
July 10, 2002 12:54 vra23151_fmt Sheet number 1 Page number i black

Fundamentals
of

Digital Logic with Verilog Design

Stephen Brown and Zvonko Vranesic
Department of Electrical and Computer Engineering

University of Toronto

Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis
Bangkok Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

July 15, 2002 09:50 vra23151_cop Sheet number 1 Page number ii black

McGraw-Hill Higher Education
A Division of The McGraw-Hill Companies

FUNDAMENTALS OF DIGITAL LOGIC WITH VERILOG DESIGN

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas,
New York, NY 10020. Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. No part of
this publication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not
limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper.

International 1 2 3 4 5 6 7 8 9 0 QPF/QPF 0 9 8 7 6 5 4 3 2
Domestic 1 2 3 4 5 6 7 8 9 0 QPF/QPF 0 9 8 7 6 5 4 3 2

ISBN 0-07-282315-1
ISBN 0-07-121322-8 (ISE)

Publisher: Elizabeth A. Jones
Senior sponsoring editor: Carlise Paulson
Administrative assistant: Michaela M. Graham
Executive marketing manager: John Wannemacher
Senior project manager: Jill R. Peter
Production supervisor: Kara Kudronowicz
Lead media project manager: Judi David
Senior media technology producer: Phillip Meek
Coordinator of freelance design: Michelle D. Whitaker
Cover designer: Rokusek Design
Cover image: Stephen Brown and Zvonko Vranesic
Senior photo research coordinator: Lori Hancock
Compositor: Techsetters, Inc.
Typeface: 10/12 Times Roman
Printer: Quebecor World Fairfield, PA

Library of Congress Cataloging-in-Publication Data

Brown, Stephen D.
Fundamentals of digital logic with Verilog design / Stephen D. Brown, Zvonko G. Vranesic.—1st ed.

p. cm. (McGraw-Hill Series in electrical and computer engineering)
Includes index.
ISBN 0-07-282315-1
1. Logic circuits—Design and construction—Data processing. 2. Verilog (Computer hardware

description language). 3. Computer-aided design. I. Vranesic, Zvonko G. II. Title. III. Series.

TK7868.L6 B76 2003
621.39′2—dc21 2002071439

CIP

INTERNATIONAL EDITION ISBN 0-07-121322-8
Copyright © 2003. Exclusive rights by The McGraw-Hill Companies, Inc., for manufacture and export. This
book cannot be re-exported from the country to which is is sold by McGraw-Hill. The International Edition is
not available in North America.

www.mhhe.com

June 14, 2002 09:52 vra23151_ded Sheet number 1 Page number iii black

To Susan and Anne

June 20, 2002 09:49 vra23151_ata Sheet number 1 Page number v black

v

About the Authors

Stephen Brown received his B.A.Sc. degree in Electrical Engineering from the University
of New Brunswick, Canada, and the M.A.Sc. and Ph.D. degrees in Electrical Engineering
from the University of Toronto. He joined the University of Toronto faculty in 1992, where
he is now an Associate Professor in the Department of Electrical & Computer Engineering.
He is also Director of Software Development at the Altera Toronto Technology Center.

His research interests include field-programmable VLSI technology and computer
architecture. He won the Canadian Natural Sciences and Engineering Research Council’s
1992 Doctoral Prize for the best Ph.D. thesis in Canada.

He has won four awards for excellence in teaching electrical engineering, computer
engineering, and computer science courses. He is a coauthor of two other books: Funda-
mentals of Digital Logic with VHDL Design and Field-Programmable Gate Arrays.

Zvonko Vranesic received his B.A.Sc., M.A.Sc., and Ph.D. degrees, all in Electrical Engi-
neering, from the University of Toronto. From 1963–1965, he worked as a design engineer
with the Northern Electric Co. Ltd. in Bramalea, Ontario. In 1968 he joined the University
of Toronto, where he is now a Professor in the Departments of Electrical & Computer Engi-
neering and Computer Science. During the 1978–79 academic year, he was a Senior Visitor
at the University of Cambridge, England, and during 1984–85 he was at the University of
Paris, 6. From 1995 to 2000 he served as Chair of the Division of Engineering Science at
the University of Toronto. He is also involved in research and development at the Altera
Toronto Technology Center.

His current research interests include computer architecture, field-programmable VLSI
technology, and multiple-valued logic systems.

He is a coauthor of four other books: Computer Organization, 5th ed.; Fundamentals
of Digital Logic with VHDL Design; Microcomputer Structures; and Field-Programmable
Gate Arrays. In 1990, he received the Wighton Fellowship for “innovative and distinctive
contributions to undergraduate laboratory instruction.”

He has represented Canada in numerous chess competitions. He holds the title of
International Master.

July 10, 2002 15:44 vra23151_ser Sheet number 1 Page number vi black

vi

McGraw-Hill Series in Electrical and Computer Engineering

Brown, Vranesic: Fundamentals of Digital Logic with VHDL Design
Givone: Digital Principles and Design
Ham, Kostanic: Principles of Neurocomputing for Science and Engineering
Hamacher, Vranesic, and Zaky: Computer Organization
Hayes: Computer Architecture and Organization
Hwang: Advanced Computer Architecture: Parallelism, Scalability, Programmability
Hwang: Scalable Parallel Computing: Technology, Architecture, Programming
Leon-Garcia, Widjaja: Communication Networks
Marcovitz: Inroduction to Logic Design
Navabi: VHDL: Analysis and Modeling of Digital Systems
Patt, Patel: Introduction to Computing Systems: From Bits & Gates to C & Beyond
Schalkoff: Artificial Neural Networks
Shen, Lipasti: Modern Processor Design

July 10, 2002 14:23 vra23151_fwd Sheet number 1 Page number vii black

vii

Foreword

Chess is a game that provides a splendid vehicle for displaying human intelligence in a
competitive environment. During the past 30 years, it has also served as a platform for
determining the extent to which machines can emulate intelligent behavior. Many chess
programs are available for today’s computers. Chess machines, comprising a computer and
a chess-playing program, are now capable of defeating even the strongest human players.

The ultimate challenge took place in 1997, when IBM’s Deep Blue chess machine
defeated the World Champion Garry Kasparov in a six-game match. The essence of this
machine are logic circuits, algorithms, and software—coupled with people who know how
to use these resources. Although all of these factors are crucial, the greatest leap forward,
in terms of chess-playing strength, was made when extremely powerful logic circuits were
developed. Most of these circuits are used in general purpose computers, but some are
specialized for the chess-playing application. A key reason why the Deep Blue machine is
so strong is that it can evaluate about 200 million chess position in one second.

This textbook deals with logic circuits and explains how they are designed. We have
included in the book the moves from the decisive sixth game of the 1997 match to remind
the reader of the incredible possibilities that are attainable with well-designed logic circuits.
Deep Blue played with the white pieces.

July 10, 2002 14:25 vra23151_pr Sheet number 1 Page number viii black

viii

Preface

This book is intended for an introductory course in digital logic design, which is a basic
course in most electrical and computer engineering programs. A successful designer of
digital logic circuits needs a good understanding of basic concepts and a firm grasp of
computer-aided design (CAD) tools. The purpose of our book is to provide the desirable
balance between teaching the basic concepts and practical application through CAD tools.
To facilitate the learning process, the necessary CAD software is included as an integral
part of the book package.

A serious drawback of many books on digital logic design is that they cover too much
material. A book that covers a large number of topics is not easy to use in a classroom,
particularly if the topics are not covered in sufficient depth. Also, in their desire to provide
a vast amount of practical advice, the authors often make the text difficult to follow by the
students who are still struggling with the fundamental concepts. Our aim is to avoid both
of these problems.

The main goals of the book are (1) to teach students the fundamental concepts in
classical manual digital design and (2) illustrate clearly the way in which digital circuits
are designed today, using CAD tools. Even though modern designers no longer use manual
techniques, except in rare circumstances, our motivation for teaching such techniques is
to give students an intuitive feeling for how digital circuits operate. Also, the manual
techniques provide an illustration of the types of manipulations performed by CAD tools,
giving students an appreciation of the benefits provided by design automation. Throughout
the book, basic concepts are introduced by way of examples that involve simple circuit
designs, which we perform using both manual techniques and modern CAD-tool-based
methods. Having established the basic concepts, more complex examples are then provided,
using the CAD tools. Thus our emphasis is on modern design methodology to illustrate
how digital design is carried out in practice today.

Technology and CAD Support

The book discusses modern digital circuit implementation technologies. We briefly discuss
SSI, as well as semi-custom and full-custom technologies. However, the emphasis is on
programmable logic devices (PLDs). This is the most appropriate technology for use in a
textbook for two reasons. First, PLDs are widely used in practice and are suitable for almost
all types of digital circuit designs. In fact, students are more likely to be involved in PLD-
based designs at some point in their careers than in any other technology. Second, circuits
are implemented in PLDs by end-user programming. Therefore, students can be provided
with an opportunity, in a laboratory setting, to implement the book’s design examples in
actual chips. Students can also simulate the behavior of their designed circuits on their own
computers. We use the two most popular types of PLDs for targeting of designs: complex
programmable logic devices (CPLDs) and field-programmable gate arrays (FPGAs).

July 10, 2002 14:25 vra23151_pr Sheet number 2 Page number ix black

Preface ix

Our CAD support is based on Altera MAX+plusII software. MAX+plusII provides
automatic mapping of a design into Altera CPLDs and FPGAs, which are among the most
widely used PLDs in the industry. The features of MAX+plusII that are particularly attrac-
tive for our purposes are:

• It is a commercial product. The version included with the book supports all major
features of the product. Students will be able to easily enter a design into the CAD
system, compile the design into a selected device (the choice of device can be changed
at any time and the design retargeted to a different device), simulate the functionality
and detailed timing of the resulting circuit, and if laboratory facilities are provided at
the student’s school, implement the designs in actual devices.

• It provides for design entry using both hardware description languages (HDLs) and
schematic capture. In the book, we provide examples of design using schematic capture,
but we emphasize the HDL-based design because it is the most efficient design method
to use in practice. We describe in detail the IEEE Standard Verilog language and use
it extensively in examples. The CAD system included with the book has a Verilog
compiler, which allows the student to automatically create circuits from the Verilog
code and implement these circuits in real chips.

• It can automatically target a design to various types of devices. This feature allows us
to illustrate the ways in which the architecture of the target device affects a designer’s
circuit.

• It can be used on most types of popular computers. We expect that most students will
use the version of the software that runs on IBM-compatible computers (running any
version of Microsoft windows), which is provided with the book. However, through
Altera’s university program the software is also available for other machines, such as
SUN or HP workstations.

A MAX+plusII CD-ROM is included with each copy of the book. Use of the software
is fully integrated into the book so that students can try, firsthand, all design examples. To
teach the students how to use this software, the book includes three, progressively advanced,
hands-on tutorials.

Scope of the Book

Chapter 1 provides a general introduction to the process of designing digital systems. It
discusses the key steps in the design process and explains how CAD tools can be used to
automate many of the required tasks.

Chapter 2 introduces the basic aspects of logic circuits. It shows how Boolean algebra
is used to represent such circuits. It also gives the reader a first glimpse at Verilog, as an
example of a hardware description language that may be used to specify the logic circuits.

The electronic aspects of digital circuits are presented in Chapter 3. This chapter shows
how the basic gates are built using transistors and presents various factors that affect circuit
performance. The emphasis is on the latest technologies, with particular focus on CMOS
technology and programmable logic devices.

Chapter 4 deals with the synthesis of combinational circuits. It covers all aspects of
the synthesis process, starting with an initial design and performing the optimization steps
needed to generate a desired final circuit. It shows how CAD tools are used for this purpose.

July 10, 2002 14:25 vra23151_pr Sheet number 3 Page number x black

x Preface

Chapter 5 concentrates on circuits that perform arithmetic operations. It begins with
a discussion of how numbers are represented in digital systems and then shows how such
numbers can be manipulated using logic circuits. This chapter illustrates how Verilog can
be used to specify the desired functionality and how CAD tools provide a mechanism for
developing the required circuits. We chose to introduce the number representations at this
point, rather than in the very beginning of the book, to make the discussion more mean-
ingful and interesting, because we can immediately provide examples of how numerical
information may be processed by actual circuits.

Chapter 6 presents combinational circuits that are used as building blocks. It includes
the encoder, decoder, and multiplexer circuits. These circuits are very convenient for
illustrating the application of many Verilog constructs, giving the reader an opportunity to
discover more advanced features of Verilog.

Storage elements are introduced in Chapter 7. The use of flip-flops to realize regular
structures, such as shift registers and counters, is discussed. Verilog-specified designs of
these structures are included.

Chapter 8 gives a detailed presentation of synchronous sequential circuits (finite state
machines). It explains the behavior of these circuits and develops practical design tech-
niques for both manual and automated design.

Asynchronous sequential circuits are discussed in Chapter 9. While this treatment is
not exhaustive, it provides a good indication of the main characteristics of such circuits.
Even though the asynchronous circuits are not used extensively in practice, they should be
studied because they provide an excellent vehicle for gaining a deeper understanding of
the operation of digital circuits in general. They illustrate the consequences of propagation
delays and race conditions that may be inherent in the structure of a circuit.

Chapter 10 is a discussion of a number of practical issues that arise in the design of real
systems. It highlights problems often encountered in practice and indicates how they can
be overcome. Examples of larger circuits illustrate a hierarchical approach in designing
digital systems. Complete Verilog code for these circuits is presented.

Chapter 11 introduces the topic of testing. A designer of logic circuits has to be aware
of the need to test circuits and should be conversant with at least the most basic aspects of
testing.

Appendix A provides a complete summary of Verilog features. Although use of Verilog
is integrated throughout the book, this appendix provides a convenient reference that the
reader can consult from time to time when writing Verilog code.

Appendices B, C, and D contain a sequence of tutorials on the MAX+plusII CAD tools.
This material is suitable for self-study; it shows the student in a step-by-step manner how
to use the CAD software provided with the book.

Appendix E gives detailed information about the devices used in illustrative examples.
It also includes a brief discussion of TTL technology.

What Can Be Covered in a Course

All the material in the book can be covered in 2 one-quarter courses. A good coverage
of the most important material can be achieved in a single one-semester, or even a one-
quarter, course. This is possible only if the instructor does not spend too much time teaching
the intricacies of Verilog and CAD tools. To make this approach possible, we organized

July 10, 2002 14:25 vra23151_pr Sheet number 4 Page number xi black

Preface xi

the Verilog material in a modular style that is conducive to self-study. Our experience in
teaching different classes of students at the University of Toronto shows that the instructor
may spend only 2 to 3 lecture hours on Verilog, concentrating mostly on the specification
of sequential circuits. The Verilog examples given in the book are largely self-explanatory,
and students can understand them easily. Moreover, the instructor need not teach how to use
the CAD tools, because the MAX+plusII tutorials in Appendices B, C, and D are suitable
for self-study.

The book is also suitable for a course in logic design that does not include exposure to
Verilog. However, some knowledge of Verilog, even at a rudimentary level, is beneficial
to the students, and it is a great preparation for a job as a design engineer.

One-Semester Course

A natural starting point for formal lectures is Chapter 2. The material in Chapter 1 is
a general introduction that serves as a motivation for why logic circuits are important and
interesting; students can read and understand this material easily.

The following material should be covered in lectures:

• Chapter 2—all sections.
• Chapter 3—sections 3.1 to 3.7. Also, it is useful to cover sections 3.8 and 3.9 if the

students have some basic knowledge of electrical circuits.
• Chapter 4—sections 4.1 to 4.7 and section 4.12.
• Chapter 5—sections 5.1 to 5.5.
• Chapter 6—all sections.
• Chapter 7—all sections.
• Chapter 8—sections 8.1 to 8.9.

If time permits, it would also be very useful to cover sections 9.1 to 9.3 and section 9.6 in
Chapter 9, as well as one or two examples in Chapter 10.

One-Quarter Course

In a one-quarter course the following material can be covered:

• Chapter 2—all sections.
• Chapter 3—sections 3.1 to 3.3.
• Chapter 4—sections 4.1 to 4.5 and section 4.12.
• Chapter 5—sections 5.1 to 5.3 and section 5.5.
• Chapter 6—all sections.
• Chapter 7—sections 7.1 to 7.10 and section 7.13.
• Chapter 8—Sections 8.1 to 8.5.

A More Traditional Approach

The material in Chapters 2 and 4 introduces Boolean algebra, combinational logic circuits,
and basic minimization techniques. Chapter 2 provides initial exposure to these topics using
onlyAND, OR, NOT, NAND, and NOR gates. Then Chapter 3 discusses the implementation
technology details, before proceeding with the synthesis techniques and other types of gates

July 10, 2002 14:25 vra23151_pr Sheet number 5 Page number xii black

xii Preface

in Chapter 4. The material in Chapter 4 is appreciated better if students understand the
technological reasons for the existence of NAND, NOR, and XOR gates, and the various
programmable logic devices.

An instructor who favors a more traditional approach may cover Chapters 2 and 4 in
succession. To understand the use of NAND, NOR, and XOR gates, it is necessary only
that the instructor provide a functional definition of these gates.

Verilog

Verilog is a complex language, which some instructors feel is too hard for beginning students
to grasp. We fully appreciate this issue and have attempted to solve it. It is not necessary
to introduce the entire Verilog language. In the book we present the important Verilog
constructs that are useful for the design and synthesis of logic circuits. Many other language
constructs, such as those that have meaning only when using the language for simulation
purposes, are omitted. The Verilog material is introduced gradually, with more advanced
features being presented only at points where their use can be demonstrated in the design
of relevant circuits.

The book includes more than 140 examples of Verilog code. These examples illustrate
how Verilog is used to describe a wide range of logic circuits, from those that contain only
a few gates to those that represent digital systems such as a simple processor.

Homework Problems

More than 400 homework problems are provided in the book. Solutions to these problems
are available to instructors in the Solutions Manual that accompanies the book.

Laboratory

The book can be used for a course that does not include laboratory exercises, in which case
students can get useful practical experience by simulating the operation of their designed
circuits by using the CAD tools provided with the book. If there is an accompanying labora-
tory, then a number of design examples in the book are suitable for laboratory experiments.
Additional experiments are available on the authors’ website.

Acknowledgments

We wish to express our thanks to the people who have helped during the preparation of the
book. Kelly Chan helped with the technical preparation of the manuscript. Dan Vranesic
produced a substantial amount of artwork. He and Deshanand Singh also helped with the
preparation of the solutions manual. The reviewers, William Barnes, New Jersey Institute
of Technology; James Clark, McGill University; Stephen DeWeerth, Georgia Institute of
Technology; Clay Gloster, Jr., North Carolina State University (Raleigh); Carl Hamacher,
Queen’s University; Wei-Ming Lin, University of Texas (Austin); Wayne Loucks, Univer-
sity of Waterloo; Chris Myers, University of Utah; James Palmer, Rochester Institute of

July 10, 2002 14:25 vra23151_pr Sheet number 6 Page number xiii black

Preface xiii

Technology; Gandhi Puvvada, University of Southern California; Teodoro Robles, Milwau-
kee School of Engineering; Tatyana Roziner, Boston University; Rob Rutenbar, Carnegie
Mellon University; Charles Silio, Jr., University of Maryland; Scott Smith, University of
Missouri (Rolla); Arun Somani, Iowa State University; and Zeljko Zilic, McGill University
provided constructive criticism and made numerous suggestions for improvements. We
are grateful to the Altera Corporation for providing the MAX+plusII CAD system. The
support of McGraw-Hill people has been exemplary. We truly appreciate the help of Kel-
ley Butcher, Catherine Fields Shultz, Michaela Graham, Betsy Jones, Kara Kudronowicz,
Carlise Paulson, Jill Peter, John Wannemacher, and Michelle Whitaker.

Stephen Brown and Zvonko Vranesic

July 2, 2002 09:33 vra23151_tc Sheet number 1 Page number xv black

xv

Contents

C h a p t e r 1

Design Concepts 1

1.1 Digital Hardware 2
1.1.1 Standard Chips 4
1.1.2 Programmable Logic Devices 4
1.1.3 Custom-Designed Chips 5

1.2 The Design Process 6
1.3 Design of Digital Hardware 8

1.3.1 Basic Design Loop 8
1.3.2 Design of a Digital Hardware Unit 9

1.4 Logic Circuit Design in This Book 11
1.5 Theory and Practice 14

References 15

C h a p t e r 2

Introduction to Logic
Circuits 17

2.1 Variables and Functions 18
2.2 Inversion 21
2.3 Truth Tables 22
2.4 Logic Gates and Networks 23

2.4.1 Analysis of a Logic Network 24
2.5 Boolean Algebra 27

2.5.1 The Venn Diagram 30
2.5.2 Notation and Terminology 34
2.5.3 Precedence of Operations 34

2.6 Synthesis Using AND, OR, and NOT
Gates 35
2.6.1 Sum-of-Products and Product-of-Sums

Forms 37
2.7 NAND and NOR Logic Networks 41
2.8 Design Examples 44

2.8.1 Three-Way Light Control 44
2.8.2 Multiplexer Circuit 45

2.9 Introduction to CAD Tools 48
2.9.1 Design Entry 48
2.9.2 Synthesis 51
2.9.3 Functional Simulation 52
2.9.4 Summary 52

2.10 Introduction to Verilog 54
2.10.1 Structural Specification of Logic

Circuits 55
2.10.2 Behavioral Specification of Logic

Cirucits 58
2.10.3 How Not to Write Verilog Code 60

2.11 Concluding Remarks 60
Problems 61
References 65

C h a p t e r 3

Implementation Technology 67

3.1 Transistor Switches 69
3.2 NMOS Logic Gates 71
3.3 CMOS Logic Gates 74

3.3.1 Speed of Logic Gate Circuits 81

3.4 Negative Logic System 82
3.5 Standard Chips 83

3.5.1 7400-Series Standard Chips 83

3.6 Programmable Logic Devices 87
3.6.1 Programmable Logic Array (PLA) 87
3.6.2 Programmable Array Logic (PAL) 90
3.6.3 Programming of PLAs and PALs 92
3.6.4 Complex Programmable Logic Devices

(CPLDs) 94
3.6.5 Field-Programmable Gate Arrays 98
3.6.6 Using CAD Tools to Implement

Circuits in CPLDs and FPGAs 102

3.7 Custom Chips, Standard Cells, and Gate
Arrays 103

3.8 Practical Aspects 106
3.8.1 MOSFET Fabrication and

Behavior 106
3.8.2 MOSFET On-Resistance 110
3.8.3 Voltage Levels in Logic Gates 111
3.8.4 Noise Margin 113
3.8.5 Dynamic Operation of Logic

Gates 114
3.8.6 Power Dissipation in Logic

Gates 117

July 2, 2002 09:33 vra23151_tc Sheet number 2 Page number xvi black

xvi Contents

3.8.7 Passing 1s and 0s Through Transistor
Switches 118

3.8.8 Fan-in and Fan-out in Logic
Gates 120

3.9 Transmission Gates 126
3.9.1 Exclusive-OR Gates 127
3.9.2 Multiplexer Circuit 128

3.10 Implementation Details for SPLDs, CPLDs,
and FPGAs 129
3.10.1 Implementation in FPGAs 135

3.11 Concluding Remarks 137
Problems 138
References 147

C h a p t e r 4

Optimized Implementation
of Logic Functions 149

4.1 Karnaugh Map 150
4.2 Strategy for Minimization 158

4.2.1 Terminology 159
4.2.2 Minimization Procedure 160

4.3 Minimization of Product-of-Sums
Forms 164

4.4 Incompletely Specified Functions 166
4.5 Multiple-Output Circuits 167
4.6 Multilevel Synthesis 171

4.6.1 Factoring 172
4.6.2 Functional Decomposition 175
4.6.3 Multilevel NAND and NOR

Circuits 181
4.7 Analysis of Multilevel Circuits 184
4.8 Cubical Representation 189

4.8.1 Cubes and Hypercubes 189
4.9 A Tabular Method for Minimization 193

4.9.1 Generation of Prime Implicants 193
4.9.2 Determination of a Minimum Cover 195
4.9.3 Summary of the Tabular Method 200

4.10 A Cubical Technique for Minimization 201
4.10.1 Determination of Essential Prime

Implicants 204
4.10.2 Complete Procedure for Finding

a Minimal Cover 206
4.11 Practical Considerations 208
4.12 CAD Tools 209

4.12.1 Logic Synthesis and Optimization 210
4.12.2 Physical Design 211
4.12.3 Timing Simulation 213

4.12.4 Summary of Design Flow 213
4.12.5 Examples of Circuits Synthesized

from Verilog Code 216

4.13 Concluding Remarks 220
Problems 221
References 226

C h a p t e r 5

Number Representation
andArithmetic Circuits 229

5.1 Positional Number Representation 230
5.1.1 Unsigned Integers 230
5.1.2 Conversion Between Decimal

and Binary Systems 231
5.1.3 Octal and Hexadecimal

Representations 232

5.2 Addition of Unsigned Numbers 234
5.2.1 Decomposed Full-Adder 238
5.2.2 Ripple-Carry Adder 239
5.2.3 Design Example 240

5.3 Signed Numbers 240
5.3.1 Negative Numbers 240
5.3.2 Addition and Subtraction 224
5.3.3 Adder and Subtractor Unit 248
5.3.4 Radix-Complement Schemes 249
5.3.5 Arithmetic Overflow 253
5.3.6 Performance Issues 254

5.4 Fast Adders 255
5.4.1 Carry-Lookahead Adder 255

5.5 Design of Arithmetic Circuits Using CAD
Tools 262
5.5.1 Design of Arithmetic Circuits Using

Schematic Capture 262
5.5.2 Design of Arithmetic Circuits Using

Verilog 265
5.5.3 Using Vectored Signals 268
5.5.4 Using a Generic Specification 269
5.5.5 Nets and Variables in Verilog 270
5.5.6 Arithmetic Assignment

Statements 271
5.5.7 Representation of Numbers in Verilog

Code 275

5.6 Multiplication 277
5.6.1 Array Multiplier for Unsigned

Numbers 279
5.6.2 Multiplication of Signed Numbers 279

July 2, 2002 09:33 vra23151_tc Sheet number 3 Page number xvii black

Contents xvii

5.7 Other Number Representations 282
5.7.1 Fixed-Point Numbers 282
5.7.2 Floating-Point Numbers 282
5.7.3 Binary-Coded-Decimal

Representation 284
5.8 ASCII Character Code 289

Problems 291
References 295

C h a p t e r 6

Combinational-Circuit
Building Blocks 297

6.1 Multiplexers 298
6.1.1 Synthesis of Logic Functions Using

Multiplexers 303
6.1.2 Multiplexer Synthesis Using Shannon’s

Expansion 304
6.2 Decoders 311

6.2.1 Demultiplexers 314
6.3 Encoders 316

6.3.1 Binary Encoders 316
6.3.2 Priority Encoders 317

6.4 Code Converters 318
6.5 Arithmetic Comparison Circuits 320
6.6 Verilog for Combinational Circuits 320

6.6.1 The Conditional Operator 321
6.6.2 The If-Else Statement 323
6.6.3 The Case Statement 326
6.6.4 The For Loop 331
6.6.5 Verilog Operators 333
6.6.6 The Generate Construct 338
6.6.7 Tasks and Functions 339

6.7 Concluding Remarks 343
Problems 343
References 347

C h a p t e r 7

Flip-Flops, Registers,
Counters, and a Simple
Processor 349

7.1 Basic Latch 351
7.2 Gated SR Latch 353

7.2.1 Gated SR Latch with NAND Gates 355
7.3 Gated D Latch 356

7.3.1 Effects of Propagation Delays 358

7.4 Master-Slave and Edge-Triggered
D Flip-Flops 359
7.4.1 Master-Slave D Flip-Flop 359
7.4.2 Edge-Triggered D Flip-Flop 360
7.4.3 D Flip-Flops with Clear and

Preset 362
7.5 T Flip-Flop 364

7.5.1 Configurable Flip-Flops 367
7.6 JK Flip-Flop 367
7.7 Summary of Terminology 368
7.8 Registers 368

7.8.1 Shift Register 369
7.8.2 Parallel-Access Shift Register 370

7.9 Counters 371
7.9.1 Asynchronous Counters 371
7.9.2 Synchronous Counters 374
7.9.3 Counters with Parallel Load 378

7.10 Reset Synchronization 378
7.11 Other Types of Counters 382

7.11.1 BCD Counter 382
7.11.2 Ring Counter 383
7.11.3 Johnson Counter 384
7.11.4 Remarks on Counter Design 385

7.12 Using Storage Elements with CAD
Tools 385
7.12.1 Including Storage Elements

in Schematics 385
7.12.2 Using Verilog Constructs for Storage

Elements 388
7.12.3 Blocking and Non-blocking

Assignments 390
7.12.4 Non-blocking Assignments for

Combinational Circuits 394
7.12.5 Flip-Flops with Clear Capability 395

7.13 Using Registers and Counters with CAD
Tools 396
7.13.1 Including Registers and Counters

in Schematics 396
7.13.2 Using Library Modules in Verilog

Code 399
7.13.3 Using Verilog Constructs for Registers

and Counters 400
7.14 Design Examples 405

7.14.1 Bus Structure 405
7.14.2 Simple Processor 417
7.14.3 Reaction Timer 429
7.14.4 Register Transfer Level (RTL)

Code 433
7.15 Concluding Remarks 434

July 2, 2002 09:33 vra23151_tc Sheet number 4 Page number xviii black

xviii Contents

Problems 434
References 442

C h a p t e r 8

Synchronous Sequential
Circuits 445

8.1 Basic Design Steps 447
8.1.1 State Diagram 447
8.1.2 State Table 449
8.1.3 State Assignment 449
8.1.4 Choice of Flip-Flops and Derivation

of Next-State and Output
Expressions 451

8.1.5 Timing Diagram 453
8.1.6 Summary of Design Steps 454

8.2 State-Assignment Problem 458
8.2.1 One-Hot Encoding 460

8.3 Mealy State Model 462
8.4 Design of Finite State Machines Using CAD

Tools 467
8.4.1 Verilog Code for Moore-Type

FSMs 467
8.4.2 Synthesis of Verilog Code 468
8.4.3 Simulating and Testing the Circuit 470
8.4.4 Alternative Styles of Verilog Code 471
8.4.5 Summary of Design Steps When Using

CAD Tools 473
8.4.6 Specifying the State Assignment in

Verilog Code 474
8.4.7 Specification of Mealy FSMs Using

Verilog 475
8.5 Serial Adder Example 477

8.5.1 Mealy-Type FSM for Serial Adder 477
8.5.2 Moore-Type FSM for Serial Adder 479
8.5.3 Verilog Code for the Serial Adder 480

8.6 State Minimization 486
8.6.1 Partitioning Minimization

Procedure 486
8.6.2 Incompletely Specified FSMs 493

8.7 Design of a Counter Using the Sequential
Circuit Approach 495
8.7.1 State Diagram and State Table

for a Modulo-8 Counter 495
8.7.2 State Assignment 496
8.7.3 Implementation Using D-Type

Flip-Flops 497
8.7.4 Implementation Using JK-Type

Flip-Flops 498
8.7.5 Example—A Different Counter 502

8.8 FSM as an Arbiter Circuit 505
8.8.1 Implementation of the Arbiter

Circuit 508
8.8.2 Minimizing the Output Delays

for an FSM 511
8.8.3 Summary 511

8.9 Analysis of Synchronous Sequential
Circuits 512

8.10 Algorithmic State Machine (ASM)
Charts 516

8.11 Formal Model for Sequential Circuits 519
8.12 Concluding Remarks 521

Problems 521
References 525

C h a p t e r 9

Asynchronous Sequential
Circuits 527

9.1 Asynchronous Behavior 528
9.2 Analysis of Asynchronous Circuits 531
9.3 Synthesis of Asynchronous Circuits 540
9.4 State Reduction 553
9.5 State Assignment 568

9.5.1 Transition Diagram 571
9.5.2 Exploiting Unspecified Next-State

Entries 574
9.5.3 State Assignment Using Additional

State Variables 578
9.5.4 One-Hot State Assignment 582

9.6 Hazards 584
9.6.1 Static Hazards 585
9.6.2 Dynamic Hazards 590
9.6.3 Significance of Hazards 592

9.7 A Complete Design Example 592
9.7.1 The Vending-Machine Controller 592

9.8 Concluding Remarks 599
Problems 599
References 604

C h a p t e r 10

Digital System Design 605

10.1 Building Block Circuits 606
10.1.1 Flip-Flops and Registers with Enable

Inputs 606
10.1.2 Shift Registers with Enable

Inputs 607

July 2, 2002 09:33 vra23151_tc Sheet number 5 Page number xix black

Contents xix

10.1.3 Static Random Access Memory
(SRAM) 609

10.1.4 SRAM Blocks in PLDs 611
10.2 Design Examples 612

10.2.1 A Bit-Counting Circuit 612
10.2.2 ASM-Chart-Implied Timing

Information 613
10.2.3 Shift-and-Add Multiplier 618
10.2.4 Divider 623
10.2.5 Arithmetic Mean 631
10.2.6 Sort Operation 641

10.3 Clock Synchronization 653
10.3.1 Clock Skew 653
10.3.2 Flip-Flop Timing Parameters 655
10.3.3 Asynchronous Inputs to Flip-Flops 656
10.3.4 Switch Debouncing 657

10.4 Concluding Remarks 659
Problems 659
References 663

C h a p t e r 11

Testing of Logic Circuits 665

11.1 Fault Model 666
11.1.1 Stuck-at Model 666
11.1.2 Single and Multiple Faults 667
11.1.3 CMOS Circuits 667

11.2 Complexity of a Test Set 667
11.3 Path Sensitizing 669

11.3.1 Detection of a Specific Fault 671
11.4 Circuits with Tree Structure 673
11.5 Random Tests 674
11.6 Testing of Sequential Circuits 677

11.6.1 Design for Testability 677
11.7 Built-in Self-Test 681

11.7.1 Built-in Logic Block Observer 685
11.7.2 Signature Analysis 687
11.7.3 Boundary Scan 688

11.8 Printed Circuit Boards 688
11.8.1 Testing of PCBs 690
11.8.2 Instrumentation 691

11.9 Concluding Remarks 692
Problems 692
References 695

A p p e n d i x A

Verilog Reference 697

A.1 Documentation in Verilog Code 699
A.2 White Space 699

A.3 Signals in Verilog Code 699
A.4 Identifier Names 699
A.5 Signal Values, Numbers, and Parameters 700
A.6 Net and Variable Types 701

A.6.1 Nets 701
A.6.2 Variables 702
A.6.3 Memories 703

A.7 Operators 703
A.8 Verilog Module 705
A.9 Gate Instantiations 706
A.10 Concurrent Statements 708

A.10.1 Continuous Assignments 709
A.10.2 Using Parameters 710

A.11 Procedural Statements 711
A.11.1 Always and Initial Blocks 711
A.11.2 The If-Else Statement 713
A.11.3 Statement Ordering 714
A.11.4 The Case Statement 715
A.11.5 Casex and Casez Statements 717
A.11.6 Loop Statements 717
A.11.7 Blocking versus Non-blocking

Assignments for Combinational
Circuits 721

A.12 Using Subcircuits 721
A.12.1 Subcircuit Parameters 723
A.12.2 Verilog 2001 Generate Capability 725

A.13 Functions and Tasks 726
A.14 Sequential Circuits 730

A.14.1 A Gated D Latch 730
A.14.2 D Flip-Flop 730
A.14.3 Flip-Flops with Reset 731
A.14.4 Instantiating a Flip-Flop from a

Library 732
A.14.5 Registers 733
A.14.6 Shift Registers 734
A.14.7 Counters 735
A.14.8 An Example of a Sequential

Circuit 736
A.14.9 Moore-Type Finite State

Machines 737
A.14.10 Mealy-Type Finite State

Machines 739

A.15 Guidelines for Writing Verilog Code 742
A.16 MAX+PlusII Verilog Support 745

A.16.1 Limitations in MAX+PlusII 745

A.17 Concluding Remarks 746
References 746

July 2, 2002 09:33 vra23151_tc Sheet number 6 Page number xx black

xx Contents

A p p e n d i x B

Tutorial 1 747

B.1 Introduction 748
B.1.1 Getting Started 748

B.2 Design Entry Using Schematic
Capture 751
B.2.1 Specifying the Project Name 752
B.2.2 Using the Graphic Editor 752
B.2.3 Synthesizing a Circuit from the

Schematic 758
B.2.4 Performing Functional Simulation 759
B.2.5 Using the Message Processor to Locate

and Fix Errors 763
B.3 Design Entry Using Verilog 765

B.3.1 Specifying the Project Name 765
B.3.2 Using the Text Editor 765
B.3.3 Synthesizing a Circuit from the Verilog

Code 767
B.3.4 Performing Functional Simulation 767
B.3.5 Using the Message Processor to Debug

Verilog Code 768
B.4 Design Entry Using Truth Tables 768

B.4.1 Using the Waveform Editor 769
B.4.2 Create the Timing Diagram 769
B.4.3 Synthesizing a Circuit from the

Waveforms 770
B.5 Mixing Design-Entry Methods 772

B.5.1 Creating a Schematic that Includes a
Truth Table 772

B.5.2 Synthesizing and Simulating a Circuit
from the Schematic 774

B.5.3 Using the Hierarchy Display 775
B.5.4 Concluding Remarks 775

A p p e n d i x C

Tutorial 2 777

C.1 Implementing a Circuit
in a MAX 7000 CPLD 778
C.1.1 Using the Compiler 779
C.1.2 Selecting a Chip 780
C.1.3 Viewing the Logic Synthesis

Options 781
C.1.4 Examining the Implemented

Circuit 782
C.1.5 Running the Timing Simulator 783
C.1.6 Using the Floorplan Editor 784

C.2 Implementing a Circuit in a FLEX 10K
FPGA 787

C.3 Downloading a Circuit into a Device 789
C.4 Making Pin Assignments 790

C.4.1 Assigning Signals to Pins in the
Floorplan Editor 792

C.4.2 Making Pin Assignments
Permanent 794

C.5 Concluding Remarks 795

A p p e n d i x D

Tutorial 3 797

D.1 Design Using Verilog Code 798
D.1.1 The Ripple-Carry Adder Code 798
D.1.2 Using the Timing Analyzer

Module 801

D.2 Using an LPM Module 802
D.3 Design of a Sequential Circuit 806

D.3.1 Using the Graphic Editor 806
D.3.2 Synthesizing a Circuit and Using the

Timing Simulator 812
D.3.3 Using the Timing Analyzer 813
D.3.4 Using Verilog Code 814

D.4 Design of a Finite State Machine 815
D.4.1 Implementation in a CPLD 815
D.4.2 Implementation in an FPGA 816

D.5 Concluding Remarks 819

A p p e n d i x E

Commercial Devices 821

E.1 Simple PLDs 822
E.1.1 The 22V10 PAL Device 822

E.2 Complex PLDs 824
E.2.1 Altera MAX 7000 825

E.3 Field-Programmable Gate Arrays 826
E.3.1 Altera FLEX 10K 827
E.3.2 Xilinx XC4000 830
E.3.3 Altera APEX 20K 831
E.3.4 Altera Stratix 832
E.3.5 Xilix Virtex 834

E.4 Transistor-Transistor Logic 835
E.4.1 TTL Circuit Families 836

References 837

Index 838

June 10, 2002 11:03 vra23151_ch01 Sheet number 1 Page number 1 black

1

c h a p t e r

1
Design Concepts

1. e2–e4, c7–c6

June 10, 2002 11:03 vra23151_ch01 Sheet number 2 Page number 2 black

2 C H A P T E R 1 • Design Concepts

This book is about logic circuits—the circuits from which computers are built. Proper understanding of
logic circuits is vital for today’s electrical and computer engineers. These circuits are the key ingredient of
computers and are also used in many other applications. They are found in commonly used products, such as
digital watches, various household appliances, CD players, and electronic games, as well as in large systems,
such as the equipment for telephone and television networks.

The material in this book will introduce the reader to the many issues involved in the design of logic
circuits. It explains the key ideas with simple examples and shows how complex circuits can be derived from
elementary ones. We cover the classical theory used in the design of logic circuits in great depth because it
provides the reader with an intuitive understanding of the nature of such circuits. But throughout the book we
also illustrate the modern way of designing logic circuits, using sophisticated computer aided design (CAD)
software tools. The CAD methodology adopted in the book is based on the industry-standard design language
called Verilog. Design with Verilog is first introduced in Chapter 2, and usage of Verilog and CAD tools is
an integral part of each chapter in the book.

Logic circuits are implemented electronically, using transistors on an integrated circuit chip. With modern
technology it is possible to fabricate chips that contain tens of millions of transistors, as in the case of computer
processors. The basic building blocks for such circuits are easy to understand, but there is nothing simple
about a circuit that contains tens of millions of transistors. The complexity that comes with the large size of
logic circuits can be handled successfully only by using highly organized design techniques. We introduce
these techniques in this chapter, but first we briefly describe the hardware technology used to build logic
circuits.

1.1 Digital Hardware

Logic circuits are used to build computer hardware, as well as many other types of products.
All such products are broadly classified as digital hardware. The reason that the name digital
is used will become clear later in the book—it derives from the way in which information
is represented in computers, as electronic signals that correspond to digits of information.

The technology used to build digital hardware has evolved dramatically over the past
four decades. Until the 1960s logic circuits were constructed with bulky components, such
as transistors and resistors that came as individual parts. The advent of integrated circuits
made it possible to place a number of transistors, and thus an entire circuit, on a single
chip. In the beginning these circuits had only a few transistors, but as the technology
improved they became larger. Integrated circuit chips are manufactured on a silicon wafer,
such as the one shown in Figure 1.1. The wafer is cut to produce the individual chips,
which are then placed inside a special type of chip package. By 1970 it was possible to
implement all circuitry needed to realize a microprocessor on a single chip. Although early
microprocessors had modest computing capability by today’s standards, they opened the
door for the information processing revolution by providing the means for implementation
of affordable personal computers. About 30 years ago Gordon Moore, chairman of Intel
Corporation, observed that integrated circuit technology was progressing at an astounding
rate, doubling the number of transistors that could be placed on a chip every 1.5 to 2 years.

June 10, 2002 11:03 vra23151_ch01 Sheet number 3 Page number 3 black

1.1 Digital Hardware 3

Figure 1.1 A silicon wafer (courtesy of Altera Corp.).

This phenomenon, informally known as Moore’s law, continues to the present day. Thus in
the early 1990s microprocessors could be manufactured with a few million transistors, and
by the late 1990s it became possible to fabricate chips that contain more than 10 million
transistors. Presently chips can have a few hundreds of millions of transistors.

Moore’s law is expected to continue to hold true for at least the next decade. A con-
sortium of integrated circuit manufacturers called the Semiconductor Industry Association
(SIA) produces an estimate of how the technology is expected to evolve. Known as the SIA
Roadmap [1], this estimate predicts the minimum size of a transistor that can be fabricated
on an integrated circuit chip. The size of a transistor is measured by a parameter called its
gate length, which we will discuss in Chapter 3. A sample of the SIA Roadmap is given in
Table 1.1. In 2002 the minimum possible gate length that can be reliably manufactured is
0.13 µm. The first row of the table indicates that the minimum gate length is expected to
reduce steadily to about 0.035 µm by the year 2012. The size of a transistor determines how
many transistors can be placed in a given amount of chip area, with the current maximum
being about 20 million transistors per cm2. This number is expected to grow to 100 million
transistors by the year 2012. The largest chip size is expected to be about 1300 mm2 at that
time; thus chips with up to 1.3 billion transistors will be possible! There is no doubt that
this technology will have a huge impact on all aspects of people’s lives.

The designer of digital hardware may be faced with designing logic circuits that can be
implemented on a single chip or, more likely, designing circuits that involve a number of
chips placed on a printed circuit board (PCB). Frequently, some of the logic circuits can be
realized in existing chips that are readily available. This situation simplifies the design task
and shortens the time needed to develop the final product. Before we discuss the design

June 10, 2002 11:03 vra23151_ch01 Sheet number 4 Page number 4 black

4 C H A P T E R 1 • Design Concepts

Table 1.1 A sample of the SIA Roadmap

Year

1999 2001 2003 2006 2009 2012

Transistor
gate length 0.14 µm 0.12 µm 0.10 µm 0.07 µm 0.05 µm 0.035 µm

Transistors
per cm2 14 million 16 million 24 million 40 million 64 million 100 million

Chip size 800 mm2 850 mm2 900 mm2 1000 mm2 1100 mm2 1300 mm2

process in more detail, we should introduce the different types of integrated circuit chips
that may be used.

There exists a large variety of chips that implement various functions that are useful
in the design of digital hardware. The chips range from very simple chips with low func-
tionality to extremely complex chips. For example, a digital hardware product may require
a microprocessor to perform some arithmetic operations, memory chips to provide storage
capability, and interface chips that allow easy connection to input and output devices. Such
chips are available from various vendors.

For most digital hardware products, it is also necessary to design and build some logic
circuits from scratch. For implementing these circuits, three main types of chips may be
used: standard chips, programmable logic devices, and custom chips. These are discussed
next.

1.1.1 Standard Chips

Numerous chips are available that realize some commonly used logic circuits. We will
refer to these as standard chips, because they usually conform to an agreed-upon standard
in terms of functionality and physical configuration. Each standard chip contains a small
amount of circuitry (usually involving fewer than 100 transistors) and performs a simple
function. To build a logic circuit, the designer chooses the chips that perform whatever
functions are needed and then defines how these chips should be interconnected to realize
a larger logic circuit.

Standard chips were popular for building logic circuits until the early 1980s. However,
as integrated circuit technology improved, it became inefficient to use valuable space on
PCBs for chips with low functionality. Another drawback of standard chips is that the
functionality of each chip is fixed and cannot be changed.

1.1.2 Programmable Logic Devices

In contrast to standard chips that have fixed functionality, it is possible to construct chips
that contain circuitry that can be configured by the user to implement a wide range of
different logic circuits. These chips have a very general structure and include a collec-

June 10, 2002 11:03 vra23151_ch01 Sheet number 5 Page number 5 black

1.1 Digital Hardware 5

Figure 1.2 A field-programmable gate array chip (courtesy of
Altera Corp.).

tion of programmable switches that allow the internal circuitry in the chip to be con-
figured in many different ways. The designer can implement whatever functions are
needed for a particular application by choosing an appropriate configuration of the switches.
The switches are programmed by the end user, rather than when the chip is manufactured.
Such chips are known as programmable logic devices (PLDs). We will introduce them in
Chapter 3.

Most types of PLDs can be programmed multiple times. This capability is advantageous
because a designer who is developing a prototype of a product can program a PLD to perform
some function, but later, when the prototype hardware is being tested, can make corrections
by reprogramming the PLD. Reprogramming might be necessary, for instance, if a designed
function is not quite as intended or if new functions are needed that were not contemplated
in the original design.

