

enter push the 8-bit input data onto the stack

0 - clear clear the top of the stack, reset the stack counter, reset overflow, etc.

1-add replace the top two data entries on the stack with their sum

2 - sub replace the top two data entries on the stack with their difference
(stack top — next entry)

3 - mul replace the top two data entries on the stack with their product
(8 bits x 8 bits to give 8-bit product)

4 - div replace the top two data entries on the stack with their quotient

(stack top / next entry) (8 bits divided by 8 bits to give 8 bit quotient)

458

AppenDIX F ® ProJECTS

5 - xchg exchange the top two data entries on the stack
6 - neg replace the top of the stack with its 2’s complement

Negative numbers should be represented in 2’s complement. Provide an overflow
indicator for 2’s complement overflow. This indicator should be also be set if the product
requires more than 8 bits including sign or if divide by O is attempted.

Implement a stack module that has four 8-bit words. The stack should have the
following operations: push, pop, and exchange the top two words on the stack. The top of
the stack should always be displayed on eight LEDs. Include an indicator for stack overflow
(attempt to push a fifth word) and stack underflow (attempt to pop an empty stack or to
exchange the top of stack with an empty location).

Design the control unit for the calculator using linked state machines. Draw a main
SM chart with separate SM charts for the multiplier and divider control. When you design
the arithmetic unit, try to avoid adding unnecessary registers. You should be able to
implement the arithmetic unit with three registers (8 or 9 bits each), an adder, two
complementers, etc.

P6 Design a floating-point arithmetic unit. Each floating-point number should have a 4-
bit fraction and a 4-bit exponent, with negative numbers represented in 2’s complement.
(This is the notation used in the examples in Chapter 7.) The unit should accept the following
floating-point instructions:

001 FPL—load floating-point accumulator (fraction and exponent)

010 FPA—add floating-point operand to accumulator

011 FBS—subtract floating-point operand from accumulator

100 FPM—multiply accumulator by floating-point operand

101 FPD—(optional) divide floating-point accumulator by floating-point operand

The result of each operation (4-bit fraction and 4-bit exponent) should be in the
floating-point accumulator. All output should be properly normalized. The accumulator
should always be displayed as hex digits on 7-segment LEDs. Use an LED to indicate an
overflow.

The input to the floating-point unit will come from a 4 X 4 hexadecimal keypad,
using a scanner similar to the one designed in Chapter 3. Each instruction will be represented
by three hex digits from the keypad—the opcode, the fraction, and the exponent. For
example, FPA 1.011 x 23 iscoded as 2B D = 0010 1011 1101. Assume that all inputs
are properly normalized or zero. Your design should include the following modules: fraction
unit, exponent unit, control module, and 4-bit binary to 7-segment display conversion
logic.

REFERENCES

References 14, 15, 19, 29, and 32 are general references on digital logic and digital system
design. References 2, 18, 30, 31, and 33 provide information on PLDs, FPGAs, and CPLDs.
References 8, 12, 15, 20, 21, 28, and 31 provide a basic introduction to VHDL. References
3,4,5,6,7,11, 13, 16, 17, 25, and 26 cover more advanced VHDL topics. References 1,
9,24, and 27 relate to hardware testing and design for testability. The M6805 microcontroller
family is described in references 22 and 23.

1.

10.

Abromovici, M., Breuer, M., and Frideman, F. Digital Systems Testing and Testable
Design. Los Alamitos, Calif.: Computer Science Press, 1990.

Altera Corporation, Altera Data Book, 1996. (http://www.altera.com).

Armstrong, James, and Gary, G. Structured Logic Design with VHDL. Upper Saddle
River, N.J.: Prentice Hall, 1993.

Ashenden, Peter J. The Designer’s Guide to VHDL. San Francisco, Calif.: Morgan
Kaufmann, 1996.

Baker, Louis. VHDL Programming: With Advanced Topics. Upper Saddle River, N.J.:
Prentice Hall, 1993.

Berge, F., and Maginot, R. J. VHDL Designer’s Reference. Boston, Mass.: Kluwer
Academic Publishers, 1992.