PLDs are available in a wide range of sizes. They can be used to realize much larger
logic circuits than a typical standard chip can realize. Because of their size and the fact that
they can be tailored to meet the requirements of a specific application, PLDs are widely
used today. One of the most sophisticated types of PLD is known as a field-programmable
gate array (FPGA). FPGAs that contain more than 100 million transistors are now available
[2, 3]. A photograph of an FPGA chip that has 10 million transistors is shown in Figure 1.2.
The chip consists of a large number of small logic circuit elements, which can be connected
together using the programmable switches. The logic circuit elements are arranged in a
regular two-dimensional structure.

1.1.3 Custom-Designed Chips

PLDs are available as off-the-shelf components that can be purchased from different sup-
pliers. Because they are programmable, they can be used to implement most logic circuits
found in digital hardwaÌe. However, PLDs also have a drawback in that the programmable
switches consume valuable chip area and limit the speed of operation of implemented cir-

June 10, 2002 11:03 vra23151_ch01 Sheet number 6 Page number 6 black

6 C H A P T E R 1 • Design Concepts

cuits. Thus in some cases PLDs may not meet the desired performance or cost objectives.
In such situations it is possible to design a chip from scratch; namely, the logic circuitry
that must be included on the chip is designed first and then an appropriate technology is
chosen to implement the chip. Finally, the chip is manufactured by a company that has the
fabrication facilities. This approach is known as custom or semi-custom design, and such
chips are called custom or semi-custom chips. Such chips are intended for use in specific
applications and are sometimes called application-specific integrated circuits (ASICs).

The main advantage of a custom chip is that its design can be optimized for a specific
task; hence it usually leads to better performance. It is possible to include a larger amount
of logic circuitry in a custom chip than would be possible in other types of chips. The
cost of producing such chips is high, but if they are used in a product that is sold in large
quantities, then the cost per chip, amortized over the total number of chips fabricated, may
be lower than the total cost of off-the-shelf chips that would be needed to implement the
same function(s). Moreover, if a single chip can be used instead of multiple chips to achieve
the same goal, then a smaller area is needed on a PCB that houses the chips in the final
product. This results in a further reduction in cost.

A disadvantage of the custom-design approach is that manufacturing a custom chip
often takes a considerable amount of time, on the order of months. In contrast, if a PLD
can be used instead, then the chips are programmed by the end user and no manufacturing
delays are involved.

1.2 The Design Process

The availability of computer-based tools has greatly influenced the design process in a wide
variety of design environments. For example, designing an automobile is similar in the
general approach to designing a furnace or a computer. Certain steps in the development
cycle must be performed if the final product is to meet the specified objectives. We will
start by introducing a typical development cycle in the most general terms. Then we will
focus on the particular aspects that pertain to the design of logic circuits.

The flowchart in Figure 1.3 depicts a typical development process. We assume that
the process is to develop a product that meets certain expectations. The most obvious
requirements are that the product must function properly, that it must meet an expected
level of performance, and that its cost should not exceed a given target.

The process begins with the definition of product specifications. The essential features
of the product are identified, and an acceptable method of evaluating the implemented
features in the final product is established. The specifications must be tight enough to
ensure that the developed product will meet the general expectations, but should not be
unnecessarily constraining (that is, the specifications should not prevent design choices
that may lead to unforeseen advantages).

From a complete set of specifications, it is necessary to define the general structure of
an initial design of the product. This step is difficult to automate. It is usually performed by
a human designer because there is no clear-cut strategy for developing a product’s overall
structure—it requires considerable design experience and intuition.

After the general structure is established, CAD tools are used to work out the details.
Many types of CAD tools are available, ranging from those that help with the design

June 10, 2002 11:03 vra23151_ch01 Sheet number 7 Page number 7 black

1.2 The Design Process 7

Required product

Define specifications

Initial design

Simulation

Design correct?

Redesign

Prototype implementation

Testing

Meets specifications?

Finished product

Minor errors?

Make corrections

No

Yes

No

Yes

Yes

No

Figure 1.3 The development process.

of individual parts of the system to those that allow the entire system’s structure to be
represented in a computer. When the initial design is finished, the results must be verified
against the original specifications. Traditionally, before the advent of CAD tools, this step
involved constructing a physical model of the designed product, usually including just the
key parts. Today it is seldom necessary to build a physical model. CAD tools enable

June 10, 2002 11:03 vra23151_ch01 Sheet number 8 Page number 8 black

8 C H A P T E R 1 • Design Concepts

designers to simulate the behavior of incredibly complex products, and such simulations
are used to determine whether the obtained design meets the required specifications. If
errors are found, then appropriate changes are made and the verification of the new design
is repeated through simulation. Although some design flaws may escape detection via
simulation, usually all but the most subtle problems are discovered in this way.

When the simulation indicates that the design is correct, a complete physical prototype
of the product is constructed. The prototype is thoroughly tested for conformance with the
specifications. Any errors revealed in the testing must be fixed. The errors may be minor,
and often they can be eliminated by making small corrections directly on the prototype of
the product. In case of large errors, it is necessary to redesign the product and repeat the
steps explained above. When the prototype passes all the tests, then the product is deemed
to be successfully designed and it can go into production.

1.3 Design of Digital Hardware

Our previous discussion of the development process is relevant in a most general way. The
steps outlined in Figure 1.3 are fully applicable in the development of digital hardware.
Before we discuss the complete sequence of steps in this development environment, we
should emphasize the iterative nature of the design process.

1.3.1 Basic Design Loop

Any design process comprises a basic sequence of tasks that are performed in various
situations. This sequence is presented in Figure 1.4. Assuming that we have an initial
concept about what should be achieved in the design process, the first step is to generate
an initial design. This step often requires a lot of manual effort because most designs have
some specific goals that can be reached only through the designer’s knowledge, skill, and
intuition. The next step is the simulation of the design at hand. There exist excellent
CAD tools to assist in this step. To carry out the simulation successfully, it is necessary
to have adequate input conditions that can be applied to the design that is being simulated
and later to the final product that has to be tested. Applying these input conditions, the
simulator tries to verify that the designed product will perform as required under the orig-
inal product specifications. If the simulation reveals some errors, then the design must
be changed to overcome the problems. The redesigned version is again simulated to de-
termine whether the errors have disappeared. This loop is repeated until the simulation
indicates a successful design. A prudent designer expends considerable effort to remedy
errors during simulation because errors are typically much harder to fix if they are dis-
covered late in the design process. Even so, some errors may not be detected during
simulation, in which case they have to be dealt with in later stages of the development
cycle.

June 10, 2002 11:03 vra23151_ch01 Sheet number 9 Page number 9 black

1.3 Design of Digital Hardware 9

Design concept

Successful design

Initial design

Simulation

Design correct?

Redesign

No

Yes

Figure 1.4 The basic design loop.

1.3.2 Design of a Digital Hardware Unit

Digital hardware products usually involve one or more PCBs that contain many chips and
other components. Development of such products starts with the definition of the overall
structure. Then the required integrated circuit chips are selected, and the PCBs that house
and connect the chips together are designed. If the selected chips include PLDs or custom
chips, then these chips must be designed before the PCB-level design is undertaken. Since
the complexity of circuits implemented on individual chips and on the circuit boards is
usually very high, it is essential to make use of good CAD tools.

An example of a PCB is given in Figure 1.5. The PCB is a part of a large computer
system designed at the University of Toronto. This computer, called NUMAchine [4,5], is
a multiprocessor, which means that it contains many processors that can be used together
to work on a particular task. The PCB in the figure contains one processor chip and various
memory and support chips. Complex logic circuits are needed to form the interface between
the processor and the rest of the system. A number of PLDs are used to implement these
logic circuits.

To illustrate the complete development cycle in more detail, we will consider the steps
needed to produce a digital hardware unit that can be implemented on a PCB. This hardware

June 10, 2002 11:03 vra23151_ch01 Sheet number 10 Page number 10 black

10 C H A P T E R 1 • Design Concepts

Figure 1.5 A printed circuit board.

could be viewed as a very complex logic circuit that performs the functions defined by the
product specifications. Figure 1.6 shows the design flow, assuming that we have a design
concept that defines the expected behavior and characteristics of this large circuit.

An orderly way of dealing with the complexity involved is to partition the circuit into
smaller blocks and then to design each block separately. Breaking down a large task into
more manageable smaller parts is known as the divide-and-conquer approach. The design
of each block follows the procedure outlined in Figure 1.4. The circuitry in each block is
defined, and the chips needed to implement it are chosen. The operation of this circuitry is
simulated, and any necessary corrections are made.

Having successfully designed all blocks, the interconnection between the blocks must
be defined, which effectively combines these blocks into a single large circuit. Now it
is necessary to simulate this complete circuit and correct any errors. Depending on the
errors encountered, it may be necessary to go back to the previous steps as indicated by the
paths A, B, and C in the flowchart. Some errors may be caused by incorrect connections

June 10, 2002 11:03 vra23151_ch01 Sheet number 11 Page number 11 black

1.3 Design of Digital Hardware 11

Define interconnection between blocks

Functional simulation of complete system

Correct?

Physical mapping

Timing simulation

Correct?

Implementation

No

Yes

No

Yes

Design one block Design one block

Partition

Design concept

A

B

C

D

Figure 1.6 Design flow for logic circuits.

June 10, 2002 11:03 vra23151_ch01 Sheet number 12 Page number 12 black

12 C H A P T E R 1 • Design Concepts

between the blocks, in which case these connections have to be redefined, following path C.
Some blocks may not have been designed correctly, in which case path B is followed and the
erroneous blocks are redesigned. Another possibility is that the very first step of partitioning
the overall large circuit into blocks was not done well, in which case path A is followed.
This may happen, for example, if none of the blocks implement some functionality needed
in the complete circuit.

Successful completion of functional simulation suggests that the designed circuit will
correctly perform all of its functions. The next step is to decide how to realize this circuit
on a PCB. The physical location of each chip on the board has to be determined, and the
wiring pattern needed to make connections between the chips has to be defined. We refer
to this step as the physical design of the PCB. CAD tools are relied on heavily to perform
this task automatically.

Once the placement of chips and the actual wire connections on the PCB have been
established, it is desirable to see how this physical layout will affect the performance of
the circuit on the finished board. It is reasonable to assume that if the previous functional
simulation indicated that all functions will be performed correctly, then the CAD tools
used in the physical design step will ensure that the required functional behavior will not
be corrupted by placing the chips on the board and wiring them together to realize the
final circuit. However, even though the functional behavior may be correct, the realized
circuit may operate more slowly than desired and thus lead to inadequate performance. This
condition occurs because the physical wiring on the PCB involves metal traces that present
resistance and capacitance to electrical signals and thus may have a significant impact on the
speed of operation. To distinguish between simulation that considers only the functionality
of the circuit and simulation that also considers timing behavior, it is customary to use
the terms functional simulation and timing simulation. A timing simulation may reveal
potential performance problems, which can then be corrected by using the CAD tools to
make changes in the physical design of the PCB.

Having completed the design process, the designed circuit is ready for physical im-
plementation. The steps needed to implement a prototype board are indicated in Figure
1.7. A first version of the board is built and tested. Most minor errors that are detected can
usually be corrected by making changes directly on the prototype board. This may involve
changes in wiring or perhaps reprogramming some PLDs. Larger problems require a more
substantial redesign. Depending on the nature of the problem, the designer may have to
return to any of the points A, B, C, or D in the design process of Figure 1.6.

We have described the development process where the final circuit is implemented
using many chips on a PCB. The material presented in this book is directly applicable to
this type of design problem. However, for practical reasons the design examples that appear
in the book are relatively small and can be realized in a single integrated circuit, either a
custom-designed chip or a PLD. All the steps in Figure 1.6 are relevant in this case as well,
with the understanding that the circuit blocks to be designed are on a smaller scale.

1.4 Logic Circuit Design in This Book

In this book we use PLDs extensively to illustrate many aspects of logic circuit design.
We selected this technology because it is widely used in real digital hardware products

June 10, 2002 11:03 vra23151_ch01 Sheet number 13 Page number 13 black

1.4 Logic Circuit Design in This Book 13

Implementation

Finished PCB

Build prototype

Testing

Correct?

Modify prototype

No

Yes

Minor errors?

Yes

Go to A, B, C, or D in Figure 1.6

No

Figure 1.7 Completion of PCB development.

and because the chips are user programmable. PLD technology is particularly well suited
for educational purposes because many readers have access to facilities for programming
PLDs, which enables the reader to actually implement the sample circuits. To illustrate
practical design issues, in this book we use two types of PLDs—they are the two types
of devices that are widely used in digital hardware products today. One type is known as
complex programmable logic devices (CPLDs) and the other as field-programmable gate
arrays (FPGAs). These chips are introduced in Chapter 3.

To gain practical experience and a deeper understanding of logic circuits, we advise the
reader to implement the examples in this book using CAD tools. Most of the major vendors
of CAD systems provide their tools through university programs for educational use. Some
examples are Altera, Cadence, Mentor Graphics, Synopsys, Synplicity, and Xilinx. The
CAD systems offered by any of these companies can be used equally well with this book.
For those who do not already have access to CAD tools, we include Altera’s MAX+plusII
CAD system on a CD-ROM. This industrial-quality software supports all phases of the
design cycle and is powerful and easy to use. The software is easily installed on a personal
computer, and we provide a sequence of complete step-by-step tutorials in Appendices B,
C, and D to illustrate the use of CAD tools in concert with the book.

For educational purposes, some PLD manufacturers provide laboratory development
printed circuit boards that include one or more PLD chips and an interface to a personal
computer. Once a logic circuit has been designed using the CAD tools, the circuit can be

June 10, 2002 11:03 vra23151_ch01 Sheet number 14 Page number 14 black

14 C H A P T E R 1 • Design Concepts

downloaded into a PLD on the board. Inputs can then be applied to the PLD by way of
simple switches, and the generated outputs can be examined. These laboratory boards are
described on the World Wide Web pages of the PLD suppliers.

1.5 Theory and Practice

Modern design of logic circuits depends heavily on CAD tools, but the discipline of logic
design evolved long before CAD tools were invented. This chronology is quite obvious
because the very first computers were built with logic circuits, and there certainly were no
computers available on which to design them!

Numerous manual design techniques have been developed to deal with logic circuits.
Boolean algebra, which we will introduce in Chapter 2, was adopted as a mathematical
means for representing such circuits. An enormous amount of “theory” was developed,
showing how certain design issues may be treated. To be successful, a designer had to
apply this knowledge in practice.

CAD tools not only made it possible to design incredibly complex circuits but also
made the design work much simpler in general. They perform many tasks automatically,
which may suggest that today’s designer need not understand the theoretical concepts used
in the tasks performed by CAD tools. An obvious question would then be, Why should one
study the theory that is no longer needed for manual design? Why not simply learn how to
use the CAD tools?

There are three big reasons for learning the relevant theory. First, although the CAD
tools perform the automatic tasks of optimizing a logic circuit to meet particular design
objectives, the designer has to give the original description of the logic circuit. If the
designer specifies a circuit that has inherently bad properties, then the final circuit will also
be of poor quality. Second, the algebraic rules and theorems for design and manipulation
of logic circuits are directly implemented in today’s CAD tools. It is not possible for a user
of the tools to understand what the tools do without grasping the underlying theory. Third,
CAD tools offer many optional processing steps that a user can invoke when working on
a design. The designer chooses which options to use by examining the resulting circuit
produced by the CAD tools and deciding whether it meets the required objectives. The
only way that the designer can know whether or not to apply a particular option in a given
situation is to know what the CAD tools will do if that option is invoked—again, this implies
that the designer must be familiar with the underlying theory. We discuss the classical logic
circuit theory extensively in this book, because it is not possible to become an effective
logic circuit designer without understanding the fundamental concepts.

On a final note, there is another good reason to learn some logic circuit theory even if it
were not required for CAD tools. Simply put, it is interesting and intellectually challenging.
In the modern world filled with sophisticated automatic machinery, it is tempting to rely on
tools as a substitute for thinking. However, in logic circuit design, as in any type of design
process, computer-based tools are not a substitute for human intuition and innovation.
Computer-based tools can produce good digital hardware designs only when employed by
a designer who thoroughly understands the nature of logic circuits.

June 10, 2002 11:03 vra23151_ch01 Sheet number 15 Page number 15 black

References 15

References

1. Semiconductor Industry Association, “National Technology Roadmap for Semi-
conductors,” http://www.semichips.org/

2. Altera Corporation, “APEX II Programmable Logic Devices,” http://www.altera.com

3. Xilinx Corporation, “Virtex II Field Programmable Gate Arrays,”
http://www.xilinx.com

4. S. Brown, N. Manjikian, Z. Vranesic, S. Caranci, A. Grbic, R. Grindley, M. Gusat,
K. Loveless, Z. Zilic, and S. Srbljic, “Experience in Designing a Large-Scale
Multiprocessor Using Field-Programmable Devices and Advanced CAD Tools,” 33rd
IEEE Design Automation Conference, Las Vegas, June 1996.

5. A. Grbic, S. Brown, S. Caranci, R. Grindley, M. Gusat, G. Lemieux, K. Loveless,
N. Manjikian, S. Srbljic, M. Stumm, Z. Vranesic, and Z. Zilic, “ The Design and
Implementation of the NUMAchine Multiprocessor,” IEEE Design Automation
Conference, San Francisco, June 1998.

June 10, 2002 11:02 vra23151_ch02 Sheet number 1 Page number 17 black

17

c h a p t e r

2
Introduction to Logic Circuits

2. d2–d4, d7–d5

June 10, 2002 11:02 vra23151_ch02 Sheet number 2 Page number 18 black

18 C H A P T E R 2 • Introduction to Logic Circuits

The study of logic circuits is motivated mostly by their use in digital computers. But such circuits also form
the foundation of many other digital systems where performing arithmetic operations on numbers is not of
primary interest. For example, in a myriad of control applications actions are determined by some simple
logical operations on input information, without having to do extensive numerical computations.

Logic circuits perform operations on digital signals and are usually implemented as electronic circuits
where the signal values are restricted to a few discrete values. In binary logic circuits there are only two
values, 0 and 1. In decimal logic circuits there are 10 values, from 0 to 9. Since each signal value is naturally
represented by a digit, such logic circuits are referred to as digital circuits. In contrast, there exist analog
circuits where the signals may take on a continuous range of values between some minimum and maximum
levels.

In this book we deal with binary circuits, which have the dominant role in digital technology. We hope to
provide the reader with an understanding of how these circuits work, how are they represented in mathematical
notation, and how are they designed using modern design automation techniques. We begin by introducing
some basic concepts pertinent to the binary logic circuits.

2.1 Variables and Functions

The dominance of binary circuits in digital systems is a consequence of their simplicity,
which results from constraining the signals to assume only two possible values. The simplest
binary element is a switch that has two states. If a given switch is controlled by an input
variable x, then we will say that the switch is open if x = 0 and closed if x = 1, as illustrated
in Figure 2.1a. We will use the graphical symbol in Figure 2.1b to represent such switches
in the diagrams that follow. Note that the control input x is shown explicitly in the symbol.
In Chapter 3 we will explain how such switches are implemented with transistors.

Consider a simple application of a switch, where the switch turns a small lightbulb
on or off. This action is accomplished with the circuit in Figure 2.2a. A battery provides
the power source. The lightbulb glows when sufficient current passes through its filament,
which is an electrical resistance. The current flows when the switch is closed, that is, when
x = 1. In this example the input that causes changes in the behavior of the circuit is the

x = 0 x = 1

(a) Two states of a switch

S

x

(b) Symbol for a switch

Figure 2.1 A binary switch.

June 10, 2002 11:02 vra23151_ch02 Sheet number 3 Page number 19 black

2.1 Variables and Functions 19

(a) Simple connection to a battery

S

x

(b) Using a ground connection as the return path

LBattery Light

x
Power
supply

S

L

Figure 2.2 A light controlled by a switch.

switch control x. The output is defined as the state (or condition) of the light L. If the light
is on, we will say that L = 1. If the the light is off, we will say that L = 0. Using this
convention, we can describe the state of the light L as a function of the input variable x.
Since L = 1 if x = 1 and L = 0 if x = 0, we can say that

L(x) = x

This simple logic expression describes the output as a function of the input. We say that
L(x) = x is a logic function and that x is an input variable.

The circuit in Figure 2.2a can be found in an ordinary flashlight, where the switch is a
simple mechanical device. In an electronic circuit the switch is implemented as a transistor
and the light may be a light-emitting diode (LED). An electronic circuit is powered by
a power supply of a certain voltage, perhaps 5 volts. One side of the power supply is
connected to ground, as shown in Figure 2.2b. The ground connection may also be used as
the return path for the current, to close the loop, which is achieved by connecting one side
of the light to ground as indicated in the figure. Of course, the light can also be connected
by a wire directly to the grounded side of the power supply, as in Figure 2.2a.

Consider now the possibility of using two switches to control the state of the light. Let
x1 and x2 be the control inputs for these switches. The switches can be connected either
in series or in parallel as shown in Figure 2.3. Using a series connection, the light will be
turned on only if both switches are closed. If either switch is open, the light will be off.
This behavior can be described by the expression

L(x1, x2) = x1 · x2

where L = 1 if x1 = 1 and x2 = 1,

L = 0 otherwise.

The “·” symbol is called the AND operator, and the circuit in Figure 2.3a is said to implement
a logical AND function.

June 10, 2002 11:02 vra23151_ch02 Sheet number 4 Page number 20 black

20 C H A P T E R 2 • Introduction to Logic Circuits

(a) The logical AND function (series connection)

S

x1 L
Power
supply

S

x2

S

x1

L
Power
supply S

x2

(b) The logical OR function (parallel connection)

Light

Light

Figure 2.3 Two basic functions.

The parallel connection of two switches is given in Figure 2.3b. In this case the light
will be on if either x1 or x2 switch is closed. The light will also be on if both switches are
closed. The light will be off only if both switches are open. This behavior can be stated as

L(x1, x2) = x1 + x2

where L = 1 if x1 = 1 or x2 = 1 or if x1 = x2 = 1,

L = 0 if x1 = x2 = 0.

The+ symbol is called the OR operator, and the circuit in Figure 2.3b is said to implement
a logical OR function.

In the above expressions for AND and OR, the output L(x1, x2) is a logic function with
input variables x1 and x2. The AND and OR functions are two of the most important logic
functions. Together with some other simple functions, they can be used as building blocks

S

x1

L
Power
supply S

x2

Light

S

x3

Figure 2.4 A series-parallel connection.

June 10, 2002 11:02 vra23151_ch02 Sheet number 5 Page number 21 black

2.2 Inversion 21

for the implementation of all logic circuits. Figure 2.4 illustrates how three switches can be
used to control the light in a more complex way. This series-parallel connection of switches
realizes the logic function

L(x1, x2, x3) = (x1 + x2) · x3

The light is on if x3 = 1 and, at the same time, at least one of the x1 or x2 inputs is equal
to 1.

2.2 Inversion

So far we have assumed that some positive action takes place when a switch is closed, such
as turning the light on. It is equally interesting and useful to consider the possibility that a
positive action takes place when a switch is opened. Suppose that we connect the light as
shown in Figure 2.5. In this case the switch is connected in parallel with the light, rather
than in series. Consequently, a closed switch will short-circuit the light and prevent the
current from flowing through it. Note that we have included an extra resistor in this circuit
to ensure that the closed switch does not short-circuit the power supply. The light will be
turned on when the switch is opened. Formally, we express this functional behavior as

L(x) = x
where L = 1 if x = 0,

L = 0 if x = 1

The value of this function is the inverse of the value of the input variable. Instead of
using the word inverse, it is more common to use the term complement. Thus we say that
L(x) is a complement of x in this example. Another frequently used term for the same
operation is the NOT operation. There are several commonly used notations for indicating
the complementation. In the preceding expression we placed an overbar on top of x. This
notation is probably the best from the visual point of view. However, when complements
are needed in expressions that are typed using a computer keyboard, which is often done
when using CAD tools, it is impractical to use overbars. Instead, either an apostrophe is

Sx L

Power
supply

R

Figure 2.5 An inverting circuit.

June 10, 2002 11:02 vra23151_ch02 Sheet number 6 Page number 22 black

22 C H A P T E R 2 • Introduction to Logic Circuits

placed after the variable, or the exclamation mark (!) or the tilde character (∼) is placed in
front of the variable to denote the complementation. Thus the following are equivalent:

x = x′ = !x = ∼x

The complement operation can be applied to a single variable or to more complex
operations. For example, if

f (x1, x2) = x1 + x2

then the complement of f is

f (x1, x2) = x1 + x2

This expression yields the logic value 1 only when neither x1 nor x2 is equal to 1, that is,
when x1 = x2 = 0. Again, the following notations are equivalent:

x1 + x2 = (x1 + x2)
′ =!(x1 + x2) = ∼(x1 + x2)

2.3 Truth Tables

We have introduced the three most basic logic operations—AND, OR, and complement—by
relating them to simple circuits built with switches. This approach gives these operations a
certain “physical meaning.” The same operations can also be defined in the form of a table,
called a truth table, as shown in Figure 2.6. The first two columns (to the left of the heavy
vertical line) give all four possible combinations of logic values that the variables x1 and x2

can have. The next column defines the AND operation for each combination of values of x1

and x2, and the last column defines the OR operation. Because we will frequently need to
refer to “combinations of logic values” applied to some variables, we will adopt a shorter
term, valuation, to denote such a combination of logic values.

The truth table is a useful aid for depicting information involving logic functions. We
will use it in this book to define specific functions and to show the validity of certain func-
tional relations. Small truth tables are easy to deal with. However, they grow exponentially
in size with the number of variables. A truth table for three input variables has eight rows
because there are eight possible valuations of these variables. Such a table is given in Figure
2.7, which defines three-input AND and OR functions. For four-input variables the truth
table has 16 rows, and so on.

x1 x2 x1 ⋅ x2 x1 + x2

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

AND OR

Figure 2.6 A truth table for the AND and OR operations.

June 10, 2002 11:02 vra23151_ch02 Sheet number 7 Page number 23 black

2.4 Logic Gates and Networks 23

x1 x2 x3 x1 ⋅ x2 ⋅ x3 x1 + x2 + x3

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 2.7 Three-input AND and OR operations.

The AND and OR operations can be extended to n variables. An AND function
of variables x1, x2, . . . , xn has the value 1 only if all n variables are equal to 1. An OR
function of variables x1, x2, . . . , xn has the value 1 if at least one, or more, of the variables
is equal to 1.

2.4 Logic Gates and Networks

The three basic logic operations introduced in the previous sections can be used to implement
logic functions of any complexity. A complex function may require many of these basic
operations for its implementation. Each logic operation can be implemented electronically
with transistors, resulting in a circuit element called a logic gate. A logic gate has one or
more inputs and one output that is a function of its inputs. It is often convenient to describe
a logic circuit by drawing a circuit diagram, or schematic, consisting of graphical symbols
representing the logic gates. The graphical symbols for the AND, OR, and NOT gates are
shown in Figure 2.8. The figure indicates on the left side how the AND and OR gates are
drawn when there are only a few inputs. On the right side it shows how the symbols are
augmented to accommodate a greater number of inputs. We will show how logic gates are
built using transistors in Chapter 3.

A larger circuit is implemented by a network of gates. For example, the logic function
from Figure 2.4 can be implemented by the network in Figure 2.9. The complexity of a
given network has a direct impact on its cost. Because it is always desirable to reduce
the cost of any manufactured product, it is important to find ways for implementing logic
circuits as inexpensively as possible. We will see shortly that a given logic function can
be implemented with a number of different networks. Some of these networks are simpler
than others, hence searching for the solutions that entail minimum cost is prudent.

In technical jargon a network of gates is often called a logic network or simply a logic
circuit. We will use these terms interchangeably.

June 10, 2002 11:02 vra23151_ch02 Sheet number 8 Page number 24 black

24 C H A P T E R 2 • Introduction to Logic Circuits

x1
x2

xn

x1 x2 … xn+ + +
x1
x2

x1 x2+

x1
x2

xn

x1
x2

x1 x2⋅ x1 x2 … xn⋅ ⋅ ⋅

(a) AND gates

(b) OR gates

x x

(c) NOT gate

Figure 2.8 The basic gates.

2.4.1 Analysis of a Logic Network

A designer of digital systems is faced with two basic issues. For an existing logic network, it
must be possible to determine the function performed by the network. This task is referred
to as the analysis process. The reverse task of designing a new network that implements a
desired functional behavior is referred to as the synthesis process. The analysis process is
rather straightforward and much simpler than the synthesis process.

Figure 2.10a shows a simple network consisting of three gates. To determine its
functional behavior, we can consider what happens if we apply all possible input signals to
it. Suppose that we start by making x1 = x2 = 0. This forces the output of the NOT gate

x1
x2
x3

f x1 x2+() x3⋅=

Figure 2.9 The function from Figure 2.4.

June 10, 2002 11:02 vra23151_ch02 Sheet number 9 Page number 25 black

2.4 Logic Gates and Networks 25

x2

x2

x1

x1

1 1 0 0→ → →

f

0 0 0 1→ → →

1 1 0 1→ → →

0 0 1 1→ → →

0 1 0 1→ → →

(a) Network that implements f x1 x1 x2⋅+=

f x1 x2,()

0
1
0
1

0
0
1
1

1
1
0
1

(b) Truth table for f

A

B

1
0

1
0

1
0

1
0

1
0

x1

x2

A

B

f
Time

(c) Timing diagram

1 1 0 0→ → →0 0 1 1→ → →

1 1 0 1→ → →
0 1 0 1→ → → g

x1

x2

(d) Network that implements g x1 x2+=

Figure 2.10 An example of logic networks.

to be equal to 1 and the output of the AND gate to be 0. Because one of the inputs to the
OR gate is 1, the output of this gate will be 1. Therefore, f = 1 if x1 = x2 = 0. If we let
x1 = 0 and x2 = 1, then no change in the value of f will take place, because the outputs of
the NOT and AND gates will still be 1 and 0, respectively. Next, if we apply x1 = 1 and
x2 = 0, then the output of the NOT gate changes to 0 while the output of the AND gate

June 10, 2002 11:02 vra23151_ch02 Sheet number 10 Page number 26 black

26 C H A P T E R 2 • Introduction to Logic Circuits

remains at 0. Both inputs to the OR gate are then equal to 0; hence the value of f will be 0.
Finally, let x1 = x2 = 1. Then the output of the AND gate goes to 1, which in turn causes
f to be equal to 1. Our verbal explanation can be summarized in the form of the truth table
shown in Figure 2.10b.

Timing Diagram
We have determined the behavior of the network in Figure 2.10a by considering the four

possible valuations of the inputs x1 and x2. Suppose that the signals that correspond to these
valuations are applied to the network in the order of our discussion; that is, (x1, x2) = (0, 0)

followed by (0, 1), (1, 0), and (1, 1). Then changes in the signals at various points in the
network would be as indicated in blue in the figure. The same information can be presented
in graphical form, known as a timing diagram, as shown in Figure 2.10c. The time runs
from left to right, and each input valuation is held for some fixed period. The figure shows
the waveforms for the inputs and output of the network, as well as for the internal signals
at the points labeled A and B.

Timing diagrams are used for many purposes. They depict the behavior of a logic
circuit in a form that can be observed when the circuit is tested using instruments such as
logic analyzers and oscilloscopes. Also, they are often generated by CAD tools to show
the designer how a given circuit is expected to behave before it is actually implemented
electronically. We will introduce the CAD tools later in this chapter and will make use of
them throughout the book.

Functionally Equivalent Networks
Now consider the network in Figure 2.10d. Going through the same analysis procedure,

we find that the output g changes in exactly the same way as f does in part (a) of the figure.
Therefore, g(x1, x2) = f (x1, x2), which indicates that the two networks are functionally
equivalent; the output behavior of both networks is represented by the truth table in Figure
2.10b. Since both networks realize the same function, it makes sense to use the simpler
one, which is less costly to implement.

In general, a logic function can be implemented with a variety of different networks,
probably having different costs. This raises an important question: How does one find the
best implementation for a given function? Many techniques exist for synthesizing logic
functions. We will discuss the main approaches in Chapter 4. For now, we should note that
some manipulation is needed to transform the more complex network in Figure 2.10a into
the network in Figure 2.10d. Since f (x1, x2) = x1 + x1 · x2 and g(x1, x2) = x1 + x2, there
must exist some rules that can be used to show the equivalence

x1 + x1 · x2 = x1 + x2

We have already established this equivalence through detailed analysis of the two circuits
and construction of the truth table. But the same outcome can be achieved through algebraic
manipulation of logic expressions. In the next section we will discuss a mathematical
approach for dealing with logic functions, which provides the basis for modern design
techniques.

June 10, 2002 11:02 vra23151_ch02 Sheet number 11 Page number 27 black

2.5 Boolean Algebra 27

2.5 Boolean Algebra

In 1849 George Boole published a scheme for the algebraic description of processes involved
in logical thought and reasoning [1]. Subsequently, this scheme and its further refinements
became known as Boolean algebra. It was almost 100 years later that this algebra found
application in the engineering sense. In the late 1930s Claude Shannon showed that Boolean
algebra provides an effective means of describing circuits built with switches [2]. The
algebra can, therefore, be used to describe logic circuits. We will show that this algebra
is a powerful tool that can be used for designing and analyzing logic circuits. The reader
will come to appreciate that it provides the foundation for much of our modern digital
technology.

Axioms of Boolean Algebra
Like any algebra, Boolean algebra is based on a set of rules that are derived from a

small number of basic assumptions. These assumptions are called axioms. Let us assume
that Boolean algebra B involves elements that take on one of two values, 0 and 1. Assume
that the following axioms are true:

1a. 0 · 0 = 0

1b. 1+ 1 = 1

2a. 1 · 1 = 1

2b. 0+ 0 = 0

3a. 0 · 1 = 1 · 0 = 0

3b. 1+ 0 = 0+ 1 = 1

4a. If x = 0, then x = 1

4b. If x = 1, then x = 0

Single-Variable Theorems
From the axioms we can define some rules for dealing with single variables. These

rules are often called theorems. If x is a variable in B, then the following theorems hold:

5a. x · 0 = 0

5b. x + 1 = 1

6a. x · 1 = x

6b. x + 0 = x

7a. x · x = x

7b. x + x = x

8a. x · x = 0

8b. x + x = 1

9. x = x

It is easy to prove the validity of these theorems by perfect induction, that is, by substituting
the values x = 0 and x = 1 into the expressions and using the axioms given above. For
example, in theorem 5a, if x = 0, then the theorem states that 0 · 0 = 0, which is true

June 10, 2002 11:02 vra23151_ch02 Sheet number 12 Page number 28 black

28 C H A P T E R 2 • Introduction to Logic Circuits

according to axiom 1a. Similarly, if x = 1, then theorem 5a states that 1 · 0 = 0, which
is also true according to axiom 3a. The reader should verify that theorems 5a to 9 can be
proven in this way.

Duality
Notice that we have listed the axioms and the single-variable theorems in pairs. This

is done to reflect the important principle of duality. Given a logic expression, its dual is
obtained by replacing all + operators with · operators, and vice versa, and by replacing
all 0s with 1s, and vice versa. The dual of any true statement (axiom or theorem) in
Boolean algebra is also a true statement. At this point in the discussion, the reader will
not appreciate why duality is a useful concept. However, this concept will become clear
later in the chapter, when we will show that duality implies that at least two different ways
exist to express every logic function with Boolean algebra. Often, one expression leads to
a simpler physical implementation than the other and is thus preferable.

Two- and Three-Variable Properties
To enable us to deal with a number of variables, it is useful to define some two- and

three-variable algebraic identities. For each identity, its dual version is also given. These
identities are often referred to as properties. They are known by the names indicated below.
If x, y, and z are the variables in B, then the following properties hold:

10a. x · y = y · x Commutative

10b. x + y = y + x

11a. x · (y · z) = (x · y) · z Associative

11b. x + (y + z) = (x + y)+ z

12a. x · (y + z) = x · y + x · z Distributive

12b. x + y · z = (x + y) · (x + z)

13a. x + x · y = x Absorption

13b. x · (x + y) = x

14a. x · y + x · y = x Combining

14b. (x + y) · (x + y) = x

15a. x · y = x + y DeMorgan’s theorem

15b. x + y = x · y
16a. x + x · y = x + y

16b. x · (x + y) = x · y
Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.11 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the + and · operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.

June 10, 2002 11:02 vra23151_ch02 Sheet number 13 Page number 29 black

2.5 Boolean Algebra 29

x y x ⋅ y x ⋅ y x y x + y

0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

︸ ︷︷ ︸ ︸ ︷︷ ︸

LHS RHS

Figure 2.11 Proof of DeMorgan’s theorem in 15a.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

Example 2.1Let us prove the validity of the logic equation

(x1 + x3) · (x1 + x3) = x1 · x3 + x1 · x3

The left-hand side can be manipulated as follows. Using the distributive property, 12a,
gives

LHS = (x1 + x3) · x1 + (x1 + x3) · x3

Applying the distributive property again yields

LHS = x1 · x1 + x3 · x1 + x1 · x3 + x3 · x3

Note that the distributive property allows ANDing the terms in parenthesis in a way analo-
gous to multiplication in ordinary algebra. Next, according to theorem 8a, the terms x1 · x1

and x3 · x3 are both equal to 0. Therefore,

LHS = 0+ x3 · x1 + x1 · x3 + 0

From 6b it follows that

LHS = x3 · x1 + x1 · x3

Finally, using the commutative property, 10a and 10b, this becomes

LHS = x1 · x3 + x1 · x3

which is the same as the right-hand side of the initial equation.

Example 2.2Consider the logic equation

x1 · x3 + x2 · x3 + x1 · x3 + x2 · x3 = x1 · x2 + x1 · x2 + x1 · x2

The left-hand side can be manipulated as follows

LHS = x1 · x3 + x1 · x3 + x2 · x3 + x2 · x3 using 10b
= x1 · (x3 + x3)+ x2 · (x3 + x3) using 12a

June 10, 2002 11:02 vra23151_ch02 Sheet number 14 Page number 30 black

30 C H A P T E R 2 • Introduction to Logic Circuits

= x1 · 1+ x2 · 1 using 8b
= x1 + x2 using 6a

The right-hand side can be manipulated as

RHS = x1 · x2 + x1 · (x2 + x2) using 12a
= x1 · x2 + x1 · 1 using 8b
= x1 · x2 + x1 using 6a
= x1 + x1 · x2 using 10b
= x1 + x2 using 16a

Being able to manipulate both sides of the initial equation into identical expressions estab-
lishes the validity of the equation. Note that the same logic function is represented by either
the left- or the right-hand side of the above equation; namely

f (x1, x2, x3) = x1 · x3 + x2 · x3 + x1 · x3 + x2 · x3

= x1 · x2 + x1 · x2 + x1 · x2

As a result of manipulation, we have found a much simpler expression

f (x1, x2, x3) = x1 + x2

which also represents the same function. This simpler expression would result in a lower-
cost logic circuit that could be used to implement the function.

Examples 2.1 and 2.2 illustrate the purpose of the axioms, theorems, and properties
as a mechanism for algebraic manipulation. Even these simple examples suggest that it is
impractical to deal with highly complex expressions in this way. However, these theorems
and properties provide the basis for automating the synthesis of logic functions in CAD
tools. To understand what can be achieved using these tools, the designer needs to be aware
of the fundamental concepts.

2.5.1 The Venn Diagram

We have suggested that perfect induction can be used to verify the theorems and properties.
This procedure is quite tedious and not very informative from the conceptual point of view.
A simple visual aid that can be used for this purpose also exists. It is called the Venn
diagram, and the reader is likely to find that it provides for a more intuitive understanding
of how two expressions may be equivalent.

The Venn diagram has traditionally been used in mathematics to provide a graphical
illustration of various operations and relations in the algebra of sets. A set s is a collection
of elements that are said to be the members of s. In the Venn diagram the elements of
a set are represented by the area enclosed by a contour such as a square, a circle, or an
ellipse. For example, in a universe N of integers from 1 to 10, the set of even numbers is
E = {2, 4, 6, 8, 10}. Acontour representing E encloses the even numbers. The odd numbers
form the complement of E; hence the area outside the contour represents E = {1, 3, 5, 7, 9}.

June 10, 2002 11:02 vra23151_ch02 Sheet number 15 Page number 31 black

2.5 Boolean Algebra 31

Since in Boolean algebra there are only two values (elements) in the universe, B =
{0, 1}, we will say that the area within a contour corresponding to a set s denotes that s = 1,
while the area outside the contour denotes s = 0. In the diagram we will shade the area
where s = 1. The concept of the Venn diagram is illustrated in Figure 2.12. The universe B
is represented by a square. Then the constants 1 and 0 are represented as shown in parts (a)
and (b) of the figure. A variable, say, x, is represented by a circle, such that the area inside
the circle corresponds to x = 1, while the area outside the circle corresponds to x = 0.
This is illustrated in part (c). An expression involving one or more variables is depicted by

x y

z

x y

x y x y

x x xx

(a) Constant 1 (b) Constant 0

(c) Variable x (d)

(e) (f)

(g) (h)

x

x y⋅ x y+

x y z+⋅x y⋅

Figure 2.12 The Venn diagram representation.

June 10, 2002 11:02 vra23151_ch02 Sheet number 16 Page number 32 black

32 C H A P T E R 2 • Introduction to Logic Circuits

shading the area where the value of the expression is equal to 1. Part (d) indicates how the
complement of x is represented.

To represent two variables, x and y, we draw two overlapping circles. Then the area
where the circles overlap represents the case where x = y = 1, namely, the AND of x and
y, as shown in part (e). Since this common area consists of the intersecting portions of x
and y, the AND operation is often referred to formally as the intersection of x and y. Part
(f) illustrates the OR operation, where x + y represents the total area within both circles,
namely, where at least one of x or y is equal to 1. Since this combines the areas in the
circles, the OR operation is formally often called the union of x and y.

Part (g) depicts the product term x · y, which is represented by the intersection of the
area for x with that for y. Part (h) gives a three-variable example; the expression x · y + z
is the union of the area for z with that of the intersection of x and y.

To see how we can use Venn diagrams to verify the equivalence of two expressions,
let us demonstrate the validity of the distributive property, 12a, in section 2.5. Figure 2.13
gives the construction of the left and right sides of the identity that defines the property

x · (y + z) = x · y + x · z
Part (a) shows the area where x = 1. Part (b) indicates the area for y+ z. Part (c) gives the
diagram for x · (y+ z), the intersection of shaded areas in parts (a) and (b). The right-hand

x y

z

x y

z

x y

z

x y

z

x y

z

x y

z

x x y⋅

x y⋅ x+ z⋅x y z+()⋅

(a) (d)

(c) (f)

x z⋅y z+(b) (e)

Figure 2.13 Verification of the distributive property x · (y+ z) = x · y+ x · z.

June 10, 2002 11:02 vra23151_ch02 Sheet number 17 Page number 33 black

2.5 Boolean Algebra 33

side is constructed in parts (d), (e), and (f). Parts (d) and (e) describe the terms x · y and
x · z, respectively. The union of the shaded areas in these two diagrams then corresponds
to the expression x · y+ x · z, as seen in part (f). Since the shaded areas in parts (c) and (f)
are identical, it follows that the distributive property is valid.

As another example, consider the identity

x · y + x · z + y · z = x · y + x · z
which is illustrated in Figure 2.14. Notice that this identity states that the term y · z is fully
covered by the terms x · y and x · z; therefore, this term can be omitted.

The reader should use the Venn diagram to prove some other identities. It is particularly
instructive to prove the validity of DeMorgan’s theorem in this way.

x y

z

yx

z

x y

z

x y⋅

y z⋅ x y⋅ x+ z⋅

x z⋅

x y

z

x y⋅

x y

z

x z⋅

x y⋅ x+ z y z⋅+⋅

x y

z

x y

z

Figure 2.14 Verification of x · y + x · z + y · z = x · y + x · z.

June 10, 2002 11:02 vra23151_ch02 Sheet number 18 Page number 34 black

34 C H A P T E R 2 • Introduction to Logic Circuits

2.5.2 Notation and Terminology

Boolean algebra is based on the AND and OR operations. We have adopted the symbols
· and + to denote these operations. These are also the standard symbols for the familiar
arithmetic multiplication and addition operations. Considerable similarity exists between
the Boolean operations and the arithmetic operations, which is the main reason why the
same symbols are used. In fact, when single digits are involved there is only one significant
difference; the result of 1 + 1 is equal to 2 in ordinary arithmetic, whereas it is equal to 1
in Boolean algebra as defined by theorem 7b in section 2.5.

When dealing with digital circuits, most of the time the+ symbol obviously represents
the OR operation. However, when the task involves the design of logic circuits that perform
arithmetic operations, some confusion may develop about the use of the+ symbol. To avoid
such confusion, an alternative set of symbols exists for the AND and OR operations. It is
quite common to use the ∧ symbol to denote the AND operation, and the ∨ symbol for the
OR operation. Thus, instead of x1 · x2, we can write x1 ∧ x2, and instead of x1 + x2, we can
write x1 ∨ x2.

Because of the similarity with the arithmetic addition and multiplication operations,
the OR and AND operations are often called the logical sum and product operations. Thus
x1+ x2 is the logical sum of x1 and x2, and x1 · x2 is the logical product of x1 and x2. Instead
of saying “logical product” and “logical sum,” it is customary to say simply “product” and
“sum.” Thus we say that the expression

x1 · x2 · x3 + x1 · x4 + x2 · x3 · x4

is a sum of three product terms, whereas the expression

(x1 + x3) · (x1 + x3) · (x2 + x3 + x4)

is a product of three sum terms.

2.5.3 Precedence of Operations

Using the three basic operations—AND, OR, and NOT—it is possible to construct an infinite
number of logic expressions. Parentheses can be used to indicate the order in which the
operations should be performed. However, to avoid an excessive use of parentheses, another
convention defines the precedence of the basic operations. It states that in the absence of
parentheses, operations in a logic expression must be performed in the order: NOT, AND,
and then OR. Thus in the expression

x1 · x2 + x1 · x2

it is first necessary to generate the complements of x1 and x2. Then the product terms x1 · x2

and x1 · x2 are formed, followed by the sum of the two product terms. Observe that in the
absence of this convention, we would have to use parentheses to achieve the same effect as
follows:

(x1 · x2)+ ((x1) · (x2))

June 10, 2002 11:02 vra23151_ch02 Sheet number 19 Page number 35 black

2.6 Synthesis Using AND, OR, and NOT Gates 35

Finally, to simplify the appearance of logic expressions, it is customary to omit the ·
operator when there is no ambiguity. Therefore, the preceding expression can be written as

x1x2 + x1x2

We will use this style throughout the book.