Bhasker, J. A Guide to VHDL Syntax. Upper Saddle River, N.J.: Prentice Hall, 1995.
Bhasker, J. A VHDL Primer, rev. ed. Upper Saddle River, N.J.: Prentice Hall, 1992,

Bleeker, H., van den Eijnden, P., and de Jong, Frans. Boundary Scan Test—A Practical
Approach. Boston, Mass.: Kluwer Academic Publishers, 1993.

Brayton, Robert K. et al. Logic Minimization for Algorithms for VLSI Synthesis.
Boston, Mass.: Kluwer Academic Publishers, 1984.

460

REFERENCES

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

Chang, K.C. Digital Design and Modeling with VHDL and Synthesis. Los Alamitos,
Calif.: IEEE Computer Society Press, 1997.

Coelho, David R. The VHDL Handbook. Boston, Mass.: Kluwer Academic Publishers,
1989.

Cohen, Ben. VHDL—Coding Styles and Methodologies. Boston, Mass.: Kluwer
Academic Publishers, 1995.

Comer, David J. Digital Logic and State Machine Design, 3rd ed. New York: Saunders,
1995.

Dewey, Allen. Analysis and Design of Digital Systems with VHDL. Boston, Mass.:
PWS, 1997.

IEEE Standard Multivalue Logic System for VHDL Model Interoperability
(Std_logic_1164). New York: The Institute of Electrical and Electronics Engineers,
1993.

IEEE Standard VHDL Language Reference Manual. New York: The Institute of
Electrical and Electronics Engineers, 1993.

Jenkins, Jesse H. Designing with FPGAs and CPLDs. Upper Saddle River, N.J.:
Prentice Hall, 1994.

Katz, Randy H. Contemporary Logic Design. Menlo Park, Calif.: Benjamin/
Cummings, 1994.

Lipsett, Roger, Schaefer, Carl F., and Ussery, Cary. VHDL: Hardware Description &
Design. Boston, Mass.: Kluwer Academic Publishers, 1989.

Mazor, Stanley, and Langstraat, Patricia. A Guide to VHDL, 2d ed. Boston, Mass.:
Kluwer Academic Publishers, 1993.

MC68HCO05 Microcontroller Applications Guide. Phoenix, Ariz.: Motorola, Inc., 1995.
MC68HC705C4A Technical Data. Phoenix, Ariz.: Motorola, Inc., 1996.

McCluskey, E. I. Logic Design Principles with Emphasis on Testable Semicustom
Circuits. Upper Saddle River, N.J.: Prentice Hall, 1986.)

Navabi, Zainalabedin. VHDL—Analysis and Modeling of Digital Systems. New York:
McGraw-Hill, 1993.

Ott, Douglas E., and Wilderotter, Thomas J. A Designer’s Guide to VHDL Synthesis.
Boston, Mass.: Kluwer Academic Publishers, 1994,

REFERENCES 461

27.

28.

29.

30.

31

32.

33.

Parker, Kenneth P. The Boundary Scan Handbook. Boston, Mass.: Kluwer Academic
Publishers, 1992.

Perry, Douglas. VHDL, 2d ed. New York: McGraw-Hill, 1994.

Roth, Charles H. Fundamentals of Logic Design, 4th ed. Boston, Mass.: PWS, 1992.
Salcic, C., and Smailagic, A. Digital Systems Design and Prototyping Using Field
Programmable Logic. Boston, Mass.: Kluwer Academic Publishers, 1997. (Includes
VHDL software for Altera products.)

Skahill, Kenneth, and Cypress Semiconductor. VHDL for Programmable Logic.
Reading, Mass.: Addison-Wesley, 1996. (Includes VHDL software for Cypress

products.)

Wakerly, John F. Digital Design Principles and Practices. Upper Saddle River, N.J.:
Prentice Hall, 1990.

XILINX, Inc. The Programmable Logic Data Book, 1996. (http://www.xilinx.com).

INDEX

16R4 sequential PAL, 98-100, 182

22CEV10 (22V10) PLD
implementations using, 107, 108-109, 113-114
structure, 101-103

486 bus. See bus

A

active-low signal, 303
active-high signal, 303
adder
FPGA implementation, 220-222
full, 2-3, 45-46
parallel, 107-109
serial, 121-123
VHDL model for a 4-bit, 48
adder-subtractor, parallel, 205-207
addition
bit-vectors, 76
floating-point, 259-260
VHDL model with operator overloading, 271
address transition, 321
addressing modes, 392-393
algebraic simplification, 3-7
alias, 127, 420
Altera CPLD. See CPLD
alternate clock buffer, 211
AND
function for std_logic_vectors, 278
gate, 1
testing for stuck-at faults, 340-343
VHDL model, 429
table for IEEE 9-valued logic, 277
table for X01Z logic, 275
architecture, 45-47
declaration, 46, 420
array, 68-70

attributes, 267

constrained, 68

types, 68-70, 420

unconstrained, 69
ASM chart. See SM chart
assert statement, 116, 422

use in error checking, 267
associative laws, 4, 7
asynchronous design, 34
attributes, 265-268

baud rate generator, 383-384
BCD (binary-coded-decimal), 18
bed-of-nails tests, 351
behavioral modeling in VHDL, 58
BILBO. See built-in logic block observation
binary-coded-decimal (BCD), 18
BIST. See Built-In Self-Test
bit package (bit_pack), 77, 425-433
bit-vector, 70
addition, 75
VHDL procedure for addition, 268
bit_overload package, 271
Boolean algebra, 1-7
boundary scan testing, 351-360
VHDL code for test example, 359
VHDL model for boundary scan, 357
bridging fault, 343
bubble, definition, 10
buffer, 296
built-in logic block observation (BILBO), 364-370
VHDL mode] of BILBO register, 367
VHDL model of BILBO tester system, 368
VHDL test bench for tester system, 389
Built-In Self-Test (BIST), 361-370

L464 INDEX

bus, 35-36, 210, 252
486 bus model, 316-324
2-2 bus cycle, 317
3-3 bus cycle, 318

SM chart for bus interface unit, 320

timing specifications, 320-321
VHDL model, 322

system with interfacing to RAM, 325-334

test data and results, 333-334

VHDL model for memory controller, 329

VHDL model, complete, 331
VHDL test module, 330

C
carry logic, 219-224
case statement, 55-56, 421
CLB (configurable logic block)
Xilinx 3000 series, 201-203
Xilinx 4000 series, 219
clock, VHDL model, 45
CMOS PLDs, 102
code converter
BCD to excess-3, 18-22, 99-100
serial data (NRZ to Manchester), 24
codes (NRZ, NRZI, RZ, Manchester), 23
combinational logic
general, 1-3
testing, 339-343
VHDL descriptions, 44-49
Combinatorial Function block, 202-207
commutative laws, 4, 7
compilation, 56-58

complex programmable logic device. See CPLD

component declaration, 48, 77, 423
component instantiation, 48, 423
concurrent statements, definition, 44
conditional assignment statement, 55, 419
configurable logic block. See CLB
configuration memory cells, 201-203
consensus theorem, 4, 5, 6
constants, 65

declaration, 420
contact bounce, 110
control circuit, definition, 121
core logic, 351-352, 354-355
counter

74163, 78-80

VHDL model, 78-79, 433
use as state register, 187
VHDL model for dice game, 183

CPLD (complex programmable logic device)
Altera FLEX 10K series 235-239
realizing functions, 237
Altera MAX 7000 series 231-235
logic expanders, 233
realizing functions 231-235
Altera MAX 70008 series, 235
Altera MAX 9000 series, 235
crystal oscillator for FPGA, 211

D
D flip-flop. See flip-flop
data flow modeling in VHDL, 61
data line, 303
data transition, 321
debouncing and synchronizing circuit, 110-111
DeMorgan’s laws, 3, 4
dice game, 168-177
implementation with XC3020 FPGA, 213-216
implementation with PAL, 180-184
SM chart, 172
synthesis, 292
test bench, 174-177
VHDL behavioral model, 173
VHDL data flow model, 182
digital system, 31-32
distributive laws, 4, 6, 7
divider, parallel for signed binary, 148-155
test bench, 153
VHDL model, 151
divider, parallel for unsigned binary, 144-148
division
floating-point, 260
signed binary, 148-155
unsigned binary, 144-146
don’t cares
in Kamaugh maps, 7-10
on state graphs, 123
driver, 57-58, 273-274
duality, 4