2.6 Synthesis Using AND, OR, and NOT Gates

Armed with some basic ideas, we can now try to implement arbitrary functions using the
AND, OR, and NOT gates. Suppose that we wish to design a logic circuit with two inputs,
x1 and x2. Assume that x1 and x2 represent the states of two switches, either of which may
be open (0) or closed (1). The function of the circuit is to continuously monitor the state
of the switches and to produce an output logic value 1 whenever the switches (x1, x2) are
in states (0, 0), (0, 1), or (1, 1). If the state of the switches is (1, 0), the output should be
0. Another way of stating the required functional behavior of this circuit is that the output
must be equal to 0 if the switch x1 is closed and x2 is open; otherwise, the output must be
1. We can express the required behavior using a truth table, as shown in Figure 2.15.

A possible procedure for designing a logic circuit that implements the truth table is to
create a product term that has a value of 1 for each valuation for which the output function
f has to be 1. Then we can take a logical sum of these product terms to realize f . Let us
begin with the fourth row of the truth table, which corresponds to x1 = x2 = 1. The product
term that is equal to 1 for this valuation is x1 · x2, which is just the AND of x1 and x2. Next
consider the first row of the table, for which x1 = x2 = 0. For this valuation the value 1 is
produced by the product term x1 · x2. Similarly, the second row leads to the term x1 · x2.
Thus f may be realized as

f (x1, x2) = x1x2 + x1x2 + x1x2

The logic network that corresponds to this expression is shown in Figure 2.16a.
Although this network implements f correctly, it is not the simplest such network. To

find a simpler network, we can manipulate the obtained expression using the theorems and

x1 x2 f (x1, x2)

0 0 1
0 1 1
1 0 0
1 1 1

Figure 2.15 A function to be synthesized.

June 10, 2002 11:02 vra23151_ch02 Sheet number 20 Page number 36 black

36 C H A P T E R 2 • Introduction to Logic Circuits

f

(a) Canonical sum-of-products

f

(b) Minimal-cost realization

x2

x1

x1

x2

Figure 2.16 Two implementations of the function in Figure 2.15.

properties from section 2.5. According to theorem 7b, we can replicate any term in a logical
sum expression. Replicating the third product term, the above expression becomes

f (x1, x2) = x1x2 + x1x2 + x1x2 + x1x2

Using the commutative property 10b to interchange the second and third product terms
gives

f (x1, x2) = x1x2 + x1x2 + x1x2 + x1x2

Now the distributive property 12a allows us to write

f (x1, x2) = (x1 + x1)x2 + x1(x2 + x2)

Applying theorem 8b we get

f (x1, x2) = 1 · x2 + x1 · 1
Finally, theorem 6a leads to

f (x1, x2) = x2 + x1

The network described by this expression is given in Figure 2.16b. Obviously, the cost of
this network is much less than the cost of the network in part (a) of the figure.

This simple example illustrates two things. First, a straightforward implementation of
a function can be obtained by using a product term (AND gate) for each row of the truth
table for which the function is equal to 1. Each product term contains all input variables,

June 10, 2002 11:02 vra23151_ch02 Sheet number 21 Page number 37 black

2.6 Synthesis Using AND, OR, and NOT Gates 37

and it is formed such that if the input variable xi is equal to 1 in the given row, then xi is
entered in the term; if xi = 0, then xi is entered. The sum of these product terms realizes
the desired function. Second, there are many different networks that can realize a given
function. Some of these networks may be simpler than others. Algebraic manipulation can
be used to derive simplified logic expressions and thus lower-cost networks.

The process whereby we begin with a description of the desired functional behavior
and then generate a circuit that realizes this behavior is called synthesis. Thus we can
say that we “synthesized” the networks in Figure 2.16 from the truth table in Figure 2.15.
Generation of AND-OR expressions from a truth table is just one of many types of synthesis
techniques that we will encounter in this book.

2.6.1 Sum-of-Products and Product-of-Sums Forms

Having introduced the synthesis process by means of a very simple example, we will now
present it in more formal terms using the terminology that is encountered in the technical
literature. We will also show how the principle of duality, which was introduced in section
2.5, applies broadly in the synthesis process.

If a function f is specified in the form of a truth table, then an expression that realizes
f can be obtained by considering either the rows in the table for which f = 1, as we have
already done, or by considering the rows for which f = 0, as we will explain shortly.

Minterms
For a function of n variables, a product term in which each of the n variables appears

once is called a minterm. The variables may appear in a minterm either in uncomplemented
or complemented form. For a given row of the truth table, the minterm is formed by
including xi if xi = 1 and by including xi if xi = 0.

To illustrate this concept, consider the truth table in Figure 2.17. We have num-
bered the rows of the table from 0 to 7, so that we can refer to them easily. (The reader
who is already familiar with the binary number representation will realize that the row
numbers chosen are just the numbers represented by the bit patterns of variables x1,
x2, and x3; we will discuss number representation in Chapter 5.) The figure shows all
minterms for the three-variable table. For example, in the first row the variables have
the values x1 = x2 = x3 = 0, which leads to the minterm x1x2x3. In the second row
x1 = x2 = 0 and x3 = 1, which gives the minterm x1x2x3, and so on. To be able to
refer to the individual minterms easily, it is convenient to identify each minterm by an
index that corresponds to the row numbers shown in the figure. We will use the nota-
tion mi to denote the minterm for row number i. Thus m0 = x1x2x3, m1 = x1x2x3, and
so on.

Sum-of-Products Form
A function f can be represented by an expression that is a sum of minterms, where each

minterm is ANDed with the value of f for the corresponding valuation of input variables.
For example, the two-variable minterms are m0 = x1x2, m1 = x1x2, m2 = x1x2, and
m3 = x1x2. The function in Figure 2.15 can be represented as

June 10, 2002 11:02 vra23151_ch02 Sheet number 22 Page number 38 black

38 C H A P T E R 2 • Introduction to Logic Circuits

Row
number x1 x2 x3 Minterm Maxterm

0 0 0 0 m0 = x1x2x3 M0 = x1 + x2 + x3
1 0 0 1 m1 = x1x2x3 M1 = x1 + x2 + x3
2 0 1 0 m2 = x1x2x3 M2 = x1 + x2 + x3
3 0 1 1 m3 = x1x2x3 M3 = x1 + x2 + x3
4 1 0 0 m4 = x1x2x3 M4 = x1 + x2 + x3
5 1 0 1 m5 = x1x2x3 M5 = x1 + x2 + x3
6 1 1 0 m6 = x1x2x3 M6 = x1 + x2 + x3
7 1 1 1 m7 = x1x2x3 M7 = x1 + x2 + x3

Figure 2.17 Three-variable minterms and maxterms.

f = m0 · 1+ m1 · 1+ m2 · 0+ m3 · 1
= m0 + m1 + m3

= x1x2 + x1x2 + x1x2

which is the form that we derived in the previous section using an intuitive approach. Only
the minterms that correspond to the rows for which f = 1 appear in the resulting expression.

Any function f can be represented by a sum of minterms that correspond to the rows
in the truth table for which f = 1. The resulting implementation is functionally correct and
unique, but it is not necessarily the lowest-cost implementation of f . A logic expression
consisting of product (AND) terms that are summed (ORed) is said to be of the sum-of-
products form. If each product term is a minterm, then the expression is called a canonical
sum-of-products for the function f . As we have seen in the example of Figure 2.16, the first
step in the synthesis process is to derive a canonical sum-of-products expression for the
given function. Then we can manipulate this expression, using the theorems and properties
of section 2.5, with the goal of finding a functionally equivalent sum-of-products expression
that has a lower cost.

As another example, consider the three-variable function f (x1, x2, x3), specified by the
truth table in Figure 2.18. To synthesize this function, we have to include the minterms m1,
m4, m5, and m6. Copying these minterms from Figure 2.17 leads to the following canonical
sum-of-products expression for f

f (x1, x2, x3) = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

This expression can be manipulated as follows

f = (x1 + x1)x2x3 + x1(x2 + x2)x3

= 1 · x2x3 + x1 · 1 · x3

= x2x3 + x1x3

This is the minimum-cost sum-of-products expression for f . It describes the circuit shown
in Figure 2.19a. A good indication of the cost of a logic circuit is the total number of gates

June 10, 2002 11:02 vra23151_ch02 Sheet number 23 Page number 39 black

2.6 Synthesis Using AND, OR, and NOT Gates 39

Row
number x1 x2 x3 f (x1, x2, x3)

0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Figure 2.18 A three-variable function.

plus the total number of inputs to all gates in the circuit. Using this measure, the cost of
the network in Figure 2.19a is 13, because there are five gates and eight inputs to the gates.
By comparison, the network implemented on the basis of the canonical sum-of-products
would have a cost of 27; from the preceding expression, the OR gate has four inputs, each
of the four AND gates has three inputs, and each of the three NOT gates has one input.

f

(a) A minimal sum-of-products realization

f

(b) A minimal product-of-sums realization

x1

x2

x3

x2

x1

x3

Figure 2.19 Two realizations of the function in Figure 2.18.

June 10, 2002 11:02 vra23151_ch02 Sheet number 24 Page number 40 black

40 C H A P T E R 2 • Introduction to Logic Circuits

Minterms, with their row-number subscripts, can also be used to specify a given func-
tion in a more concise form. For example, the function in Figure 2.18 can be specified
as

f (x1, x2, x3) =
∑

(m1, m4, m5, m6)

or even more simply as

f (x1, x2, x3) =
∑

m(1, 4, 5, 6)

The
∑

sign denotes the logical sum operation. This shorthand notation is often used in
practice.

Maxterms
The principle of duality suggests that if it is possible to synthesize a function f by

considering the rows in the truth table for which f = 1, then it should also be possible to
synthesize f by considering the rows for which f = 0. This alternative approach uses the
complements of minterms, which are called maxterms. All possible maxterms for three-
variable functions are listed in Figure 2.17. We will refer to a maxterm Mj by the same row
number as its corresponding minterm mj as shown in the figure.

Product-of-Sums Form
If a given function f is specified by a truth table, then its complement f can be rep-

resented by a sum of minterms for which f = 1, which are the rows where f = 0. For
example, for the function in Figure 2.15

f (x1, x2) = m2

= x1x2

If we complement this expression using DeMorgan’s theorem, the result is

f = f = x1x2

= x1 + x2

Note that we obtained this expression previously by algebraic manipulation of the canonical
sum-of-products form for the function f . The key point here is that

f = m2 = M2

where M2 is the maxterm for row 2 in the truth table.
As another example, consider again the function in Figure 2.18. The complement of

this function can be represented as

f (x1, x2, x3) = m0 + m2 + m3 + m7

= x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

Then f can be expressed as

f = m0 + m2 + m3 + m7

= m0 · m2 · m3 · m7

June 10, 2002 11:02 vra23151_ch02 Sheet number 25 Page number 41 black

2.7 NAND and NOR Logic Networks 41

= M0 ·M2 ·M3 ·M7

= (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

This expression represents f as a product of maxterms.
A logic expression consisting of sum (OR) terms that are the factors of a logical product

(AND) is said to be of the product-of-sums form. If each sum term is a maxterm, then the
expression is called a canonical product-of-sums for the given function. Any function f can
be synthesized by finding its canonical product-of-sums. This involves taking the maxterm
for each row in the truth table for which f = 0 and forming a product of these maxterms.

Returning to the preceding example, we can attempt to reduce the complexity of the
derived expression that comprises a product of maxterms. Using the commutative property
10b and the associative property 11b from section 2.5, this expression can be written as

f = ((x1 + x3)+ x2)((x1 + x3)+ x2)(x1 + (x2 + x3))(x1 + (x2 + x3))

Then, using the combining property 14b, the expression reduces to

f = (x1 + x3)(x2 + x3)

The corresponding network is given in Figure 2.19b. The cost of this network is 13. While
this cost happens to be the same as the cost of the sum-of-products version in Figure 2.19a,
the reader should not assume that the cost of a network derived in the sum-of-products form
will in general be equal to the cost of a corresponding circuit derived in the product-of-sums
form.

Using the shorthand notation, an alternative way of specifying our sample function is

f (x1, x2, x3) = �(M0, M2, M3, M7)

or more simply

f (x1, x2, x3) = �M (0, 2, 3, 7)

The � sign denotes the logical product operation.
The preceding discussion has shown how logic functions can be realized in the form

of logic circuits, consisting of networks of gates that implement basic functions. A given
function may be realized with circuits of a different structure, which usually implies a
difference in cost. An important objective for a designer is to minimize the cost of the
designed circuit. We will discuss the most important techniques for finding minimum-cost
implementations in Chapter 4.

2.7 NAND and NOR Logic Networks

We have discussed the use of AND, OR, and NOT gates in the synthesis of logic circuits.
There are other basic logic functions that are also used for this purpose. Particularly use-
ful are the NAND and NOR functions which are obtained by complementing the output
generated by AND and OR operations, respectively. These functions are attractive because
they are implemented with simpler electronic circuits than the AND and OR functions, as

June 10, 2002 11:02 vra23151_ch02 Sheet number 26 Page number 42 black

42 C H A P T E R 2 • Introduction to Logic Circuits

we will see in Chapter 3. Figure 2.20 gives the graphical symbols for the NAND and NOR
gates. A bubble is placed on the output side of the AND and OR gate symbols to represent
the complemented output signal.

If NAND and NOR gates are realized with simpler circuits than AND and OR gates,
then we should ask whether these gates can be used directly in the synthesis of logic circuits.
In section 2.5 we introduced DeMorgan’s theorem. Its logic gate interpretation is shown
in Figure 2.21. Identity 15a is interpreted in part (a) of the figure. It specifies that a
NAND of variables x1 and x2 is equivalent to first complementing each of the variables
and then ORing them. Notice on the far-right side that we have indicated the NOT gates
simply as bubbles, which denote inversion of the logic value at that point. The other half of
DeMorgan’s theorem, identity 15b, appears in part (b) of the figure. It states that the NOR
function is equivalent to first inverting the input variables and then ANDing them.

In section 2.6 we explained how any logic function can be implemented either in sum-
of-products or product-of-sums form, which leads to logic networks that have either an
AND-OR or an OR-AND structure, respectively. We will now show that such networks
can be implemented using only NAND gates or only NOR gates.

Consider the network in Figure 2.22 as a representative of general AND-OR networks.
This network can be transformed into a network of NAND gates as shown in the figure.
First, each connection between the AND gate and an OR gate is replaced by a connection
that includes two inversions of the signal: one inversion at the output of the AND gate and
the other at the input of the OR gate. Such double inversion has no effect on the behavior of
the network, as stated formally in theorem 9 in section 2.5. According to Figure 2.21a, the

x1
x2

xn

x1 x2 … xn+ + +
x1
x2

x1 x2+

x1
x2

xn

x1
x2

x1 x2⋅ x1 x2 … xn⋅ ⋅ ⋅

(a) NAND gates

(b) NOR gates

Figure 2.20 NAND and NOR gates.

June 10, 2002 11:02 vra23151_ch02 Sheet number 27 Page number 43 black

2.7 NAND and NOR Logic Networks 43

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1x2 x1 x2+=(a)

x1 x2+ x1x2=(b)

Figure 2.21 DeMorgan’s theorem in terms of logic gates.

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

Figure 2.22 Using NAND gates to implement a sum-of-products.

OR gate with inversions at its inputs is equivalent to a NAND gate. Thus we can redraw
the network using only NAND gates, as shown in Figure 2.22. This example shows that
any AND-OR network can be implemented as a NAND-NAND network having the same
topology.

June 10, 2002 11:02 vra23151_ch02 Sheet number 28 Page number 44 black

44 C H A P T E R 2 • Introduction to Logic Circuits

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

Figure 2.23 Using NOR gates to implement a product-of-sums.

Figure 2.23 gives a similar construction for a product-of-sums network, which can be
transformed into a circuit with only NOR gates. The procedure is exactly the same as the
one described for Figure 2.22 except that now the identity in Figure 2.21b is applied. The
conclusion is that any OR-AND network can be implemented as a NOR-NOR network
having the same topology.

2.8 Design Examples

Logic circuits provide a solution to a problem. They implement functions that are needed to
carry out specific tasks. Within the framework of a computer, logic circuits provide complete
capability for execution of programs and processing of data. Such circuits are complex and
difficult to design. But regardless of the complexity of a given circuit, a designer of logic
circuits is always confronted with the same basic issues. First, it is necessary to specify the
desired behavior of the circuit. Second, the circuit has to be synthesized and implemented.
Finally, the implemented circuit has to be tested to verify that it meets the specifications.
The desired behavior is often initially described in words, which then must be turned into
a formal specification. In this section we give two simple examples of design.

2.8.1 Three-Way Light Control

Assume that a large room has three doors and that a switch near each door controls a light
in the room. It has to be possible to turn the light on or off by changing the state of any one
of the switches.

June 10, 2002 11:02 vra23151_ch02 Sheet number 29 Page number 45 black

2.8 Design Examples 45

As a first step, let us turn this word statement into a formal specification using a truth
table. Let x1, x2, and x3 be the input variables that denote the state of each switch. Assume
that the light is off if all switches are open. Closing any one of the switches will turn the
light on. Then turning on a second switch will have to turn off the light. Thus the light
will be on if exactly one switch is closed, and it will be off if two (or no) switches are
closed. If the light is off when two switches are closed, then it must be possible to turn
it on by closing the third switch. If f (x1, x2, x3) represents the state of the light, then the
required functional behavior can be specified as shown in the truth table in Figure 2.24.
The canonical sum-of-products expression for the specified function is

f = m1 + m2 + m4 + m7

= x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

This expression cannot be simplified into a lower-cost sum-of-products expression. The
resulting circuit is shown in Figure 2.25a.

An alternative realization for this function is in the product-of-sums forms. The canon-
ical expression of this type is

f = M0 ·M3 ·M5 ·M6

= (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

The resulting circuit is depicted in Figure 2.25b. It has the same cost as the circuit in part
(a) of the figure.

When the designed circuit is implemented, it can be tested by applying the various
input valuations to the circuit and checking whether the output corresponds to the values
specified in the truth table. A straightforward approach is to check that the correct output
is produced for all eight possible input valuations.

2.8.2 Multiplexer Circuit

In computer systems it is often necessary to choose data from exactly one of a number
of possible sources. Suppose that there are two sources of data, provided as input signals
x1 and x2. The values of these signals change in time, perhaps at regular intervals. Thus

x1 x2 x3 f

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Figure 2.24 Truth table for the three-way light control.

June 10, 2002 11:02 vra23151_ch02 Sheet number 30 Page number 46 black

46 C H A P T E R 2 • Introduction to Logic Circuits

f

(a) Sum-of-products realization

(b) Product-of-sums realization

x1

x2

x3

f

x1

x2

x3

Figure 2.25 Implementation of the function in Figure 2.24.

sequences of 0s and 1s are applied on each of the inputs x1 and x2. We want to design a
circuit that produces an output that has the same value as either x1 or x2, dependent on the
value of a selection control signal s. Therefore, the circuit should have three inputs: x1,
x2, and s. Assume that the output of the circuit will be the same as the value of input x1 if
s = 0, and it will be the same as x2 if s = 1.

Based on these requirements, we can specify the desired circuit in the form of a truth
table given in Figure 2.26a. From the truth table, we derive the canonical sum of products

f (s, x1, x2) = sx1x2 + sx1x2 + sx1x2 + sx1x2

Using the distributive property, this expression can be written as

f = sx1(x2 + x2)+ s(x1 + x1)x2

June 10, 2002 11:02 vra23151_ch02 Sheet number 31 Page number 47 black

2.8 Design Examples 47

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

(a) Truth table

f

x1

x2

s
f

s

x1

x2

0

1

(c) Graphical symbol(b) Circuit

0

1

(d) More compact truth-table representation

Figure 2.26 Implementation of a multiplexer.

Applying theorem 8b yields

f = sx1 · 1+ s · 1 · x2

Finally, theorem 6a gives

f = sx1 + sx2

June 10, 2002 11:02 vra23151_ch02 Sheet number 32 Page number 48 black

48 C H A P T E R 2 • Introduction to Logic Circuits

A circuit that implements this function is shown in Figure 2.26b. Circuits of this type are
used so extensively that they are given a special name. A circuit that generates an output
that exactly reflects the state of one of a number of data inputs, based on the value of one
or more selection control inputs, is called a multiplexer. We say that a multiplexer circuit
“multiplexes” input signals onto a single output.

In this example we derived a multiplexer with two data inputs, which is referred to
as a “2-to-1 multiplexer.” A commonly used graphical symbol for the 2-to-1 multiplexer
is shown in Figure 2.26c. The same idea can be extended to larger circuits. A 4-to-1
multiplexer has four data inputs and one output. In this case two selection control inputs
are needed to choose one of the four data inputs that is transmitted as the output signal. An
8-to-1 multiplexer needs eight data inputs and three selection control inputs, and so on.

Note that the statement “f = x1 if s = 0, and f = x2 if s = 1” can be presented in a
more compact form of a truth table, as indicated in Figure 2.26d . In later chapters we will
have occasion to use such representation.

We showed how a multiplexer can be built using AND, OR, and NOT gates. The same
circuit structure can be used to implement the multiplexer using NAND gates, as explained
in section 2.7. In Chapter 3 we will show other possibilities for constructing multiplexers.
In Chapter 6 we will discuss the use of multiplexers in considerable detail.

Designers of logic circuits rely heavily on CAD tools. We want to encourage the reader
to become familiar with the CAD tool support provided with this book as soon as possible.
We have reached a point where an introduction to these tools is useful. The next section
presents some basic concepts that are needed to use these tools. We will also introduce, in
section 2.10, a special language for describing logic circuits, called Verilog. This language
is used to describe the circuits as an input to the CAD tools, which then proceed to derive
a suitable implementation.

2.9 Introduction to CAD Tools

The preceding sections introduced a basic approach for synthesis of logic circuits. A
designer could use this approach manually for small circuits. However, logic circuits
found in complex systems, such as today’s computers, cannot be designed manually—they
are designed using sophisticated CAD tools that automatically implement the synthesis
techniques.

To design a logic circuit, a number of CAD tools are needed. They are usually packaged
together into a CAD system, which typically includes tools for the following tasks: design
entry, synthesis and optimization, simulation, and physical design. We will introduce some
of these tools in this section and will provide additional discussion in later chapters.

2.9.1 Design Entry

The starting point in the process of designing a logic circuit is the conception of what the
circuit is supposed to do and the formulation of its general structure. This step is done
manually by the designer because it requires design experience and intuition. The rest
of the design process is done with the aid of CAD tools. The first stage of this process

June 10, 2002 11:02 vra23151_ch02 Sheet number 33 Page number 49 black

2.9 Introduction to CAD Tools 49

involves entering into the CAD system a description of the circuit being designed. This
stage is called design entry. We will describe three design entry methods: using truth tables,
using schematic capture, and writing source code in a hardware description language.

Design Entry with Truth Tables
We have already seen that any logic function of a few variables can be described

conveniently by a truth table. Many CAD systems allow design entry using truth tables,
where the table is specified as a plain text file. Alternatively, it may also be possible
to specify a truth table as a set of waveforms in a timing diagram. We illustrated the
equivalence of these two ways of representing truth tables in the discussion of Figure 2.10.
The CAD system provided with this book supports both methods of using truth tables for
design entry. Figure 2.27 shows an example in which the Waveform Editor is used to
draw the timing diagram in Figure 2.10. The CAD system is capable of transforming this
timing diagram automatically into a network of logic gates equivalent to that shown in
Figure 2.10d.

Because truth tables are practical only for functions with a small number of variables,
this design entry method is not appropriate for large circuits. It can, however, be applied
for a small logic function that is part of a larger circuit. In this case the truth table becomes
a subcircuit that can be interconnected to other subcircuits and logic gates. The most
commonly used type of CAD tool for interconnecting such circuit elements is called a
schematic capture tool. The word schematic refers to a diagram of a circuit in which circuit
elements, such as logic gates, are depicted as graphical symbols and connections between
circuit elements are drawn as lines.

Schematic Capture
A schematic capture tool uses the graphics capabilities of a computer and a computer

mouse to allow the user to draw a schematic diagram. To facilitate inclusion of basic gates
in the schematic, the tool provides a collection of graphical symbols that represent gates
of various types with different numbers of inputs. This collection of symbols is called a
library. The gates in the library can be imported into the user’s schematic, and the tool
provides a graphical way of interconnecting the gates to create a logic network.

Any subcircuits that have been previously created, using either different design entry
methods or the schematic capture tool itself, can be represented as graphical symbols and
included in the schematic. In practice it is common for a CAD system user to create a circuit
that includes within it other smaller circuits. This methodology is known as hierarchical
design and provides a good way of dealing with the complexities of large circuits.

Figure 2.27 Screen capture of the Waveform Editor.

June 10, 2002 11:02 vra23151_ch02 Sheet number 34 Page number 50 black

50 C H A P T E R 2 • Introduction to Logic Circuits

Figure 2.28 gives an example of a hierarchical design created with the schematic capture
tool, provided with the CAD system, called the Graphic Editor. The circuit includes a
subcircuit represented as a rectangular graphical symbol. This subcircuit represents the
logic function entered by way of the timing diagram in Figure 2.27. Note that the complete
circuit implements the function f = x1 + x2x3.

In comparison to design entry with truth tables, the schematic-capture facility is more
amenable for dealing with larger circuits. A disadvantage of using schematic capture is that
every commercial tool of this type has a unique user interface and functionality. Therefore,
extensive training is often required for a designer to learn how to use such a tool, and this
training must be repeated if the designer switches to another tool at a later date. Another
drawback is that the graphical user interface for schematic capture becomes awkward to
use when the circuit being designed is large. A useful method for dealing with large circuits
is to write source code using a hardware description language to represent the circuit.

Hardware Description Languages
A hardware description language (HDL) is similar to a typical computer programming

language except that an HDL is used to describe hardware rather than a program to be
executed on a computer. Many commercial HDLs are available. Some are proprietary,
meaning that they are provided by a particular company and can be used to implement cir-
cuits only in the technology provided by that company. We will not discuss the proprietary
HDLs in this book. Instead, we will focus on a language that is supported by virtually
all vendors that provide digital hardware technology and is officially endorsed as an Insti-
tute of Electrical and Electronics Engineers (IEEE) standard. The IEEE is a worldwide
organization that promotes technical activities to the benefit of society in general. One of
its activities involves the development of standards that define how certain technological
concepts can be used in a way that is suitable for a large body of users.

Two HDLs are IEEE standards: Verilog HDL and VHDL (Very High Speed Integrated
Circuit Hardware Description Language). Both languages are in widespread use in the
industry. We use Verilog in this book. Although the two languages differ in many ways, the
choice of using one or the other when studying logic circuits is not particularly important,
because both offer similar features. Concepts illustrated in this book using Verilog can be
directly applied when using VHDL.

In comparison to performing schematic capture, using Verilog offers a number of ad-
vantages. Because it is supported by most companies that offer digital hardware technology,

Figure 2.28 Screen capture of the Graphic Editor.

June 10, 2002 11:02 vra23151_ch02 Sheet number 35 Page number 51 black

2.9 Introduction to CAD Tools 51

Verilog provides design portability. Acircuit specified in Verilog can be implemented in dif-
ferent types of chips and with CAD tools provided by different companies, without having
to change the Verilog specification. Design portability is an important advantage because
digital circuit technology changes rapidly. By using a standard language, the designer can
focus on the functionality of the desired circuit without being overly concerned about the
details of the technology that will eventually be used for implementation.

Design entry of a logic circuit is done by writing Verilog code. Signals in the cir-
cuit can be represented as variables in the source code, and logic functions are expressed
by assigning values to these variables. Verilog source code is plain text, which makes
it easy for the designer to include within the code documentation that explains how the
circuit works. This feature, coupled with the fact that Verilog is widely used, encourages
sharing and reuse of Verilog-described circuits. This allows faster development of new
products in cases where existing Verilog code can be adapted for use in the design of new
circuits.

Similar to the way in which large circuits are handled in schematic capture, Verilog
code can be written in a modular way that facilitates hierarchical design. Both small and
large logic circuit designs can be efficiently represented in Verilog code. Verilog has been
used to define circuits such as microprocessors with millions of transistors.

Verilog design entry can be combined with other methods. For example, a schematic-
capture tool can be used in which a subcircuit in the schematic is described using Verilog.
We will introduce Verilog in section 2.10.

2.9.2 Synthesis

In section 2.4.1 we said that synthesis is the process of generating a logic circuit from a truth
table. Synthesis CAD tools perform this process automatically. However, the synthesis
tools also handle many other tasks. The process of translating, or compiling, Verilog code
into a network of logic gates is part of synthesis.

When the Verilog code representing a circuit is passed through initial synthesis tools,
the output is a lower-level description of the circuit. For simplicity we will assume that
this process produces a set of logic expressions that describe the logic functions needed to
realize the circuit. These expressions are then manipulated further by the synthesis tools.
If the design entry is performed using schematic capture, then the synthesis tools produce
a set of logic equations representing the circuit from the schematic diagram. Similarly, if
truth tables are used for design entry, then the synthesis tools generate expressions for the
logic functions represented by the truth tables.

Regardless of what type of design entry is used, the initial logic expressions produced
by the synthesis tools are not likely to be in an optimal form. Because these expressions
reflect the designer’s input to the CAD tools, it is difficult for a designer to manually produce
optimal results, especially for large circuits. One of the most important tasks of the synthesis
tools is to manipulate the user’s design to automatically produce an equivalent but better
circuit. This step of synthesis is called logic synthesis, or logic optimization.

The measure of what makes one circuit better than another depends on the particu-
lar needs of a design project and the technology chosen for implementation. In section
2.6 we suggested that a good circuit might be one that has the lowest cost. There are
other possible optimization goals, which are motivated by the type of hardware technology

June 10, 2002 11:02 vra23151_ch02 Sheet number 36 Page number 52 black

52 C H A P T E R 2 • Introduction to Logic Circuits

used for implementation of the circuit. We will discuss implementation technologies in
Chapter 3 and return to the issue of optimization goals in Chapter 4.

After logic synthesis the optimized circuit is still represented in the form of logic
equations. The final task in the synthesis process is to determine exactly how the circuit will
be realized in a specific hardware technology. This task involves deciding how each logic
function, represented by an expression, should be implemented using whatever physical
resources are available in the technology. The task involves two steps called technology
mapping, followed by layout synthesis, or physical design. We will discuss these steps in
detail in Chapter 4.

2.9.3 Functional Simulation

Once the design entry and synthesis are complete, it is useful to verify that the designed
circuit functions as expected. The tool that performs this task is called a functional simulator,
and it uses two types of information. First, the user’s initial design is represented by the logic
equations generated during synthesis. Second, the user specifies valuations of the circuit’s
inputs that should be applied to these equations during simulation. For each valuation, the
simulator evaluates the outputs produced by the equations. The output of the simulation is
provided either in truth-table form or as a timing diagram. The user examines this output
to verify that the circuit operates as required.

The logic equations used by the simulator are those produced by the synthesis tools
before any optimizations are applied during logic synthesis. There would be no advantage
in using the optimized form of the equations, because the intent is to evaluate the basic
functionality of the design, which does not change as a result of optimization. The functional
simulator assumes that the time needed for signals to propagate through the logic gates is
negligible. In real logic gates this assumption is not realistic, regardless of the hardware
technology chosen for implementation of the circuit. However, the functional simulation
provides a first step in validating the basic operation of a design without concern for the
effects of implementation technology. Accurate simulations that account for the timing
details related to technology can be obtained by using a timing simulator. We will discuss
timing simulation in Chapter 4.

2.9.4 Summary

The CAD tools discussed in this section form a part of a CAD system. A typical design flow
that the user follows is illustrated in Figure 2.29. After the design entry, initial synthesis tools
perform various steps. For a function described by a truth table, the synthesis approach
discussed in section 2.6 is applied to produce a logic expression for the function. For
Verilog the translation process turns the Verilog source code into logic functions, which can
be represented as logic expressions. As mentioned earlier, the designer can use a mixture of
design entry methods. In Figure 2.29 this flexibility is reflected by the step labeled Merge,
in which the components produced using any of the design entry methods are automatically
merged into a single design. At this point the circuit is represented in the CAD system as a
set of logic equations.

June 10, 2002 11:02 vra23151_ch02 Sheet number 37 Page number 53 black

2.9 Introduction to CAD Tools 53

Design conception

Truth tableTruth table VerilogSchematic capture

Simple synthesis
(see section 2.8.2)

Translation

Merge

Boolean equationsINITIAL SYNTHESIS TOOLS

DESIGN ENTRY

Design correct?

Logic synthesis, physical design, timing simulation

Functional simulation

No

Yes

(see section 4.12)

Figure 2.29 The first stages of a typical CAD system.

After the initial synthesis the correct operation of the designed circuit can be verified by
using functional simulation. As shown in Figure 2.29, this step is not a requirement in the
CAD flow and can be skipped at the designer’s discretion. In practice, however, it is wise to
verify that the designed circuit works as expected as early in the design process as possible.

June 10, 2002 11:02 vra23151_ch02 Sheet number 38 Page number 54 black

54 C H A P T E R 2 • Introduction to Logic Circuits

Any problems discovered during the simulation are fixed by returning to the design entry
stage. Once errors are no longer apparent, the designer proceeds with the remaining tools
in the CAD flow. These include logic synthesis, layout synthesis, timing simulation, and
others. We have mentioned these tools only briefly thus far. The remaining CAD steps will
be described in Chapter 4.

At this point the reader should have some appreciation for what is involved when using
CAD tools. However, the tools can be fully appreciated only when they are used first-
hand. In Appendexes B to D, we provide step-by-step tutorials that illustrate how to use the
MAX+plusII CAD system, which is included with this book. The tutorial in Appendix B
covers design entry with both schematic capture and Verilog, as well as functional simula-
tion. We strongly encourage the reader to work through the hands-on material. Because the
tutorial uses Verilog for design entry, we provide an introduction to Verilog in the following
section.

2.10 Introduction to Verilog

In the 1980s rapid advances in integrated circuit technology lead to efforts to develop
standard design practices for digital circuits. Verilog was produced as a part of that effort.
The original version of Verilog was developed by Gateway Design Automation, which was
later acquired by Cadence Design System. In 1990 Verilog was put into the public domain,
and it has since become the most popular language for describing digital circuits. In 1995
Verilog was adopted as an official IEEE Standard, called 1364-1995. An enhanced version
of Verilog, called Verilog 2001, was adopted as IEEE Standard 1364-2001 in 2001. The vast
majority of the examples presented in this book are compatible with the original Verilog
standard, and we also introduce some of the key features of Verilog 2001.

Verilog was originally intended for simulation and verification of digital circuits. Sub-
sequently, with the addition of synthesis capability, Verilog has also become popular for
use in design entry in CAD systems. The CAD tools are used to synthesize the Verilog
code into a hardware implementation of the described circuit. In this book our main use of
Verilog will be for synthesis.

Verilog is a complex, sophisticated language. Learning all of its features is a daunting
task. However, for use in synthesis only a subset of these features is important. To simplify
the presentation, we will focus the discussion on the features of Verilog that are actually
used in the examples in the book. The material presented is sufficient to allow the reader
to design a wide range of circuits. The reader who wishes to learn the complete Verilog
language can refer to one of the specialized texts [4–10]. Verilog has a number of constructs
similar to the C programming language. A reader who knows C will find Verilog easy to
learn.

Verilog is introduced in several stages throughout the book. Our general approach will
be to introduce particular features only when they are relevant to the design topics covered
in that part of the text. In Appendix A we provide a concise summary of the Verilog features
covered in the book. The reader will find it convenient to refer to that material from time to
time. In the remainder of this chapter we discuss the most basic concepts needed to write
simple Verilog code.

June 10, 2002 11:02 vra23151_ch02 Sheet number 39 Page number 55 black

2.10 Introduction to Verilog 55

Representation of Digital Circuits in Verilog
When using CAD tools to synthesize a logic circuit, the designer can provide the initial

description of the circuit in several different ways, as we explained in section 2.9.1. One
efficient way is to write this description in the form of Verilog source code. The Verilog
compiler translates this code into a logic circuit.

Verilog allows the designer to represent circuits in two fundamentally different ways.
One possibility is to use Verilog constructs that represent simple circuit elements such as
logic gates or even transistors. A larger circuit is defined by writing code that connects
such elements together. This is referred to as the structural representation of logic circuits.
The second possibility is to describe a circuit by using logic expressions and programming
constructs that define the behavior of the circuit but not its actual structure in terms of gates.
This is called the behavioral representation.

2.10.1 Structural Specification of Logic Circuits

Verilog includes a set of gate level primitives that correspond to commonly used logic gates.
A gate is represented by indicating its functional name, output, and inputs. For example, a
two-input AND gate, with inputs x1 and x2 and output y, is denoted as

and (y, x1, x2);
A four-input OR gate is specified as

or (y, x1, x2, x3, x4);
The keywords nand and nor are used to define the NAND and NOR gates in the same way.
The NOT gate given by

not (y, x);
implements y = x. The gate level primitives can be used to specify larger circuits. All of
the available Verilog gate level primitives are listed in Table A.2 in Appendix A.

A logic circuit is specified in the form of a module that contains the statements that
define the circuit. The module may have inputs and outputs, which are referred to as its
ports. The name port is a commonly used term that refers to an input or output connection
to an electronic circuit. Consider the circuit in Figure 2.30. This circuit can be represented
by the Verilog code in Figure 2.31. The first statement gives the module a name, example1,
and indicates that there are four port signals. The next two statements declare that x1, x2,
and x3 are to be treated as input signals, while f is the output. The actual structure of the
circuit is specified in the four statements that follow. The NOT gate gives k = x2. The
AND gates produce g = x1x2 and h = x2x3. The outputs of AND gates are combined in
the OR gate to form

f = g + h
= x1x2 + x2x3

The module ends with the endmodule statement. We have written the Verilog keywords
in bold type to make the text easier to read. We will continue this practice throughout the
book.

June 10, 2002 11:02 vra23151_ch02 Sheet number 40 Page number 56 black

56 C H A P T E R 2 • Introduction to Logic Circuits

f

x3

x1

x2

Figure 2.30 A simple logic function.

module example1 (x1, x2, x3, f);
input x1, x2, x3;
output f;

and (g, x1, x2);
not (k, x2);
and (h, k, x3);
or (f, g, h);

endmodule

Figure 2.31 Verilog code for the circuit in Figure 2.30.

A second example of Verilog code is given in Figure 2.32. It defines a circuit that has
four input signals, x1, x2, x3, and x4, and three output signals, f, g, and h. It implements the
logic functions

g = x1x3 + x2x4

h = (x1 + x3)(x2 + x4)

f = g + h

Instead of using explicit NOT gates to define x2 and x3, we have used the Verilog operator
“∼” (tilde character on the keyboard) to denote complementation. Thus, x2 is indicated as
∼x2 in the code. The circuit produced by the Verilog compiler for this example is shown
in Figure 2.33.

Verilog Syntax
The names of modules and signals in Verilog code follow two simple rules: The name

must start with a letter and it can contain any letter or number plus the “_” underscore and $
characters. Verilog is case sensitive. Thus, the name k is not the same as K and Example1
is not the same as example1. The Verilog syntax does not enforce a particular style of code.
For example, multiple statements can appear on a single line. White space characters, such
as SPACE and TAB, and blank lines are ignored. As a matter of good style, code should be

June 10, 2002 11:02 vra23151_ch02 Sheet number 41 Page number 57 black

2.10 Introduction to Verilog 57

module example2 (x1, x2, x3, x4, f, g, h);
input x1, x2, x3, x4;
output f, g, h;

and (z1, x1, x3);
and (z2, x2, x4);
or (g, z1, z2);
or (z3, x1, x3);
or (z4, x2, x4);
and (h, z3, z4);
or (f, g, h);

endmodule

Figure 2.32 Verilog code for a four-input circuit.

g

h

x3

x1

x2

x4

f

Figure 2.33 Logic circuit for the code in Figure 2.32.

formatted in such a way that it is easy to read. Indentation and blank lines can be used to
make separate parts of the code easily recognizable, as we have done in Figures 2.31 and
2.32. Comments may be included in the code to improve its readability. A comment begins
with the double slash “//” and continues to the end of the line.

June 10, 2002 11:02 vra23151_ch02 Sheet number 42 Page number 58 black

58 C H A P T E R 2 • Introduction to Logic Circuits

2.10.2 Behavioral Specification of Logic Circuits

Using gate level primitives can be tedious when large circuits have to be designed. An
alternative is to use more abstract expressions and programming constructs to describe the
behavior of a digital circuit. One possibility is to define the circuit using logic expressions.
Figure 2.34 shows how the circuit in Figure 2.30 can be defined with the expression

f = x1x2 + x2x3

The AND and OR operations are indicated by the “&” and “|” signs, respectively. The
assign keyword provides a continuous assignment for the signal f . The word continuous
stems from the use of Verilog for simulation; whenever any signal on the right-hand side
changes its state, the value of f will be re-evaluated. The effect is equivalent to using the
gate level primitives in Figure 2.31. Following this approach, the circuit in Figure 2.33 can
be specified as shown in Figure 2.35.

Using logic expressions makes it easier to write Verilog code. But even higher levels
of abstraction can often be used to advantage. Consider again the circuit in Figure 2.30.
This circuit is similar to the 2-to-1 multiplexer circuit discussed in section 2.8.2, with x2

being the selection control input and x1 and x3 being the data inputs. The circuit can be
described in words by saying that f = x1 if x2 = 1 and f = x3 if x2 = 0. In Verilog, this

module example3 (x1, x2, x3, f);
input x1, x2, x3;
output f;

assign f = (x1 & x2) | (x2 & x3);

endmodule

Figure 2.34 Using the continuous assignment to specify the
circuit in Figure 2.30.

module example4 (x1, x2, x3, x4, f, g, h);
input x1, x2, x3, x4;
output f, g, h;

assign g = (x1 & x3) | (x2 & x4);
assign h = (x1 | x3) & (x2 | x4);
assign f = g | h;

endmodule

Figure 2.35 Using the continuous assignment to specify the
circuit in Figure 2.33.

June 10, 2002 11:02 vra23151_ch02 Sheet number 43 Page number 59 black

2.10 Introduction to Verilog 59

behavior can be defined with the if-else statement

if (x2 == 1)
f = x1;

else
f = x3;

The complete code is given in Figure 2.36. The first line illustrates how a comment can be
inserted. The if-else statement is an example of a Verilog procedural statement. We will
introduce other procedural statements, such as loop statements, in Chapters 5 and 6.

Verilog syntax requires that procedural statements be contained inside a construct called
an always block, as shown in Figure 2.36. An always block can contain a single statement,
as in this example, or it can contain many statements. A typical Verilog design module may
include several always blocks, each representing a part of the circuit being modeled. An
important property of the always block is that the statements it contains are evaluated in
the order given in the code. This is in contrast to the continuous assignment statements,
which are evaluated concurrently and hence have no meaningful order.

The part of the always block after the @ symbol, in parentheses, is called the sensitivity
list. This list has its roots in the use of Verilog for simulation. The statements inside
an always block are executed by the simulator only when one or more of the signals in
the sensitivity list changes value. In this way, the complexity of a simulation process is
simplified, because it is not necessary to execute every statement in the code at all times.
When Verilog is being employed for synthesis of circuits, as in this book, the sensitivity list
simply tells the Verilog compiler which signals can directly affect the outputs produced by
the always block.

If a signal is assigned a value using procedural statements, then Verilog syntax requires
that it be declared as a variable; this is accomplished by using the keyword reg in Figure
2.36. This term also derives from the simulation jargon: It means that, once a variable’s

// Behavioral specification
module example5 (x1, x2, x3, f);

input x1, x2, x3;
output f;
reg f;

always @(x1 or x2 or x3)
if (x2 == 1)

f = x1;
else

f = x3;

endmodule

Figure 2.36 Behavioral specification of the circuit in Figure
2.30.

June 10, 2002 11:02 vra23151_ch02 Sheet number 44 Page number 60 black

60 C H A P T E R 2 • Introduction to Logic Circuits

value is assigned with a procedural statement, the simulator “registers” this value and it will
not change until the always block is executed again. We will discuss this issue in detail in
Chapter 5.

All Verilog statements end with a semicolon. Appendix A provides a full definition of
Verilog statements.

Behavioral specification of a logic circuit defines only its behavior. CAD synthesis
tools use this specification to construct the actual circuit. The detailed structure of the
synthesized circuit will depend on the technology used. As we will see in the chapters that
follow, it is possible to achieve the same functional behavior using differently structured
circuits.

2.10.3 How NOT toWrite Verilog Code

When learning how to use Verilog or other hardware description languages, the tendency for
the novice is to write code that resembles a computer program, containing many variables
and loops. It is difficult to determine what logic circuit the CAD tools will produce when
synthesizing such code. This book contains more than 100 examples of complete Verilog
code that represent a wide range of logic circuits. In these examples the code is easily
related to the described logic circuit. The reader is advised to adopt the same style of code.
A good general guideline is to assume that, if the designer cannot readily determine what
logic circuit is described by the Verilog code, then the CAD tools are not likely to synthesize
the circuit that the designer is trying to model.

Once complete Verilog code is written for a particular design, the reader is encouraged
to analyze the resulting circuit produced by the synthesis tools. Much can be learned about
Verilog, logic circuits, and logic synthesis through this process.

2.11 Concluding Remarks

In this chapter we introduced the concept of logic circuits. We showed that such circuits can
be implemented using logic gates and that they can be described using a mathematical model
called Boolean algebra. Because practical logic circuits are often large, it is important to
have good CAD tools to help the designer. This book is accompanied by the MAX+PlusII
software, which is a CAD tool provided by Altera Corporation. We introduced a few basic
features of this tool and urge the reader to start using this software as soon as possible.

Our discussion so far has been quite elementary. We will deal with both the logic
circuits and the CAD tools in much more depth in the chapters that follow. But first, in
Chapter 3 we will examine the most important electronic technologies used to construct
logic circuits. This material will give the reader an appreciation of practical constraints that
a designer of logic circuits must face.

June 10, 2002 11:02 vra23151_ch02 Sheet number 45 Page number 61 black

Problems 61

Problems

2.1 Use algebraic manipulation to prove that x + yz = (x + y) · (x + z). Note that this is the
distributive ruxe, as stated in identity 12b in section 2.5.

2.2 Use algebraic manipulation to prove that (x + y) · (x + y) = x.

2.3 Use the Venn diagram to prove the identity in problem 1.

2.4 Use the Venn diagram to prove DeMorgan’s theorem, as given in expressions 15a and 15b
in section 2.5.

2.5 Use the Venn diagram to prove

(x1 + x2 + x3) · (x1 + x2 + x3) = x1 + x2

2.6 Determine whether or not the following expressions are valid, i.e., whether the left- and
right-hand sides represent same function.
(a) x1x3 + x1x2x3 + x1x2 + x1x2 = x2x3 + x1x3 + x2x3 + x1x2x3

(b) x1x3 + x2x3 + x2x3 = (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

(c) (x1 + x3)(x1 + x2 + x3)(x1 + x2) = (x1 + x2)(x2 + x3)(x1 + x3)

2.7 Draw a timing diagram for the circuit in Figure 2.19a. Show the waveforms that can be
observed on all wires in the circuit.

2.8 Repeat problem 2.7 for the circuit in Figure 2.19b.

2.9 Use algebraic manipulation to show that for three input variables x1, x2, and x3

∑

m(1, 2, 3, 4, 5, 6, 7) = x1 + x2 + x3

2.10 Use algebraic manipulation to show that for three input variables x1, x2, and x3

� M(0, 1, 2, 3, 4, 5, 6) = x1x2x3

2.11 Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tion f = x1x3 + x1x2 + x1x2x3 + x1x2x3.

2.12 Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tion f = x1x2x3 + x1x2x4 + x1x2x3x4.

2.13 Use algebraic manipulation to find the minimum product-of-sums expression for the func-
tion f = (x1 + x3 + x4) · (x1 + x2 + x3) · (x1 + x2 + x3 + x4).

2.14 Use algebraic manipulation to find the minimum product-of-sums expression for the func-
tion f = (x1 + x2 + x3) · (x1 + x2 + x3) · (x1 + x2 + x3) · (x1 + x2 + x3).

2.15 (a) Show the location of all minterms in a three-variable Venn diagram.
(b) Show a separate Venn diagram for each product term in the function f = x1x2x3+x1x2+
x1x3. Use the Venn diagram to find the minimal sum-of-products form of f.

June 10, 2002 11:02 vra23151_ch02 Sheet number 46 Page number 62 black

62 C H A P T E R 2 • Introduction to Logic Circuits

2.16 Represent the function in Figure 2.18 in the form of a Venn diagram and find its minimal
sum-of-products form.

2.17 Figure P2.1 shows two attempts to draw a Venn diagram for four variables. For parts (a)
and (b) of the figure, explain why the Venn diagram is not correct. (Hint: the Venn diagram
must be able to represent all 16 minterms of the four variables.)

x1 x2

x3

x4

(a)

x1 x2

x3

x4

(b)

Figure P2.1 Two attempts to draw a four-variable Venn diagram.

2.18 Figure P2.2 gives a representation of a four-variable Venn diagram and shows the location
of minterms m0, m1, and m2. Show the location of the other minterms in the diagram.
Represent the function f = x1x2x3x4 + x1x2x3x4 + x1x2 on this diagram.

x3

x2x1

x4

x3

x2x1

m0

m1m2

Figure P2.2 A four-variable Venn diagram.

2.19 Design the simplest sum-of-products circuit that implements the function f (x1, x2, x3) =
∑

m(3, 4, 6, 7).

2.20 Design the simplest sum-of-products circuit that implements the function f (x1, x2, x3) =
∑

m(1, 3, 4, 6, 7).

2.21 Design the simplest product-of-sums circuit that implements the function f (x1, x2, x3) =
� M (0, 2, 5).

June 10, 2002 11:02 vra23151_ch02 Sheet number 47 Page number 63 black

Problems 63

2.22 Design the simplest product-of-sums expression for the function f (x1, x2, x3) =
� M (0, 1, 5, 7).

2.23 Design the simplest circuit that has three inputs, x1, x2, and x3, which produces an output
value of 1 whenever two or more of the input variables have the value 1; otherwise, the
output has to be 0.

2.24 For the timing diagram in Figure P2.3, synthesize the function f (x1, x2, x3) in the simplest
sum-of-products form.

1
0

1
0

1
0

1
0

x1

x2

Time

x3

f

Figure P2.3 A timing diagram representing a logic function.

2.25 For the timing diagram in Figure P2.4, synthesize the function f (x1, x2, x3) in the simplest
sum-of-products form.

1
0

1
0

1
0

1
0

x1

x2

Time

x3

f

Figure P2.4 A timing diagram representing a logic function.

2.26 Design a circuit with output f and inputs x1, x0, y1, and y0. Let X = x1x0 be a number,
where the four possible values of X, namely, 00, 01, 10, and 11, represent the four numbers

June 10, 2002 11:02 vra23151_ch02 Sheet number 48 Page number 64 black

64 C H A P T E R 2 • Introduction to Logic Circuits

0, 1, 2, and 3, respectively. (We discuss representation of numbers in Chapter 5.) Similarly,
let Y = y1y0 represent another number with the same four possible values. The output f
should be 1 if the numbers represented by X and Y are equal. Otherwise, f should be 0.
(a) Show the truth table for f.
(b) Synthesize the simplest possible product-of-sums expression for f.

2.27 Repeat problem 2.26 for the case where f should be 1 only if X ≥ Y .
(a) Show the truth table for f.
(b) Show the canonical sum-of-products expression for f.
(c) Show the simplest possible sum-of-products expression for f.

2.28 Implement the function in Figure 2.24 using only NAND gates.

2.29 Implement the function in Figure 2.24 using only NOR gates.

2.30 Implement the circuit in Figure 2.33 using NAND and NOR gates.

2.31 Design the simplest circuit that implements the function f (x1, x2, x3) = ∑

m(3, 4, 6, 7)

using NAND gates.

2.32 Design the simplest circuit that implements the function f (x1, x2, x3) =∑

m(1, 3, 4, 6, 7)

using NAND gates.

2.33 Repeat problem 2.31 using NOR gates.

2.34 Repeat problem 2.32 using NOR gates.

2.35 (a) Use a schematic capture tool to draw schematics for the following functions

f1 = x2x3x4 + x1x2x4 + x1x2x3 + x1x2x3

f2 = x2x4 + x1x2 + x2x3

(b) Use functional simulation to prove that f1 = f2.

2.36 (a) Use a schematic capture tool to draw schematics for the following functions

f1 = (x1 + x2 + x4) · (x2 + x3 + x4) · (x1 + x3 + x4) · (x1 + x3 + x4)

f2 = (x2 + x4) · (x3 + x4) · (x1 + x4)

(b) Use functional simulation to prove that f1 = f2.

2.37 Write Verilog code to implement the circuit in Figure 2.25a using the gate level primitives.

2.38 Repeat problem 2.37 for the circuit in Figure 2.25b.

2.39 Write Verilog code to implement the function f (x1, x2, x3) = ∑

m(1, 2, 3, 4, 5, 6) using
the gate level primitives. Ensure that the resulting circuit is as simple as possible.

2.40 Write Verilog code to implement the function f (x1, x2, x3) = ∑

m(0, 1, 3, 4, 5, 6) using
the continuous assignment.

2.41 (a) Write Verilog code to describe the following functions

f1 = x1x3 + x2x3 + x3x4 + x1x2 + x1x4

f2 = (x1 + x3) · (x1 + x2 + x4) · (x2 + x3 + x4)

(b) Use functional simulation to prove that f1 = f2.

June 10, 2002 11:02 vra23151_ch02 Sheet number 49 Page number 65 black

References 65

2.42 Consider the following Verilog statements

f 1 = (x1 & x3) | (∼x1 & ∼x3) | (x2 & x4) | (∼x2 & ∼x4);
f 2 = (x1 & x2 & ∼x3 & ∼x4) | (∼x1 & ∼x2 & x3 & x4) |

(x1 & ∼x2 & ∼x3 & x4) | (∼x1 & x2 & x3 & ∼x4);
(a) Write complete Verilog code to implement f 1 and f 2.

(b) Use functional simulation to prove that f 1 = f 2.

References

1. G. Boole, An Investigation of the Laws of Thought, 1854, reprinted by Dover
Publications, New York, 1954.

2. C. E. Shannon, “A Symbolic Analysis of Relay and Switching Circuits,” Transactions
of AIEE 57 (1938), pp. 713–723.

3. E. V. Huntington, “Sets of Independent Postulates for the Algebra of Logic,”
Transactions of the American Mathematical Society 5 (1904), pp. 288–309.

4. D. A. Thomas and P. R. Moorby, The Verilog Hardware Description Language, 4th
ed., (Kluwer: Norwell, MA, 1998).

5. S. Palnitkar, Verilog HDL—A Guide to Digital Design and Synthesis, (Prentice Hall:
Upper Saddle River, NJ, 1996).

6. D. R. Smith and P. D. Franzon, Verilog Styles for Synthesis of Digital Systems,
(Prentice Hall: Upper Saddle River, NJ, 2000).

7. Z. Navabi, Verilog Digital System Design, (McGraw-Hill: New York, 1999).

8. J. Bhasker, Verilog HDL Synthesis—A Practical Primer, (Star Galaxy Publishing:
Allentown, PA, 1998).

9. D. J. Smith, HDL Chip Design, (Doone Publications: Madison, AL, 1996).

10. S. Sutherland, Verilog 2001—A Guide to the New Features of the Verilog Hardware
Description Language, (Kluwer: Hingham, MA, 2001).

July 2, 2002 09:34 vra23151_ch03 Sheet number 1 Page number 67 black

67

c h a p t e r

3
Implementation Technology

3. Nb1–c3, d5xe4

July 2, 2002 09:34 vra23151_ch03 Sheet number 2 Page number 68 black

68 C H A P T E R 3 • Implementation Technology

In section 1.2 we said that logic circuits are implemented using transistors and that a number of different
technologies exist. We now explore technology issues in more detail.

Let us first consider how logic variables can be physically represented as signals in electronic circuits.
Our discussion will be restricted to binary variables, which can take on only the values 0 and 1. In a circuit
these values can be represented either as levels of voltage or current. Both alternatives are used in different
technologies. We will focus on the simplest and most popular representation, using voltage levels.

The most obvious way of representing two logic values as voltage levels is to define a threshold voltage;
any voltage below the threshold represents one logic value, and voltages above the threshold correspond to
the other logic value. It is an arbitrary choice as to which logic value is associated with the low and high
voltage levels. Usually, logic 0 is represented by the low voltage levels and logic 1 by the high voltages.
This is known as a positive logic system. The opposite choice, in which the low voltage levels are used to
represent logic 1 and the higher voltages are used for logic 0 is known as a negative logic system. In this
book we use only the positive logic system, but negative logic is discussed briefly in section 3.4.

Using the positive logic system, the logic values 0 and 1 are referred to simply as “low” and “high.”
To implement the threshold-voltage concept, a range of low and high voltage levels is defined, as shown in
Figure 3.1. The figure gives the minimum voltage, called VSS , and the maximum voltage, called VDD, that
can exist in the circuit. We will assume that VSS is 0 volts, corresponding to electrical ground, denoted Gnd.
The voltage VDD represents the power supply voltage. The most common levels for VDD are between 5 volts
and 1.5 volts. In this chapter we will usually assume that VDD = 5 V. Figure 3.1 indicates that voltages in the
range Gnd to V0,max represent logic value 0. The name V0,max means the maximum voltage level that a logic
circuit must recognize as low. Similarly, the range from V1,min to VDD corresponds to logic value 1, and V1,min

is the minimum voltage level that a logic circuit must interpret as high. The exact levels of V0,max and V1,min

Logic value 1

Undefined

Logic value 0

Voltage

VDD

V1,min

V0,max

VSS (Gnd)

Figure 3.1 Representation of logic values by voltage levels.

July 2, 2002 09:34 vra23151_ch03 Sheet number 3 Page number 69 black

3.1 Transistor Switches 69

depend on the particular technology used; a typical example might set V0,max to 40 percent of VDD and V1,min

to 60 percent of VDD. The range of voltages between V0,max and V1,min is undefined. Logic signals do not
normally assume voltages in this range except in transition from one logic value to the other. We will discuss
the voltage levels used in logic circuits in more depth in section 3.8.3.

3.1 Transistor Switches

Logic circuits are built with transistors. A full treatment of transistor behavior is beyond
the scope of this text; it can be found in electronics textbooks, such as [1] and [2]. For
the purpose of understanding how logic circuits are built, we can assume that a transistor
operates as a simple switch. Figure 3.2a shows a switch controlled by a logic signal, x. When
x is low, the switch is open, and when x is high, the switch is closed. The most popular type
of transistor for implementing a simple switch is the metal oxide semiconductor field-effect
transistor (MOSFET). There are two different types of MOSFETs, known as n-channel,
abbreviated NMOS, and p-channel, denoted PMOS.

Figure 3.2b gives a graphical symbol for an NMOS transistor. It has four electrical
terminals, called the source, drain, gate, and substrate. In logic circuits the substrate (also

DrainSource

x = “low” x = “high”

(a) A simple switch controlled by the input x

VDVS

(b) NMOS transistor

Gate

(c) Simplified symbol for an NMOS transistor

VG

Substrate (body)

Figure 3.2 NMOS transistor as a switch.

July 2, 2002 09:34 vra23151_ch03 Sheet number 4 Page number 70 black

70 C H A P T E R 3 • Implementation Technology

called body) terminal is connected to Gnd. We will use the simplified graphical symbol in
Figure 3.2c, which omits the substrate node. There is no physical difference between the
source and drain terminals. They are distinguished in practice by the voltage levels applied
to the transistor; by convention, the terminal with the lower voltage level is deemed to be
the source.

A detailed explanation of how the transistor operates will be presented in section 3.8.1.
For now it is sufficient to know that it is controlled by the voltage VG at the gate terminal.
If VG is low, then there is no connection between the source and drain, and we say that
the transistor is turned off. If VG is high, then the transistor is turned on and acts as a
closed switch that connects the source and drain terminals. In section 3.8.2 we show how
to calculate the resistance between the source and drain terminals when the transistor is
turned on, but for now assume that the resistance is 0 �.

PMOS transistors have the opposite behavior of NMOS transistors. The former are
used to realize the type of switch illustrated in Figure 3.3a, where the switch is open when
the control input x is high and closed when x is low. A symbol is shown in Figure 3.3b.
In logic circuits the substrate of the PMOS transistor is always connected to VDD, leading
to the simplified symbol in Figure 3.3c. If VG is high, then the PMOS transistor is turned
off and acts like an open switch. When VG is low, the transistor is turned on and acts as a
closed switch that connects the source and drain. In the PMOS transistor the source is the
node with the higher voltage.

Gate

x = “high” x = “low”

(a) A switch with the opposite behavior of Figure 3.2(a)

VG

VDVS

(b) PMOS transistor

(c) Simplified symbol for an PMOS transistor

VDD

Drain Source

Substrate (body)

Figure 3.3 PMOS transistor as a switch.

July 2, 2002 09:34 vra23151_ch03 Sheet number 5 Page number 71 black

3.2 NMOS Logic Gates 71

(a) NMOS transistor

VG

VD

VS = 0 V

VS = VDD

VD

VG

Closed switch
when VG = VDD

VD = 0 V

Open switch
when VG = 0 V

VD

Open switch
when VG = VDD

VD

VDD

Closed switch
when VG = 0 V

VD = VDD

VDD

(b) PMOS transistor

Figure 3.4 NMOS and PMOS transistors in logic circuits.

Figure 3.4 summarizes the typical use of NMOS and PMOS transistors in logic circuits.
An NMOS transistor is turned on when its gate terminal is high, while a PMOS transistor
is turned on when its gate is low. When the NMOS transistor is turned on, its drain is
pulled down to Gnd, and when the PMOS transistor is turned on, its drain is pulled up to
VDD. Because of the way the transistors operate, an NMOS transistor cannot be used to
pull its drain terminal completely up to VDD. Similarly, a PMOS transistor cannot be used
to pull its drain terminal completely down to Gnd. We discuss the operation of MOSFETs
in considerable detail in section 3.8.

3.2 NMOS Logic Gates

The first schemes for building logic gates with MOSFETs became popular in the 1970s
and relied on either PMOS or NMOS transistors, but not both. Since the early 1980s, a
combination of both NMOS and PMOS transistors has been used. We will first describe
how logic circuits can be built using NMOS transistors because these circuits are easier

July 2, 2002 09:34 vra23151_ch03 Sheet number 6 Page number 72 black

72 C H A P T E R 3 • Implementation Technology

to understand. Such circuits are known as NMOS circuits. Then we will show how
NMOS and PMOS transistors are combined in the presently popular technology known as
complementary MOS, or CMOS.

In the circuit in Figure 3.5a, when Vx = 0 V, the NMOS transistor is turned off. No
current flows through the resistor R, and Vf = 5 V. On the other hand, when Vx = 5 V, the
transistor is turned on and pulls Vf to a low voltage level. The exact voltage level of Vf

in this case depends on the amount of current that flows through the resistor and transistor.
Typically, Vf is about 0.2 V (see section 3.8.3). If Vf is viewed as a function of Vx, then the
circuit is an NMOS implementation of a NOT gate. In logic terms this circuit implements
the function f = x. Figure 3.5b gives a simplified circuit diagram in which the connection
to the positive terminal on the power supply is indicated by an arrow labeled VDD and the
connection to the negative power-supply terminal is indicated by the Gnd symbol. We will
use this simplified style of circuit diagram throughout this chapter.

The purpose of the resistor in the NOT gate circuit is to limit the amount of current that
flows when Vx = 5 V. Rather than using a resistor for this purpose, a transistor is normally
used. We will discuss this issue in more detail in section 3.8.3. In subsequent diagrams
a dashed box is drawn around the resistor R as a reminder that it is implemented using a
transistor.

Figure 3.5c presents the graphical symbols for a NOT gate. The left symbol shows the
input, output, power, and ground terminals, and the right symbol is simplified to show only

(b) Simplified circuit diagram

Vx

Vf

VDD

x f

(c) Graphical symbols

x f

R

Vx

Vf

R

+

-

(a) Circuit diagram

5 V

Figure 3.5 A NOT gate built using NMOS technology.

July 2, 2002 09:34 vra23151_ch03 Sheet number 7 Page number 73 black

3.2 NMOS Logic Gates 73

the input and output terminals. In practice only the simplified symbol is used. Another
name often used for the NOT gate is inverter. We use both names interchangeably in this
book.

In section 2.1 we saw that a series connection of switches corresponds to the logic AND
function, while a parallel connection represents the OR function. Using NMOS transistors,
we can implement the series connection as depicted in Figure 3.6a. If Vx1 = Vx2 = 5 V,
both transistors will be on and Vf will be close to 0 V. But if either Vx1 or Vx2 is 0, then no
current will flow through the series-connected transistors and Vf will be pulled up to 5 V.
The resulting truth table for f , provided in terms of logic values, is given in Figure 3.6b.
The realized function is the complement of the AND function, called the NAND function,
for NOT-AND. The circuit realizes a NAND gate. Its graphical symbols are shown in Fig-
ure 3.6c.

The parallel connection of NMOS transistors is given in Figure 3.7a. Here, if either
Vx1 = 5 V or Vx2 = 5 V, then Vf will be close to 0 V. Only if both Vx1 and Vx2 are 0 will Vf

be pulled up to 5 V. A corresponding truth table is given in Figure 3.7b. It shows that the
circuit realizes the complement of the OR function, called the NOR function, for NOT-OR.
The graphical symbols for the NOR gate appear in Figure 3.7c.

Vf

VDD

(a) Circuit

(c) Graphical symbols

(b) Truth table

f f

0
0
1
1

0
1
0
1

1
1
1
0

x1 x2 f

Vx2

Vx1

x1

x2

x1

x2

Figure 3.6 NMOS realization of a NAND gate.

July 2, 2002 09:34 vra23151_ch03 Sheet number 8 Page number 74 black

74 C H A P T E R 3 • Implementation Technology

Vx1
Vx2

Vf

VDD

(a) Circuit

(c) Graphical symbols

(b) Truth table

f

0
0
1
1

0
1
0
1

1
0
0
0

x1 x2 f

f
x1

x2

x1

x2

Figure 3.7 NMOS realization of a NOR gate.

In addition to the NAND and NOR gates just described, the reader would naturally
be interested in the AND and OR gates that were used extensively in the previous chapter.
Figure 3.8 indicates how an AND gate is built in NMOS technology by following a NAND
gate with an inverter. Node A realizes the NAND of inputs x1 and x2, and f represents the
AND function. In a similar fashion an OR gate is realized as a NOR gate followed by an
inverter, as depicted in Figure 3.9.

3.3 CMOS Logic Gates

So far we have considered how to implement logic gates using NMOS transistors. For
each of the circuits that has been presented, it is possible to derive an equivalent circuit
that uses PMOS transistors. However, it is more interesting to consider how both NMOS
and PMOS transistors can be used together. The most popular such approach is known as
CMOS technology. We will see in section 3.8 that CMOS technology offers some attractive
practical advantages in comparison to NMOS technology.

In NMOS circuits the logic functions are realized by arrangements of NMOS transistors,
combined with a pull-up device that acts as a resistor. We will refer to the part of the circuit

July 2, 2002 09:34 vra23151_ch03 Sheet number 9 Page number 75 black

3.3 CMOS Logic Gates 75

(a) Circuit

(c) Graphical symbols

(b) Truth table

f f

0
0
1
1

0
1
0
1

0
0
0
1

x1 x2 f

Vf

VDD

A

Vx1

Vx2

x1

x2

x1

x2

VDD

Figure 3.8 NMOS realization of an AND gate.

that involves NMOS transistors as the pull-down network (PDN). Then the structure of the
circuits in Figures 3.5 through 3.9 can be characterized by the block diagram in Figure
3.10. The concept of CMOS circuits is based on replacing the pull-up device with a pull-up
network (PUN) that is built using PMOS transistors, such that the functions realized by the
PDN and PUN networks are complements of each other. Then a logic circuit, such as a
typical logic gate, is implemented as indicated in Figure 3.11. For any given valuation of
the input signals, either the PDN pulls Vf down to Gnd or the PUN pulls Vf up to VDD. The
PDN and the PUN have equal numbers of transistors, which are arranged so that the two
networks are duals of one another. Wherever the PDN has NMOS transistors in series, the
PUN has PMOS transistors in parallel, and vice versa.

The simplest example of a CMOS circuit, a NOT gate, is shown in Figure 3.12. When
Vx = 0 V, transistor T2 is off and transistor T1 is on. This makes Vf = 5 V, and since T2 is

July 2, 2002 09:34 vra23151_ch03 Sheet number 10 Page number 76 black

76 C H A P T E R 3 • Implementation Technology

(a) Circuit

(c) Graphical symbols

(b) Truth table

f

0
0
1
1

0
1
0
1

0
1
1
1

x1 x2 f

f

Vf

VDD

Vx2
Vx1

x1

x2

x1

x2

VDD

Figure 3.9 NMOS realization of an OR gate.

off, no current flows through the transistors. When Vx = 5 V, T2 is on and T1 is off. Thus
Vf = 0 V, and no current flows because T1 is off.

A key point is that no current flows in a CMOS inverter when the input is either low or
high. This is true for all CMOS circuits; no current flows, and hence no power is dissipated
under steady state conditions. This property has led to CMOS becoming the most popular
technology in use today for building logic circuits. We will discuss current flow and power
dissipation in detail in section 3.8.

Figure 3.13 provides a circuit diagram of a CMOS NAND gate. It is similar to the
NMOS circuit presented in Figure 3.6 except that the pull-up device has been replaced by
the PUN with two PMOS transistors connected in parallel. The truth table in the figure
specifies the state of each of the four transistors for each logic valuation of inputs x1 and
x2. The reader can verify that the circuit properly implements the NAND function. Under
static conditions no path exists for current flow from VDD to Gnd.

The circuit in Figure 3.13 can be derived from the logic expression that defines the
NAND operation, f = x1x2. This expression specifies the conditions for which f = 1;
hence it defines the PUN. Since the PUN consists of PMOS transistors, which are turned
on when their control (gate) inputs are set to 0, an input variable xi turns on a transistor if

July 2, 2002 09:34 vra23151_ch03 Sheet number 11 Page number 77 black

3.3 CMOS Logic Gates 77

Vf

VDD

Pull-down network
Vx1

Vxn

(PDN)

Figure 3.10 Structure of an NMOS circuit.

xi = 0. From DeMorgan’s law, we have

f = x1x2 = x1 + x2

Thus f = 1 when either input x1 or x2 has the value 0, which means that the PUN must have
two PMOS transistors connected in parallel. The PDN must implement the complement of
f , which is

f = x1x2

Vf

VDD

Pull-down network

Pull-up network

Vx1

Vxn

(PUN)

(PDN)

Figure 3.11 Structure of a CMOS circuit.

July 2, 2002 09:34 vra23151_ch03 Sheet number 12 Page number 78 black

78 C H A P T E R 3 • Implementation Technology

(a) Circuit

Vf

VDD

Vx

(b) Truth table and transistor states

on
off

off
on

1
0

0
1

fx

T 1

T 2

T 1 T 2

Figure 3.12 CMOS realization of a NOT gate.

Since f = 1 when both x1 and x2 are 1, it follows that the PDN must have two NMOS
transistors connected in series.

The circuit for a CMOS NOR gate is derived from the logic expression that defines the
NOR operation

f = x1 + x2 = x1x2

Since f = 1 only if both x1 and x2 have the value 0, then the PUN consists of two PMOS
transistors connected in series. The PDN, which realizes f = x1 + x2, has two NMOS
transistors in parallel, leading to the circuit shown in Figure 3.14.

(a) Circuit

Vf

VDD

(b) Truth table and transistor states

on
on

on
off

0
1

0
0
1
1

0
1

off

off

on

off

off
on

f

off

on

1
1
1
0

off
off
on

on

Vx1

Vx2

T 1 T 2

T 3

T 4

x1 x2 T 1 T 2 T 3 T 4

Figure 3.13 CMOS realization of a NAND gate.

July 2, 2002 09:34 vra23151_ch03 Sheet number 13 Page number 79 black

3.3 CMOS Logic Gates 79

(a) Circuit

Vf

VDD

(b) Truth table and transistor states

on
on

on
off

0
1

0
0
1
1

0
1

off

off

on

off

off
on

f

off

on

1
0
0
0

off
off
on

on

Vx1

Vx2

T 1

T 2

T 3 T 4

x1 x2 T 1 T 2 T 3 T 4

Figure 3.14 CMOS realization of a NOR gate.

A CMOS AND gate is built by connecting a NAND gate to an inverter, as illustrated
in Figure 3.15. Similarly, an OR gate is constructed with a NOR gate followed by a NOT
gate.

The above procedure for deriving a CMOS circuit can be applied to more general logic
functions to create complex gates. This process is illustrated in the following two examples.

Vf

VDD

Vx1

Vx2

VDD

Figure 3.15 CMOS realization of an AND gate.

July 2, 2002 09:34 vra23151_ch03 Sheet number 14 Page number 80 black

80 C H A P T E R 3 • Implementation Technology

Example 3.1 Consider the function

f = x1 + x2x3

Since all variables appear in their complemented form, we can directly derive the PUN.
It consists of a PMOS transistor controlled by x1 in parallel with a series combination of
PMOS transistors controlled by x2 and x3. For the PDN we have

f = x1 + x2x3 = x1(x2 + x3)

This expression gives the PDN that has an NMOS transistor controlled by x1 in series with
a parallel combination of NMOS transistors controlled by x2 and x3. The circuit is shown
in Figure 3.16.

Example 3.2 Consider the function

f = x1 + (x2 + x3)x4

Then

f = x1(x2x3 + x4)

These expressions lead directly to the circuit in Figure 3.17.

Vf

VDD

Vx1

Vx2

Vx3

Figure 3.16 The circuit for Example 3.1.

July 2, 2002 09:34 vra23151_ch03 Sheet number 15 Page number 81 black

3.3 CMOS Logic Gates 81

Vf

VDD

Vx1

Vx2

Vx3

Vx4

Figure 3.17 The circuit for Example 3.2.

The circuits in Figures 3.16 and 3.17 show that it is possible to implement fairly complex
logic functions using combinations of series and parallel connections of transistors (acting
as switches), without implementing each series or parallel connection as a complete AND
(using the structure introduced in Figure 3.15) or OR gate.

3.3.1 Speed of Logic Gate Circuits

In the preceding sections we have assumed that transistors operate as ideal switches that
present no resistance to current flow. Hence, while we have derived circuits that realize
the functionality needed in logic gates, we have ignored the important issue of the speed of
operation of the circuits. In reality transistor switches have a significant resistance when
turned on. Also, transistor circuits include capacitors, which are created as a side effect
of the manufacturing process. These factors affect the amount of time required for signal
values to propagate through logic gates. We provide a detailed discussion of the speed of
logic circuits, as well as a number of other practical issues, in section 3.8.

July 2, 2002 09:34 vra23151_ch03 Sheet number 16 Page number 82 black

82 C H A P T E R 3 • Implementation Technology

3.4 Negative Logic System

At the beginning of this chapter, we said that logic values are represented as two distinct
ranges of voltage levels. We are using the convention that the higher voltage levels represent
logic value 1 and the lower voltages represent logic value 0. This convention is known
as the positive logic system, and it is the one used in most practical applications. In this
section we briefly consider the negative logic system in which the association between
voltage levels and logic values is reversed.

Let us reconsider the CMOS circuit in Figure 3.13, which is reproduced in Figure
3.18a. Part (b) of the figure gives a truth table for the circuit, but the table shows voltage
levels instead of logic values. In this table, L refers to the low voltage level in the circuit,
which is 0 V, and H represents the high voltage level, which is VDD. This is the style of
truth table that manufacturers of integrated circuits often use in data sheets to describe the
functionality of the chips. It is entirely up to the user of the chip as to whether L and H are
interpreted in terms of logic values such that L = 0 and H = 1, or L = 1 and H = 0.

Figure 3.19a illustrates the positive logic interpretation in which L = 0 and H = 1.
As we already know from the discussions of Figure 3.13, the circuit represents a NAND
gate under this interpretation. The opposite interpretation is shown in Figure 3.19b. Here
negative logic is used so that L = 1 and H = 0. The truth table specifies that the circuit
represents a NOR gate in this case. Note that the truth table rows are listed in the opposite
order from what we normally use, to be consistent with the L and H values in Figure 3.18b.
Figure 3.19b also gives the logic gate symbol for the NOR gate, which includes small
triangles on the gate’s terminals to indicate that the negative logic system is used.

As another example, consider again the circuit in Figure 3.15. Its truth table, in terms
of voltage levels, is given in Figure 3.20a. Using the positive logic system, this circuit

(a) Circuit

Vf

VDD

(b) Voltage levels

L
H

L
L
H
H

L
H

H
H
H
L

Vx1

Vx2

V x1
V x2

V f

Figure 3.18 Voltage levels in the circuit in Figure 3.13.

July 2, 2002 09:34 vra23151_ch03 Sheet number 17 Page number 83 black

3.5 Standard Chips 83

(a) Positive logic truth table and gate symbol

f
0
0
1
1

0
1
0
1

1
1
1
0

x1 x2 f

x1

x2

(b) Negative logic truth table and gate symbol

1
1
0
0

1
0
1
0

0
0
0
1

x1 x2 f

f
x1

x2

Figure 3.19 Interpretation of the circuit in Figure 3.18.

represents an AND gate, as indicated in Figure 3.20b. But using the negative logic system,
the circuit represents an OR gate, as depicted in Figure 3.20c.

It is possible to use a mixture of positive and negative logic in a single circuit, which
is known as a mixed logic system. In practice, the positive logic system is used in most
applications. We will not consider the negative logic system further in this book.

3.5 Standard Chips

In Chapter 1 we mentioned that several different types of integrated circuit chips are avail-
able for implementation of logic circuits. We now discuss the available choices in some
detail.

3.5.1 7400-Series Standard Chips

An approach used widely until the mid-1980s was to connect together multiple chips, each
containing only a few logic gates. A wide assortment of chips, with different types of logic
gates, is available for this purpose. They are known as 7400-series parts because the chip
part numbers always begin with the digits 74. An example of a 7400-series part is given
in Figure 3.21. Part (a) of the figure shows a type of package that the chip is provided in,
called a dual-inline package (DIP). Part (b) illustrates the 7404 chip, which comprises six
NOT gates. The chip’s external connections are called pins or leads. Two pins are used
to connect to VDD and Gnd , and other pins provide connections to the NOT gates. Many

July 2, 2002 09:34 vra23151_ch03 Sheet number 18 Page number 84 black

84 C H A P T E R 3 • Implementation Technology

(b) Positive logic

f
0
0
1
1

0
1
0
1

0
0
0
1

x1 x2 f

x1

x2

(c) Negative logic

1
1
0
0

1
0
1
0

1
1
1
0

x1 x2 f

f
x1

x2

(a) Voltage levels

L
H

L
L
H
H

L
H

L
L
L
H

V x1
V x2

V f

Figure 3.20 Interpretation of the circuit in Figure 3.15.

7400-series chips exist, and they are described in the data books produced by manufacturers
of these chips [3–7]. Diagrams of some of the chips are also included in several textbooks,
such as [8–12].

The 7400-series chips are produced in standard forms by a number of integrated circuit
manufacturers, using agreed-upon specifications. Competition among various manufac-
turers works to the designer’s advantage because it tends to lower the price of chips and
ensures that parts are always readily available. For each specific 7400-series chip, several
variants are built with different technologies. For instance, the part called 74LS00 is built
with a technology called transistor-transistor logic (TTL), which is described in Appendix
E, whereas the 74HC00 is fabricated using CMOS technology. In general, the most popular
chips used today are the CMOS variants.

As an example of how a logic circuit can be implemented using 7400-series chips,
consider the function f = x1x2 + x2x3, which is shown in the form of a logic diagram

July 2, 2002 09:34 vra23151_ch03 Sheet number 19 Page number 85 black

3.5 Standard Chips 85

(a) Dual-inline package

(b) Structure of 7404 chip

VDD

Gnd

Figure 3.21 A 7400-series chip.

in Figure 2.30. A NOT gate is required to produce x2, as well as 2 two-input AND gates
and a two-input OR gate. Figure 3.22 shows three 7400-series chips that can be used to
implement the function. We assume that the three input signals x1, x2, and x3 are produced
as outputs by some other circuitry that can be connected by wires to the three chips. Notice
that power and ground connections are included for all three chips. This example makes
use of only a portion of the gates available on the three chips, hence the remaining gates
can be used to realize other functions.

Because of their low logic capacity, the standard chips are seldom used in practice
today, with one exception. Many modern products include standard chips that contain
buffers. Buffers are logic gates that are usually used to improve the speed of circuits. An
example of a buffer chip is depicted in Figure 3.23. It is the 74244 chip, which comprises
eight tri-state buffers. We describe how tri-state buffers work in section 3.8.8. Rather than
showing how the buffers are arranged inside the chip package, as we did for the NOT gates
in Figure 3.21, we show only the pin numbers of the package pins that are connected to the
buffers. The package has 20 pins, and they are numbered in the same manner as shown for
Figure 3.21; Gnd and VDD connections are provided on pins 10 and 20, respectively. Many
other buffer chips also exist. For example, the 162244 chip has 16 tri-state buffers. It is
part of a family of devices that are similar to the 7400-series chips but with twice as many
gates in each chip. These chips are available in multiple types of packages, with the most
popular being a small-outline integrated circuit (SOIC) package. An SOIC package has a
similar shape to a DIP, but the SOIC is considerably smaller in physical size.

July 2, 2002 09:34 vra23151_ch03 Sheet number 20 Page number 86 black

86 C H A P T E R 3 • Implementation Technology

VDD

x1

x2

x3
f

7404

7408 7432

Figure 3.22 An implementation of f = x1x2 + x2x3.

As integrated circuit technology has improved over time, a system of classifying chips
according to their size has evolved. The earliest chips produced, such as the 7400-series
chips, comprise only a few logic gates. The technology used to produce these chips is
referred to as small-scale integration (SSI). Chips that include slightly more logic circuitry,
typically about 10 to 100 gates, represent medium-scale integration (MSI). Until the mid-
1980s chips that were too large to qualify as MSI were classified as large-scale integration

Pi
n

2

Pi
n

4

Pi
n

6

Pi
n

8

Pi
n

1

Pi
n

12

Pi
n

14

Pi
n

16

Pi
n

18

Pi
n

11

Pi
n

13

Pi
n

15

Pi
n

17

Pi
n

19

Pi
n

3

Pi
n

5

Pi
n

7

Pi
n

9

Figure 3.23 The 74244 buffer chip.

July 2, 2002 09:34 vra23151_ch03 Sheet number 21 Page number 87 black

3.6 Programmable Logic Devices 87

(LSI). In recent years the concept of classifying circuits according to their size has become
of little practical use. Most integrated circuits today contain many thousands or millions
of transistors. Regardless of their exact size, these large chips are said to be made with
very large scale integration (VLSI) technology. The trend in digital hardware products is
to integrate as much circuitry as possible onto a single chip. Thus most of the chips used
today are built with VLSI technology, and the older types of chips are used rarely.

3.6 Programmable Logic Devices

The function provided by each of the 7400-series parts is fixed and cannot be tailored to suit
a particular design situation. This fact, coupled with the limitation that each chip contains
only a few logic gates, makes these chips inefficient for building large logic circuits. It is
possible to manufacture chips that contain relatively large amounts of logic circuitry with
a structure that is not fixed. Such chips were first introduced in the 1970s and are called
programmable logic devices (PLDs).

A PLD is a general-purpose chip for implementing logic circuitry. It contains a col-
lection of logic circuit elements that can be customized in different ways. A PLD can be
viewed as a “black box” that contains logic gates and programmable switches, as illustrated
in Figure 3.24. The programmable switches allow the logic gates inside the PLD to be
connected together to implement whatever logic circuit is needed.

3.6.1 Programmable Logic Array (PLA)

Several types of PLDs are commercially available. The first developed was the pro-
grammable logic array (PLA). The general structure of a PLA is depicted in Figure 3.25.
Based on the idea that logic functions can be realized in sum-of-products form, a PLA

Logic gates
and

programmable
switches

Inputs
(logic variables)

Outputs
(logic functions)

Figure 3.24 Programmable logic device as a black box.

July 2, 2002 09:34 vra23151_ch03 Sheet number 22 Page number 88 black

88 C H A P T E R 3 • Implementation Technology

f1

AND plane OR plane

Input buffers

inverters
and

P1

Pk

fm

x1 x2 xn

x1 x1 xn xn

Figure 3.25 General structure of a PLA.

comprises a collection of AND gates that feeds a set of OR gates. As shown in the figure,
the PLA’s inputs x1, . . . , xn pass through a set of buffers (which provide both the true value
and complement of each input) into a circuit block called an AND plane, or AND array.
The AND plane produces a set of product terms P1, . . . , Pk . Each of these terms can be
configured to implement any AND function of x1, . . . , xn. The product terms serve as the
inputs to an OR plane, which produces the outputs f1, . . . , fm. Each output can be config-
ured to realize any sum of P1, . . . , Pk and hence any sum-of-products function of the PLA
inputs.

A more detailed diagram of a small PLA is given in Figure 3.26, which shows a PLA
with three inputs, four product terms, and two outputs. Each AND gate in the AND plane
has six inputs, corresponding to the true and complemented versions of the three input
signals. Each connection to an AND gate is programmable; a signal that is connected to
an AND gate is indicated with a wavy line, and a signal that is not connected to the gate is
shown with a broken line. The circuitry is designed such that any unconnected AND-gate
inputs do not affect the output of the AND gate. In commercially available PLAs, several
methods of realizing the programmable connections exist. Detailed explanation of how a
PLA can be built using transistors is given in section 3.10.

In Figure 3.26 the AND gate that produces P1 is shown connected to the inputs x1 and
x2. Hence P1 = x1x2. Similarly, P2 = x1x3, P3 = x1x2x3, and P4 = x1x3. Programmable
connections also exist for the OR plane. Output f1 is connected to product terms P1,
P2, and P3. It therefore realizes the function f1 = x1x2 + x1x3 + x1x2x3. Similarly, output

July 2, 2002 09:34 vra23151_ch03 Sheet number 23 Page number 89 black

3.6 Programmable Logic Devices 89

f1

P1

P2

f2

x1 x2 x3

OR plane

Programmable

AND plane

connections

P3

P4

Figure 3.26 Gate-level diagram of a PLA.

f2 = x1x2+x1x2x3+x1x3. Although Figure 3.26 depicts the PLAprogrammed to implement
the functions described above, by programming the AND and OR planes differently, each
of the outputs f1 and f2 could implement various functions of x1, x2, and x3. The only
constraint on the functions that can be implemented is the size of the AND plane because it
produces only four product terms. Commercially available PLAs come in larger sizes than
we have shown here. Typical parameters are 16 inputs, 32 product terms, and eight outputs.

Although Figure 3.26 illustrates clearly the functional structure of a PLA, this style of
drawing is awkward for larger chips. Instead, it has become customary in technical literature
to use the style shown in Figure 3.27. Each AND gate is depicted as a single horizontal
line attached to an AND-gate symbol. The possible inputs to the AND gate are drawn as
vertical lines that cross the horizontal line. At any crossing of a vertical and horizontal
line, a programmable connection, indicated by an X, can be made. Figure 3.27 shows the
programmable connections needed to implement the product terms in Figure 3.26. Each
OR gate is drawn in a similar manner, with a vertical line attached to an OR-gate symbol.

July 2, 2002 09:34 vra23151_ch03 Sheet number 24 Page number 90 black

90 C H A P T E R 3 • Implementation Technology

f1

P1

P2

f2

x1 x2 x3

OR plane

AND plane

P3

P4

Figure 3.27 Customary schematic for the PLA in Figure 3.26.

The AND-gate outputs cross these lines, and corresponding programmable connections can
be formed. The figure illustrates the programmable connections that produce the functions
f1 and f2 from Figure 3.26.

The PLA is efficient in terms of the area needed for its implementation on an integrated
circuit chip. For this reason, PLAs are often included as part of larger chips, such as
microprocessors. In this case a PLA is created so that the connections to the AND and OR
gates are fixed, rather than programmable. In section 3.10 we will show that both fixed and
programmable PLAs can be created with similar structures.

3.6.2 Programmable Array Logic (PAL)

In a PLA both the AND and OR planes are programmable. Historically, the programmable
switches presented two difficulties for manufacturers of these devices: they were hard to
fabricate correctly, and they reduced the speed-performance of circuits implemented in the
PLAs. These drawbacks led to the development of a similar device in which the AND plane
is programmable, but the OR plane is fixed. Such a chip is known as a programmable array
logic (PAL) device. Because they are simpler to manufacture, and thus less expensive than
PLAs, and offer better performance, PALs have become popular in practical applications.

July 2, 2002 09:34 vra23151_ch03 Sheet number 25 Page number 91 black

3.6 Programmable Logic Devices 91

An example of a PAL with three inputs, four product terms, and two outputs is given
in Figure 3.28. The product terms P1 and P2 are hardwired to one OR gate, and P3 and P4

are hardwired to the other OR gate. The PAL is shown programmed to realize the two logic
functions f1 = x1x2x3+ x1x2x3 and f2 = x1x2+ x1x2x3. In comparison to the PLA in Figure
3.27, the PAL offers less flexibility; the PLA allows up to four product terms per OR gate,
whereas the OR gates in the PAL have only two inputs. To compensate for the reduced
flexibility, PALs are manufactured in a range of sizes, with various numbers of inputs and
outputs, and different numbers of inputs to the OR gates. An example of a commercial PAL
is given in Appendix E.

So far we have assumed that the OR gates in a PAL, as in a PLA, connect directly to
the output pins of the chip. In many PALs extra circuitry is added at the output of each OR
gate to provide additional flexibility. It is customary to use the term macrocell to refer to
the OR gate combined with the extra circuitry. An example of the flexibility that may be
provided in a macrocell is given in Figure 3.29. The symbol labeled flip-flop represents a
memory element. It stores the value produced by the OR gate output at a particular point
in time and can hold that value indefinitely. The flip-flop is controlled by the signal called
clock. When clock makes a transition from logic value 0 to 1, the flip-flop stores the value
at its D input at that time and this value appears at the flip-flop’s Q output. Flip-flops are
used for implementing many types of logic circuits, as we will show in Chapter 7.

In section 2.8.2 we discussed a 2-to-1 multiplexer circuit. It has two data inputs, a
select input, and one output. The select input is used to choose one of the data inputs as

f1

P1

P2

f2

x1 x2 x3

AND plane

P3

P4

Figure 3.28 An example of a PAL.

July 2, 2002 09:34 vra23151_ch03 Sheet number 26 Page number 92 black

92 C H A P T E R 3 • Implementation Technology

f1

To AND plane

D Q

Clock

Select
Enable

Flip-flop

Figure 3.29 Extra circuitry added to OR-gate outputs from Figure 3.28.

the multiplexer’s output. In Figure 3.29 a 2-to-1 multiplexer selects as an output from the
PAL either the OR-gate output or the flip-flop output. The multiplexer’s select line can be
programmed to be either 0 or 1. Figure 3.29 shows another logic gate, called a tri-state
buffer, connected between the multiplexer and the PAL output. We discuss tri-state buffers
in section 3.8.8. Finally, the multiplexer’s output is “fed back” to the AND plane in the
PAL. This feedback connection allows the logic function produced by the multiplexer to be
used internally in the PAL, which allows the implementation of circuits that have multiple
stages, or levels, of logic gates.

A number of companies manufacture PLAs or PALs, or other, similar types of simple
PLDs (SPLDs). Apartial list of companies, and the types of SPLDs that they manufacture, is
given inAppendix E.An interested reader can examine the information that these companies
provide on their products, which is available on the World Wide Web (WWW). The WWW
locator for each company is given in Table E.1 in Appendix E.

3.6.3 Programming of PLAs and PALs

In Figures 3.27 and 3.28, each connection between a logic signal in a PLA or PAL and the
AND/OR gates is shown as an X. We describe how these switches are implemented using
transistors in section 3.10. Users’ circuits are implemented in the devices by configuring,
or programming, these switches. Commercial chips contain a few thousand programmable
switches; hence it is not feasible for a user of these chips to specify manually the desired
programming state of each switch. Instead, CAD systems are employed for this purpose. We
introduced CAD tools in Chapter 2 and described methods for design entry and simulation
of circuits. For CAD systems that support targeting of circuits to PLDs, the tools have the
capability to automatically produce the necessary information for programming each of the

July 2, 2002 09:34 vra23151_ch03 Sheet number 27 Page number 93 black

3.6 Programmable Logic Devices 93

switches in the device. A computer system that runs the CAD tools is connected by a cable
to a dedicated programming unit. Once the user has completed the design of a circuit, the
CAD tools generate a file, often called a programming file or fuse map, that specifies the
state that each switch in the PLD should have, to realize correctly the designed circuit. The
PLD is placed into the programming unit, and the programming file is transferred from the
computer system. The programming unit then places the chip into a special programming
mode and configures each switch individually. A photograph of a programming unit is
shown in Figure 3.30. Several adaptors are shown beside the main unit; each adaptor is
used for a specific type of chip package.

The programming procedure may take a few minutes to complete. Usually, the pro-
gramming unit can automatically “read back” the state of each switch after programming,
to verify that the chip has been programmed correctly. A detailed discussion of the process
involved in using CAD tools to target designed circuits to programmable chips is given in
Appendices B, C, and D.

PLAs or PALs used as part of a logic circuit usually reside with other chips on a printed
circuit board (PCB). The procedure described above assumes that the chip can be removed
from the circuit board for programming in the programming unit. Removal is made possible
by using a socket on the PCB, as illustrated in Figure 3.31. Although PLAs and PALs are
available in the DIP packages shown in Figure 3.21a, they are also available in another
popular type of package, called a plastic-leaded chip carrier (PLCC), which is depicted in
Figure 3.31. On all four of its sides, the PLCC package has pins that “wrap around” the
edges of the chip, rather than extending straight down as in the case of a DIP. The socket
that houses the PLCC is attached by solder to the circuit board, and the PLCC is held in the
socket by friction.