E

EA (effective address), 392

EAB (embedded array block), 236, 239

EEPROM (electrically erasable programmable ROM),
86

effective address (EA), 392

elaboration, 56-57

embedded array block (EAB), 236, 239

entity, 45-47

INDEX 465

declaration, 46, 420
enumeration type, 67, 420
EPROM (erasable programmable ROM), 86

use with FPGAs, 212
equivalent states, 25-27
error checking, 267
essential prime imptlicant, 8-9
event, definition, 58
excess-3 coded decimal, 18
exclusive-OR

definition, 1

theorems, 6-7

VHDL gate model, 432
exit statement, 73, 422
exponent overflow. See overflow

F
falling-edge device, 32
FastTrack Interconnect, 236
fault detection, 339-343
field programmable gate array. See FPGA
file declaration, 295, 423
files
input and output, 295-299
VHDL example, 299
flip-flop, 14-17
with clock enable, 205
D, 14
J-K, 15
S-R, 16
T, 15
flip-flop, equation derivation
D, 20-21
J-K, 20-22
for SM charts, 178
flip-flops, VHDL models, 50-54
D, 51,432
JK, 52,432
floating-point arithmetic, 243-261
addition, 259
division, 260
multiplication, 244-259
subtraction, 260
floating-point numbers
normalization, 243-244
representation, 243-244
for loop, 72, 421
fourpack package, 274-275
FPGA (field programmable gate array), 201-230
configuration from EPROM, 212

designing with, 211-219
global clock buffer, 211
implementation of adder-subtractor, 205-207
implementation of dice game, 213-216
Xilinx 3000 series, 201-211
F, G, and FG modes, 203-204
realizing 6-, 7-variable functions, 216-219
realizing functions, 202-204
Xilinx 4000 series, 219-229
RAM implementation, 223
realizing functions, 219
VHDL model, 224-227
fractional overflow. See overflow
full adder, 2-3, 45-46
function, 72-74, 422

G

gated control signal, 32-34
generate statements, 282-283, 423
generic map, 331
generics, 280-281

VHDL example, 281
glitch, 28, 32

H
hardware testing. See testing
hazards, 13-14
hold time, 29-31
checking, 267

|
I/O control block, 235
idempotent law, 4
identifiers, 45
IEEE-1164 standard logic. See standard logic
if statement, 51, 53, 421
implication table, 26-27
in, definition, 75
inertial delays, 269
inout, definition, 75
input-output element (IOE), 236
input-output interface block, 201
interface signals, 46, 420
interrupts, 393
inverter, 1

VHDL model, 432
IOE (input-output element), 236
iterative network, 344

L465 INDEX

J
J-K flip-flop. See flip-flop

K

Karnaugh maps, 7-10
4-variable, 7
map-entered variables+—2%10
use in reducing PLA tables, 93-94
keypad scanner, 109-117
debouncing and synchronizing circuit, 110-111
decoder, 112-113
keyscan, 111-112
VHDL model, 115-117

L
LAB (logic array block)
Altera FLEX 10K series, 236
Altera MAX 7000 series, 231
latch, 16-17
unintended creation from VHDL synthesis, 284
LE (logic element), 236-238
library declaration, 422
libraries, 76-77
linear feedback shift registers (LFSR), 362-364
with signature register (MISR), 362
link path, 162
linked state machines, 190-193
logic array block. See LAB
logic cell array (LCA), 201
logic element (LE), 236-238
logic expander, 231, 233
long lines, 209-210

M
M68HCO05 (M6805) See also microcontroller
behavioral VHDL code, 437-442
description, 387-393
VHDL code for synthesis, 443-451
macrocell, 231-235
map-entered variables, 9-10
for dice game controller, 180
MAR (memory address register), 309
mask programmable ROM, 86
maxterm, definition, 3
maxterm expansion, 3
Mealy sequential network, 17-23
definition, 17
implementation with ROM, 86-89
timing, 28-29

Mealy sequential network, VHDL models
with 1 process, 63-65
with 2 processes, 58-60
with arrays, 69-70
data-flow, 61
with PLA, 95-96
with ROM, 88-89
structural model, 61-62
memory address register (MAR), 309
memory controller, 327-328
microcontroller (including VHDL models), 387-415
complete design, 413-415
CPU controller, 398-404
description of operation, 381-398
hardware design, 404-411
parallel ports, 411-413
microprocessor bus interface, 316-324
microprogramming, 184-190
minimum product-of-sums from Karnaugh maps, 9
minimum sum-of-products from Karnaugh maps, 8-10
minterm, definition, 3
minterm expansion, 3
MISR (multiple-input signature register), 362, 364
modes, 46
modulo-6 counter, 216
Moore sequential network, 23-25
definition, 17
timing, 25
VHDL behavioral model, 104-107
multiple-input signature register (MISR), 362
multiple-valued logic, 95-96
multiplexer
implementation with tristate buffer, 210
in Combinatorial Function block, 204-205
to replace tristate buffers for bus, 252
use with microprogramming, 184-190
VHDL models, 54-55
in Xilinx 4000 series CLB, 219
multiplicand, definition, 124
multiplication
floating-point, 244
signed binary, 132-134
unsigned binary, 124-125
multiplier, definition, 124
multiplier, 4x4 array multiplier, 131-132
multiplier, floating-point, 245-259
simulation results, 252
SM chart for main controller, 248
state graph for multiplier control, 249
synthesis, 292-295
VHDL behavioral model, 249-252

INDEX 467

multiplier, for signed fractions, 134-135
faster, 135-138
VHDL behavioral model, 136
VHDL model using control equations, 143
VHDL model with control signals, 141
multiplier, unsigned binary, 125-130
with counter, 128-130
without counter, 125-128
FPGA implementation, 227-229
PLA table, 179
ROM table, 179
SM chart, 167
VHDL models, 127, 168
multivalued logic for VHDL, 272-281
MVLLIB, 280

N
NAND gate, 11

networks, 10-12

VHDL model, 281, 431
NATURAL subtype, 70
negative logic, definition, 1
noise, 32-33
NOR gate, 11

VHDL model, 431
NOR networks, 10-12
nMOS PLA, 90-91
NOR-NOR logic in PLA, 90-91
normalization for floating-point, 243-244
NOT gate. See inverter
now, definition, 324
numeric_bit package 286, 288
numeric_std package 286, 288

o

offset, 392
one-hot state assignment, 229, 255
operator overloading, 270-272, 288-289
operators, 70-71
OR

gate, 1

VHDL model, 430

table for X01Z logic, 275

testing for stuck-at faults, 340-343
out, definition, 75
output macrocell, 101-103
overflow

signed division, 149

signed exponent, 245, 247, 260

signed fractional, 244, 247, 259, 260

unsigned division, 146
overloaded operators, 270-272, 288-289

P
packages, 76-77, 423
PAL (programmable array logic), 96-100
combinational, 97-98
for dice game controller, 180
sequential, 98-100
use with microprogramming, 184-190
parallel adder with accumulator, 107-109
parallel expanders, 233
parallel ports, 411-413
parity, 373
partitioning program, 212
PGA (programmable gate arrays). See FPGA
PLA (programmable logic arrays), 89-96
AND-OR array structure, 90-92, 94
for dice game controller, 180
use with microprogramming, 184-190
VHDL model for PLA output, 278-280
PLA table, 92-95
for dice game controller, 181, 185, 189
for multiplier control, 179
reduction of, 93-94
place and route program, 212
PLD (programmable logic device), 85-118
other sequential devices, 101-103
programmable array logic (PAL), 96-100
programmable logic arrays (PLA), 89-96
read-only memories (ROM), 85-89
port, 45-46
port map, 48, 331
positive logic, definition, 1
POSITIVE subtype, 70
prime implicant, 8-9
procedure, 74-76, 422
process statement,
with sensitivity list, 50, 421
without sensitivity list, 421
with walit statements, 63, 66
programmable array logic. See PAL
programmable gate arrays. See FPGA
programmable interconnect matrix, 231
programmable interconnects, 209
programmable logic arrays. See PLA
programmable logic devices. See PLD
projects, 457
propagation delay, 29, 326-327
pseudo-random pattern generator (PRPG), 363