Figure 3.30 A PLD programming unit (courtesy of Data IO Corp.).

July 2, 2002 09:34 vra23151_ch03 Sheet number 28 Page number 94 black

94 C H A P T E R 3 • Implementation Technology

Printed circuit b
oard

Figure 3.31 A PLCC package with socket.

Instead of relying on a programming unit to configure a chip, it would be advantageous
to be able to perform the programming while the chip is still attached to its circuit board. This
method of programming is called in-system programming (ISP). It is not usually provided
for PLAs or PALs, but is available for the more sophisticated chips that are described below.

3.6.4 Complex Programmable Logic Devices (CPLDs)

PLAs and PALs are useful for implementing a wide variety of small digital circuits. Each
device can be used to implement circuits that do not require more than the number of inputs,
product terms, and outputs that are provided in the particular chip. These chips are limited
to fairly modest sizes, typically supporting a combined number of inputs plus outputs of not
more than 32. For implementation of circuits that require more inputs and outputs, either
multiple PLAs or PALs can be employed or else a more sophisticated type of chip, called
a complex programmable logic device (CPLD), can be used.

A CPLD comprises multiple circuit blocks on a single chip, with internal wiring re-
sources to connect the circuit blocks. Each circuit block is similar to a PLA or a PAL; we
will refer to the circuit blocks as PAL-like blocks. An example of a CPLD is given in Figure
3.32. It includes four PAL-like blocks that are connected to a set of interconnection wires.
Each PAL-like block is also connected to a subcircuit labeled I/O block, which is attached
to a number of the chip’s input and output pins.

July 2, 2002 09:34 vra23151_ch03 Sheet number 29 Page number 95 black

3.6 Programmable Logic Devices 95

PAL-like
block

I/
O

 b
lo

ck
PAL-like

block

I/O
 block

PAL-like
block

I/
O

 b
lo

ck

PAL-like
block

I/O
 block

Interconnection wires

Figure 3.32 Structure of a complex programmable logic device (CPLD).

Figure 3.33 shows an example of the wiring structure and the connections to a PAL-like
block in a CPLD. The PAL-like block includes 3 macrocells (real CPLDs typically have
about 16 macrocells in a PAL-like block), each consisting of a four-input OR gate (real
CPLDs usually provide between 5 and 20 inputs to each OR gate). The OR-gate output
is connected to another type of logic gate that we have not yet introduced. It is called an
Exclusive-OR (XOR) gate. We discuss XOR gates in section 3.9.1. The behavior of an
XOR gate is the same as for an OR gate except that if both of the inputs are 1, the XOR gate
produces a 0. One input to the XOR gate in Figure 3.33 can be programmably connected
to 1 or 0; if 1, then the XOR gate complements the OR-gate output, and if 0, then the
XOR gate has no effect. In many CPLDs the XOR gates can be used in other ways also,
which we will see in Example 4.21, in Chapter 4. The macrocell also includes a flip-flop, a
multiplexer, and a tri-state buffer. As we mentioned in the discussion for Figure 3.29, the
flip-flop is used to store the output value produced by the OR gate. Each tri-state buffer
(see section 3.8.8) is connected to a pin on the CPLD package. The tri-state buffer acts as
a switch that allows each pin to be used either as an output from the CPLD or as an input.
To use a pin as an output, the corresponding tri-state buffer is enabled, acting as a switch
that is turned on. If the pin is to be used as an input, then the tri-state buffer is disabled,
acting as a switch that is turned off. In this case an external source can drive a signal onto
the pin, which can be connected to other macrocells using the interconnection wiring.

The interconnection wiring contains programmable switches that are used to connect
the PAL-like blocks. Each of the horizontal wires can be connected to some of the vertical
wires that it crosses, but not to all of them. Extensive research has been done to decide
how many switches should be provided for connections between the wires. The number
of switches is chosen to provide sufficient flexibility for typical circuits without wasting

July 2, 2002 09:34 vra23151_ch03 Sheet number 30 Page number 96 black

96 C H A P T E R 3 • Implementation Technology

D Q

D Q

D Q

PAL-like block (details not shown)

PAL-like block

Figure 3.33 A section of the CPLD in Figure 3.32.

many switches in practice. One detail to note is that when a pin is used as an input, the
macrocell associated with that pin cannot be used and is therefore wasted. Some CPLDs
include additional connections between the macrocells and the interconnection wiring that
avoids wasting macrocells in such situations.

Commercial CPLDs range in size from only 2 PAL-like blocks to more than 100 PAL-
like blocks. They are available in a variety of packages, including the PLCC package that
is shown in Figure 3.31. Figure 3.34a shows another type of package used to house CPLD
chips, called a quad flat pack (QFP). Like a PLCC package, the QFP package has pins on all
four sides, but whereas the PLCC’s pins wrap around the edges of the package, the QFP’s
pins extend outward from the package, with a downward-curving shape. The QFP’s pins

July 2, 2002 09:34 vra23151_ch03 Sheet number 31 Page number 97 black

3.6 Programmable Logic Devices 97

(a) CPLD in a quad flat pack (QFP) package

Printed
circuit board

To computer

(b) JTAG programming

Figure 3.34 CPLD packaging and programming.

are much thinner than those on a PLCC, which means that the package can support a larger
number of pins; QFPs are available with more than 200 pins, whereas PLCCs are limited
to fewer than 100 pins.

Most CPLDs contain the same type of programmable switches that are used in SPLDs,
which are described in section 3.10. Programming of the switches may be accomplished
using the same technique described in section 3.6.3, in which the chip is placed into a special-
purpose programming unit. However, this programming method is rather inconvenient for
large CPLDs for two reasons. First, large CPLDs may have more than 200 pins on the chip
package, and these pins are often fragile and easily bent. Second, to be programmed in a
programming unit, a socket is required to hold the chip. Sockets for large QFP packages
are very expensive; they sometimes cost more than the CPLD device itself. For these
reasons, CPLD devices usually support the ISP technique. A small connector is included
on the PCB that houses the CPLD, and a cable is connected between that connector and a
computer system. The CPLD is programmed by transferring the programming information
generated by a CAD system through the cable, from the computer into the CPLD. The
circuitry on the CPLD that allows this type of programming has been standardized by the
IEEE and is usually called a JTAG port. It uses four wires to transfer information between
the computer and the device being programmed. The term JTAG stands for Joint TestAction

July 2, 2002 09:34 vra23151_ch03 Sheet number 32 Page number 98 black

98 C H A P T E R 3 • Implementation Technology

Group. Figure 3.34b illustrates the use of a JTAG port for programming two CPLDs on a
circuit board. The CPLDs are connected together so that both can be programmed using
the same connection to the computer system. Once a CPLD is programmed, it retains the
programmed state permanently, even when the power supply for the chip is turned off. This
property is called nonvolatile programming.

CPLDs are used for the implementation of many types of digital circuits. In industrial
designs that employ some type of PLD device, CPLDs are used in about half the cases
(SPLDs are used in only a small fraction of recently produced designs). A number of
companies offer competing CPLDs. Appendix E lists, in Table E.2, the names of the major
companies involved and shows the company’s WWW locator. The reader is encouraged
to examine the product information that each company provides on its Web pages. One
example of a commercially available CPLD is described in detail inAppendix E. This CPLD
family, manufactured by Altera and called the MAX 7000, is used in several examples
presented later in the book.

3.6.5 Field-Programmable Gate Arrays

The types of chips described above, 7400 series, SPLDs, and CPLDs, are useful for im-
plementation of a wide range of logic circuits. Except for CPLDs, these devices are rather
small and are suitable only for relatively simple applications. Even for CPLDs, only mod-
erately large logic circuits can be accommodated in a single chip. For cost and performance
reasons, it is prudent to implement a desired logic circuit using as few chips as possible, so
the amount of circuitry on a given chip and its functional capability are important. One way
to quantify a circuit’s size is to assume that the circuit is to be built using only simple logic
gates and then estimate how many of these gates are needed. A commonly used measure is
the total number of two-input NAND gates that would be needed to build the circuit; this
measure is often called the number of equivalent gates.

Using the equivalent-gates metric, the size of a 7400-series chip is simple to measure
because each chip contains only simple gates. For SPLDs and CPLDs the typical measure
used is that each macrocell represents about 20 equivalent gates. Thus a typical PAL that
has eight macrocells can accommodate a circuit that needs up to about 160 gates, and a large
CPLD that has 1000 macrocells can implement circuits of up to about 20,000 equivalent
gates.

By modern standards, a logic circuit with 20,000 gates is not large. To implement
larger circuits, it is convenient to use a different type of chip that has a larger logic capacity.
A field-programmable gate array (FPGA) is a programmable logic device that supports
implementation of relatively large logic circuits. FPGAs are quite different from SPLDs
and CPLDs because FPGAs do not contain AND or OR planes. Instead, FPGAs provide
logic blocks for implementation of the required functions. The general structure of an FPGA
is illustrated in Figure 3.35a. It contains three main types of resources: logic blocks, I/O
blocks for connecting to the pins of the package, and interconnection wires and switches.
The logic blocks are arranged in a two-dimensional array, and the interconnection wires
are organized as horizontal and vertical routing channels between rows and columns of
logic blocks. The routing channels contain wires and programmable switches that allow
the logic blocks to be interconnected in many ways. Figure 3.35a shows two locations for

July 2, 2002 09:34 vra23151_ch03 Sheet number 33 Page number 99 black

3.6 Programmable Logic Devices 99

(b) Pin grid array (PGA) package (bottom view)

Logic block Interconnection switches

(a) General structure of an FPGA

I/
O

 b
lo

ck

I/O
 block

I/O block

I/O block

Figure 3.35 A field-programmable gate array (FPGA).

programmable switches; the blue boxes adjacent to logic blocks hold switches that connect
the logic block input and output terminals to the interconnection wires, and the blue boxes
that are diagonally between logic blocks connect one interconnection wire to another (such
as a vertical wire to a horizontal wire). Programmable connections also exist between the
I/O blocks and the interconnection wires. The actual number of programmable switches
and wires in an FPGA varies in commercially available chips.

July 2, 2002 09:34 vra23151_ch03 Sheet number 34 Page number 100 black

100 C H A P T E R 3 • Implementation Technology

FPGAs can be used to implement logic circuits of more than a few hundred thousand
equivalent gates in size. Two examples of FPGAs, called the Altera FLEX 10K and the
Xilinx XC4000, are described in Appendix E. FPGAs are available in a variety of packages,
including the PLCC and QFP packages described earlier. Figure 3.35b depicts another type
of package, called a pin grid array (PGA). A PGA package may have up to a few hundred
pins in total, which extend straight outward from the bottom of the package, in a grid pattern.
Yet another packaging technology that has emerged is known as the ball grid array (BGA).
The BGA is similar to the PGA except that the pins are small round balls, instead of posts.
The advantage of BGA packages is that the pins are very small; hence more pins can be
provided on the package.

Each logic block in an FPGA typically has a small number of inputs and outputs. A
number of FPGA products are on the market, featuring different types of logic blocks. The
most commonly used logic block is a lookup table (LUT), which contains storage cells that
are used to implement a small logic function. Each cell is capable of holding a single logic
value, either 0 or 1. The stored value is produced as the output of the storage cell. LUTs
of various sizes may be created, where the size is defined by the number of inputs. Figure
3.36a shows the structure of a small LUT. It has two inputs, x1 and x2, and one output, f .

(a) Circuit for a two-input LUT

x1

x2

f

0/1

0/1

0/1

0/1

0
0
1
1

0
1
0
1

1
0
0
1

x1 x2

(b) f 1 x1x2 x1x2+=

(c) Storage cell contents in the LUT

x1

x2

1

0

0

1

f 1

f 1

Figure 3.36 A two-input lookup table (LUT).

July 2, 2002 09:34 vra23151_ch03 Sheet number 35 Page number 101 black

3.6 Programmable Logic Devices 101

It is capable of implementing any logic function of two variables. Because a two-variable
truth table has four rows, this LUT has four storage cells. One cell corresponds to the output
value in each row of the truth table. The input variables x1 and x2 are used as the select inputs
of three multiplexers, which, depending on the valuation of x1 and x2, select the content of
one of the four storage cells as the output of the LUT. We introduced multiplexers in section
2.8.2 and will discuss storage cells in Chapter 10.

To see how a logic function can be realized in the two-input LUT, consider the truth
table in Figure 3.36b. The function f1 from this table can be stored in the LUT as illustrated in
Figure 3.36c. The arrangement of multiplexers in the LUT correctly realizes the function f1.
When x1 = x2 = 0, the output of the LUT is driven by the top storage cell, which represents
the entry in the truth table for x1x2 = 00. Similarly, for all valuations of x1 and x2, the logic
value stored in the storage cell corresponding to the entry in the truth table chosen by the
particular valuation appears on the LUT output. Providing access to the contents of storage
cells is only one way in which multiplexers can be used to implement logic functions. A
detailed presentation of the applications of multiplexers is given in Chapter 6.

Figure 3.37 shows a three-input LUT. It has eight storage cells because a three-variable
truth table has eight rows. In commercial FPGA chips, LUTs usually have either four or
five inputs, which require 16 and 32 storage cells, respectively. In Figure 3.29 we showed
that PALs usually have extra circuitry included with their AND-OR gates. The same is true
for FPGAs, which usually have extra circuitry, besides a LUT, in each logic block. Figure
3.38 shows how a flip-flop may be included in an FPGA logic block. As discussed for
Figure 3.29, the flip-flop is used to store the value of its D input under control of its clock
input. Examples of logic blocks in commercial FPGAs are presented in Appendix E.

For a logic circuit to be realized in an FPGA, each logic function in the circuit must be
small enough to fit within a single logic block. In practice, a user’s circuit is automatically

x1

f

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

x2

x3

Figure 3.37 A three-input LUT.

July 2, 2002 09:34 vra23151_ch03 Sheet number 36 Page number 102 black

102 C H A P T E R 3 • Implementation Technology

Out

D Q

Clock

Select

Flip-flop
In1

In2

In3

LUT

Figure 3.38 Inclusion of a flip-flop in an FPGA logic block.

translated into the required form by using CAD tools (see section 4.12). When a circuit
is implemented in an FPGA, the logic blocks are programmed to realize the necessary
functions and the routing channels are programmed to make the required interconnections
between logic blocks. FPGAs are configured by using the ISP method, which we explained
in section 3.6.4. The storage cells in the LUTs in an FPGA are volatile, which means that
they lose their stored contents whenever the power supply for the chip is turned off. Hence
the FPGA has to be programmed every time power is applied. Often a small memory
chip that holds its data permanently, called a programmable read-only memory (PROM),
is included on the circuit board that houses the FPGA. The storage cells in the FPGA are
loaded automatically from the PROM when power is applied to the chips.

A small FPGA that has been programmed to implement a circuit is depicted in Figure
3.39. The FPGA has two-input LUTs, and there are four wires in each routing channel.
The figure shows the programmed states of both the logic blocks and wiring switches in
a section of the FPGA. Programmable wiring switches are indicated by an X. Each switch
shown in blue is turned on and makes a connection between a horizontal and vertical wire.
The switches shown in black are turned off. We describe how the switches are implemented
by using transistors in section 3.10.1. The truth tables programmed into the logic blocks in
the top row of the FPGA correspond to the functions f1 = x1x2 and f2 = x2x3. The logic
block in the bottom right of the figure is programmed to produce f = f1+ f2 = x1x2+ x2x3.

3.6.6 Using CAD Tools to Implement Circuits in CPLDs
and FPGAs

In section 2.9 we suggested that the reader should work through Tutorial 1, in Appendix
B, to gain some experience using real CAD tools. Tutorial 1 covers the steps of design
entry and functional simulation. Now that we have discussed some of the details of the
implementation of circuits in chips, the reader may wish to experiment further with the CAD
tools. In Tutorial 2, section C.3, we illustrate how to download a circuit from a computer
into a CPLD or FPGA.

July 2, 2002 09:34 vra23151_ch03 Sheet number 37 Page number 103 black

3.7 Custom Chips, Standard Cells, and Gate Arrays 103

0
1
0
0

0
1
1
1

0
0
0
1

x1

x2

x2

x3

f 1

f 2

f 1 f 2

f

x1

x2

x3 f

Figure 3.39 A section of a programmed FPGA.

3.7 CustomChips, Standard Cells, andGateArrays

The key factor that limits the size of a circuit that can be accommodated in a PLD is the
existence of programmable switches. Although these switches provide the benefit of user
programmability, they consume a significant amount of space on the chip. They also result
in a reduction in the speed of operation of circuits. In this section we will introduce some
integrated circuit technologies that do not contain programmable switches.

Chips that provide the largest number of logic gates and the highest speed are so-called
custom chips. Whereas a PLD is prefabricated, containing logic gates and programmable
switches that are programmed to realize a user’s circuit, a custom chip is created from
scratch. The designer of a custom chip has complete flexibility to decide the size of the
chip, the number of transistors the chip contains, the placement of each transistor on the
chip, and the way the transistors are connected together. The process of defining exactly
where on the chip each transistor and wire is situated is called chip layout. For a custom
chip the designer may create any layout that is desired. Because it may contain millions
of transistors, a custom chip requires a large amount of design effort and therefore is

July 2, 2002 09:34 vra23151_ch03 Sheet number 38 Page number 104 black

104 C H A P T E R 3 • Implementation Technology

expensive. Consequently, custom chips are used only when a very large number of transis-
tors is needed and high-speed performance is important. Also, the product being designed
must be expected to sell in sufficient quantities to recoup the expense. Two examples
of products that are usually realized with custom chips are microprocessors and memory
chips.

Some of the design effort incurred for a custom chip can be avoided by using a technol-
ogy known as standard cells. Chips made using this technology are often called application-
specific integrated circuits (ASICs). This technology is illustrated in Figure 3.40, which
depicts a small portion of a chip. The rows of logic gates may be connected by wires that
are created in the routing channels between the rows of gates. In general, many types of
logic gates may be used in such a chip. The available gates are prebuilt and are stored in
a library that can be accessed by the designer. In Figure 3.40 the wires are drawn in two
colors. This scheme is used because metal wires can be created on integrated circuits in
multiple layers, which makes it possible for two wires to cross one another without creating
a short circuit. The blue wires represent one layer of metal wires, and the black wires are a
different layer. Each blue square represents a hard-wired connection (called a via) between
a wire on one layer and a wire on the other layer. In current technology it is possible to
have eight or more layers of metal wiring. Some of the metal layers can be placed on top
of the transistors in the logic gates, resulting in a more efficient chip layout.

Like a custom chip, a standard-cell chip is created from scratch according to a user’s
specifications. The circuitry shown in Figure 3.40 implements the two logic functions
that we realized in a PLA in Figure 3.26, namely, f1 = x1x2 + x1x3 + x1x2x3 and f2 =
x1x2 + x1x2x3 + x1x3. Because of the expense involved, a standard-cell chip would never
be created for a small circuit such as this one, and thus the figure shows only a portion
of a much larger chip. The layout of individual gates (standard cells) is predesigned and
fixed. The chip layout can be created automatically by CAD tools because of the regular
arrangement of the logic gates (cells) in rows. A typical chip has many long rows of logic
gates with a large number of wires between each pair of rows. The I/O blocks around the
periphery connect to the pins of the chip package, which is usually a QFP, PGA, or BGA
package.

f 1

f 2x1

x3

x2

Figure 3.40 A section of two rows in a standard-cell chip.

July 2, 2002 09:34 vra23151_ch03 Sheet number 39 Page number 105 black

3.7 Custom Chips, Standard Cells, and Gate Arrays 105

Another technology, similar to standard cells, is the gate-array technology. In a gate
array parts of the chip are prefabricated, and other parts are custom fabricated for a par-
ticular user’s circuit. This concept exploits the fact that integrated circuits are fabricated
in a sequence of steps, some steps to create transistors and other steps to create wires to
connect the transistors together. In gate-array technology, the manufacturer performs most
of the fabrication steps, typically those involved in the creation of the transistors, without
considering the requirements of a user’s circuit. This process results in a silicon wafer (see
Figure 1.1) of partially finished chips, called the gate-array template. Later the template is
modified, usually by fabricating wires that connect the transistors together, to create a user’s
circuit in each finished chip. The gate-array approach provides cost savings in comparison
to the custom-chip approach because the gate-array manufacturer can amortize the cost of
chip fabrication over a large number of template wafers, all of which are identical. Many
variants of gate-array technology exist. Some have relatively large logic cells, while others
are configurable at the level of a single transistor.

An example of a gate-array template is given in Figure 3.41. The gate array contains a
two-dimensional array of logic cells. The chip’s general structure is similar to a standard-
cell chip except that in the gate array all logic cells are identical. Although the types of logic
cells used in gate arrays vary, one common example is a two- or three-input NAND gate.
In some gate arrays empty spaces exist between the rows of logic cells to accommodate
the wires that will be added later to connect the logic cells together. However, most gate
arrays do not have spaces between rows of logic cells, and the interconnection wires are
fabricated on top of the logic cells. This design is possible because, as discussed for Figure
3.40, metal wires can be created on a chip in multiple layers. This technology is known

Figure 3.41 A sea-of-gates gate array.

July 2, 2002 09:34 vra23151_ch03 Sheet number 40 Page number 106 black

106 C H A P T E R 3 • Implementation Technology

f 1

x1

x3

x2

Figure 3.42 The logic function f1 = x2x3+ x1x3 in the gate array of Figure 3.41.

as the sea-of-gates technology. Figure 3.42 depicts a small section of a gate array that has
been customized to implement the logic function f = x2x3+x1x3. As we showed in section
2.7, it is easy to verify that this circuit with only NAND gates is equivalent to the AND-OR
form of the circuit.

3.8 Practical Aspects

So far in this chapter, we have described the basic aspects of logic gate circuits and given
examples of commercial chips. In this section we provide more detailed information on
several aspects of digital circuits. We describe how transistors are fabricated in silicon and
give a detailed explanation of how transistors operate. We discuss the robustness of logic
circuits and discuss the important issues of signal propagation delays and power dissipation
in logic gates.

3.8.1 MOSFET Fabrication and Behavior

To understand the operation of NMOS and PMOS transistors, we need to consider how
they are built in an integrated circuit. Integrated circuits are fabricated on silicon wafers.

July 2, 2002 09:34 vra23151_ch03 Sheet number 41 Page number 107 black

3.8 Practical Aspects 107

A silicon wafer (see Figure 1.1) is usually about 6 or 8 inches in diameter and is somewhat
similar in appearance to an audio compact disc (CD). Many integrated circuit chips are
fabricated on one wafer, and the wafer is then cut to provide the individual chips.

Silicon is an electrical semiconductor, which means that it can be manipulated such
that it sometimes conducts electrical current and at other times does not. A transistor is
fabricated by creating areas in the silicon substrate that have an excess of either positive
or negative electrical charge. Negatively charged areas are called type n, and positively
charged areas are type p. Figure 3.43 illustrates the structure of an NMOS transistor. It has

+ +
+ + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + +
+ +

Drain (type n)Source (type n)

Substrate (type p)

SiO2

(a) When VGS = 0 V, the transistor is off

+ + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + +
+ +

Channel (type n)

SiO2

VDD

(b) When VGS = 5 V, the transistor is on

+ + + + + + + + +

V S 0 V=

V G 0 V=

V D

V D 0 V=

V G 5 V=

V S 0 V=

+ + + + + +

Figure 3.43 Physical structure of an NMOS transistor.

July 2, 2002 09:34 vra23151_ch03 Sheet number 42 Page number 108 black

108 C H A P T E R 3 • Implementation Technology

type n silicon for both the source and drain terminals, and type p for the substrate terminal.
Metal wiring is used to make electrical connections to the source and drain terminals.

When MOSFETs were invented, the gate terminal was made of metal. Now a material
known as polysilicon is used. Like metal, polysilicon is a conductor, but polysilicon is
preferable to metal because the former has properties that allow MOSFETs to be fabricated
with extremely small dimensions. The gate is electrically isolated from the rest of the
transistor by a layer of silicon dioxide (SiO2), which is a type of glass that acts as an electrical
insulator between the gate terminal and the substrate of the transistor. The transistor’s
operation is governed by electrical fields caused by voltages applied to its terminals, as
discussed below.

In Figure 3.43 the voltage levels applied at the source, gate, and drain terminals are
labeled VS , VG, and VD, respectively. Consider first the situation depicted in Figure 3.43a in
which both the source and gate are connected to Gnd (VS = VG = 0 V). The type n source
and type n drain are isolated from one another by the type p substrate. In electrical terms two
diodes exist between the source and drain. One diode is formed by the p–n junction between
the substrate and source, and the other diode is formed by the p–n junction between the
substrate and drain. These back-to-back diodes represent a very high resistance (about 1012

� [1]) between the drain and source that prevents current flow. We say that the transistor
is turned off, or cut off, in this state.

Next consider the effect of increasing the voltage at the gate terminal with respect to
the voltage at the source. Let VGS represent the gate-to-source voltage. If VGS is greater
than a certain minimum positive voltage, called the threshold voltage VT , then the transistor
changes from an open switch to a closed switch, as explained below. The exact level of VT

depends on many factors, but it is typically about 0.2 VDD.
The transistor’s state when VGS > VT is illustrated in Figure 3.43b. The gate ter-

minal is connected to VDD, resulting in VGS = 5 V. The positive voltage on the gate
attracts free electrons that exist in the type n source terminal, as well as in other areas
of the transistor, toward the gate. Because the electrons cannot pass through the layer
of glass under the gate, they gather in the region of the substrate between the source and
drain, which is called the channel. This concentration of electrons inverts the silicon
in the area of the channel from type p to type n, which effectively connects the source
and the drain. The size of the channel is determined by the length and width of the
gate. The channel length L is the dimension of the gate between the source and drain,
and the channel width W is the other dimension. The channel can also be thought of
as having a depth, which is dependent on the applied voltages at the source, gate, and
drain.

No current can flow through the gate node of the transistor, because of the layer of
glass that insulates the gate from the substrate. A current ID may flow from the drain node
to the source. For a fixed value of VGS > VT , the value of ID depends on the voltage
applied across the channel VDS . If VDS = 0 V, then no current flows. As VDS is increased,
ID increases approximately linearly with the applied VDS , as long as VD is sufficiently small
to provide at least VT volts across the drain end of the channel, that is VGD > VT . In this
range of voltages, namely, 0 < VDS < (VGS − VT), the transistor is said to operate in the
triode region, also called the linear region. The relationship between voltage and current
is approximated by the equation

July 2, 2002 09:34 vra23151_ch03 Sheet number 43 Page number 109 black

3.8 Practical Aspects 109

ID = k ′n
W

L

[

(VGS − VT)VDS − 1

2
V 2

DS

]

[3.1]

The symbol k ′n is called the process transconductance parameter. It is a constant that
depends on the technology being used and has the units A/V 2.

As VD is increased, the current flow through the transistor increases, as given by equa-
tion 3.1, but only to a certain point. When VDS = VGS−VT , the current reaches its maximum
value. For larger values of VDS , the transistor is no longer operating in the triode region.
Since the current is at its saturated (maximum) value, we say that the transistor is in the
saturation region. The current is now independent of VDS and is given by the expression

ID = 1

2
k ′n

W

L
(VGS − VT)2 [3.2]

Figure 3.44 shows the shape of the current-voltage relationship in the NMOS transistor
for a fixed value of VGS > VT . The figure indicates the point at which the transistor leaves
the triode region and enters the saturation region, which occurs at VDS = VGS − VT .

Example 3.3Assume the values k ′n = 60 µA/V 2, W/L = 2.0 µm/0.5 µm, VS = 0 V, VG = 5 V, and
VT = 1 V. If VD = 2.5 V, the current in the transistor is given by equation 3.1 as ID ≈ 1.7
mA. If VD = 5 V, the saturation current is calculated using equation 3.2 as ID ≈ 2 mA.

ID

0

Triode

VDS

Saturation

V GS V T–

Figure 3.44 The current-voltage relationship in the NMOS transistor.

July 2, 2002 09:34 vra23151_ch03 Sheet number 44 Page number 110 black

110 C H A P T E R 3 • Implementation Technology

The PMOS Transistor
The behavior of PMOS transistors is the same as for NMOS except that all voltages and

currents are reversed. The source terminal of the PMOS transistor is the terminal with the
higher voltage level (recall that for an NMOS transistor the source terminal is the one with
the lower voltage level), and the threshold voltage required to turn the transistor on has a
negative value. PMOS transistors have the same physical construction as NMOS transistors
except that wherever the NMOS transistor has type n silicon, the PMOS transistor has type
p, and vice versa. For a PMOS transistor the equivalent of Figure 3.43a is to connect
both the source and gate nodes to VDD, in which case the transistor is turned off. To turn
the PMOS transistor on, equivalent to Figure 3.43b, we would set the gate node to Gnd,
resulting in VGS = −5 V.

Because the channel is type p silicon, instead of type n, the physical mechanism for
current conduction in PMOS transistors is different from that in NMOS transistors. A
detailed discussion of this issue is beyond the scope of this book, but one implication has to
be mentioned. Equations 3.1 and 3.2 use the parameter k ′n. The corresponding parameter
for a PMOS transistor is k ′p, but current flows more readily in type n silicon than in type p,
with the result that in a typical technology k ′p ≈ 0.4 × k ′n. For a PMOS transistor to have
current capacity equal to that of an NMOS transistor, we must use W/L of about two to
three times larger in the PMOS transistor. In logic gates the sizes of NMOS and PMOS
transistors are usually chosen to account for this factor.

3.8.2 MOSFET On-Resistance

In section 3.1 we considered MOSFETs as ideal switches that have infinite resistance when
turned off and zero resistance when on. The actual resistance in the channel when the
transistor is turned on, referred to as the on-resistance, is given by VDS/ID. Using equation
3.1 we can calculate the on-resistance in the triode region, as shown in Example 3.4.

Example 3.4 Consider a CMOS inverter in which the input voltage Vx is equal to 5 V. The NMOS transistor
is turned on, and the output voltage Vf is close to 0 V. Hence VDS for the NMOS transistor
is close to zero and the transistor is operating in the triode region. In the curve in Figure
3.44, the transistor is operating at a point very close to the origin. Although the value of
VDS is small, it is not exactly zero. In the next section we explain that VDS would typically
be about 0.1 mV. Hence the current ID is not exactly zero; it is defined by equation 3.1. In
this equation we can ignore the term involving V 2

DS because VDS is small. In this case the
on-resistance is approximated by

RDS = VDS/ID = 1/

[

k ′n
W

L
(VGS − VT)

]

[3.3]

Assuming the values k ′n = 60 µA/V 2, W/L = 2.0 µm/0.5 µm, VGS = 5 V, and VT = 1 V,
we get RDS ≈ 1 k�.

July 2, 2002 09:34 vra23151_ch03 Sheet number 45 Page number 111 black

3.8 Practical Aspects 111

3.8.3 Voltage Levels in Logic Gates

In Figure 3.1 we showed that the logic values are represented by a range of voltage levels.
We should now consider the issue of voltage levels more carefully.

The high and low voltage levels in a logic family are characterized by the operation
of its basic inverter. Figure 3.45a reproduces the circuit in Figure 3.5 for an inverter built
with NMOS technology. When Vx = 0 V, the NMOS transistor is turned off. No current
flows; hence Vf = 5 V. When Vx = VDD, the NMOS transistor is turned on. To calculate
the value of Vf , we can represent the NMOS transistor by a resistor with the value RDS , as
illustrated in Figure 3.45b. Then Vf is given by the voltage divider

Vf = VDD
RDS

RDS + R

Example 3.5Assume that R = 25 k�. Using the result from Example 3.4, RDS = 1 k�, which gives
Vf ≈ 0.2 V.

As indicated in Figure 3.45b, a current Istat flows through the NMOS inverter under the
static condition Vx = VDD. This current is given by

Istat = Vf /RDS = 0.2 V/1 k� = 0.2 mA

This static current has important implications, which we discuss in section 3.8.6.
In modern NMOS circuits, the pull-up device R is implemented using a PMOS transis-

tor. Such circuits are referred to as pseudo-NMOS circuits. They are fully compatible with
CMOS circuits; hence a single chip may contain both CMOS and pseudo-NMOS gates.
Problem 3.20 shows the circuit for a pseudo-NMOS inverter and discusses how to calculate
its output voltage levels.

VDD

(b) Vx = 5 V

Istat

R

RDS

V f V OL=

(a) NMOS NOT gate

Vf

VDD

Vx

Figure 3.45 Voltage levels in the NMOS inverter.

July 2, 2002 09:34 vra23151_ch03 Sheet number 46 Page number 112 black

112 C H A P T E R 3 • Implementation Technology

The CMOS Inverter
It is customary to use the symbols VOH and VOL to characterize the voltage levels in

a logic circuit. The meaning of VOH is the voltage produced when the output is high.
Similarly, VOL refers to the voltage produced when the output is low. As discussed above,
in the NMOS inverter VOH = VDD and VOL is about 0.2 V.

Consider again the CMOS inverter in Figure 3.12a. Its output-input voltage relationship
is summarized by the voltage transfer characteristic shown in Figure 3.46. The curve gives
the steady-state value of Vf for each value of Vx. When Vx = 0 V, the NMOS transistor
is off. No current flows; hence Vf = VOH = VDD. When Vx = VDD, the PMOS transistor
is off, no current flows, and Vf = VOL = 0 V. For completeness we should mention that
even when a transistor is turned off, a small current, called the leakage current, may flow
through it. This current has a slight effect on VOH and VOL. For example, a typical value of
VOL is 0.1 mV, rather than 0 V [1].

Figure 3.46 includes labels at the points where the output voltage begins to change from
high to low, and vice versa. The voltage VIL represents the point where the output voltage
is high and the slope of the curve equals−1. This voltage level is defined as the maximum
input voltage level that the inverter will interpret as low, hence producing a high output.
Similarly, the voltage VIH , which is the other point on the curve where the slope equals−1,

Vf

Vx

V OL 0 V=

V OH V DD=

V T V IL V IH V DD V T–() V DD

V DD

2

Slope 1–=

Figure 3.46 The voltage transfer characteristic for the CMOS inverter.

July 2, 2002 09:34 vra23151_ch03 Sheet number 47 Page number 113 black

3.8 Practical Aspects 113

is the minimum input voltage level that the inverter will interpret as high, hence producing
a low output. The parameters VOH , VOL, VIL, and VIH are important for quantifying the
robustness of a logic family, as discussed below.

3.8.4 Noise Margin

Consider the two NOT gates shown in Figure 3.47a. Let us refer to the gates on the left
and right as N1 and N2, respectively. Electronic circuits are constantly subjected to random
perturbations, called noise, which can alter the output voltage levels produced by the gate
N1. It is essential that this noise not cause the gate N2 to misinterpret a low logic value as
a high one, or vice versa. Consider the case where N1 produces its low voltage level VOL.
The presence of noise may alter the voltage level, but as long as it remains less than VIL,
it will be interpreted correctly by N2. The ability to tolerate noise without affecting the
correct operation of the circuit is known as noise margin. For the low output voltage, we
define the low noise margin as

NML = VIL − VOL

A similar situation exists when N1 produces its high output voltage VOH . Any existing
noise in the circuit may alter the voltage level, but it will be interpreted correctly by N2 as
long as the voltage is greater than VIH . The high noise margin is defined as

NMH = VOH − VIH

(b) The capacitive load at node A

Vf

VDD

Vx

VDD

C

x f
A

(a) A NOT gate driving another NOT gate

VA

N1 N2

Figure 3.47 Parasitic capacitance in integrated circuits.

July 2, 2002 09:34 vra23151_ch03 Sheet number 48 Page number 114 black

114 C H A P T E R 3 • Implementation Technology

Example 3.6 For a given technology the voltage transfer characteristic of the basic inverter determines the
levels VOH , VOL, VIL, and VIH . For CMOS we showed in Figure 3.46 that VOH = VDD and
VOL = 0 V. By finding the two points where the slope of the voltage transfer characteristic
is equal to −1, it can be shown [1] that VIL

∼= 1
8 (3VDD + 2VT) and VIH

∼= 1
8 (5VDD − 2VT).

For the typical value VT = 0.2 VDD, this gives

NM L = NM H = 0.425× VDD

Hence the available noise margin depends on the power supply voltage level. For VDD = 5
V, the noise margin is 2.1 V, and for VDD = 3.3 V, the noise margin is 1.4 V.

3.8.5 Dynamic Operation of Logic Gates

In Figure 3.47a the node between the two gates is labeled A. Because of the way in which
transistors are constructed in silicon, N2 has the effect of contributing to a capacitive load at
node A. Figure 3.43 shows that transistors are constructed by using several layers of different
materials. Wherever two types of material meet or overlap inside the transistor, a capacitor
may be effectively created. This capacitance is called parasitic, or stray, capacitance
because it results as an undesired side effect of transistor fabrication. In Figure 3.47 we
are interested in the capacitance that exists at node A. A number of parasitic capacitors are
attached to this node, some caused by N1 and others caused by N2. One significant parasitic
capacitor exists between the input of inverter N2 and ground. The value of this capacitor
depends on the sizes of the transistors in N2. Each transistor contributes a gate capacitance,
Cg = W × L × Cox. The parameter Cox, called the oxide capacitance, is a constant for
the technology being used and has the units fF/µm2. Additional capacitance is caused by
the transistors in N1 and by the metal wiring that is attached to node A. It is possible to
represent all of the parasitic capacitance by a single equivalent capacitance between node
A and ground [2]. In Figure 3.47b this equivalent capacitance is labeled C.

The existence of stray capacitance has a negative effect on the speed of operation of
logic circuits. Voltage across a capacitor cannot change instantaneously. The time needed to
charge or discharge a capacitor depends on the size of the capacitance C and on the amount
of current through the capacitor. In the circuit of Figure 3.47b, when the PMOS transistor in
N1 is turned on, the capacitor is charged to VDD; it is discharged when the NMOS transistor
is turned on. In each case the current flow ID through the involved transistor and the value
of C determine the rate of charging and discharging the capacitor.

Chapter 2 introduced the concept of a timing diagram, and Figure 2.10 shows a timing
diagram in which waveforms have perfectly vertical edges in transition from one logic level
to the other. In real circuits, waveforms do not have this “ideal” shape, but instead have
the appearance of those in Figure 3.48. The figure gives a waveform for the input Vx in
Figure 3.47b and shows the resulting waveform at node A. We assume that Vx is initially at
the voltage level VDD and then makes a transition to 0. Once Vx reaches a sufficiently low
voltage, N1 begins to drive voltage VA toward VDD. Because of the parasitic capacitance,
VA cannot change instantaneously and a waveform with the shape indicated in the figure
results. The time needed for VA to change from low to high is called the rise time, tr , which

July 2, 2002 09:34 vra23151_ch03 Sheet number 49 Page number 115 black

3.8 Practical Aspects 115

Propagation delay

VDD

VDD

Gnd

Gnd

Vx

VA

50% 50%

90%

Propagation delay

10%

tr

50%

90%

50%

10%

tf

Figure 3.48 Voltage waveforms for logic gates.

is defined as the time elapsed from when VA is at 10 percent of VDD until it reaches 90
percent of VDD. Figure 3.48 also defines the total amount of time needed for the change at
Vx to cause a change in VA. This interval is called the propagation delay, often written tp,
of the inverter. It is the time from when Vx reaches 50 percent of VDD until VA reaches the
same level.

After remaining at 0 V for some time, Vx then changes back to VDD, causing N1 to
discharge C to Gnd. In this case the transition time at node A pertains to a change from
high to low, which is referred to as the fall time, tf , from 90 percent of VDD to 10 percent
of VDD. As indicated in the figure, there is a corresponding propagation delay for the new
change in Vx to affect VA. In a given logic gate, the relative sizes of the PMOS and NMOS
transistors are usually chosen such that tr and tf have about the same value.

Equations 3.1 and 3.2 specify the amount of current flow through an NMOS transistor.
Given the value of C in Figure 3.47, it is possible to calculate the propagation delay for a
change in VA from high to low. For simplicity, assume that Vx is initially 0 V; hence the
PMOS transistor is turned on, and VA = 5 V. Then Vx changes to VDD at time 0, causing
the PMOS transistor to turn off and the NMOS to turn on. The propagation delay is then
the time required to discharge C through the NMOS transistor to the voltage VDD/2. When
Vx first changes to VDD, VA = 5 V; hence the NMOS transistor will have VDS = VDD and
will be in the saturation region. The current ID is given by equation 3.2. Once VA drops
below VDD − VT , the NMOS transistor will enter the triode region where ID is given by
equation 3.1. For our purposes, we can approximate the current flow as VA changes from
VDD to VDD/2 by finding the average of the values given by equation 3.2 with VDS = VDD

and equation 3.1 with VDS = VDD/2. Using the basic expression for the time needed to

July 2, 2002 09:34 vra23151_ch03 Sheet number 50 Page number 116 black

116 C H A P T E R 3 • Implementation Technology

charge a capacitor, we have

tp = C
V

ID
= CVDD/2

ID

Substituting for the average value of ID as discussed above, yields [1]

tp ∼= 1.7 C

k ′n
W
L VDD

[3.4]

This expression specifies that the speed of the circuit depends both on the value of C and
on the dimensions of the transistor. The delay can be reduced by making C smaller or by
making the ratio W/L larger. The expression shows the propagation time when the output
changes from a high level to a low level. The low-to-high propagation time is given by the
same expression but using k ′p and W/L of the PMOS transistor.

In logic circuits, L is usually set to the minimum value that is permitted according
to the specifications of the fabrication technology used. The value of W is chosen de-
pending on the amount of current flow, hence propagation delay, that is desired. Figure
3.49 illustrates two sizes of transistors. Part (a) depicts a minimum-size transistor, which
would be used in a circuit wherever capacitive loading is small or where speed of oper-
ation is not critical. Figure 3.49b shows a larger transistor, which has the same length
as the transistor in part (a) but a larger width. There is a trade-off involved in choos-
ing transistor sizes, because a larger transistor takes more space on a chip than a smaller
one. Also, increasing W not only increases the amount of current flow in the transistor
but also results in an increase in the parasitic capacitance (recall that the capacitance Cg

between the gate terminal and ground is proportional to W ×L), which tends to offset some
of the expected improvement in performance. In logic circuits large transistors are used
where high capacitive loads must be driven and where signal propagation delays must be
minimized.

+

+ + +

(a) Small transistor

L

W1

L

W2

(b) Larger transistor

Figure 3.49 Transistor sizes.

July 2, 2002 09:34 vra23151_ch03 Sheet number 51 Page number 117 black

3.8 Practical Aspects 117

Example 3.7In the circuit in Figure 3.47, assume that C = 70 fF and that W/L = 2.0 µm/0.5 µm. Also,
k ′n = 60 µA/V2 and VDD = 5 V. Using equation 3.4, the high-to-low propagation delay of
the inverter is tp ≈ 0.1 ns.

3.8.6 Power Dissipation in Logic Gates

In an electronic circuit it is important to consider the amount of electrical power consumed
by the transistors. Integrated circuit technology allows fabrication of millions of transistors
on a single chip; hence the amount of power used by an individual transistor must be small.
Power dissipation is an important consideration in all applications of logic circuits, but it
is crucial in situations that involve battery-operated equipment, such as portable computers
and the like.

Consider again the NMOS inverter in Figure 3.45. When Vx = 0, no current flows and
hence no power is used. But when Vx = 5 V, power is consumed because of the current
Istat . The power consumed in the steady state is given by PS = IstatVDD. In Example 3.5
we calculated Istat = 0.2 mA. The power consumed is then PS = 0.2 mA× 5 V = 1.0 mW.
If we assume that a chip contains, say, the equivalent of 10,000 inverters, then the total
power consumption is 10 W! Because of this large power consumption, NMOS-style gates
are used only in special-purpose applications, which we discuss in section 3.8.8.

To distinguish between power consumed during steady-state conditions and power con-
sumed when signals are changing, it is customary to define two types of power. Static power
is dissipated by the current that flows in the steady state, and dynamic power is consumed
when the current flows because of changes in signal levels. NMOS circuits consume static
power as well as dynamic power, while CMOS circuits consume only dynamic power.

Consider the CMOS inverter presented in Figure 3.12a. When the input Vx is low, no
current flows because the NMOS transistor is off. When Vx is high, the PMOS transistor is
off and again no current flows. Hence no current flows in a CMOS circuit under steady-state
conditions. Current does flow in CMOS circuits, however, for a short time when signals
change from one voltage level to another.

Figure 3.50a depicts the following situation. Assume that Vx has been at 0 V for some
time; hence Vf = 5 V. Now let Vx change to 5 V. The NMOS transistor turns on, and it
pulls Vf toward Gnd. Because of the parasitic capacitance C at node f , voltage Vf does not
change instantaneously, and current ID flows through the NMOS transistor for a short time
while the capacitor is being discharged. A similar situation occurs when Vx changes from
5 V to 0, as illustrated in Figure 3.50b. Here the capacitor C initially has 0 volts across it
and is then charged to 5 V by the PMOS transistor. Current flows from the power supply
through the PMOS transistor while the capacitor is being charged.

The voltage transfer characteristic for the CMOS inverter, shown in Figure 3.46, indi-
cates that a range of input voltage Vx exists for which both transistors in the inverter are
turned on. Within this voltage range, specifically VT < Vx < (VDD − VT), current flows
from VDD to Gnd through both transistors. This current is often referred to as the short-
circuit current in the gate. In comparison to the amount of current used to (dis)charge the
capacitor C, the short-circuit current is negligible.

July 2, 2002 09:34 vra23151_ch03 Sheet number 52 Page number 118 black

118 C H A P T E R 3 • Implementation Technology

VDD

Vf

Vx

ID
Vx

Vf

ID

(a) Current flow when input Vx
changes from 0 V to 5 V

(b) Current flow when input Vx
changes from 5 V to 0 V

Figure 3.50 Dynamic current flow in CMOS circuits.

The power used by a single CMOS inverter is extremely small. Consider again the
situation in Figure 3.50a when Vf = VDD. The amount of energy stored in the capacitor is
equal to CV 2

DD/2. When the capacitor is discharged to 0 V, this stored energy is dissipated
in the NMOS transistor. Similarly, for the situation in Figure 3.50b, the energy CV 2

DD/2
is dissipated in the PMOS transistor when C is charged up to VDD. Thus for each cycle
in which the inverter charges and discharges C, the amount of energy dissipated is equal
to CV 2

DD. Since power is defined as energy used per unit time, the power dissipated in the
inverter is the product of the energy used in one discharge/charge cycle times the number
of such cycles per second, f . Hence the dynamic power consumed is

PD = fCV 2
DD

In practice, the total amount of dynamic power used in CMOS circuits is significantly lower
than the total power needed in other technologies, such as NMOS. For this reason, virtually
all large integrated circuits fabricated today are based on CMOS technology.