I 468 INDEX

R

race, 34
RAM (random-access memory), 223
in Altera FLEX 10K, 236
CMOS
43258A-25 RAM, 306, 326
6116-2 RAM, 304-316
dynarmic, definition, 304
interface to microprocessor bus. See bus
read cycle timing, 305
static, 303-316
definition, 304
test of VHDL model with timing , 314
test of VHDL model without timing, 309-311
testing by use of BIST, 361, 362
truth table, 304 ;
VHDL model with timing, 312
VHDL model without timing, 308
write cycle timing, 307-308
read-only memories. See ROM
redundant terms, definition, 5, 6
register memory instruction, 392
report statement, 116, 422
reserved words, definition, 45
resolution function for VHDL, 272
for IEEE 9-valued logic, 277
for X017 type, 274
rising-edge device, 32-33
rising-edge function for standard logic, 278
ROM (read-only memory), 85-89
testing by use of BIST, 361, 362
use with microprogramming, 184-190
ROM truth table, 87-88
for multiplier control, 179
row matching, 26

S

selected signal assignment statement, S5, 419
sensitivity list, SO
sequential logic, definition, 1
sequential network
asynchronous design, 34
synchronous design, 31-34
sequential statements, S0-51
serial adder. See adder, serial
serial data port, 373
serial data transmission, 373-374

serial-parallel multiplier. See multiplier, serial-parallel

setup time, 29-31
checking, 267

Shannon’s expansion theorem, 217
sharable expanders, 233
signal, 65-67
assignment statement, 44, 419
attributes, 265-266
declaration, 65, 420
definition, 44
in process, 66
signal resolution, 272-275
signature, 362
signed type, 286, 288
simulation, 56-58
command file examples, 48, 60, 62, 106, 138,
140, 154, 177, 252
waveforms, 60, 62, 106, 315, 334
SM blocks, 162-165
SM chart, 161-193
binary multiplier, 167
bus interface unit, 320
conversion from state graph, 165
conversion to VHDL, 167
derivation, 167-177
dice game, 172
linked, 192
for microprogramming, 186, 188
floating-point multiplication, 248
linked, 190-193
memory controller, 328
realization of, 178
using microprogramming, 184-190
simple memory model test, 310
TAP controller, 354
timing chart, 166
S-R flip-flop. See flip-flop
standard logic (std_logic), 95-96, 276-280
AND function, 278
rising_edge function, 278
state assignment, 19-20
one-hot, 229
for SM charts, 178
state equivalence theorem, 25-26
state graph
for control networks, 123, 126, 128, 171
conversion to SM chart, 165-166
Mealy, 19, 123, 147, 249, 346
Moore, 24, 104
strongly connected, 346
state machine chart. See SM chart
statements
alias, 127, 420
assert, 116, 422

INDEX 469

case, 55-56, 421
concurrent, definition, 44
conditional assignment, 55, 419
entity declaration, 45, 420
exit, 73, 422
file declaration, 295, 423
for loop, 72, 421
function declaration, 72, 422
generate, 282, 283, 423
if, 51, 53, 421
library declaration, 77, 422
package declaration, 76, 423
procedure declaration, 74, 422
process, 50, 63, 66, 421
report, 116, 422
selected signal assignment, 55, 419
signal declaration, 65, 420
use, 77,423
while loop, 422
state table
Mealy, 19, 123, 148, 346
Moore, 25, 107
reduction of, 26-28
storage device, 14
string, 70
strongly connected, definition, 346
structural modeling in VHDL, 61
stuck-at-0 (s-a-0) fault, 339-343
stuck-at-1 (s-a-1) fault, 339-343
subtraction, floating-point, 260
subtype, 70, 420
synchronous design, 31-34
synthesis tools, 212
synthesis of VHDL code, 283-295
case statement example, 285-286
dice game, 292
floating-point multiplier, 292-295
if example, 285
« inferred latch, 284
microcontroller, 415
state machine, 289-291
UART, 381