Example 3.8 For a CMOS inverter, assume that C = 70 fF and f = 100 MHz. The dynamic power
consumed by the gate is PD = 175 µW. If we assume that a chip contains the equivalent of
10,000 inverters and that, on average, 20 percent of the gates change values at any given time,
then the total amount of dynamic power used in the chip is PD = 0.2×10, 000×0.175 µW =
0.35 mW.

3.8.7 Passing 1s and 0s Through Transistor Switches

In Figure 3.4 we showed that NMOS transistors are used as pull-down devices and PMOS
transistors are used as pull-up devices. We now consider using the transistors in the opposite

July 2, 2002 09:34 vra23151_ch03 Sheet number 53 Page number 119 black

3.8 Practical Aspects 119

way, that is, using an NMOS transistor to drive an output high and using a PMOS transistor
to drive an output low.

Figure 3.51a illustrates the case of an NMOS transistor for which both the gate terminal
and one side of the switch are driven to VDD. Let us assume initially that both VG and node
A are at 0 V, and we then change VG to 5 V. Node A is the transistor’s source terminal
because it has the lowest voltage. Since VGS = VDD, the transistor is turned on and drives
node A toward VDD. When the voltage at node A rises, VGS decreases until the point when
VGS is no longer greater than VT . At this point the transistor turns off. Thus in the steady
state VA = VDD − VT , which means that an NMOS transistor can only partially pass a high
voltage signal.

A similar situation occurs when a PMOS transistor is used to pass a low voltage level,
as depicted in Figure 3.51b. Here assume that initially both VG and node B are at 5 V. Then
we change VG to 0 V so that the transistor turns on and drives the source node (node B)
toward 0 V. When node B is decreased to VT , the transistor turns off; hence the steady-state
voltage is equal to VT .

In section 3.1 we said that for an NMOS transistor the substrate (body) terminal is
connected to Gnd and for a PMOS transistor the substrate is connected to VDD. The voltage
between the source and substrate terminals, VSB, which is called the substrate bias voltage,
is normally equal to 0 V in a logic circuit. But in Figure 3.51 both the NMOS and PMOS
transistors have VSB = VDD. The bias voltage has the effect of increasing the threshold
voltage in the transistor VT by a factor of about 1.5 or higher [2, 1]. This issue is known as
the body effect.

Consider the logic gate shown in Figure 3.52. In this circuit the VDD and Gnd con-
nections are reversed from the way in which they were used in previously discussed cir-
cuits. When both Vx1 and Vx2 are high, then Vf is pulled up to the high output voltage,
VOH = VDD − 1.5 VT . If VDD = 5 V and VT = 1 V, then VOH = 3.5 V. When either Vx1 or
Vx2 is low, then Vf is pulled down to the low output voltage, VOL = 1.5 VT , or about 1.5 V.
As shown by the truth table in the figure, the circuit represents an AND gate. In comparison
to the normal AND gate shown in Figure 3.15, the circuit in Figure 3.52 appears to be better
because it requires fewer transistors. But a drawback of this circuit is that it offers a lower
noise margin because of the poor levels of VOH and VOL.

(a) NMOS transistor

VDD

(b) PMOS transistor

VDD

A B

Figure 3.51 NMOS and PMOS transistors used in the opposite way
from Figure 3.4.

July 2, 2002 09:34 vra23151_ch03 Sheet number 54 Page number 120 black

120 C H A P T E R 3 • Implementation Technology

(a) An AND gate circuit

Vf

VDD

(b) Truth table and voltage levels

1.5 V
1.5 V

0
1

0
0
1
1

0
1

1.5 V

3.5 V

f

0
0
0
1

Vx1

Vx2

x1 x2 V f

Voltage
Logic
value

Logic
value

Figure 3.52 A poor implementation of a CMOS AND gate.

Another important weakness of the circuit in Figure 3.52 is that it causes static power
dissipation, unlike a normal CMOS AND gate. Assume that the output of such an AND gate
drives the input of a CMOS inverter. When Vf = 3.5 V, the NMOS transistor in the inverter
is turned on and the inverter output has a low voltage level. But the PMOS transistor in
the inverter is not turned off, because its gate-to-source voltage is −1.5 V, which is larger
than VT . Static current flows from VDD to Gnd through the inverter. A similar situation
occurs when the AND gate produces the low output Vf = 1.5 V. Here the PMOS transistor
in the inverter is turned on, but the NMOS transistor is not turned off. The AND gate
implementation in Figure 3.52 is not used in practice.

3.8.8 Fan-in and Fan-out in Logic Gates

The fan-in of a logic gate is defined as the number of inputs to the gate. Depending on how
a logic gate is constructed, it may be impractical to increase the number of inputs beyond
a small number. For example, consider the NMOS NAND gate in Figure 3.53, which
has k inputs. We wish to consider the effect of k on the propagation delay tp through the
gate. Assume that all k NMOS transistors have the same width W and length L. Because
the transistors are connected in series, we can consider them to be equivalent to one long
transistor with length k×L and width W . Using equation 3.4 (which can be applied to both
CMOS and NMOS gates), the propagation delay is given by

tp ∼= 1.7 C

k ′n
W
L VDD

× k

July 2, 2002 09:34 vra23151_ch03 Sheet number 55 Page number 121 black

3.8 Practical Aspects 121

Vf

VDD

Vx2

Vx1

Vx3

Vxk

Figure 3.53 High fan-in NMOS NAND gate.

Here C is the equivalent capacitance at the output of the gate, including the parasitic
capacitance contributed by each of the k transistors. The performance of the gate can be
improved somewhat by increasing W for each NMOS transistor. But this change further
increases C and comes at the expense of chip area. Another drawback of the circuit is that
each NMOS transistor has the effect of increasing VOL, hence reducing the noise margin. It
is practical to build NAND gates in this manner only if the fan-in is small.

As another example of fan-in, Figure 3.54 shows an NMOS k-input NOR gate. In this
case the k NMOS transistors connected in parallel can be viewed as one large transistor
with width k ×W and length L. According to equation 3.4, the propagation delay should
be decreased by the factor k. However, the parallel-connected transistors increase the load
capacitance C at the gate’s output and, more importantly, it is extremely unlikely that all of
the transistors would be turned on when Vf is changing from a high to low level. It is thus
practical to build high fan-in NOR gates in NMOS technology. We should note, however,
that in an NMOS gate the low-to-high propagation delay may be slower than the high-to-
low delay as a result of the current-limiting effect of the pull-up device (see problems 3.20
and 3.21).

July 2, 2002 09:34 vra23151_ch03 Sheet number 56 Page number 122 black

122 C H A P T E R 3 • Implementation Technology

Vxk

Vf

VDD

Vx1
Vx2

Figure 3.54 High fan-in NMOS NOR gate.

High fan-in CMOS logic gates always require either k NMOS or k PMOS transistors
in series and are therefore never practical. In CMOS the only reasonable way to construct
a high fan-in gate is to use two or more lower fan-in gates. For example, one way to realize
a six-input AND gate is as 2 three-input AND gates that connect to a two-input AND gate.
It is possible to build a six-input CMOS AND gate using fewer transistors than needed with
this approach, but we leave this as an exercise for the reader (see problem 3.4).

Fan-out
Figure 3.48 illustrated timing delays for one NOT gate driving another. In real circuits

each logic gate may be required to drive several others. The number of other gates that a
specific gate drives is called its fan-out. An example of fan-out is depicted in Figure 3.55a,
which shows an inverter N1 that drives the inputs of n other inverters. Each of the other
inverters contributes to the total capacitive loading on node f . In part (b) of the figure,
the n inverters are represented by one large capacitor Cn. For simplicity, assume that each
inverter contributes a capacitance C and that Cn = n × C. Equation 3.4 shows that the
propagation delay increases in direct proportion to n.

Figure 3.55c illustrates how n affects the propagation delay. It assumes that a change
from logic value 1 to 0 on signal x occurs at time 0. One curve represents the case where
n = 1, and the other curve corresponds to n = 4. Using the parameters from Example 3.7,
when n = 1, we have tp = 0.1 ns. Then for n = 4, tp ≈ 0.4 ns. It is possible to reduce tp
by increasing the W/L ratios of the transistors in N1.

Buffers
In circuits in which a logic gate has to drive a large capacitive load, buffers are often

used to improve performance. A buffer is a logic gate with one input, x, and one output,
f , which produces f = x. The simplest implementation of a buffer uses two inverters, as
shown in Figure 3.56a. Buffers can be created with different amounts of drive capability,
depending on the sizes of the transistors (see Figure 3.49). In general, because they are
used for driving higher-than-normal capacitive loads, buffers have transistors that are larger
than those in typical logic gates. The graphical symbol for a noninverting buffer is given
in Figure 3.56b.

July 2, 2002 09:34 vra23151_ch03 Sheet number 57 Page number 123 black

3.8 Practical Aspects 123

(b) Equivalent circuit for timing purposes

x
f

(a) Inverter that drives n other inverters

To inputs of
n other inverters

To inputs of
n other inverters

Cn

x
V f

 for n = 1V f

 for n = 4V f

VDD

Gnd

Time0

(c) Propagation times for different values of n

N1

Figure 3.55 The effect of fan-out on propagation delay.

Another type of buffer is the inverting buffer. It produces the same output as an inverter,
f = x, but is built with relatively large transistors. The graphical symbol for the inverting
buffer is the same as for the NOT gate; an inverting buffer is just a NOT gate that is capable
of driving large capacitive loads. In Figure 3.55 for large values of n an inverting buffer
could be used for the inverter labeled N1.

In addition to their use for improving the speed performance of circuits, buffers are
also used when high current flow is needed to drive external devices. Buffers can handle
relatively large amounts of current flow because they are built with large transistors. A
common example of this use of buffers is to control a light-emitting diode (LED). We
describe an example of this application of buffers in section 7.14.3.

July 2, 2002 09:34 vra23151_ch03 Sheet number 58 Page number 124 black

124 C H A P T E R 3 • Implementation Technology

(a) Implementation of a buffer

Vf

VDD

Vx

x f

(b) Graphical symbol

Figure 3.56 A noninverting buffer.

In general, fan-out, capacitive loading, and current flow are important issues that the
designer of a digital circuit must consider carefully. In practice, the decision as to whether
or not buffers are needed in a circuit is made with the aid of CAD tools.

Tri-state Buffers
In section 3.6.2 we mentioned that a type of buffer called a tri-state buffer is included

in some standard chips and in PLDs. A tri-state buffer has one input, x, one output, f , and a
control input, called enable, e. The graphical symbol for a tri-state buffer is given in Figure
3.57a. The enable input is used to determine whether or not the tri-state buffer produces
an output signal, as illustrated in Figure 3.57b. When e = 0, the buffer is completely
disconnected from the output f . When e = 1, the buffer drives the value of x onto f ,
causing f = x. This behavior is described in truth-table form in part (c) of the figure. For
the two rows of the table where e = 0, the output is denoted by the logic value Z , which
is called the high-impedance state. The name tri-state derives from the fact that there are
two normal states for a logic signal, 0 and 1, and Z represents a third state that produces no
output signal. Figure 3.57d shows a possible implementation of the tri-state buffer.

Figure 3.58 shows several types of tri-state buffers. The buffer in part (b) has the same
behavior as the buffer in part (a), except that when e = 1, it produces f = x. Part (c) of
the figure gives a tri-state buffer for which the enable signal has the opposite behavior; that
is, when e = 0, f = x, and when e = 1, f = Z . The term often used to describe this type
of behavior is to say that the enable is active low. The buffer in Figure 3.58d also features
an active-low enable, and it produces f = x when e = 0.

July 2, 2002 09:34 vra23151_ch03 Sheet number 59 Page number 125 black

3.8 Practical Aspects 125

(b) Equivalent circuit

(c) Truth table

x f

e

(a) A tri-state buffer

0
0
1
1

0
1
0
1

Z
Z
0
1

fe x

x f

e = 0

e = 1
x f

fx

e

(d) Implementation

Figure 3.57 Tri-state buffer.

As a small example of how tri-state buffers can be used, consider the circuit in Figure
3.59. In this circuit the output f is equal to either x1 or x2, depending on the value of s.
When s = 0, f = x1, and when s = 1, f = x2. Circuits of this kind, which choose one of the
inputs and reproduce the signal on this input at the output terminal, are called multiplexer
circuits. A circuit that implements the multiplexer using AND and OR gates is shown in

x f

e

(b)

x f

e

(a)

x f

e

(c)

x f

e

(d)

Figure 3.58 Four types of tri-state buffers.

July 2, 2002 09:34 vra23151_ch03 Sheet number 60 Page number 126 black

126 C H A P T E R 3 • Implementation Technology

fx1

x2

s

Figure 3.59 An application of tri-state buffers.

Figure 2.26. We will present another way of building multiplexer circuits in section 3.9.2
and will discuss them in detail in Chapter 6.

In the circuit of Figure 3.59, the outputs of the tri-state buffers are wired together. This
connection is possible because the control input s is connected so that one of the two buffers
is guaranteed to be in the high-impedance state. The x1 buffer is active only when s = 0,
and the x2 buffer is active only when s = 1. It would be disastrous to allow both buffers
to be active at the same time. Doing so would create a short circuit between VDD and Gnd
as soon as the two buffers produce different values. For example, assume that x1 = 1 and
x2 = 0. The x1 buffer produces the output VDD, and the x2 buffer produces Gnd. A short
circuit is formed between VDD and Gnd, through the transistors in the tri-state buffers. The
amount of current that flows through such a short circuit is usually sufficient to destroy the
circuit.

The kind of wired connection used for the tri-state buffers is not possible with ordinary
logic gates, because their outputs are always active; hence a short circuit would occur. As
we already know, for normal logic circuits the equivalent result of the wired connection is
achieved by using an OR gate to combine signals, as is done in the sum-of-products form.

3.9 Transmission Gates

In section 3.8.7 we showed that an NMOS transistor passes 0 well and 1 poorly, while a
PMOS transistor passes 1 well and 0 poorly. It is possible to combine an NMOS and a
PMOS transistor into a single switch that is capable of driving its output terminal either to
a low or high voltage equally well. Figure 3.60a gives the circuit for a transmission gate.
As indicated in parts (b) and (c) of the figure, it acts as a switch that connects x to f . Switch
control is provided by the select input s and its complement s. The switch is turned on by
setting Vs = 5 V and Vs = 0. When Vx is 0, the NMOS transistor will be turned on (because
VGS = Vs−Vx = 5 V) and Vf will be 0. On the other hand, when Vx is 5 V, then the PMOS
transistor will be on (VGS = Vs − Vx = −5 V) and Vf will be 5 V. A graphical symbol for
the transmission gate is given in Figure 3.60d .

Transmission gates can be used in a variety of applications. We will show next how
they lead to efficient implementations of Exclusive OR (XOR) logic gates and multiplexer
circuits.

July 2, 2002 09:34 vra23151_ch03 Sheet number 61 Page number 127 black

3.9 Transmission Gates 127

(a) Circuit

fx

(b) Truth table

Z
x

0
1

fs

s

s

s 0=

s 1=

x

x

f = Z

f = x

(c) Equivalent circuit (d) Graphical symbol

fx

s

s

Figure 3.60 A transmission gate.

3.9.1 Exclusive-OR Gates

So far we have encountered AND, OR, NOT, NAND, and NOR gates as the basic elements
from which logic circuits can be constructed. There is another basic element that is very
useful in practice, particularly for building circuits that perform arithmetic operations, as
we will see in Chapter 5. This element realizes the Exclusive-OR function defined in Figure
3.61a. The truth table for this function is similar to the OR function except that f = 0 when
both inputs are 1. Because of this similarity, the function is called Exclusive-OR, which is
commonly abbreviated as XOR. The graphical symbol for a gate that implements XOR is
given in part (b) of the figure.

The XOR operation is usually denoted with the ⊕ symbol. It can be realized in the
sum-of-products form as

x1 ⊕ x2 = x1x2 + x1x2

which leads to the circuit in Figure 3.61c. We know from section 3.3 that each AND and OR
gate requires six transistors, while a NOT gate needs two transistors. Hence 22 transistors
are required to implement this circuit in CMOS technology. It is possible to greatly reduce
the number of transistors needed by making use of transmission gates. Figure 3.61d gives
a circuit for an XOR gate that uses two transmission gates and two inverters. The output f
is set to the value of x2 when x1 = 0 by the top transmission gate. The bottom transmission
gate sets f to x2 when x1 = 1. The reader can verify that this circuit properly implements
the XOR function. We show how such circuits are derived in Chapter 6.

July 2, 2002 09:34 vra23151_ch03 Sheet number 62 Page number 128 black

128 C H A P T E R 3 • Implementation Technology

(b) Graphical symbol(a) Truth table

0
0
1
1

0
1
0
1

0
1
1
0

x1 x2

x1

x2

f x1 x2⊕=

f x1 x2⊕=

(c) Sum-of-products implementation

f x1 x2⊕=

x1

x2

(d) CMOS implementation

x1

x2

f x1 x2⊕=

Figure 3.61 Exclusive-OR gate.

3.9.2 Multiplexer Circuit

In Figure 3.59 we showed how a multiplexer can be constructed with tri-state buffers. A
similar structure can be used to realize a multiplexer with transmission gates, as indicated
in Figure 3.62. The select input s is used to choose whether the output f should have the
value of input x1 or x2. If s = 0, then f = x1; if s = 1, then f = x2.

July 2, 2002 09:34 vra23151_ch03 Sheet number 63 Page number 129 black

3.10 Implementation Details for SPLDs, CPLDs, and FPGAs 129

x1

x2 f

s

Figure 3.62 A 2-to-1 multiplexer built using transmission
gates.

3.10 Implementation Details for SPLDs, CPLDs,
and FPGAs

We introduced PLDs in section 3.6. In the chip diagrams shown in that section, the pro-
grammable switches are represented using the symbol X. We now show how these switches
are implemented using transistors.

In commercial SPLDs two main technologies are used to manufacture the program-
mable switches. The oldest technology is based on using metal-alloy fuses as programmable
links. In this technology the PLAs and PALs are manufactured so that each pair of hori-
zontal and vertical wires that cross is connected by a small metal fuse. When the chip is
programmed, for every connection that is not wanted in the circuit being implemented, the
associated fuse is melted. The programming process is not reversible, because the melted
fuses are destroyed. We will not elaborate on this technology, because it has mostly been
replaced by a newer, better method.

In currently produced PLAs and PALs, programmable switches are implemented using
a special type of programmable transistor. Because CPLDs comprise PAL-like blocks, the
technology used in SPLDs is also applicable to CPLDs. We will illustrate the main ideas
by first describing PLAs. For a PLA to be useful for implementing a wide range of logic
functions, it should support both functions of only a few variables and functions of many
variables. In section 3.8.8 we discussed the issue of fan-in of logic gates. We showed that
when the fan-in is high, the best type of gate to use is the NMOS NOR gate. Hence PLAs
are usually based on this type of gate.

As a small example of PLA implementation, consider the circuit in Figure 3.63. The
horizontal wire labeled S1 is the output of an NMOS NOR gate with the inputs x2 and
x3. Thus S1 = x2 + x3. Similarly, S2 and S3 are the outputs of NOR gates that produce
S2 = x1 + x3 and S3 = x1 + x2 + x3. The three NOR gates that produce S1, S2, and S3

are arranged in a regular structure that is efficient to create on an integrated circuit. This
structure is called a NOR plane. The NOR plane is extended to larger sizes by adding
columns for additional inputs and adding rows for more NOR gates.

July 2, 2002 09:34 vra23151_ch03 Sheet number 64 Page number 130 black

130 C H A P T E R 3 • Implementation Technology

VDD

VDD

VDD VDD VDD

S1

S2

S3

NOR plane

NOR plane

f1 f2

x1 x2 x3

Figure 3.63 An example of a NOR-NOR PLA.

The signals S1, S2, and S3 serve as inputs to a second NOR plane. This NOR plane is
turned 90 degrees clockwise with respect to the first NOR plane to make the diagram easier
to draw. The NOR gate that produces the output f1 has the inputs S1 and S2. Thus

f1 = S1 + S2 = (x2 + x3)+ (x1 + x3)

Using DeMorgan’s theorem, this expression is equivalent to the product-of-sums expression

f1 = S1S2 = (x2 + x3)(x1 + x3)

Similarly, the NOR gate with output f2 has inputs S1 and S3. Therefore,

f2 = S1 + S3 = (x2 + x3)+ (x1 + x2 + x3)

which is equivalent to

f2 = S1S3 = (x2 + x3)(x1 + x2 + x3)

July 2, 2002 09:34 vra23151_ch03 Sheet number 65 Page number 131 black

3.10 Implementation Details for SPLDs, CPLDs, and FPGAs 131

The style of PLA illustrated in Figure 3.63 is called a NOR-NOR PLA. Alternative
implementations also exist, but because of its simplicity, the NOR-NOR style is the most
popular choice. The reader should note that the PLA in Figure 3.63 is not programmable—
with the transistors connected as shown, it realizes only the two specific logic functions f1
and f2. But the NOR-NOR structure can be used in a programmable version of the PLA, as
explained below.

Strictly speaking, the term PLA should be used only for the fixed type of PLA de-
picted in Figure 3.63. The proper technical term for a programmable type of PLA is
field-programmable logic array (FPLA). However, it is common usage to omit the F . Fig-
ure 3.64a shows a programmable version of a NOR plane. It has n inputs, x1, . . . , xn, and
k outputs, S1, . . . , Sk . At each crossing point of a horizontal and vertical wire there exists
a programmable switch. The switch comprises two transistors connected in series, an
NMOS transistor, and an electrically erasable programmable read-only memory
(EEPROM) transistor.

The programmable switch is based on the behavior of the EEPROM transistor. Elec-
tronics textbooks, such as [1, 2], give detailed explanations of how EEPROM transistors
operate. Here we will provide only a brief description. A programmable switch is depicted
in Figure 3.64b, and the structure of the EEPROM transistor is given in Figure 3.64c. The
EEPROM transistor has the same general appearance as the NMOS transistor (see Figure
3.43) with one major difference. The EEPROM transistor has two gates: the normal gate
that an NMOS transistor has and a second floating gate. The floating gate is so named be-
cause it is surrounded by insulating glass and is not connected to any part of the transistor.
When the transistor is in the original unprogrammed state, the floating gate has no effect
on the transistor’s operation and it works as a normal NMOS transistor. During normal use
of the PLA, the voltage on the floating gate Ve is set to VDD by circuitry not shown in the
figure, and the EEPROM transistor is turned on.

Programming of the EEPROM transistor is accomplished by turning on the transistor
with a higher-than-normal voltage level (typically, Ve = 12 V), which causes a large amount
of current to flow through the transistor’s channel. Figure 3.64c shows that a part of the
floating gate extends downward so that it is very close to the top surface of the channel.
A high current flowing through the channel causes an effect, known as Fowler-Nordheim
tunneling, in which some of the electrons in the channel “tunnel” through the insulating
glass at its thinnest point and become trapped under the floating gate. After the programming
process is completed, the trapped electrons repel other electrons from entering the channel.
When the voltage Ve = 5 V is applied to the EEPROM transistor, which would normally
cause it to turn on, the trapped electrons keep the transistor turned off. Hence in the NOR
plane in Figure 3.64a, programming is used to “disconnect” inputs from the NOR gates.
For the inputs that should be connected to each NOR gate, the corresponding EEPROM
transistors are left in the unprogrammed state.

Once an EEPROM transistor is programmed, it retains the programmed state perma-
nently. However, the programming process can be reversed. This step is called erasing,
and it is done using voltages that are of the opposite polarity to those used for programming.
In this case, the applied voltage causes the electrons that are trapped under the floating gate
to tunnel back to the channel. The EEPROM transistor returns to its original state and again
acts like a normal NMOS transistor.

July 2, 2002 09:34 vra23151_ch03 Sheet number 66 Page number 132 black

132 C H A P T E R 3 • Implementation Technology

VDD

VDD

VDD

S1

S2

Sk

x1 x2 xn

(a) Programmable NOR-plane

=
Ve

(b) A programmable switch

Ve

+ + + +
+ + + + +

+ + + + + + + + + + ++ + + + +

(c) EEPROM transistor

Figure 3.64 Using EEPROM transistors to create a programmable NOR plane.

For completeness, we should also mention another technology that is similar to EEP-
ROM, called erasable PROM (EPROM). This type of transistor, which was actually created
as the predecessor of EEPROM, is programmed in a similar fashion to EEPROM. However,
erasing is done differently: to erase an EPROM transistor, it must be exposed to light energy
of specific wavelengths. To facilitate this process, chips based on EPROM technology are

July 2, 2002 09:34 vra23151_ch03 Sheet number 67 Page number 133 black

3.10 Implementation Details for SPLDs, CPLDs, and FPGAs 133

housed in packages with a clear glass window through which the chip is visible. To erase
a chip, it is placed under an ultraviolet light source for several minutes. Because erasure
of EPROM transistors is more awkward than the electrical process used to erase EEPROM
transistors, EPROM technology has essentially been replaced by EEPROM technology in
practice.

A complete NOR-NOR PLA using EEPROM technology, with four inputs, six sum
terms in the first NOR plane, and two outputs, is depicted in Figure 3.65. Each pro-
grammable switch that is programmed to the off state is shown as X in black, and each
switch that is left unprogrammed is shown in blue. With the programming states shown in
the figure, the PLA realizes the logic functions f1 = (x1 + x3)(x1 + x2)(x1 + x2 + x3) and
f2 = (x1 + x3)(x1 + x2)(x1 + x2).

Rather than implementing logic functions in product-of-sums form, a PLA can also
be used to realize the sum-of-products form. For sum-of-products we need to implement
AND gates in the first NOR plane of the PLA. If we first complement the inputs to the
NOR plane, then according to DeMorgan’s theorem, this is equivalent to creating an AND
plane. We can generate the complements at no cost in the PLA because each input is already
provided in both true and complemented forms. An example that illustrates implementation
of the sum-of-products form is given in Figure 3.66. The outputs from the first NOR plane

f1

S1

S2

f2

x1 x2 x3 NOR plane

NOR plane

S3

S4

x4

S5

S6

VDD

VDD

Figure 3.65 Programmable version of the NOR-NOR PLA.

July 2, 2002 09:34 vra23151_ch03 Sheet number 68 Page number 134 black

134 C H A P T E R 3 • Implementation Technology

f1

P1

P2

f2

x1 x2 x3 NOR plane

NOR plane

P3

P4

x4

P5

P6

VDD

VDD

Figure 3.66 A NOR-NOR PLA used for sum-of-products.

are labeled P1, . . . , P6 to reflect our interpretation of them as product terms. The signal
P1 is programmed to realize x1 + x2 = x1x2. Similarly, P2 = x1x3, P3 = x1x2x3, and
P4 = x1x2x3. Having generated the desired product terms, we now need to OR them. This
operation can be accomplished by complementing the outputs of the second NOR plane.
Figure 3.66 includes NOT gates for this purpose. The states indicated for the programmable
switches in the OR plane (the second NOR plane) in the figure yield the following outputs:
f1 = P1 + P2 + P3 = x1x2 + x1x3 + x1x2x3, and f2 = P1 + P4 = x1x2 + x1x2x3.

The concepts described above for PLAs can also be used in PALs. Figure 3.67 shows a
PALwith four inputs and two outputs. Let us assume that the first NOR plane is programmed
to realize product terms in the manner described above. Notice in the figure that the product
terms are hardwired in groups of three to OR gates that produce the outputs of the PAL.
As we illustrated in Figure 3.29, the PAL may also contain extra circuitry between the OR
gates and the output pins, which is not shown in Figure 3.67. The PAL is programmed
to realize the same logic functions, f1 and f2, that were generated in the PLA in Figure
3.66. Observe that the product term x1x2 is implemented twice in the PAL, on both P1 and
P4. Duplication is necessary because in a PAL product terms cannot be shared by multiple

July 2, 2002 09:34 vra23151_ch03 Sheet number 69 Page number 135 black

3.10 Implementation Details for SPLDs, CPLDs, and FPGAs 135

f2

P1

P2

x1 x2 x3

NOR plane

P3

P4

x4

P5

P6

VDD

f1

Figure 3.67 PAL programmed to implement the functions in Figure 3.66.

outputs, as they can be in a PLA. Another detail to observe in Figure 3.67 is that although
the function f2 requires only two product terms, each OR gate is hardwired to three product
terms. The extra product term P6 must be set to logic value 0, so that it has no effect. This
is accomplished by programming P6 so that it produces the product of an input and that
input’s complement, which always results in 0. In the figure, P6 = x1x1 = 0, but any other
input could also be used for this purpose.

The PAL-like blocks contained in CPLDs are usually implemented using the techniques
discussed in this section. In a typical CPLD, the AND plane is built using NMOS NOR
gates, with appropriate complementing of the inputs. The OR plane is hardwired as it is in
a PAL, rather than being fully programmable as in a PLA. However, some flexibility exists
in the number of product terms that feed each OR gate. This flexibility is accomplished by
using a programmable circuit that can allocate the product terms to whichever OR gates
the user desires. An example of this type of flexibility, provided in a commercial CPLD, is
given in Appendix E.

3.10.1 Implementation in FPGAs

FPGAs do not use EEPROM technology to implement the programmable switches. Instead,
the programming information is stored in memory cells, called static random access memory
(SRAM) cells. The operation of this type of storage cell is described in detail in section
10.1.3. For now it is sufficient to know that each cell can store either a logic 0 or 1, and it

July 2, 2002 09:34 vra23151_ch03 Sheet number 70 Page number 136 black

136 C H A P T E R 3 • Implementation Technology

provides this stored value as an output. An SRAM cell is used for each truth-table value
stored in a LUT. SRAM cells are also used to configure the interconnection wires in an
FPGA.

Figure 3.68 depicts a small section of the FPGA from Figure 3.39. The logic block
shown produces the output f1, which is driven onto the horizontal wire drawn in blue. This
wire can be connected to some of the vertical wires that it crosses, using programmable
switches. Each switch is implemented using an NMOS transistor, with its gate terminal
controlled by an SRAM cell. Such a switch is known as a pass-transistor switch. If a
0 is stored in an SRAM cell, then the associated NMOS transistor is turned off. But if
a 1 is stored in the SRAM cell, as shown for the switch drawn in blue, then the NMOS
transistor is turned on. This switch forms a connection between the two wires attached to its
source and drain terminals. The number of switches that are provided in the FPGA depends
on the specific chip architecture. In some FPGAs some of the switches are implemented
using tri-state buffers, instead of pass transistors. Examples of commercial FPGA chips are
presented in Appendix E.

In section 3.8.7 we showed that an NMOS transistor can only partially pass a high
logic value. Hence in Figure 3.68 if Vf1 is a high voltage level, then VA is only partially
high. Using the values from section 3.8.7, if Vf1 = 5 V, then VA = 3.5 V. As we explained
in section 3.8.7, this degraded voltage level has the result of causing static power to be
consumed (see Problem 3.35). One solution to this problem [1] is illustrated in Figure 3.69.
We assume that the signal VA passes through another pass-transistor switch before reaching
its destination at another logic block. The signal VB has the same value as VA because the
threshold voltage drop occurs only when passing through the first pass-transistor switch.
To restore the level of VB, it is buffered with an inverter. A PMOS transistor is connected
between the input of the inverter and VDD, and that transistor is controlled by the inverter’s
output. The PMOS transistor has no effect on the inverter’s output voltage level when
VB = 0 V. But when VB = 3.5 V, then the inverter output is low, which turns on the PMOS
transistor. This transistor quickly restores VB to the proper level of VDD, thus preventing
current from flowing in the steady state. Instead of using this pull-up transistor solution,

1 0

Vf 1

VA

0

0
0
0
1

x1

x2

f 1

SRAM SRAM SRAM

(To other wires)

Figure 3.68 Pass-transistor switches in FPGAs.

July 2, 2002 09:34 vra23151_ch03 Sheet number 71 Page number 137 black

3.11 Concluding Remarks 137

VDD

To logic block

1

SRAM

VA

VB

Figure 3.69 Restoring a high voltage level.

another possible approach is to alter the threshold voltage of the PMOS transistor (during
the integrated circuit manufacturing process) in the inverter in Figure 3.69, such that the
magnitude of its threshold voltage is large enough to keep the transistor turned off when
VB = 3.5 V. In commercial FPGAs both of these solutions are used in different chips.

An alternative to using a single NMOS transistor is to use a transmission gate, described
in section 3.9, for each switch. While this solves the voltage-level problem, it has two
drawbacks. First, having both an NMOS and PMOS transistor in the switch increases the
capacitive loading on the interconnection wires, which increases the propagation delays.
Second, the transmission gate takes more chip area than does a single NMOS transistor. For
these reasons, commercial FPGA chips do not currently use transmission-gate switches.

3.11 Concluding Remarks

We have described the most important concepts that are needed to understand how logic
gates are built using transistors. Our discussions of transistor fabrication, voltage levels,
propagation delays, power dissipation, and the like are meant to give the reader an appre-
ciation of the practical issues that have to be considered when designing and using logic
circuits.

We have introduced several types of integrated circuit chips. Each type of chip is
appropriate for specific types of applications. The standard chips, such as the 7400 series,
contain only a few simple gates and are rarely used today. Exceptions to this are the buffer
chips, which are employed in digital circuits that must drive large capacitive loads at high
speeds. The various types of PLDs are widely used in many types of applications. Simple
PLDs, like PLAs and PALs, are appropriate for implementation of small logic circuits. The
SPLDs offer low cost and high speed. CPLDs can be used for the same applications as
SPLDs, but CPLDs are also well suited for implementation of larger circuits of more than
20,000 gates. Many of the applications that can be targeted to CPLDs can alternatively
be realized with FPGAs. Which of these two types of chips are used in a specific design
situation depends on many factors. For some types of circuits, CPLDs provide slightly

July 2, 2002 09:34 vra23151_ch03 Sheet number 72 Page number 138 black

138 C H A P T E R 3 • Implementation Technology

faster speeds than FPGAs do, but FPGAs can support larger circuits. Following the trend
of putting as much circuitry as possible into a single chip, CPLDs and FPGAs are much
more widely used than SPLDs. Most digital designs created in the industry today contain
some type of PLD.

The gate-array, standard-cell, and custom-chip technologies are used in cases where
PLDs are not appropriate. Typical applications are those that entail very large circuits,
where the designed product is expected to sell in large volume.

The next chapter examines the issue of optimization of logic functions. Some of the
techniques discussed are appropriate for use in the synthesis of logic circuits regardless
of what type of technology is used for implementation. Other techniques are suitable
for synthesizing circuits so that they can be implemented in chips with specific types of
resources. We will show that when synthesizing a logic function to create a circuit, the
optimization methods used depend, at least in part, on which type of chip is being used.

Problems

3.1 Consider the circuit shown in Figure P3.1.

x1

x2

f

x3

Figure P3.1 A sum-of-products CMOS circuit.

(a) Show the truth table for the logic function f.
(b) If each gate in the circuit is implemented as a CMOS gate, how many transistors are
needed?

3.2 (a) Show that the circuit in Figure P3.2 is functionally equivalent to the circuit in Figure
P3.1.
(b) How many transistors are needed to build this CMOS circuit?

3.3 (a) Show that the circuit in Figure P3.3 is functionally equivalent to the circuit in Figure
P3.2.
(b) How many transistors are needed to build this CMOS circuit if each XOR gate is
implemented using the circuit in Figure 3.61d?

July 2, 2002 09:34 vra23151_ch03 Sheet number 73 Page number 139 black

Problems 139

x1
x2

x3 g

Figure P3.2 A CMOS circuit built with multiplexers.

x3

h

x1
x2

A

Figure P3.3 Circuit for problem 3.3.

3.4 In section 3.8.8 we said that a six-input CMOS AND gate can be constructed using 2 three-
input AND gates and a two-input AND gate. This approach requires 22 transistors. Show
how you can use only CMOS NAND and NOR gates to build the six-input AND gate and
then calculate the number of transistors needed. (Hint: use DeMorgan’s theorem.)

3.5 Repeat problem 3.4 for an eight-input CMOS OR gate.

3.6 (a) Give the truth table for the CMOS circuit in Figure P3.4.
(b) Derive a canonical sum-of-products expression for the truth table from part (a). How
many transistors are needed to build a circuit representing the canonical form if only AND,
OR, and NOT gates are used?

3.7 (a) Give the truth table for the CMOS circuit in Figure P3.5.
(b) Derive the simplest sum-of-products expression for the truth table in part (a). How
many transistors are needed to build the sum-of-products circuit using CMOS AND, OR,
and NOT gates?

3.8 Figure P3.6 shows half of a CMOS circuit. Derive the other half that contains the PMOS
transistors.

3.9 Figure P3.7 shows half of a CMOS circuit. Derive the other half that contains the NMOS
transistors.

3.10 Derive a CMOS complex gate for the logic function f (x1, x2, x3, x4) = ∑

m(0, 1, 2, 4, 5,
6, 8, 9, 10).

3.11 Derive a CMOS complex gate for the logic function f (x1, x2, x3, x4) = ∑

m(0, 1, 2, 4, 6,
8, 10, 12, 14).

July 2, 2002 09:34 vra23151_ch03 Sheet number 74 Page number 140 black

140 C H A P T E R 3 • Implementation Technology

Vf

VDD

Vx1

Vx2

Vx3

Figure P3.4 A three-input CMOS circuit.

3.12 Derive a CMOS complex gate for the logic function f = xy+ xz. Use as few transistors as
possible (Hint: consider f).

3.13 Derive a CMOS complex gate for the logic function f = xy+xz+yz. Use as few transistors
as possible (Hint: consider f).

3.14 For an NMOS transistor, assume that k ′n = 20 µA/V2, W/L = 2.5 µm/0.5 µm, VGS = 5
V, and VT = 1 V. Calculate
(a) ID when VDS = 5 V.
(b) ID when VDS = 0.2 V.

3.15 For a PMOS transistor, assume that k ′p = 10 µA/V2, W/L = 2.5 µm/0.5 µm, VGS = −5
V, and VT = −1 V. Calculate
(a) ID when VDS = −5 V.
(b) ID when VDS = −0.2 V.

3.16 For an NMOS transistor, assume that k ′n = 20 µA/V2, W/L = 5.0 µm/0.5 µm, VGS = 5
V, and VT = 1 V. For small VDS , calculate RDS .

3.17 For an NMOS transistor, assume that k ′n = 40 µA/V2, W/L = 3.5 µm/0.35 µm, VGS = 3.3
V, and VT = 0.66 V. For small VDS , calculate RDS .

3.18 For a PMOS transistor, assume that k ′p = 10 µA/V2, W/L = 5.0 µm/0.5 µm, VGS = −5
V, and VT = −1 V. For VDS = −4.8 V, calculate RDS .

July 2, 2002 09:34 vra23151_ch03 Sheet number 75 Page number 141 black

Problems 141

Vf

Vx4

Vx2

Vx3

VDD

Vx1

Figure P3.5 A four-input CMOS circuit.

Vx1

Vx2

Vx3

V f

Figure P3.6 The PDN in a CMOS circuit.

July 2, 2002 09:34 vra23151_ch03 Sheet number 76 Page number 142 black

142 C H A P T E R 3 • Implementation Technology

Vf

VDD

Vx1

Vx2

Vx3

Vx4

Figure P3.7 The PUN in a CMOS circuit.

3.19 For a PMOS transistor, assume that k ′p = 16µA/V2, W/L = 3.5 µm/0.35 µm, VGS = −3.3
V, and VT = −0.66 V. For VDS = −3.2 V, calculate RDS .

3.20 In the original NMOS technology, the pull-up device was an n-channel MOSFET. But
most integrated circuits fabricated today use CMOS technology. Hence it is convenient to
implement the pull-up resistor using a PMOS transistor, as shown in Figure P3.8. Such
a circuit is referred to as a pseudo-NMOS circuit. The pull-up device is called a “weak”
PMOS transistor because it has a small W/L ratio.

Vf

VDD

Vx

Figure P3.8 The pseudo-NMOS inverter.

When Vx = VDD, Vf has a low value. The NMOS transistor is operating in the triode region,
while the PMOS transistor limits the current flow because it is operating in the saturation

July 2, 2002 09:34 vra23151_ch03 Sheet number 77 Page number 143 black

Problems 143

region. The current through the NMOS and PMOS transistors has to be equal and is given
by equations 3.1 and 3.2. Show that the low-output voltage, Vf = VOL is given by

Vf = (VDD − VT)

1−
√

1− kp

kn

where kp and kn, called the gain factors, depend on the sizes of the PMOS and NMOS
transistors, respectively. They are defined by kp = k ′pWp/Lp and kn = k ′nWn/Ln.

3.21 For the circuit in Figure P3.8, assume the values k ′n = 60 µA/V2, k ′p = 0.4 k ′n, Wn/Ln =
2.0 µm/0.5 µm, Wp/Lp = 0.5 µm/0.5 µm, VDD = 5 V, and VT = 1 V. When Vx = VDD,
calculate (a) through (e).
(a) The static current Istat .
(b) The on-resistance of the NMOS transistor.
(c) VOL.
(d) The static power dissipated in the inverter.
(e) The on-resistance of the PMOS transistor.
(f) Assume that the inverter is used to drive a capacitive load of 70 fF. Using equation 3.4,
calculate the low-to-high and high-to-low propagation delays.

3.22 Repeat problem 3.21 assuming that the size of the PMOS transistor is changed to Wp/Lp =
2.0 µm/0.5 µm.

3.23 Figure P3.8 shows that in the pseudo-NMOS technology, the pull-up device is implemented
using a PMOS transistor. Repeat problem 3.21 for a NAND gate built with pseudo-NMOS
technology. Assume that both of the NMOS transistors in the gate have the same parameters,
as given in problem 3.21.

3.24 Repeat problem 3.23 for a pseudo-NMOS NOR gate.

3.25 (a) For VIH = 4 V, VOH = 4.5 V, VIL = 1 V, VOL = 0.3 V, and VDD = 5 V, calculate the
noise margins NMH and NML.
(b) Consider an eight-input NAND gate built using NMOS technology. If the voltage drop
across each transistor is 0.1 V, what is VOL? What is the corresponding NML using the other
parameters from part (a)?

3.26 Under steady-state conditions for an n-input CMOS NAND gate, what are the voltage levels
of VOL and VOH ? Explain.

3.27 For a CMOS inverter, assume that the load capacitance is C = 150 fF and VDD = 5 V.
The inverter is cycled through the low and high voltage levels at an average rate of f = 75
MHz.
(a) Calculate the dynamic power dissipated in the inverter.
(b) For a chip that contains the equivalent of 250,000 inverters, calculate the total dynamic
power dissipated if 20 percent of the gates change values at any given time.

3.28 Repeat problem 3.27 for C = 120 fF, VDD = 3.3 V, and f = 125 MHz.

3.29 In a CMOS inverter, assume that k ′n = 20 µA/V2, k ′p = 0.4×k ′n, Wn/Ln = 5.0 µm/0.5 µm,
Wp/Lp = 5.0 µm/0.5 µm, and VDD = 5 V. The inverter drives a load capacitance of
150 fF.

July 2, 2002 09:34 vra23151_ch03 Sheet number 78 Page number 144 black

144 C H A P T E R 3 • Implementation Technology

(a) Find the high-to-low propagation delay.
(b) Find the low-to-high propagation delay.
(c) What should be the dimensions of the PMOS transistor such that the low-to-high and
high-to-low propagation delays are equal? Ignore the effect of the PMOS transistor’s size
on the load capacitance of the inverter.

3.30 Repeat problem 3.29 for the parameters k ′n = 40 µA/V2, k ′p = 0.4×k ′n, Wn/Ln = Wp/Lp =
3.5 µm/0.35 µm, and VDD = 3.3 V.

3.31 In a CMOS inverter, assume that Wn/Ln = 2 and Wp/Lp = 4. For a CMOS NAND gate,
calculate the required W/L ratios of the NMOS and PMOS transistors such that the available
current in the gate to drive the output both low and high is equal to that in the inverter.

3.32 Repeat problem 3.31 for a CMOS NOR gate.

3.33 Repeat problem 3.31 for the CMOS complex gate in Figure 3.16. The transistor sizes should
be chosen so that in the worst case the available current is at least as large as in the inverter.

3.34 Repeat problem 3.31 for the CMOS complex gate in Figure 3.17.

3.35 In Figure 3.69 we showed a solution to the static power dissipation problem when NMOS
pass transistors are used. Assume that the PMOS pull-up transistor is removed from this
circuit. Assume the parameters k ′n = 60 µA/V2, k ′p = 0.5× k ′n, Wn/Ln = 2.0 µm/0.5 µm,
Wp/Lp = 4.0 µm/0.5 µm, VDD = 5 V, and VT = 1 V. For VB = 3.5 V, calculate (a) through
(d).
(a) The static current Istat .
(b) The voltage Vf at the output of the inverter.
(c) The static power dissipation in the inverter.
(d) If a chip contains 250,000 inverters used in this manner, find the total static power
dissipation.

3.36 Using the style of drawing in Figure 3.66, draw a picture of a PLAprogrammed to implement
f1(x1, x2, x3) = ∑

m(1, 2, 4, 7). The PLA should have the inputs x1, . . . , x3; the product
terms P1, . . . , P4; and the outputs f1 and f2.

3.37 Using the style of drawing in Figure 3.66, draw a picture of a PLAprogrammed to implement
f1(x1, x2, x3) = ∑

m(0, 3, 5, 6). The PLA should have the inputs x1, . . . , x3; the product
terms P1, . . . , P4; and the outputs f1 and f2.

3.38 Show how function f1 from problem 3.36 can be realized in a PLA of the type shown in
Figure 3.65. Draw a picture of such a PLA programmed to implement f1. The PLA should
have the inputs x1, . . . , x3; the sum terms S1, . . . , S4; and the outputs f1 and f2.

3.39 Show how function f1 from problem 3.37 can be realized in a PLA of the type shown in
Figure 3.65. Draw a picture of such a PLA programmed to implement f1. The PLA should
have the inputs x1, . . . , x3; the sum terms S1, . . . , S4; and the outputs f1 and f2.

3.40 Repeat problem 3.38 using the style of PLA drawing shown in Figure 3.63.

3.41 Repeat problem 3.39 using the style of PLA drawing shown in Figure 3.63.

3.42 Given that f1 is implemented as described in problem 3.36, list all of the other possible logic
functions that can be realized using output f2 in the PLA.

July 2, 2002 09:34 vra23151_ch03 Sheet number 79 Page number 145 black

Problems 145

3.43 Given that f1 is implemented as described in problem 3.37, list all of the other possible logic
functions that can be realized using output f2 in the PLA.

3.44 Consider the function f (x1, x2, x3) = x1x2 + x1x3 + x2x3. Show a circuit using 5 two-input
lookup-tables (LUTs) to implement this expression. As shown in Figure 3.39, give the truth
table implemented in each LUT. You do not need to show the wires in the FPGA.

3.45 Consider the function f (x1, x2, x3) =∑

m(2, 3, 4, 6, 7). Show how it can be realized using
2 two-input LUTs. As shown in Figure 3.39, give the truth table implemented in each LUT.
You do not need to show the wires in the FPGA.

3.46 Given the function f = x1x2x4 + x2x3x4 + x1x2x3, a straightforward implementation in an
FPGA with three-input LUTs requires four LUTs. Show how it can be done using only 3
three-input LUTs. Label the output of each LUT with an expression representing the logic
function that it implements.

3.47 For f in problem 3.46, show a circuit of two-input LUTs that realizes the function. You
are to use exactly 7 two-input LUTs. Label the output of each LUT with an expression
representing the logic function that it implements.

3.48 Figure 3.39 shows an FPGA programmed to implement a function. The figure shows one
pin used for function f and several pins that are unused. Without changing the programming
of any switch that is turned on in the FPGA in the figure, list four other logic functions, in
addition to f, that can be implemented on the unused pins.

3.49 Assume that a gate array contains the type of logic cell depicted in Figure P3.9. The inputs
in1, . . . , in7 can be connected to either 1 or 0, or to any logic signal.

out

in1 in2 in3

in4 in5 in6 in7

Figure P3.9 A gate-array logic cell.

(a) Show how the logic cell can be used to realize f = x1x2 + x3.
(b) Show how the logic cell can be used to realize f = x1x3 + x2x3.

3.50 Assume that a gate array exists in which the logic cell used is a three-input NAND gate.
The inputs to each NAND gate can be connected to either 1 or 0, or to any logic signal. Show

July 2, 2002 09:34 vra23151_ch03 Sheet number 80 Page number 146 black

146 C H A P T E R 3 • Implementation Technology

how the following logic functions can be realized in the gate array. (Hint: use DeMorgan’s
theorem.)
(a) f = x1x2 + x3.
(b) f = x1x2x4 + x2x3x4 + x1.

3.51 Write Verilog code to represent the function f = x2x3x4 + x1x2x4 + x1x2x3 + x1x2x3.
(a) Use your CAD tools to implement f in some type of chip, such as a CPLD. Show the
logic expression generated for f by the tools. Use timing simulation to determine the time
needed for a change in inputs x1, x2, or x3 to propagate to the output f.
(b) Repeat part (a) using a different chip, such as an FPGA for implementation of the circuit.

3.52 Repeat problem 3.51 for the function f = (x1 + x2 + x4) · (x2 + x3 + x4) · (x1 + x3 + x4) ·
(x1 + x3 + x4).

3.53 Repeat problem 3.51 for the function f (x1, ..., x7) = x1x3x6+x1x4x5x6+x2x3x7+x2x4x5x7.

3.54 What logic gate is realized by the circuit in Figure P3.10? Does this circuit suffer from any
major drawbacks?

V f

Vx1

Vx2

Figure P3.10 Circuit for problem 3.54.

3.55 What logic gate is realized by the circuit in Figure P3.11? Does this circuit suffer from any
major drawbacks?

V f

Vx1

Vx2

Figure P3.11 Circuit for problem 3.55.

July 2, 2002 09:34 vra23151_ch03 Sheet number 81 Page number 147 black

References 147

References

1. A. S. Sedra and K. C. Smith, Microelectronic Circuits, 4th ed. (Oxford University
Press: New York, 1998).

2. J. M. Rabaey, Digital Integrated Circuits, (Prentice-Hall: Englewood Cliffs, NJ,
1996).

3. Texas Instruments, Logic Products Selection Guide and Databook CD-ROM, 1997.

4. National Semiconductor, VHC/VHCT Advanced CMOS Logic Databook, 1993.

5. Motorola, CMOS Logic Databook, 1996.

6. Toshiba America Electronic Components, TC74VHC/VHCT Series CMOS Logic
Databook, 1994.

7. Integrated Devices Technology, High Performance Logic Databook, 1994.

8. J. F. Wakerly, Digital Design Principles and Practices (Prentice-Hall: Englewood
Cliffs, NJ, 1990).

9. M. M. Mano, Digital Design (Prentice-Hall: Englewood Cliffs, NJ, 1991).

10. R. H. Katz, Contemporary Logic Design (Benjamin/Cummings: Redwood City, CA,
1994).

11. J. P. Hayes, Introduction to Logic Design (Addison-Wesley: Reading, MA, 1993).

12. D. D. Gajski, Principles of Digital Design (Prentice-Hall: Upper Saddle River, NJ,
1997).

June 25, 2002 09:07 vra23151_ch04 Sheet number 1 Page number 149 black

149

c h a p t e r

4
Optimized Implementation of Logic

Functions

4. Nc3xe4, Nb8–d7

June 25, 2002 09:07 vra23151_ch04 Sheet number 2 Page number 150 black

150 C H A P T E R 4 • Optimized Implementation of Logic Functions

In Chapter 2 we showed that algebraic manipulation can be used to find the lowest-cost implementations of
logic functions. The purpose of that chapter was to introduce the basic concepts in the synthesis process.
The reader is probably convinced that it is easy to derive a straightforward realization of a logic function in
a canonical form, but it is not at all obvious how to choose and apply the theorems and properties of section
2.5 to find a minimum-cost circuit. Indeed, the algebraic manipulation is rather tedious and quite impractical
for functions of many variables.

If CAD tools are used to design logic circuits, the task of minimizing the cost of implementation does
not fall to the designer; the tools perform the necessary optimizations automatically. Even so, it is essential to
know something about this process. Most CAD tools have many features and options that are under control
of the user. To know when and how to apply these options, the user must have an understanding of what the
tools do.

In this chapter we will introduce some of the optimization techniques implemented in CAD tools and
show how these techniques can be automated. As a first step we will discuss a graphical approach, known as
the Karnaugh map, which provides a neat way to manually derive minimum-cost implementations of simple
logic functions. Although it is not suitable for implementation in CAD tools, it illustrates a number of key
concepts. We will show how both two-level and multilevel circuits can be designed. Then we will describe a
cubical representation for logic functions, which is suitable for use in CAD tools. We will also continue our
discussion of the Verilog language and CAD tools.

4.1 Karnaugh Map

In section 2.6 we saw that the key to finding a minimum-cost expression for a given logic
function is to reduce the number of product (or sum) terms needed in the expression, by
applying the combining property 14a (or 14b) as judiciously as possible. The Karnaugh map
approach provides a systematic way of performing this optimization. To understand how it
works, it is useful to review the algebraic approach from Chapter 2. Consider the function
f in Figure 4.1. The canonical sum-of-products expression for f consists of minterms m0,
m2, m4, m5, and m6, so that

f = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

The combining property 14a allows us to replace two minterms that differ in the value of
only one variable with a single product term that does not include that variable at all. For
example, both m0 and m2 include x1 and x3, but they differ in the value of x2 because m0

includes x2 while m2 includes x2. Thus

x1x2x3 + x1x2x3 = x1(x2 + x2)x3

= x1 · 1 · x3

= x1x3

June 25, 2002 09:07 vra23151_ch04 Sheet number 3 Page number 151 black

4.1 Karnaugh Map 151

Row
number x1 x2 x3 f

0 0 0 0 1
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Figure 4.1 The function f (x1, x2, x3) =∑

m(0, 2, 4, 5, 6).

Hence m0 and m2 can be replaced by the single product term x1x3. Similarly, m4 and m6

differ only in the value of x2 and can be combined using

x1x2x3 + x1x2x3 = x1(x2 + x2)x3

= x1 · 1 · x3

= x1x3

Now the two newly generated terms, x1x3 and x1x3, can be combined further as

x1x3 + x1x3 = (x1 + x1)x3

= 1 · x3

= x3

These optimization steps indicate that we can replace the four minterms m0, m2, m4, and
m6 with the single product term x3. In other words, the minterms m0, m2, m4, and m6 are
all included in the term x3. The remaining minterm in f is m5. It can be combined with m4,
which gives

x1x2x3 + x1x2x3 = x1x2

Recall that theorem 7b in section 2.5 indicates that

m4 = m4 + m4

which means that we can use the minterm m4 twice—to combine with minterms m0, m2,
and m6 to yield the term x3 as explained above and also to combine with m5 to yield the
term x1x2.

We have now accounted for all the minterms in f ; hence all five input valuations for
which f = 1 are covered by the minimum-cost expression

f = x3 + x1x2

June 25, 2002 09:07 vra23151_ch04 Sheet number 4 Page number 152 black

152 C H A P T E R 4 • Optimized Implementation of Logic Functions

The expression has the product term x3 because f = 1 when x3 = 0 regardless of the values
of x1 and x2. The four minterms m0, m2, m4, and m6 represent all possible minterms for
which x3 = 0; they include all four valuations, 00, 01, 10, and 11, of variables x1 and x2.
Thus if x3 = 0, then it is guaranteed that f = 1. This may not be easy to see directly
from the truth table in Figure 4.1, but it is obvious if we write the corresponding valuations
grouped together:

x1 x2 x3

m0 0 0 0

m2 0 1 0

m4 1 0 0

m6 1 1 0

In a similar way, if we look at m4 and m5 as a group of two

x1 x2 x3

m4 1 0 0

m5 1 0 1

it is clear that when x1 = 1 and x2 = 0, then f = 1 regardless of the value of x3.
The preceding discussion suggests that it would be advantageous to devise a method

that allows easy discovery of groups of minterms for which f = 1 that can be combined
into single terms. The Karnaugh map is a useful vehicle for this purpose.

The Karnaugh map [1] is an alternative to the truth-table form for representing a
function. The map consists of cells that correspond to the rows of the truth table. Consider
the two-variable example in Figure 4.2. Part (a) depicts the truth-table form, where each
of the four rows is identified by a minterm. Part (b) shows the Karnaugh map, which has
four cells. The columns of the map are labeled by the value of x1, and the rows are labeled
by x2. This labeling leads to the locations of minterms as shown in the figure. Compared
to the truth table, the advantage of the Karnaugh map is that it allows easy recognition of
minterms that can be combined using property 14a from section 2.5. Minterms in any two
cells that are adjacent, either in the same row or the same column, can be combined. For
example, the minterms m2 and m3 can be combined as

m2 + m3 = x1x2 + x1x2

= x1(x2 + x2)

= x1 · 1
= x1

June 25, 2002 09:07 vra23151_ch04 Sheet number 5 Page number 153 black

4.1 Karnaugh Map 153

x1x2

(a) Truth table (b) Karnaugh map

0

1

0 1

m0 m2

m3m1

x1 x2

0 0

0 1

1 0

1 1

m0

m1

m3

m2

Figure 4.2 Location of two-variable minterms.

The Karnaugh map is not just useful for combining pairs of minterms. As we will see in
several larger examples, the Karnaugh map can be used directly to derive a minimum-cost
circuit for a logic function.

Two-Variable Map
A Karnaugh map for a two-variable function is given in Figure 4.3. It corresponds to

the function f of Figure 2.15. The value of f for each valuation of the variables x1 and x2

is indicated in the corresponding cell of the map. Because a 1 appears in both cells of the
bottom row and these cells are adjacent, there exists a single product term that can cause f
to be equal to 1 when the input variables have the values that correspond to either of these
cells. To indicate this fact, we have circled the cell entries in the map. Rather than using
the combining property formally, we can derive the product term intuitively. Both of the
cells are identified by x2 = 1, but x1 = 0 for the left cell and x1 = 1 for the right cell.
Thus if x2 = 1, then f = 1 regardless of whether x1 is equal to 0 or 1. The product term
representing the two cells is simply x2.

Similarly, f = 1 for both cells in the first column. These cells are identified by x1 = 0.
Therefore, they lead to the product term x1. Since this takes care of all instances where
f = 1, it follows that the minimum-cost realization of the function is

f = x2 + x1

Evidently, to find a minimum-cost implementation of a given function, it is necessary
to find the smallest number of product terms that produce a value of 1 for all cases where

x1x2

1 0

1 1

f x2 x1+=
0

1

0 1

Figure 4.3 The function of Figure 2.15.

June 25, 2002 09:07 vra23151_ch04 Sheet number 6 Page number 154 black

154 C H A P T E R 4 • Optimized Implementation of Logic Functions

f = 1. Moreover, the cost of these product terms should be as low as possible. Note that a
product term that covers two adjacent cells is cheaper to implement than a term that covers
only a single cell. For our example once the two cells in the bottom row have been covered
by the product term x2, only one cell (top left) remains. Although it could be covered by
the term x1x2, it is better to combine the two cells in the left column to produce the product
term x1 because this term is cheaper to implement.

Three-Variable Map
A three-variable Karnaugh map is constructed by placing 2 two-variable maps side by

side. Figure 4.4 shows the map and indicates the locations of minterms in it. In this case each
valuation of x1 and x2 identifies a column in the map, while the value of x3 distinguishes the
two rows. To ensure that minterms in the adjacent cells in the map can always be combined
into a single product term, the adjacent cells must differ in the value of only one variable.
Thus the columns are identified by the sequence of (x1, x2) values of 00, 01, 11, and 10,
rather than the more obvious 00, 01, 10, and 11. This makes the second and third columns
different only in variable x1. Also, the first and the fourth columns differ only in variable
x1, which means that these columns can be considered as being adjacent. The reader may
find it useful to visualize the map as a rectangle folded into a cylinder where the left and the
right edges in Figure 4.4b are made to touch. (A sequence of codes, or valuations, where
consecutive codes differ in one variable only is known as the Gray code. This code is used
for a variety of purposes, some of which will be encountered later in the book.)

Figure 4.5a represents the function of Figure 2.18 in Karnaugh-map form. To synthe-
size this function, it is necessary to cover the four 1s in the map as efficiently as possible.
It is not difficult to see that two product terms suffice. The first covers the 1s in the top row,
which are represented by the term x1x3. The second term is x2x3, which covers the 1s in
the bottom row. Hence the function is implemented as

f = x1x3 + x2x3

which describes the circuit obtained in Figure 2.19a.

x1x2
x3 00 01 11 10

0

1

(b) Karnaugh map

x2 x3

0 0

0 1

1 0

1 1

m0

m1

m3

m2

0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

m4

m5

m7

m6

x1

(a) Truth table

m0

m1 m3

m2 m6

m7

m4

m5

Figure 4.4 Location of three-variable minterms.

mzr
Rectangle

mzr
Sticky Note
Unmarked set by mzr

mzr
Sticky Note
km 3 variable

June 25, 2002 09:07 vra23151_ch04 Sheet number 7 Page number 155 black

4.1 Karnaugh Map 155

f x1x3 x2x3+=

x1x2
x3

0 0

1 0

1 1

0 1

x1x2
x3

1 1

0 0

1 1

0 1

(a) The function of Figure 2.18

f x3 x1x2+=

(b) The function of Figure 4.1

00 01 11 10

0

1

00 01 11 10

0

1

Figure 4.5 Examples of three-variable Karnaugh maps.

In a three-variable map it is possible to combine cells to produce product terms that
correspond to a single cell, two adjacent cells, or a group of four adjacent cells. Realization
of a group of four adjacent cells using a single product term is illustrated in Figure 4.5b,
using the function from Figure 4.1. The four cells in the top row correspond to the (x1, x2, x3)

valuations 000, 010, 110, and 100. As we discussed before, this indicates that if x3 = 0, then
f = 1 for all four possible valuations of x1 and x2, which means that the only requirement
is that x3 = 0. Therefore, the product term x3 represents these four cells. The remaining 1,
corresponding to minterm m5, is best covered by the term x1x2, obtained by combining the
two cells in the right-most column. The complete realization of f is

f = x3 + x1x2

It is also possible to have a group of eight 1s in a three-variable map. This is the trivial case
where f = 1 for all valuations of input variables; in other words, f is equal to the constant 1.

The Karnaugh map provides a simple mechanism for generating the product terms that
should be used to implement a given function. A product term must include only those
variables that have the same value for all cells in the group represented by this term. If the
variable is equal to 1 in the group, it appears uncomplemented in the product term; if it is
equal to 0, it appears complemented. Each variable that is sometimes 1 and sometimes 0
in the group does not appear in the product term.

Four-Variable Map
A four-variable map is constructed by placing 2 three-variable maps together to create

four rows in the same fashion as we used 2 two-variable maps to form the four columns in a

June 25, 2002 09:07 vra23151_ch04 Sheet number 8 Page number 156 black

156 C H A P T E R 4 • Optimized Implementation of Logic Functions

three-variable map. Figure 4.6 shows the structure of the four-variable map and the location
of minterms. We have included in this figure another frequently used way of designating
the rows and columns. As shown in blue, it is sufficient to indicate the rows and columns
for which a given variable is equal to 1. Thus x1 = 1 for the two right-most columns,
x2 = 1 for the two middle columns, x3 = 1 for the bottom two rows, and x4 = 1 for the
two middle rows.

Figure 4.7 gives four examples of four-variable functions. The function f1 has a group
of four 1s in adjacent cells in the bottom two rows, for which x2 = 0 and x3 = 1—they
are represented by the product term x2x3. This leaves the two 1s in the second row to
be covered, which can be accomplished with the term x1x3x4. Hence the minimum-cost
implementation of the function is

f1 = x2x3 + x1x3x4

The function f2 includes a group of eight 1s that can be implemented by a single term, x3.
Again, the reader should note that if the remaining two 1s were implemented separately,
the result would be the product term x1x3x4. Implementing these 1s as a part of a group of
four 1s, as shown in the figure, gives the less expensive product term x1x4.

Just as the left and the right edges of the map are adjacent in terms of the assignment
of the variables, so are the top and the bottom edges. Indeed, the four corners of the map
are adjacent to each other and thus can form a group of four 1s, which may be implemented
by the product term x2x4. This case is depicted by the function f3. In addition to this group
of 1s, there are four other 1s that must be covered to implement f3. This can be done as
shown in the figure.

In all examples that we have considered so far, a unique solution exists that leads to
a minimum-cost circuit. The function f4 provides an example where there is some choice.
The groups of four 1s in the top-left and bottom-right corners of the map are realized by the
terms x1x3 and x1x3, respectively. This leaves the two 1s that correspond to the term x1x2x3.
But these two 1s can be realized more economically by treating them as a part of a group
of four 1s. They can be included in two different groups of four, as shown in the figure.

x1x2x3x4 00 01 11 10

00

01

11

10

x2

x4

x1

x3

m0

m1 m5

m4 m12

m13

m8

m9

m3

m2 m6

m7 m15

m14

m11

m10

Figure 4.6 A four-variable Karnaugh map.

mzr
Rectangle

June 25, 2002 09:07 vra23151_ch04 Sheet number 9 Page number 157 black

4.1 Karnaugh Map 157

x1x2x3x4

1

00 01 11 10

0 0 1

0 0 0 0

1 1 1 0

1 1 0 1

00

01

11

10

x1x2x3x4

1

00 01 11 10

1 1 0

1 1 1 0

0 0 1 1

0 0 1 1

00

01

11

10

x1x2x3x4

0

00 01 11 10

0 0 0

0 0 1 1

1 0 0 1

1 0 0 1

00

01

11

10

x1x2x3x4

0

00 01 11 10

0 0 0

0 0 1 1

1 1 1 1

1 1 1 1

00

01

11

10

f 1 x2x3 x1x3x4+= f 2 x3 x1x4+=

f 3 x2x4 x1x3 x2x3x4+ += f 4 x1x3 x1x3+ +=
x1x2

x2x3

or

Figure 4.7 Examples of four-variable Karnaugh maps.

One choice leads to the product term x1x2, and the other leads to x2x3. Both of these terms
have the same cost; hence it does not matter which one is chosen in the final circuit. Note
that the complement of x3 in the term x2x3 does not imply an increased cost in comparison
with x1x2, because this complement must be generated anyway to produce the term x1x3,
which is included in the implementation.

Five-Variable Map
We can use 2 four-variable maps to construct a five-variable map. It is easy to imagine

a structure where one map is directly behind the other, and they are distinguished by x5 = 0
for one map and x5 = 1 for the other map. Since such a structure is awkward to draw, we
can simply place the two maps side by side as shown in Figure 4.8. For the logic function
given in this example, two groups of four 1s appear in the same place in both four-variable
maps; hence their realization does not depend on the value of x5. The same is true for the
two groups of two 1s in the second row. The 1 in the top-right corner appears only in the

June 25, 2002 09:07 vra23151_ch04 Sheet number 10 Page number 158 black

158 C H A P T E R 4 • Optimized Implementation of Logic Functions

x1x2x3x4 00 01 11 10

1 1

1 1

1 1

00

01

11

10

x1x2x3x4 00 01 11 10

1

1 1

1 1

1 1

00

01

11

10

f 1 x1x3 x1x3x4 x1x2x3x5+ +=

x5 1=x5 0=

Figure 4.8 A five-variable Karnaugh map.

right map, where x5 = 1; it is a part of the group of two 1s realized by the term x1x2x3x5.
Note that in this map we left blank those cells for which f = 0, to make the figure more
readable. We will do likewise in a number of maps that follow.

Using a five-variable map is obviously more awkward than using maps with fewer
variables. Extending the Karnaugh map concept to more variables is not useful from
the practical point of view. This is not troublesome, because practical synthesis of logic
functions is done with CAD tools that perform the necessary minimization automatically.
Although Karnaugh maps are occasionally useful for designing small logic circuits, our main
reason for introducing the Karnaugh maps is to provide a simple vehicle for illustrating the
ideas involved in the minimization process.

4.2 Strategy for Minimization

For the examples in the preceding section, we used an intuitive approach to decide how the 1s
in a Karnaugh map should be grouped together to obtain the minimum-cost implementation
of a given function. Our intuitive strategy was to find as few as possible and as large as
possible groups of 1s that cover all cases where the function has a value of 1. Each group
of 1s has to comprise cells that can be represented by a single product term. The larger
the group of 1s, the fewer the number of variables in the corresponding product term. This
approach worked well because the Karnaugh maps in our examples were small. For larger
logic functions, which have many variables, such intuitive approach is unsuitable. Instead,
we must have an organized method for deriving a minimum-cost implementation. In this
section we will introduce a possible method, which is similar to the techniques that are
automated in CAD tools. To illustrate the main ideas, we will use Karnaugh maps. Later,

June 25, 2002 09:07 vra23151_ch04 Sheet number 11 Page number 159 black

4.2 Strategy for Minimization 159

in section 4.8, we will describe a different way of representing logic functions, which is
used in CAD tools.

4.2.1 Terminology

A huge amount of research work has gone into the development of techniques for synthesis
of logic functions. The results of this research have been published in numerous papers.
To facilitate the presentation of the results, certain terminology has evolved that avoids
the need for using highly descriptive phrases. We define some of this terminology in the
following paragraphs because it is useful for describing the minimization process.

Literal
A given product term consists of some number of variables, each of which may appear

either in uncomplemented or complemented form. Each appearance of a variable, either
uncomplemented or complemented, is called a literal. For example, the product term x1x2x3

has three literals, and the term x1x3x4x6 has four literals.

Implicant
A product term that indicates the input valuation(s) for which a given function is equal

to 1 is called an implicant of the function. The most basic implicants are the minterms,
which we introduced in section 2.6.1. For an n-variable function, a minterm is an implicant
that consists of n literals.

Consider the three-variable function in Figure 4.9. There are 11 possible implicants for
this function. This includes the five minterms: x1x2x3, x1x2x3, x1x2x3, x1x2x3, and x1x2x3.
Then there are the implicants that correspond to all possible pairs of minterms that can be
combined, namely, x1x2 (m0 and m1), x1x3 (m0 and m2), x1x3 (m1 and m3), x1x2 (m2 and m3),
and x2x3 (m3 and m7). Finally, there is one implicant that covers a group of four minterms,
which consists of a single literal x1.

Prime Implicant
An implicant is called a prime implicant if it cannot be combined into another implicant

that has fewer literals. Another way of stating this definition is to say that it is impossible
to delete any literal in a prime implicant and still have a valid implicant.

x1x2
x3

1 1

1 1

x1

0 0

1 0

00 01 11 10

0

1

x2x3

Figure 4.9 Three-variable function f (x1, x2, x3) =∑

m(0, 1, 2, 3, 7).

June 25, 2002 09:07 vra23151_ch04 Sheet number 12 Page number 160 black

160 C H A P T E R 4 • Optimized Implementation of Logic Functions

In Figure 4.9 there are two prime implicants: x1 and x2x3. It is not possible to delete
a literal in either of them. Doing so for x1 would make it disappear. For x2x3, deleting
a literal would leave either x2 or x3. But x2 is not an implicant because it includes the
valuation (x1, x2, x3) = 110 for which f = 0, and x3 is not an implicant because it includes
(x1, x2, x3) = 101 for which f = 0.

Cover
A collection of implicants that account for all valuations for which a given function is

equal to 1 is called a cover of that function. A number of different covers exist for most
functions. Obviously, a set of all minterms for which f = 1 is a cover. It is also apparent
that a set of all prime implicants is a cover.

A cover defines a particular implementation of the function. In Figure 4.9 a cover
consisting of minterms leads to the expression

f = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

Another valid cover is given by the expression

f = x1x2 + x1x2 + x2x3

The cover comprising the prime implicants is

f = x1 + x2x3

While all of these expressions represent the function f correctly, the cover consisting of
prime implicants leads to the lowest-cost implementation.

Cost
In Chapter 2 we suggested that a good indication of the cost of a logic circuit is the

number of gates plus the total number of inputs to all gates in the circuit. We will use this
definition of cost throughout the book. But we will assume that primary inputs, namely,
the input variables, are available in both true and complemented forms at zero cost. Thus
the expression

f = x1x2 + x3x4

has a cost of nine because it can be implemented using two AND gates and one OR gate,
with six inputs to the AND and OR gates.

If an inversion is needed inside a circuit, then the corresponding NOT gate and its input
are included in the cost. For example, the expression

g = x1x2 + x3(x4 + x5)

is implemented using two AND gates, two OR gates, and one NOT gate to complement
(x1x2 + x3), with nine inputs. Hence the total cost is 14.

4.2.2 Minimization Procedure

We have seen that it is possible to implement a given logic function with various circuits.
These circuits may have different structures and different costs. When designing a logic

June 25, 2002 09:07 vra23151_ch04 Sheet number 13 Page number 161 black

4.2 Strategy for Minimization 161

circuit, there are usually certain criteria that must be met. One such criterion is likely to
be the cost of the circuit, which we considered in the previous discussion. In general, the
larger the circuit, the more important the cost issue becomes. In this section we will assume
that the main objective is to obtain a minimum-cost circuit.

Having said that cost is the primary concern, we should note that other optimization
criteria may be more appropriate in some cases. For instance, in Chapter 3 we described
several types of programmable-logic devices (PLDs) that have a predefined basic structure
and can be programmed to realize a variety of different circuits. For such devices the main
objective is to design a particular circuit so that it will fit into the target device. Whether or
not this circuit has the minimum cost is not important if it can be realized successfully on the
device. A CAD tool intended for design with a specific device in mind will automatically
perform optimizations that are suitable for that device. We will show in section 4.6 that the
way in which a circuit should be optimized may be different for different types of devices.

In the previous subsection we concluded that the lowest-cost implementation is
achieved when the cover of a given function consists of prime implicants. The ques-
tion then is how to determine the minimum-cost subset of prime implicants that will cover
the function. Some prime implicants may have to be included in the cover, while for others
there may be a choice. If a prime implicant includes a minterm for which f = 1 that is not
included in any other prime implicant, then it must be included in the cover and is called an
essential prime implicant. In the example in Figure 4.9, both prime implicants are essential.
The term x2x3 is the only prime implicant that covers the minterm m7, and x1 is the only
one that covers the minterms m0, m1, and m2. Notice that the minterm m3 is covered by
both of these prime implicants. The minimum-cost realization of the function is

f = x1 + x2x3

We will now present several examples in which there is a choice as to which prime
implicants to include in the final cover. Consider the four-variable function in Figure 4.10.
There are five prime implicants: x1x3, x2x3, x3x4, x1x2x4, and x2x3x4. The essential ones

x1x2x3x4 00 01 11 10

11

1 1

1 1

00

01

11

10

x1x3

1 1

1

x3x4

x1x2x4

x2x3

x2x3x4

Figure 4.10 Four-variable function f (x1, . . . , x4) =∑

m(2, 3, 5, 6, 7, 10, 11, 13, 14).

June 25, 2002 09:07 vra23151_ch04 Sheet number 14 Page number 162 black

162 C H A P T E R 4 • Optimized Implementation of Logic Functions

(highlighted in blue) are x2x3 (because of m11), x3x4 (because of m14), and x2x3x4 (because of
m13). They must be included in the cover. These three prime implicants cover all minterms
for which f = 1 except m7. It is clear that m7 can be covered by either x1x3 or x1x2x4.
Because x1x3 has a lower cost, it is chosen for the cover. Therefore, the minimum-cost
realization is

f = x2x3 + x3x4 + x2x3x4 + x1x3

From the preceding discussion, the process of finding a minimum-cost circuit involves
the following steps:

1. Generate all prime implicants for the given function f .

2. Find the set of essential prime implicants.

3. If the set of essential prime implicants covers all valuations for which f = 1, then
this set is the desired cover of f . Otherwise, determine the nonessential prime
implicants that should be added to form a complete minimum-cost cover.

The choice of nonessential prime implicants to be included in the cover is governed by the
cost considerations. This choice is often not obvious. Indeed, for large functions there may
exist many possibilities, and some heuristic approach (i.e., an approach that considers only
a subset of possibilities but gives good results most of the time) has to be used. One such
approach is to arbitrarily select one nonessential prime implicant and include it in the cover
and then determine the rest of the cover. Next, another cover is determined assuming that
this prime implicant is not in the cover. The costs of the resulting covers are compared, and
the less-expensive cover is chosen for implementation.

We can illustrate the process by using the function in Figure 4.11. Of the six prime
implicants, only x3x4 is essential. Consider next x1x2x3 and assume first that it will be
included in the cover. Then the remaining three minterms, m10, m11, and m15, will require
two more prime implicants to be included in the cover. A possible implementation is

f = x3x4 + x1x2x3 + x1x3x4 + x1x2x3

x1x2x3x4 00 01 11 10

1

1 111

1

00

01

11

10

x1x2x4

1

1

x3x4

x1x2x4

x1x2x3

x1x2x3

x1x3x4

Figure 4.11 The function f (x1, . . . , x4) =∑

m(0, 4, 8, 10, 11, 12, 13, 15).

June 25, 2002 09:07 vra23151_ch04 Sheet number 15 Page number 163 black

4.2 Strategy for Minimization 163

The second possibility is that x1x2x3 is not included in the cover. Then x1x2x4 becomes
essential because there is no other way of covering m13. Because x1x2x4 also covers m15,
only m10 and m11 remain to be covered, which can be achieved with x1x2x3. Therefore, the
alternative implementation is

f = x3x4 + x1x2x4 + x1x2x3

Clearly, this implementation is a better choice.
Sometimes there may not be any essential prime implicants at all. An example is given

in Figure 4.12. Choosing any of the prime implicants and first including it, then excluding
it from the cover leads to two alternatives of equal cost. One includes the prime implicants
indicated in black, which yields

f = x1x3x4 + x2x3x4 + x1x3x4 + x2x3x4

The other includes the prime implicants indicated in blue, which yields

f = x1x2x4 + x1x2x3 + x1x2x4 + x1x2x3

This procedure can be used to find minimum-cost implementations of both small and
large logic functions. For our small examples it was convenient to use Karnaugh maps
to determine the prime implicants of a function and then choose the final cover. Other
techniques based on the same principles are much more suitable for use in CAD tools; we
will introduce such techniques in sections 4.9 and 4.10.

The previous examples have been based on the sum-of-products form. We will next
illustrate that the same concepts apply for the product-of-sums form.

x1x2x3x4 00 01 11 10

1

1

1

1

1

1

00

01

11

10 1

1

x1x3x4

x2x3x4

x2x3x4

x1x3x4

x1x2x4x1x2x4

x1x2x3 x1x2x3

Figure 4.12 The function f (x1, . . . , x4) =∑

m(0, 2, 4, 5, 10, 11, 13, 15).

June 25, 2002 09:07 vra23151_ch04 Sheet number 16 Page number 164 black

164 C H A P T E R 4 • Optimized Implementation of Logic Functions

4.3 Minimization of Product-of-Sums Forms

Now that we know how to find the minimum-cost sum-of-products (SOP) implementations
of functions, we can use the same techniques and the principle of duality to obtain minimum-
cost product-of-sums (POS) implementations. In this case it is the maxterms for which
f = 0 that have to be combined into sum terms that are as large as possible. Again, a sum
term is considered larger if it covers more maxterms, and the larger the term, the less costly
it is to implement.

Figure 4.13 depicts the same function as Figure 4.9 depicts. There are three maxterms
that must be covered: M4, M5, and M6. They can be covered by two sum terms shown in
the figure, leading to the following implementation:

f = (x1 + x2)(x1 + x3)

A circuit corresponding to this expression has two OR gates and one AND gate, with two
inputs for each gate. Its cost is greater than the cost of the equivalent SOP implementation
derived in Figure 4.9, which requires only one OR gate and one AND gate.

The function from Figure 4.10 is reproduced in Figure 4.14. The maxterms for which
f = 0 can be covered as shown, leading to the expression

f = (x2 + x3)(x3 + x4)(x1 + x2 + x3 + x4)

This expression represents a circuit with three OR gates and one AND gate. Two of the
OR gates have two inputs, and the third has four inputs; the AND gate has three inputs.
Assuming that both the complemented and uncomplemented versions of the input variables
x1 to x4 are available at no extra cost, the cost of this circuit is 15. This compares favorably
with the SOP implementation derived from Figure 4.10, which requires five gates and 13
inputs at a total cost of 18.

In general, as we already know from section 2.6.1, the SOP and POS implementations
of a given function may or may not entail the same cost. The reader is encouraged to find
the POS implementations for the functions in Figures 4.11 and 4.12 and compare the costs
with the SOP forms.

We have shown how to obtain minimum-cost POS implementations by finding the
largest sum terms that cover all maxterms for which f = 0. Another way of obtaining

x1x2
x3

1

00 01 11 10

0

1

1 0 0

1 1 1 0

x1 x2+()

x1 x3+()

Figure 4.13 POS minimization of f (x1, x2, x3) = �M (4, 5, 6).

June 25, 2002 09:07 vra23151_ch04 Sheet number 17 Page number 165 black

4.3 Minimization of Product-of-Sums Forms 165

x1x2x3x4

0

00 01 11 10

0 0 0

0 1 1 0

1 1 0 1

1 1 1 1

00

01

11

10

x2 x3+()

x3 x4+()

x1 x2 x3 x4+ + +()

Figure 4.14 POS minimization of f (x1, . . . , x4) =
�M (0, 1, 4, 8, 9, 12, 15).

the same result is by finding a minimum-cost SOP implementation of the complement of
f . Then we can apply DeMorgan’s theorem to this expression to obtain the simplest POS

realization because f = f . For example, the simplest SOP implementation of f in Figure
4.13 is

f = x1x2 + x1x3

Complementing this expression using DeMorgan’s theorem yields

f = f = x1x2 + x1x3

= x1x2 · x1x3

= (x1 + x2)(x1 + x3)

which is the same result as obtained above.
Using this approach for the function in Figure 4.14 gives

f = x2x3 + x3x4 + x1x2x3x4

Complementing this expression produces

f = f = x2x3 + x3x4 + x1x2x3x4

= x2x3 · x3x4 · x1x2x3x4

= (x2 + x3)(x3 + x4)(x1 + x2 + x3 + x4)

which matches the previously derived implementation.

June 25, 2002 09:07 vra23151_ch04 Sheet number 18 Page number 166 black

166 C H A P T E R 4 • Optimized Implementation of Logic Functions

4.4 Incompletely Specified Functions

In digital systems it often happens that certain input conditions can never occur. For
example, suppose that x1 and x2 control two interlocked switches such that both switches
cannot be closed at the same time. Thus the only three possible states of the switches
are that both switches are open or that one switch is open and the other switch is closed.
Namely, the input valuations (x1, x2) = 00, 01, and 10 are possible, but 11 is guaranteed not
to occur. Then we say that (x1, x2) = 11 is a don’t-care condition, meaning that a circuit
with x1 and x2 as inputs can be designed by ignoring this condition. A function that has
don’t-care condition(s) is said to be incompletely specified.

Don’t-care conditions, or don’t cares for short, can be used to advantage in the design of
logic circuits. Since these input valuations will never occur, the designer may assume that
the function value for these valuations is either 1 or 0, whichever is more useful in trying
to find a minimum-cost implementation. Figure 4.15 illustrates this idea. The required
function has a value of 1 for minterms m2, m4, m5, m6, and m10. Assuming the above-

x1x2x3x4

0

00 01 11 10

1 d 0

0 1 d 0

0 0 d 0

1 1 d 1

00

01

11

10

x2 x3+()

x3 x4+()

x1x2x3x4

0

00 01 11 10

1 d 0

0 1 d 0

0 0 d 0

1 1 d 1

00

01

11

10

x2x3

x3x4

(a) SOP implementation

(b) POS implementation

Figure 4.15 Two implementations of the function f (x1, . . . , x4) =∑

m(2, 4, 5, 6, 10)+ D(12, 13, 14, 15).

June 25, 2002 09:07 vra23151_ch04 Sheet number 19 Page number 167 black

4.5 Multiple-Output Circuits 167

mentioned interlocked switches, the x1 and x2 inputs will never be equal to 1 at the same
time; hence the minterms m12, m13, m14, and m15 can all be used as don’t cares. The don’t
cares are denoted by the letter d in the map. Using the shorthand notation, the function f
is specified as

f (x1, . . . , x4) =
∑

m(2, 4, 5, 6, 10)+ D(12, 13, 14, 15)

where D is the set of don’t cares.
Part (a) of the figure indicates the best sum-of-products implementation. To form

the largest possible groups of 1s, thus generating the lowest-cost prime implicants, it is
necessary to assume that the don’t cares D12, D13, and D14 (corresponding to minterms m12,
m13, and m14) have the value of 1 while D15 has the value of 0. Then there are only two
prime implicants, which provide a complete cover of f . The resulting implementation is

f = x2x3 + x3x4

Part (b) shows how the best product-of-sums implementation can be obtained. The
same values are assumed for the don’t cares. The result is

f = (x2 + x3)(x3 + x4)

The freedom in choosing the value of don’t cares leads to greatly simplified realizations. If
we were to naively exclude the don’t cares from the synthesis of the function, by assuming
that they always have a value of 0, the resulting SOP expression would be

f = x1x2x3 + x1x3x4 + x2x3x4

and the POS expression would be

f = (x2 + x3)(x3 + x4)(x1 + x2)

Both of these expressions have higher costs than the expressions obtained with a more
appropriate assignment of values to don’t cares.

Although don’t-care values can be assigned arbitrarily, an arbitrary assignment may
not lead to a minimum-cost implementation of a given function. If there are k don’t cares,
then there are 2k possible ways of assigning 0 or 1 values to them. In the Karnaugh map
we can usually see how best to do this assignment to find the simplest implementation.

Using interlocked switches to illustrate how don’t-care conditions can occur in a real
system may seem to be somewhat contrived. However, in Chapters 6, 8, and 9 we will
encounter many examples of don’t cares that occur in the course of practical design of
digital circuits.

4.5 Multiple-Output Circuits

In all previous examples we have considered single functions and their circuit implemen-
tations. In practical digital systems it is necessary to implement a number of functions
as part of some large logic circuit. Circuits that implement these functions can often be

June 25, 2002 09:07 vra23151_ch04 Sheet number 20 Page number 168 black

168 C H A P T E R 4 • Optimized Implementation of Logic Functions

combined into a less-expensive single circuit with multiple outputs by sharing some of the
gates needed in the implementation of individual functions.

Example 4.1 An example of gate sharing is given in Figure 4.16. Two functions, f1 and f2, of the same
variables are to be implemented. The minimum-cost implementations for these functions
are obtained as shown in parts (a) and (b) of the figure. This results in the expressions

f1 = x1x3 + x1x3 + x2x3x4

f2 = x1x3 + x1x3 + x2x3x4

The cost of f1 is four gates and 10 inputs, for a total of 14. The cost of f2 is the same. Thus
the total cost is 28 if both functions are implemented by separate circuits. A less-expensive

x1x2x3x4 00 01 11 10

1 1

1 1

1 1 1

1 1

00

01

11

10

x1x2x3x4 00 01 11 10

1 1

1 1

1 1

1 1

00

01

11

10

(a) Function (b) Function

1

f 1 f 2

f 1

f 2

x2

x3

x4

x1

x3

x1

x3

x2

x3

x4

(c) Combined circuit for f 1 f 2and

Figure 4.16 An example of multiple-output synthesis.

June 25, 2002 09:07 vra23151_ch04 Sheet number 21 Page number 169 black

4.5 Multiple-Output Circuits 169

realization is possible if the two circuits are combined into a single circuit with two outputs.
Because the first two product terms are identical in both expressions, the AND gates that
implement them need not be duplicated. The combined circuit is shown in Figure 4.16c.
Its cost is six gates and 16 inputs, for a total of 22.

In this example we reduced the overall cost by finding minimum-cost realizations of f1
and f2 and then sharing the gates that implement the common product terms. This strategy
does not necessarily always work the best, as the next example shows.

Example 4.2Figure 4.17 shows two functions to be implemented by a single circuit. Minimum-cost
realizations of the individual functions f3 and f4 are obtained from parts (a) and (b) of the
figure.

f3 = x1x4 + x2x4 + x1x2x3

f4 = x1x4 + x2x4 + x1x2x3x4

None of the AND gates can be shared, which means that the cost of the combined circuit
would be six AND gates, two OR gates, and 21 inputs, for a total of 29.

But several alternative realizations are possible. Instead of deriving the expressions for
f3 and f4 using only prime implicants, we can look for other implicants that may be shared
advantageously in the combined realization of the functions. Figure 4.17c shows the best
choice of implicants, which yields the realization

f3 = x1x2x4 + x1x2x3x4 + x1x4

f4 = x1x2x4 + x1x2x3x4 + x2x4

The first two implicants are identical in both expressions. The resulting circuit is given in
Figure 4.17d . It has the cost of six gates and 17 inputs, for a total of 23.

Example 4.3In Example 4.1 we sought the best SOP implementation for the functions f1 and f2 in
Figure 4.16. We will now consider the POS implementation of the same functions. The
minimum-cost POS expressions for f1 and f2 are

f1 = (x1 + x3)(x1 + x2 + x3)(x1 + x3 + x4)

f2 = (x1 + x3)(x1 + x2 + x3)(x1 + x3 + x4)

There are no common sum terms in these expressions that could be shared in the imple-
mentation. Moreover, from the Karnaugh maps in Figure 4.16, it is apparent that there is
no sum term (covering the cells where f1 = f2 = 0) that can be profitably used in realizing
both f1 and f2. Thus the best choice is to implement each function separately, according to
the preceding expressions. Each function requires three OR gates, one AND gate, and 11
inputs. Therefore, the total cost of the circuit that implements both functions is 30. This
realization is costlier than the SOP realization derived in Example 4.1.

June 25, 2002 09:07 vra23151_ch04 Sheet number 22 Page number 170 black

170 C H A P T E R 4 • Optimized Implementation of Logic Functions

x1x2x3x4 00 01 11 10

1

1 1

1

00

01

11

10

(a) Optimal realization of (b) Optimal realization of

1

f 3 f 4

f 3

f 4

x1

x4

x3

x4

x1

x1

x2

x2

x4

x4

(d) Combined circuit for f 3 f 4and

(c) Optimal realization of f 3

1

1

x1x2x3x4 00 01 11 10

1

1 1

1

00

01

11

10

11

1

x1x2x3x4 00 01 11 10

1 1

1

1

00

01

11

10

1

1 1

x1x2x3x4 00 01 11 10

1 1

1

1

00

01

11

10

1

1 1

and togetherf 4

x2

Figure 4.17 Another example of multiple-output synthesis.

June 25, 2002 09:07 vra23151_ch04 Sheet number 23 Page number 171 black

4.6 Multilevel Synthesis 171

Example 4.4Consider now the POS realization of the functions f3 and f4 in Figure 4.17. The minimum-
cost POS expressions for f3 and f4 are

f3 = (x3 + x4)(x2 + x4)(x1 + x4)(x1 + x2)

f4 = (x3 + x4)(x2 + x4)(x1 + x4)(x1 + x2 + x4)

The first three sum terms are the same in both f3 and f4; they can be shared in a combined
circuit. These terms require three OR gates and six inputs. In addition, one 2-input OR
gate and one 4-input AND gate are needed for f3, and one 3-input OR gate and one 4-input
AND gate are needed for f4. Thus the combined circuit comprises five OR gates, two AND
gates, and 19 inputs, for a total cost of 26. This cost is slightly higher than the cost of the
circuit derived in Example 4.2.

These examples show that the complexities of the best SOP or POS implementations
of given functions may be quite different. For the functions in Figures 4.16 and 4.17, the
SOP form gives better results. But if we are interested in implementing the complements
of the four functions in these figures, then the POS form would be less costly.

Sophisticated CAD tools used to synthesize logic functions will automatically perform
the types of optimizations illustrated in the preceding examples.

4.6 Multilevel Synthesis

In the preceding sections our objective was to find a minimum-cost sum-of-products or
product-of-sums realization of a given logic function. Logic circuits of this type have two
levels (stages) of gates. In the sum-of-products form, the first level comprises AND gates
that are connected to a second-level OR gate. In the product-of-sums form, the first-level OR
gates feed the second-level AND gate. We have assumed that both true and complemented
versions of the input variables are available so that NOT gates are not needed to complement
the variables.

A two-level realization is usually efficient for functions of a few variables. However, as
the number of inputs increases, a two-level circuit may result in fan-in problems. Whether
or not this is an issue depends on the type of technology that is used to implement the circuit.
For example, consider the following function:

f (x1, . . . , x7) = x1x3x6 + x1x4x5x6 + x2x3x7 + x2x4x5x7

This is a minimum-cost SOP expression. Now consider implementing f in two types of
PLDs: a CPLD and an FPGA. Figure 4.18 shows one of the PAL-like blocks from Figure
3.33. The figure indicates in blue the circuitry used to realize the function f . Clearly, the
SOP form of the function is well suited to the chip architecture of the CPLD.

Next, consider implementing f in an FPGA. For this example we will use the FPGA
shown in Figure 3.39, which contains two-input LUTs. Since the SOP expression for f
requires three- and four-input AND operations and a four-input OR, it cannot be directly

June 25, 2002 09:07 vra23151_ch04 Sheet number 24 Page number 172 black

172 C H A P T E R 4 • Optimized Implementation of Logic Functions

D Q

PAL-like block

(From interconnection wires)

x1 x2 x3 x4 x5 x6 x7 Unused

0
0 1

f

Figure 4.18 Implementation in a CPLD.

implemented in this FPGA. The problem is that the fan-in required to implement the function
is too high for our target chip architecture.