T
T flip-flop. See flip-flop
test bench

definition, 144

examples, 116, 139, 153, 174-177, 181, 280
testing, 339-370

boundary scan, 351-360

built-in self-test, 361-370
combinational logic, 339-343
scan path testing, 347-350
sequential logic, 344-347
TEXTIO package, 295-299, 435-436
timing charts
attributes test, 266
chip select write to RAM, 328
Mealy network (code converter), 28
Moore network (code converter), 25
scan test, 349
SM chart, 166
system with falling-edge device, 32
system with rising-edge device, 33
transport and inertial delays, 269
timing analysis, 258
traffic light controller, 104-107
transition table, 20
transport delays, 57, 269-270
tristate buffer, 35, 210-211
VHDL model, 272
tristate bus, 35-36, 210, 252. See also bus
truth table, 2, 109, 113
modified for PLA. See PLA table
ROM, 87-88
type declaration, 420
types
array, 68
file, 296
1EEE std_logic, 95-96
IEEE-1164 standard logic, 276-280
predefined, 45, 67
unconditional array type, 68-70
unconstrained array, 286
user-defined, 67
X01Z, 272-275

U
UART (universal asynchronous receiver-transmitter),
374-387._
baud rate generator (including VHDL model),
383-384
receiver (including VHDL model), 379-382
transmitter (including VHDL model), 375-379
VHDL model for complete UART, 385
underflow, 245
universal asynchronous receiver-transmitter. See
UART
unsigned type, 286, 288
use statement, 77, 423

I 470 INDEX

Vv
variables, 65-67 °
assignment statement, 419
declaration, 65, 420
in process, 66
VHDL, general, 43-80, 265-300
VHDL identifiers, 45

w

wait statements, 63, 421

weak keeper circuit, 210
while loop, 422
wired-AND function, 210
worst case analysis, 326

X
XC3020. See also FPGA
implementation of dice game, 213-216
Xilinx FPGAs. See FPGAs
XOR. See exclusive-OR

ELECTRICAL AND COMPUTER ENGINEERING/DIGITAL SYSTEMS DESIGIN

DIGITAL SYSTEMS DESIGN USING VHDL
Charles H. Roth, Jr., University of Texas at Austin

Written for an advanced-level course in digital systems design, Digital Systems Design
Using VHDL integrates the use of the industry-standard hardware description
language VHDL into the digital design process. Following a review of basic concepts
of logic design in Chapter 1, the author introduces the basics of VHDL in Chapter
2, and then incorporates more coverage of VHDL topics as needed, with advanced
topics covered in Chapter 8. Rather than simply teach VHDL as a programming
language, this book emphasizes the practical use of VHDL in the digital design
process. For example, in Chapter 9, the author develops VHDL models for a RAM
memory and a microprocessor bus interface; he then uses a VHDL simulation to
verify that timing specifications for the interface between the memory and micro-
processor bus are satisfied. The book also discusses the use of CAD tools to synthesize
digital logic from a VHDL description (in Chapter 8), and stresses the use of pro-
grammable logic devices, including programmable gate arrays. Chapter 10 introduces
methods for testing digital systems including boundary scan and built-in self-test.

VHDL files supporting the book may be downloaded from this PWS web
site: http://www.pws.com /ee /roth.html

Features:

Teaches the use of VHDL in the digital design process — both digital design
concepts and VHDL are covered simultaneously.

Teaches the use of VHDL for modeling, simulating, and synthesizing digital
systems.

Design examples range in complexity from a simple adder to a complete
microcontroller.

Includes coverage (in Chapter 10) of design for testability, an increasingly
important aspect of digital systems design.

Numerous examples and exercises, reflecting varying levels of difficulty, are
provided at the end of each chapter. A

PWS Publishing Company
20 Park Plaza, Boston, MA 02116 rsitétsbibliot

PWS — Redesigning Engineering Education
IDP An International Thomson Publishing Company
http://www.pws.com

ISBN - SB'—I ‘:IEEI':I':I X