To solve the fan-in problem, f must be expressed in a form that has more than two levels
of logic operations. Such a form is called a multilevel logic expression. There are several
different approaches for synthesis of multilevel circuits. We will discuss two important
techniques known as factoring and functional decomposition.

4.6.1 Factoring

The distributive property in section 2.5 allows us to factor the preceding expression for f
as follows

f = x1x6(x3 + x4x5)+ x2x7(x3 + x4x5)

= (x1x6 + x2x7)(x3 + x4x5)

The corresponding circuit has a maximum fan-in of two; hence it can be realized using
two-input LUTs. Figure 4.19 gives a possible implementation using the FPGA from Figure
3.39. Note that a two-variable function that has to be realized by each LUT is indicated in
the box that represents the LUT.

Fan-in Problem
In the preceding example, the fan-in restrictions were caused by the fixed structure

of the FPGA, where each LUT has only two inputs. However, even when the target chip
architecture is not fixed, the fan-in may still be an issue. To illustrate this situation, let us
consider the implementation of a circuit in a custom chip. Recall that custom chips usually
contain a large number of gates. If the chip is fabricated using CMOS technology, then
there will be fan-in limitations as discussed in section 3.8.8. In this technology the number
of inputs to a logic gate should be small. For instance, we may wish to limit the number

June 25, 2002 09:07 vra23151_ch04 Sheet number 25 Page number 173 black

4.6 Multilevel Synthesis 173

0
0
0
1

0
1
1
1

x4

x5

A

B

C

D

x1

x6

x4 f

0
1
1
1

0
0
0
1

x3

C

D

E

E

f

x2

x7

x5 x3

0
0
0
1

x2

x7

B

0
0
1
0

x1

x6

A

Figure 4.19 Implementation in an FPGA.

of inputs to an AND gate to be less than five. Under this restriction, if a logic expression
includes a seven-input product term, we would have to use 2 four-input AND gates, as
indicated in Figure 4.20.

Factoring can be used to deal with the fan-in problem. Suppose again that the available
gates have a maximum fan-in of four and that we want to realize the function

f = x1x2x3x4x5x6 + x1x2x3x4x5x6

This is a minimal sum-of-products expression. Using the approach of Figure 4.20, we will
need four AND gates and one OR gate to implement this expression. A better solution is to

7 inputs

Figure 4.20 Using four-input AND gates to realize a
seven-input product term.

June 25, 2002 09:07 vra23151_ch04 Sheet number 26 Page number 174 black

174 C H A P T E R 4 • Optimized Implementation of Logic Functions

factor the expression as follows

f = x1x4x6(x2x3x5 + x2x3x5)

Then three AND gates and one OR gate suffice for realization of the required function, as
shown in Figure 4.21.

Example 4.5 In practical situations a designer of logic circuits often encounters specifications that natu-
rally lead to an initial design where the logic expressions are in a factored form. Suppose
we need a circuit that meets the following requirements. There are four inputs: x1, x2, x3,
and x4. An output, f1, must have the value 1 if at least one of the inputs x1 and x2 is equal
to 1 and both x3 and x4 are equal to 1; it must also be 1 if x1 = x2 = 0 and either x3 or x4

is 1. In all other cases f1 = 0. A different output, f2, is to be equal to 1 in all cases except
when both x1 and x2 are equal to 0 or when both x3 and x4 are equal to 0.

From this specification, the function f1 can be expressed as

f1 = (x1 + x2)x3x4 + x1x2(x3 + x4)

This expression can be simplified to

f1 = x3x4 + x1x2(x3 + x4)

which the reader can verify by using a Karnaugh map.
The second function, f2, is most easily defined in terms of its complement, such that

f 2 = x1x2 + x3x4

Then using DeMorgan’s theorem gives

f2 = (x1 + x2)(x3 + x4)

which is the minimum-cost expression for f2; the cost increases significantly if the SOP
form is used.

x6

x4

x1

x5

x2

x3

x2

x3

x5

Figure 4.21 A factored circuit.

June 25, 2002 09:07 vra23151_ch04 Sheet number 27 Page number 175 black

4.6 Multilevel Synthesis 175

Because our objective is to design the lowest-cost combined circuit that implements f1
and f2, it seems that the best result can be achieved if we use the factored forms for both
functions, in which case the sum term (x3 + x4) can be shared. Moreover, observing that
x1x2 = x1 + x2, the sum term (x1 + x2) can also be shared if we express f1 in the form

f1 = x3x4 + x1 + x2(x3 + x4)

Then the combined circuit, shown in Figure 4.22, comprises three OR gates, three AND
gates, one NOT gate, and 13 inputs, for a total of 20.

Impact on Wiring Complexity
The space on integrated circuit chips is occupied by the circuitry that implements logic

gates and by the wires needed to make connections among the gates. The amount of space
needed for wiring is a substantial portion of the chip area. Therefore, it is useful to keep
the wiring complexity as low as possible.

In a logic expression each literal corresponds to a wire in the circuit that carries the
desired logic signal. Since factoring usually reduces the number of literals, it provides a
powerful mechanism for reducing the wiring complexity in a logic circuit. In the synthesis
process the CAD tools consider many different issues, including the cost of the circuit, the
fan-in, and the wiring complexity.

4.6.2 Functional Decomposition

In the preceding examples, which illustrated the factoring approach, multilevel circuits
were used to deal with fan-in limitations. However, such circuits may be preferable to
their two-level equivalents even if fan-in is not a problem. In some cases the multilevel
circuits may reduce the cost of implementation. On the other hand, they usually imply
longer propagation delays, because they use multiple stages of logic gates. We will explore
these issues by means of illustrative examples.

x1

x2

x3

x4

f 1

f 2

Figure 4.22 Circuit for Example 4.5.

June 25, 2002 09:07 vra23151_ch04 Sheet number 28 Page number 176 black

176 C H A P T E R 4 • Optimized Implementation of Logic Functions

Complexity of a logic circuit, in terms of wiring and logic gates, can often be reduced by
decomposing a two-level circuit into subcircuits, where one or more subcircuits implement
functions that may be used in several places to construct the final circuit. To achieve this
objective, a two-level logic expression is replaced by two or more new expressions, which
are then combined to define a multilevel circuit. We can illustrate this idea by a simple
example.

Example 4.6 Consider the minimum-cost sum-of-products expression

f = x1x2x3 + x1x2x3 + x1x2x4 + x1x2x4

and assume that the inputs x1 to x4 are available only in their true form. Then the expression
defines a circuit that has four AND gates, one OR gate, two NOT gates, and 18 inputs
(wires) to all gates. The fan-in is three for the AND gates and four for the OR gate. The
reader should observe that in this case we have included the cost of NOT gates needed to
complement x1 and x2, rather than assume that both true and complemented versions of all
input variables are available, as we had done before.

Factoring x3 from the first two terms and x4 from the last two terms, this expression
becomes

f = (x1x2 + x1x2)x3 + (x1x2 + x1x2)x4

Now let g(x1, x2) = x1x2 + x1x2 and observe that

g = x1x2 + x1x2

= x1x2 · x1x2

= (x1 + x2)(x1 + x2)

= x1x1 + x1x2 + x2x1 + x2x2

= 0+ x1x2 + x1x2 + 0

= x1x2 + x1x2

Then f can be written as

f = gx3 + gx4

which leads to the circuit shown in Figure 4.23. This circuit requires an additional OR gate
and a NOT gate to invert the value of g. But it needs only 15 inputs. Moreover, the largest
fan-in has been reduced to two. The cost of this circuit is lower than the cost of its two-level
equivalent. The trade-off is an increased propagation delay because the circuit has three
more levels of logic.

In this example the subfunction g is a function of variables x1 and x2. The subfunction
is used as an input to the rest of the circuit that completes the realization of the required
function f . Let h denote the function of this part of the circuit, which depends on only three
inputs: g, x3, and x4. Then the decomposed realization of f can be expressed algebraically

June 25, 2002 09:07 vra23151_ch04 Sheet number 29 Page number 177 black

4.6 Multilevel Synthesis 177

x1

x2

x3

x4

f
g

Figure 4.23 Logic circuit for Example 4.6.

as

f (x1, x2, x3, x4) = h[g(x1, x2), x3, x4]
The structure of this decomposition can be described in block-diagram form as shown in
Figure 4.24.

While not evident from our first example, functional decomposition can lead to great
reductions in the complexity and cost of circuits. The reader will get a good indication of
this benefit from the next example.

Example 4.7Figure 4.25a defines a five-variable function f in the form of a Karnaugh map. In searching
for a good decomposition for this function, it is necessary to first identify the variables that
will be used as inputs to a subfunction. We can get a useful clue from the patterns of 1s in
the map. Note that there are only two distinct patterns in the rows of the map. The second

x1

x2

x3

x4

f

g

h

Figure 4.24 The structure of decomposition in Example 4.6.

June 25, 2002 09:07 vra23151_ch04 Sheet number 30 Page number 178 black

178 C H A P T E R 4 • Optimized Implementation of Logic Functions

1 11 1

1 11 1

x1x2x3x4 00 01 11 10

00

01

11

10

x1x2x3x4 00 01 11 10

1 1

1 1

1

1

1

00

01

11

10

1

x5 0= x5 1=

(a) Karnaugh map for the function f

x1

x2

x5

x4

fx3

g

k

(b) Circuit obtained using decomposition

Figure 4.25 Decomposition for Example 4.7.

and fourth rows have one pattern, highlighted in blue, while the first and second rows have
the other pattern. Once we specify which row each pattern is in, then the pattern itself
depends only on the variables that define columns in each row, namely, x1, x2, and x5. Let
a subfunction g(x1, x2, x5) represent the pattern in rows 2 and 4. This subfunction is just

g = x1 + x2 + x5

because the pattern has a 1 wherever any of these variables is equal to 1. To specify
the location of rows where the pattern g occurs, we use the variables x3 and x4. The
terms x3x4 and x3x4 identify the second and fourth rows, respectively. Thus the expression
(x3x4 + x3x4) · g represents the part of f that is defined in rows 2 and 4.

Next, we have to find a realization for the pattern in rows 1 and 3. This pattern has a 1
only in the cell where x1 = x2 = x5 = 0, which corresponds to the term x1x2x5. But we can

June 25, 2002 09:07 vra23151_ch04 Sheet number 31 Page number 179 black

4.6 Multilevel Synthesis 179

make a useful observation that this term is just a complement of g. The location of rows 1
and 3 is identified by terms x3x4 and x3x4, respectively. Thus the expression (x3x4+x3x4) ·g
represents f in rows 1 and 3.

We can make one other useful observation. The expressions (x3x4+ x3x4) and (x3x4+
x3x4) are complements of each other, as shown in Example 4.6. Therefore, if we let
k(x3, x4) = x3x4 + x3x4, the complete decomposition of f can be stated as

f (x1, x2, x3, x4, x5) = h[g(x1, x2, x5), k(x3, x4)]
= kg + kg

where g = x1 + x2 + x5

k = x3x4 + x3x4

The resulting circuit is given in Figure 4.25b. It requires a total of 11 gates and 19 inputs.
The largest fan-in is three.

For comparison, a minimum-cost sum-of-products expression for f is

f = x1x3x4 + x1x3x4 + x2x3x4 + x2x3x4 + x3x4x5 + x3x4x5 + x1x2x3x4x5 + x1x2x3x4x5

The corresponding circuit requires a total of 14 gates (including the five NOT gates to
complement the primary inputs) and 41 inputs. The fan-in for the output OR gate is eight.
Obviously, functional decomposition results in a much simpler implementation of this
function.

In both of the preceding examples, the decomposition is such that a decomposed sub-
function depends on some primary input variables, whereas the remainder of the imple-
mentation depends on the rest of the variables. Such decompositions are called disjoint
decompositions in the technical literature. It is possible to have a non-disjoint decomposi-
tion, where the variables of the subfunction are also used in realizing the remainder of the
circuit. The following example illustrates this possibility.

Example 4.8Exclusive-OR (XOR) is a very useful function. In section 3.9.1 we showed how it can be
realized using a special circuit. It can also be realized using AND and OR gates as shown
in Figure 4.26a. In section 2.7 we explained how any AND-OR circuit can be realized as
a NAND-NAND circuit that has the same structure.

Let us now try to exploit functional decomposition to find a better implementation of
XOR using only NAND gates. Let the symbol ↑ represent the NAND operation so that
x1 ↑ x2 = x1 · x2. A sum-of-products expression for the XOR function is

x1 ⊕ x2 = x1x2 + x1x2

From the discussion in section 2.7, this expression can be written in terms of NAND
operations as

x1 ⊕ x2 = (x1 ↑ x2) ↑ (x1 ↑ x2)

June 25, 2002 09:07 vra23151_ch04 Sheet number 32 Page number 180 black

180 C H A P T E R 4 • Optimized Implementation of Logic Functions

x2

x1

x1 x2⊕

x2

x1

x2

x1

g

x1 x2⊕

x1 x2⊕

(a) Sum-of-products implementation

(b) NAND gate implementation

(c) Optimal NAND gate implementation

Figure 4.26 Implementation of XOR.

This expression requires five NAND gates, and it is implemented by the circuit in Figure
4.26b. Observe that an inverter is implemented using a two-input NAND gate by tying the
two inputs together.

To find a decomposition, we can manipulate the term (x1 ↑ x2) as follows:

(x1 ↑ x2) = (x1x2) = (x1(x1 + x2)) = (x1 ↑ (x1 + x2))

June 25, 2002 09:07 vra23151_ch04 Sheet number 33 Page number 181 black

4.6 Multilevel Synthesis 181

We can perform a similar manipulation for (x1 ↑ x2) to generate

x1 ⊕ x2 = (x1 ↑ (x1 + x2)) ↑ ((x1 + x2) ↑ x2)

DeMorgan’s theorem states that x1 + x2 = x1 ↑ x2; hence we can write

x1 ⊕ x2 = (x1 ↑ (x1 ↑ x2)) ↑ ((x1 ↑ x2) ↑ x2)

Now we have a decomposition

x1 ⊕ x2 = (x1 ↑ g) ↑ (g ↑ x2)

g = x1 ↑ x2

The corresponding circuit, which requires only four NAND gates, is given in Figure 4.26c.

Practical Issues
Functional decomposition is a powerful technique for reducing the complexity of cir-

cuits. It can also be used to implement general logic functions in circuits that have built-in
constraints. For example, in programmable logic devices (PLDs) that were introduced in
Chapter 3 it is necessary to “fit” a desired logic circuit into logic blocks that are available
on these devices. The available blocks are a target for decomposed subfunctions that may
be used to realize larger functions.

A big problem in functional decomposition is finding the possible subfunctions. For
functions of many variables, an enormous number of possibilities should be tried. This
situation precludes attempts at finding optimal solutions. Instead, heuristic approaches that
lead to acceptable solutions are used.

Full discussion of functional decomposition and factoring is beyond the scope of this
book. An interested reader may consult other references [2–5]. Modern CAD tools use the
concept of decomposition extensively.

4.6.3 Multilevel NAND and NOR Circuits

In section 2.7 we showed that two-level circuits consisting of AND and OR gates can be
easily converted into circuits that can be realized with NAND and NOR gates, using the
same gate arrangement. In particular, anAND-OR (sum-of-products) circuit can be realized
as a NAND-NAND circuit, while an OR-AND (product-of-sums) circuit becomes a NOR-
NOR circuit. The same conversion approach can be used for multilevel circuits. We will
illustrate this approach by an example.

Example 4.9Figure 4.27a gives a four-level circuit consisting of AND and OR gates. Let us first de-
rive a functionally equivalent circuit that comprises only NAND gates. Each AND gate is
converted to a NAND by inverting its output. Each OR gate is converted to a NAND by
inverting its inputs. This is just an application of DeMorgan’s theorem, as illustrated in
Figure 2.21a. Figure 4.27b shows the necessary inversions in blue. Note that an inversion is

June 25, 2002 09:07 vra23151_ch04 Sheet number 34 Page number 182 black

182 C H A P T E R 4 • Optimized Implementation of Logic Functions

x2

x1

x3

x4

x5

x6

x7

x2

x1

x3

x4

x5

x6

x7

x2

x1

x3

x4

x5

x6

x7

f

f

f

(a) Circuit with AND and OR gates

(b) Inversions needed to convert to NANDs

(c) NAND-gate circuit

Figure 4.27 Conversion to a NAND-gate circuit.

June 25, 2002 09:07 vra23151_ch04 Sheet number 35 Page number 183 black

4.6 Multilevel Synthesis 183

applied at both ends of a given wire. Now each gate becomes a NAND gate. This accounts
for most of the inversions added to the original circuit. But, there are still four inversions
that are not a part of any gate; therefore, they must be implemented separately. These
inversions are at inputs x1, x5, x6, and x7 and at the output f . They can be implemented as
two-input NAND gates, where the inputs are tied together. The resulting circuit is shown
in Figure 4.27c.

A similar approach can be used to convert the circuit in Figure 4.27a into a circuit that
comprises only NOR gates. An OR gate is converted to a NOR gate by inverting its output.
An AND becomes a NOR if its inputs are inverted, as indicated in Figure 2.21b. Using this
approach, the inversions needed for our sample circuit are shown in blue in Figure 4.28a.

x2

x1

x3

x4

x5

x6

x7

x2

x1

x3

x4

x5

x6 x7

f

f

(a) Inversions needed to convert to NORs

(b) NOR-gate circuit

Figure 4.28 Conversion to a NOR-gate circuit.

June 25, 2002 09:07 vra23151_ch04 Sheet number 36 Page number 184 black

184 C H A P T E R 4 • Optimized Implementation of Logic Functions

Then each gate becomes a NOR gate. The three inversions at inputs x2, x3, and x4 can be
realized as two-input NOR gates, where the inputs are tied together. The resulting circuit
is presented in Figure 4.28b.

It is evident that the basic topology of a circuit does not change substantially when
converting from AND and OR gates to either NAND or NOR gates. However, it may be
necessary to insert additional gates to serve as NOT gates that implement inversions not
absorbed as a part of other gates in the circuit.

4.7 Analysis of Multilevel Circuits

The preceding section showed that it may be advantageous to implement logic functions
using multilevel circuits. It also presented the most commonly used approaches for syn-
thesizing functions in this way. In this section we will consider the task of analyzing an
existing circuit to determine the function that it implements.

For two-level circuits the analysis process is simple. If a circuit has an AND-OR
(NAND-NAND) structure, then its output function can be written in the SOP form by
inspection. Similarly, it is easy to derive a POS expression for an OR-AND (NOR-NOR)
circuit. The analysis task is more complicated for multilevel circuits because it is difficult to
write an expression for the function by inspection. We have to derive the desired expression
by tracing the circuit and determining its functionality. The tracing can be done either
starting from the input side and working towards the output, or by starting at the output side
and working back towards the inputs. At intermediate points in the circuit, it is necessary
to evaluate the subfunctions realized by the logic gates.

Example 4.10 Figure 4.29 replicates the circuit from Figure 4.27a. To determine the function f imple-
mented by this circuit, we can consider the functionality at internal points that are the outputs

x2

x1

x3

x4

x5

x6

x7

f

P3

P1

P4

P5
P2

Figure 4.29 Circuit for Example 4.10.

June 25, 2002 09:07 vra23151_ch04 Sheet number 37 Page number 185 black

4.7 Analysis of Multilevel Circuits 185

of various gates. These points are labeled P1 to P5 in the figure. The functions realized at
these points are

P1 = x2x3

P2 = x5 + x6

P3 = x1 + P1 = x1 + x2x3

P4 = x4P2 = x4(x5 + x6)

P5 = P4 + x7 = x4(x5 + x6)+ x7

Then f can be evaluated as

f = P3P5

= (x1 + x2x3)(x4(x5 + x6)+ x7)

Applying the distributive property to eliminate the parentheses gives

f = x1x4x5 + x1x4x6 + x1x7 + x2x3x4x5 + x2x3x4x6 + x2x3x7

Note that the expression represents a circuit comprising six AND gates, one OR gate, and
25 inputs. The cost of this two-level circuit is higher than the cost of the circuit in Figure
4.29, but the circuit has lower propagation delay.

Example 4.11In Example 4.7 we derived the circuit in Figure 4.25b. In addition to AND gates and OR
gates, the circuit has some NOT gates. It is reproduced in Figure 4.30, and the internal
points are labeled from P1 to P10 as shown. The following subfunctions occur

P1 = x1 + x2 + x5

P2 = x4

P3 = x3

P4 = x3P2

P5 = x4P3

P6 = P4 + P5

P7 = P1

P8 = P6

P9 = P1P6

P10 = P7P8

June 25, 2002 09:07 vra23151_ch04 Sheet number 38 Page number 186 black

186 C H A P T E R 4 • Optimized Implementation of Logic Functions

x1

x2

x5

x4

fx3

P1

P4

P5

P6 P8

P2

P3

P9

P10

P7

Figure 4.30 Circuit for Example 4.11.

We can derive f by tracing the circuit from the output towards the inputs as follows

f = P9 + P10

= P1P6 + P7P8

= (x1 + x2 + x5)(P4 + P5)+ P1P6

= (x1 + x2 + x5)(x3P2 + x4P3)+ x1x2x5P4P5

= (x1 + x2 + x5)(x3x4 + x4x3)+ x1x2x5(x3 + P2)(x4 + P3)

= (x1 + x2 + x5)(x3x4 + x3x4)+ x1x2x5(x3 + x4)(x4 + x3)

= x1x3x4 + x1x3x4 + x2x3x4 + x2x3x4 + x5x3x4 + x5x3x4 +
x1x2x5x3x4 + x1x2x5x4x3

This is the same expression as stated in Example 4.7.

Example 4.12 Circuits based on NAND and NOR gates are slightly more difficult to analyze because each
gate involves an inversion. Figure 4.31a depicts a simple NAND-gate circuit that illustrates
the effect of inversions. We can convert this circuit into a circuit with AND and OR gates
using the reverse of the approach described in Example 4.9. Bubbles that denote inversions
can be moved, according to DeMorgan’s theorem, as indicated in Figure 4.31b. Then the
circuit can be converted into the circuit in part (c) of the figure, which consists of AND and
OR gates. Observe that in the converted circuit, the inputs x3 and x5 are complemented.
From this circuit the function f is determined as

f = (x1x2 + x3)x4 + x5

= x1x2x4 + x3x4 + x5

June 25, 2002 09:07 vra23151_ch04 Sheet number 39 Page number 187 black

4.7 Analysis of Multilevel Circuits 187

x1

x2

x3

x4

x5
f

P1

P2

P3

x1

x2

x3

x4

x5
f

x1

x2

x4

f
x5

(c) Circuit with AND and OR gates

(b) Moving bubbles to convert to ANDs and ORs

(a) NAND-gate circuit

x3

Figure 4.31 Circuit for Example 4.12.

It is not necessary to convert a NAND circuit into a circuit with AND and OR gates
to determine its functionality. We can use the approach from Examples 4.10 and 4.11 to
derive f as follows. Let P1, P2, and P3 label the internal points as shown in Figure 4.31a.
Then

P1 = x1x2

P2 = P1x3

June 25, 2002 09:07 vra23151_ch04 Sheet number 40 Page number 188 black

188 C H A P T E R 4 • Optimized Implementation of Logic Functions

P3 = P2x4

f = P3x5 = P3 + x5

= P2x4 + x5 = P2x4 + x5

= P1x3x4 + x5 = (P1 + x3)x4 + x5

= (x1x2 + x3)x4 + x5

= (x1x2 + x3)x4 + x5

= x1x2x4 + x3x4 + x5

Example 4.13 The circuit in Figure 4.32 consists of NAND and NOR gates. It can be analyzed as follows.

P1 = x2x3

P2 = x1P1 = x1 + P1

P3 = x3x4 = x3 + x4

P4 = P2 + P3

f = P4 + x5 = P4x5

= P2 + P3 · x5

= (P2 + P3)x5

= (x1 + P1 + x3 + x4)x5

= (x1 + x2x3 + x3 + x4)x5

= (x1 + x2 + x3 + x4)x5

= x1x5 + x2x5 + x3x5 + x4x5

x2

x3

x1

x4

x5

f

P3

P1

P2

P4

Figure 4.32 Circuit for Example 4.13.

June 25, 2002 09:07 vra23151_ch04 Sheet number 41 Page number 189 black

4.8 Cubical Representation 189

Note that in deriving the second to the last line, we used property 16a in section 2.5 to
simplify x2x3 + x3 into x2 + x3.

Analysis of circuits is much simpler than synthesis. With a little practice one can
develop an ability to easily analyze even fairly complex circuits.

We have now covered a considerable amount of material on synthesis and analysis of
logic functions. We have used the Karnaugh map as a vehicle for illustrating the concepts
involved in finding optimal implementations of logic functions. We have also shown that
logic functions can be realized in a variety of forms, both with two levels of logic and
with multiple levels. In a modern design environment, logic circuits are synthesized using
CAD tools, rather than by hand. The concepts that we have discussed in this chapter are
quite general; they are representative of the strategies implemented in CAD algorithms.
As we have said before, the Karnaugh map scheme for representing logic functions is not
appropriate for use in CAD tools. In the next section we discuss an alternative representation
of logic functions, which is suitable for use in CAD algorithms.

4.8 Cubical Representation

The Karnaugh map is an excellent vehicle for illustrating concepts, and it is even useful for
manual design if the functions have only a few variables. To deal with larger functions it is
necessary to have techniques that are algebraic, rather than graphical, which can be applied
to functions of any number of variables.

Many algebraic optimization techniques have been developed. We will not pursue these
techniques in great detail, but we will attempt to provide the reader with an appreciation
of the tasks involved. This helps in gaining an understanding of what the CAD tools can
do and what results can be expected from them. The approaches that we will present make
use of a cubical representation of logic functions.

4.8.1 Cubes and Hypercubes

So far in this book, we have encountered four different forms for representing logic func-
tions: truth tables, algebraic expressions, Venn diagrams, and Karnaugh maps. Another
possibility is to map a function of n variables onto an n-dimensional cube.

Two-Dimensional Cube
A two-dimensional cube is shown in Figure 4.33. The four corners in the cube are

called vertices, which correspond to the four rows of a truth table. Each vertex is identified
by two coordinates. The horizontal coordinate is assumed to correspond to variable x1, and
vertical coordinate to x2. Thus vertex 00 is the bottom-left corner, which corresponds to
row 0 in the truth table. Vertex 01 is the top-left corner, where x1 = 0 and x2 = 1, which
corresponds to row 1 in the truth table, and so on for the other two vertices.

June 25, 2002 09:07 vra23151_ch04 Sheet number 42 Page number 190 black

190 C H A P T E R 4 • Optimized Implementation of Logic Functions

x2x1

0
0
1
1

0
1
0
1

f

0
1
1
1

01

00

11

10

x2

x1

x1

1x

Figure 4.33 Representation of f (x1, x2) =∑

m(1, 2, 3).

We will map a function onto the cube by indicating with blue circles those vertices for
which f = 1. In Figure 4.33 f = 1 for vertices 01, 10, and 11. We can express the function
as a set of vertices, using the notation f = {01, 10, 11}. The function f is also shown in the
form of a truth table in the figure.

An edge joins two vertices for which the labels differ in the value of only one variable.
Therefore, if two vertices for which f = 1 are joined by an edge, then this edge represents
that portion of the function just as well as the two individual vertices. For example, f = 1
for vertices 10 and 11. They are joined by the edge that is labeled 1x. It is customary to use
the letter x to denote the fact that the corresponding variable can be either 0 or 1. Hence 1x
means that x1 = 1, while x2 can be either 0 or 1. Similarly, vertices 01 and 11 are joined
by the edge labeled x1, indicating that x1 can be either 0 or 1, but x2 = 1. The reader must
not confuse the use of the letter x for this purpose, in contrast to the subscripted use where
x1 and x2 refer to the variables.

Two vertices being represented by a single edge is the embodiment of the combining
property 14a from section 2.5. The edge 1x is the logical sum of vertices 10 and 11. It
essentially defines the term x1, which is the sum of minterms x1x2 and x1x2. The property
14a indicates that

x1x2 + x1x2 = x1

Therefore, finding edges for which f = 1 is equivalent to applying the combining property.
Of course, this is also analogous to finding pairs of adjacent cells in a Karnaugh map for
which f = 1.

The edges 1x and x1 define fully the function in Figure 4.33; hence we can represent
the function as f = {1x, x1}. This corresponds to the logic expression

f = x1 + x2

which is also obvious from the truth table in the figure.

Three-Dimensional Cube
Figure 4.34 illustrates a three-dimensional cube. The x1, x2, and x3 coordinates are as

shown on the left. Each vertex is identified by a specific valuation of the three variables.
The function f mapped onto the cube is the function from Figure 4.1, which was used in
Figure 4.5b. There are five vertices for which f = 1, namely, 000, 010, 100, 101, and
110. These vertices are joined by the five edges shown in blue, namely, x00, 0x0, x10, 1x0,
and 10x. Because the vertices 000, 010, 100, and 110 include all valuations of x1 and x2,

June 25, 2002 09:07 vra23151_ch04 Sheet number 43 Page number 191 black

4.8 Cubical Representation 191

x2

x1

x3

000

001

010

011

110

101

100

111

x10

1x00x0

x00

10x

xx0

Figure 4.34 Representation of f (x1, x2, x3) =∑

m(0, 2, 4, 5, 6).

when x3 is 0, they can be specified by the term xx0. This term means that f = 1 if x3 = 0,
regardless of the values of x1 and x2. Notice that xx0 represents the front side of the cube,
which is shaded in blue.

From the preceding discussion it is evident that the function f can be represented in
several ways. Some of the possibilities are

f = {000, 010, 100, 101, 110}

= {0x0, 1x0, 101}

= {x00, x10, 101}

= {x00, x10, 10x}

= {xx0, 10x}

In a physical realization each of the above terms is a product term implemented by an
AND gate. Obviously, the least-expensive circuit is obtained if f = {xx0, 10x}, which is
equivalent to the logic expression

f = x3 + x1x2

This is the expression that we derived using the Karnaugh map in Figure 4.5b.

Four-Dimensional Cube
Graphical images of two- and three-dimensional cubes are easy to draw. A four-

dimensional cube is more difficult. It consists of 2 three-dimensional cubes with their
corners connected. The simplest way to visualize a four-dimensional cube is to have one
cube placed inside the other cube, as depicted in Figure 4.35. We have assumed that the x1,
x2, and x3 coordinates are the same as in Figure 4.34, while x4 = 0 defines the outer cube
and x4 = 1 defines the inner cube. Figure 4.35 indicates how the function f3 of Figure 4.7
is mapped onto the four-dimensional cube. To avoid cluttering the figure with too many
labels, we have labeled only those vertices for which f3 = 1. Again, all edges that connect
these vertices are highlighted in blue.

June 25, 2002 09:07 vra23151_ch04 Sheet number 44 Page number 192 black

192 C H A P T E R 4 • Optimized Implementation of Logic Functions

0000 1000

1010

0110

0011

0010

0111 1111

0x1x

x0x0

x111

Figure 4.35 Representation of function f3 from Figure 4.7.

There are two groups of four adjacent vertices for which f3 = 1 that can be represented
as planes. The group comprising 0000, 0010, 1000, and 1010 is represented by x0x0. The
group 0010, 0011, 0110, and 0111 is represented by 0x1x. These planes are shaded in the
figure. The function f3 can be represented in several ways, for example

f3 = {0000, 0010, 0011, 0110, 0111, 1000, 1010, 1111}

= {00x0, 10x0, 0x10, 0x11, x111}

= {x0x0, 0x1x, x111}

Since each x indicates that the corresponding variable can be ignored, because it can be
either 0 or 1, the simplest circuit is obtained if f = {x0x0, 0x1x, x111}, which is equivalent
to the expression

f3 = x2x4 + x1x3 + x2x3x4

We derived the same expression in Figure 4.7.

n-Dimensional Cube
A function that has n variables can be mapped onto an n-dimensional cube. Although

it is impractical to draw graphical images of cubes that have more than four variables, it
is not difficult to extend the ideas introduced above to a general n-variable case. Because
visual interpretation is not possible and because we normally use the word cube only for

June 25, 2002 09:07 vra23151_ch04 Sheet number 45 Page number 193 black

4.9 A Tabular Method for Minimization 193

a three-dimensional structure, many people use the word hypercube to refer to structures
with more than three dimensions. We will continue to use the word cube in our discussion.

It is convenient to refer to a cube as being of a certain size that reflects the number of
vertices in the cube. Vertices have the smallest size. Each variable has a value of 0 or 1 in
a vertex. A cube that has an x in one variable position is larger because it consists of two
vertices. For example, the cube 1x01 consists of vertices 1001 and 1101. A cube that has
two x’s consists of four vertices, and so on. A cube that has k x’s consists of 2k vertices.

An n-dimensional cube has 2n vertices. Two vertices are adjacent if they differ in the
value of only one coordinate. Because there are n coordinates (axes in the n-dimensional
cube), each vertex is adjacent to n other vertices. The n-dimensional cube contains cubes of
lower dimensionality. Cubes of the lowest dimension are vertices. Because their dimension
is zero, we will call them 0-cubes. Edges are cubes of dimension 1; hence we will call them
1-cubes. A side of a three-dimensional cube is a 2-cube. An entire three-dimensional cube
is a 3-cube, and so on. In general, we will refer to a set of 2k adjacent vertices as a k-cube.

From the examples in Figures 4.34 and 4.35, it is apparent that the largest possible
k-cubes that exist for a given function are equivalent to its prime implicants. Next, we will
discuss minimization techniques that use the cubical representation of functions.

4.9 A Tabular Method for Minimization

Cubical representation of logic functions is well suited for implementation of minimization
algorithms that can be programmed and run efficiently on computers. Such algorithms
are included in modern CAD tools. While the CAD tools can be used effectively without
detailed knowledge of how their minimization algorithms are implemented, the reader may
find it interesting to gain some insight into how this may be accomplished. In this section
we will describe a relatively simple tabular method, which illustrates the main concepts
and indicates some of the problems that arise.

A tabular approach for minimization was proposed in the 1950s by Willard Quine [6]
and Edward McCluskey [7]. It became popular under the name Quine-McCluskey method.
While it is not efficient enough to be used in modern CAD tools, it is a simple method that
illustrates the key issues. We will present it using the cubical notation discussed in section
4.8.

4.9.1 Generation of Prime Implicants

As mentioned in section 4.8, the prime implicants of a given logic function f are the largest
possible k-cubes for which f = 1. For incompletely specified functions, which include
a set of don’t-care vertices, the prime implicants are the largest k-cubes for which either
f = 1 or f is unspecified.

Assume that the initial specification of f is given in terms of minterms for which f = 1.
Also, let the don’t cares be specified as minterms. This allows us to create a list of vertices
for which either f = 1 or it is a don’t care condition. We can compare these vertices in
pairwise fashion to see if they can be combined into larger cubes. Then we can attempt to

June 25, 2002 09:07 vra23151_ch04 Sheet number 46 Page number 194 black

194 C H A P T E R 4 • Optimized Implementation of Logic Functions

combine these new cubes into still larger cubes and continue the process until we find the
prime implicants.

The basis of the method is the combining property of Boolean algebra

xixj + xixj = xi

which we used in section 4.8 to develop the cubical representation. If we have two cubes
that are identical in all variables (coordinates) except one, for which one cube has the value
0 and the other has 1, then these cubes can be combined into a larger cube. For example,
consider f (x1, . . . , x4) = {1000, 1001, 1010, 1011}. The cubes 1000 and 1001 differ only
in variable x4; they can be combined into a new cube 100x. Similarly, 1010 and 1011 can be
combined into 101x. Then we can combine 100x and 101x into a larger cube 10xx, which
means that the function can be expressed simply as f = x1x2.

Figure 4.36 shows how we can generate the prime implicants for the function, f , in
Figure 4.11. The function is defined as

f (x1, . . . , x4) =
∑

m(0, 4, 8, 10, 11, 12, 13, 15)

There are no don’t care conditions. Since larger cubes can be generated only from the
minterms that differ in just one variable, we can reduce the number of pairwise comparisons
by placing the minterms into groups such that the cubes in each group have the same number
of 1s, and sort the groups by the number of 1s. Thus, it will be necessary to compare each
cube in a given group only with all cubes in the immediately preceding group. In Figure
4.36, the minterms are ordered in this way in list 1. (Note that we indicated the decimal
equivalents of the minterms as well, to facilitate our discussion.) The minterms, which are
also called 0-cubes as explained in section 4.8, can be combined into 1-cubes shown in list 2.
To make the entries easily understood we indicated the minterms that are combined to form
each 1-cube. Next, we check if the 0-cubes are included in the 1-cubes and place a check
mark beside each cube that is included. We now generate 2-cubes from the 1-cubes in list
2. The only 2-cube that can be generated is xx00, which is placed in list 3. Again, the check
marks are placed against the 1-cubes that are included in the 2-cube. Since there exists just

0 0 0 0 0

0 1 0 0
1 0 0 0

1 0 1 0
1 1 0 0

1 0 1 1
1 1 0 1

1 1 1 1

4
8

10
12

11
13

15

0,4 0 x 0 0
x 0 0 0

1 0 x 0
x 1 0 0
1 x 0 0

1 0 1 x
1 1 0 x

1 1 x 1

0,8

8,10
4,12
8,12

10,11
12,13

13,15
1 x 1 111,15

0,4,8,12 x x 0 0

List 1 List 2 List 3

Figure 4.36 Generation of prime implicants for the function in Figure 4.11.

June 25, 2002 09:07 vra23151_ch04 Sheet number 47 Page number 195 black

4.9 A Tabular Method for Minimization 195

one 2-cube, there can be no 3-cubes for this function. The cubes in each list without a check
mark are the prime implicants of f . Therefore, the set, P, of prime implicants is

P = {10x0, 101x, 110x, 1x11, 11x1, xx00}
= {p1, p2, p3, p4, p5, p6}

4.9.2 Determination of a Minimum Cover

Having generated the set of all prime implicants, it is necessary to choose a minimum-cost
subset that covers all minterms for which f = 1. As a simple measure we will assume that
the cost is directly proportional to the number of inputs to all gates, which means to the
number of literals in the prime implicants chosen to implement the function.

To find a minimum-cost cover, we construct a prime implicant cover table in which there
is a row for each prime implicant and a column for each minterm that must be covered.
Then we place check marks to indicate the minterms covered by each prime implicant.
Figure 4.37a shows the table for the prime implicants derived in Figure 4.36. If there is a
single check mark in some column of the cover table, then the prime implicant that covers
the minterm of this column is essential and it must be included in the final cover. Such
is the case with p6, which is the only prime implicant that covers minterms 0 and 4. The
next step is to remove the row(s) corresponding to the essential prime implicants and the
column(s) covered by them. Hence we remove p6 and columns 0, 4, 8, and 12, which leads
to the table in Figure 4.37b.

Now, we can use the concept of row dominance to reduce the cover table. Observe
that p1 covers only minterm 10 while p2 covers both 10 and 11. We say that p2 dominates
p1. Since the cost of p2 is the same as the cost of p1, it is prudent to choose p2 rather than
p1, so we will remove p1 from the table. Similarly, p5 dominates p3, hence we will remove
p3 from the table. Thus, we obtain the table in Figure 4.37c. This table indicates that we
must choose p2 to cover minterm 10 and p5 to cover minterm 13, which also takes care of
covering minterms 11 and 15. Therefore, the final cover is

C = {p2, p5, p6}
= {101x, 11x1, xx00}

which means that the minimum-cost implementation of the function is

f = x1x2x3 + x1x2x4 + x3x4

This is the same expression as the one derived in section 4.2.2.
In this example we used the concept of row dominance to reduce the cover table. We

removed the dominated rows because they cover fewer minterms and the cost of their prime
implicants is the same as the cost of the prime implicants of the dominating rows. However,
a dominated row should not be removed if the cost of its prime implicant is less than the
cost of the dominating row’s prime implicant. An example of this situation can be found in
problem 4.25.

The tabular method can be used with don’t care conditions as illustrated in the following
example.

June 25, 2002 09:07 vra23151_ch04 Sheet number 48 Page number 196 black

196 C H A P T E R 4 • Optimized Implementation of Logic Functions

1 0 x 0

1 0 1 x

1 1 0 x

1 1 x 1

1 x 1 1

p1

p2

p3

p4

p5

p6 x x 0 0

Prime
implicant

Minterm
0 4 8 10 11 12 13 15

(a) Initial prime implicant cover table

p1

p2

p3

p4

p5

Prime
implicant

Minterm
10 11 13 15

(b) After the removal of essential prime implicants

p2

p4

p5

Prime
implicant

Minterm
10 11 13 15

(c) After the removal of dominated rows

Figure 4.37 Selection of a cover for the function in Figure 4.11.

Example 4.14 The don’t care minterms are included in the initial list in the same way as the minterms for
which f = 1. Consider the function

f (x1, . . . , x4) =
∑

m(0, 2, 5, 6, 7, 8, 9, 13)+ D(1, 12, 15)

We encourage the reader to derive a Karnaugh map for this function as an aid in visual-

June 25, 2002 09:07 vra23151_ch04 Sheet number 49 Page number 197 black

4.9 A Tabular Method for Minimization 197

izing the derivation that follows. Figure 4.38 depicts the generation of prime implicants,
producing the result

P = {00x0, 0x10, 011x, x00x, xx01, 1x0x, x1x1}
= {p1, p2, p3, p4, p5, p6, p7}

The initial prime implicant cover table is shown in Figure 4.39a. The don’t care
minterms are not included in the table because they do not have to be covered. There are no
essential prime implicants. Examining this table, we see that column 8 has check marks in
the same rows as column 9. Moreover, column 9 has an additional check mark in row p5.
Hence column 9 dominates column 8. We refer to this as the concept of column dominance.
When one column dominates another, we can remove the dominating column, which is
column 9 in this case. Note that this is in contrast to rows where we remove dominated
(rather than dominating) rows. The reason is that when we choose a prime implicant to
cover the minterm that corresponds to the dominated column, this prime implicant will
also cover the minterm corresponding to the dominating column. In our example, choosing
either p4 or p6 covers both minterms 8 and 9. Similarly, column 13 dominates column 5,
hence column 13 can be deleted.

After removing columns 9 and 13, we obtain the reduced table in Figure 4.39b. In
this table row p4 dominates p6 and row p7 dominates p5. This means that p5 and p6 can be
removed, giving the table in Figure 4.39c. Now, p4 and p7 are essential to cover minterms 8
and 5, respectively. Thus, the table in Figure 4.39d is obtained, from which it is obvious that
p2 covers the remaining minterms 2 and 6. Note that row p2 dominates both rows p1 and p3.

The final cover is

C = {p2, p4, p7}
= {0x10, x00x, x1x1}

0 0 0 0 0

0 0 0 1
0 0 1 0
1 0 0 0

0 1 0 1

0 1 1 1
1 1 0 1

1 1 1 1

1
2
8

5

7
13

15

0,1 0 0 0 x
0 0 x 0
x 0 0 0

0 x 0 1
0 x 1 0
x 0 0 1
1 0 0 x

1 1 x 1

0,2
0,8

1,5
2,6
1,9
8,9

13,15
x 1 1 17,15

0,1,8,9 x 0 0 x

List 1 List 2 List 3

0 1 1 0
1 0 0 1

1 1 0 0

6
9

12
1 x 0 08,12

0 1 x 1
0 1 1 x
x 1 0 1
1 x 0 1

5,7
6,7

5,13
9,13

1 1 0 x12,13

1,5,9,13 x x 0 1
8,9,12,13 1 x 0 x

5,7,13,15 x 1 x 1

Figure 4.38 Generation of prime implicants for the function in Example 4.14.

June 25, 2002 09:07 vra23151_ch04 Sheet number 50 Page number 198 black

198 C H A P T E R 4 • Optimized Implementation of Logic Functions

0 0 x 0

0 x 1 0

0 1 1 x

x x 0 1

x 0 0 x

p1

p2

p3

p4

p5

p6 1 x 0 x

Prime
implicant

Minterm
0 2 5 6 7 8 9

(a) Initial prime implicant cover table

p1

p2

p3

p4

p7

Prime
implicant

Minterm

(c) After the removal of rows

p2

p3

Prime
implicant

Minterm
2 6

(d) After including

p7 x 1 x 1

0 2 5 6 7 8

p1

p5 p6and
p4 p7and

13

0 0 x 0

0 x 1 0

0 1 1 x

x x 0 1

x 0 0 x

p1

p2

p3

p4

p5

p6 1 x 0 x

Prime
implicant

Minterm
0 2 5 6 7 8

(b) After the removal of columns 9 and 13

p7 x 1 x 1

in the cover

Figure 4.39 Selection of a cover for the function in Example 4.14.

June 25, 2002 09:07 vra23151_ch04 Sheet number 51 Page number 199 black

4.9 A Tabular Method for Minimization 199

and the function is implemented as

f = x1x3x4 + x2x3 + x2x4

In Figures 4.37 and 4.39, we used the concept of row and column dominance to reduce
the cover table. This is not always possible, as illustrated in the following example.

Example 4.15Consider the function

f (x1, . . . , x4) =
∑

m(0, 3, 10, 15)+ D(1, 2, 7, 8, 11, 14)

The prime implicants for this function are

P = {00xx, x0x0, x01x, xx11, 1x1x}
= {p1, p2, p3, p4, p5}

The initial prime implicant cover table is shown in Figure 4.40a. There are no essential prime
implicants. Also, there are no dominant rows or columns. Moreover, all prime implicants
have the same cost because each of them is implemented with two literals. Thus, the table
does not provide any clues that can be used to select a minimum-cost cover.

A good practical approach is to use the concept of branching, which was introduced
in section 4.2.2. We can choose any prime implicant, say p3, and first choose to include
this prime implicant in the final cover. Then we can determine the rest of the final cover in
the usual way and compute its cost. Next we try the other possibility by excluding p3 from
the final cover and determine the resulting cost. We compare the costs and choose the less
expensive alternative.

Figure 4.40b gives the cover table that is left if p3 is included in the final cover. The
table does not include minterms 3 and 10 because they are covered by p3. The table indicates
that a complete cover must include either p1 or p2 to cover minterm 0 and either p4 or p5 to
cover minterm 15. Therefore, a complete cover can be

C = {p1, p3, p4}
The alternative of excluding p3 leads to the cover table in Figure 4.40c. Here, we see that
a minimum-cost cover requires only two prime implicants. One possibility is to choose p1

and p5. The other possibility is to choose p2 and p4. Hence a minimum-cost cover is just

Cmin = {p1, p5}
= {00xx, 1x1x}

The function is realized as

f = x1x2 + x1x3

June 25, 2002 09:07 vra23151_ch04 Sheet number 52 Page number 200 black

200 C H A P T E R 4 • Optimized Implementation of Logic Functions

0 0 x x

x 0 x 0

x x 1 1

1 x 1 x

p1

p2

p4

p5

Prime
implicant

Minterm
0 3 10 15

(a) Initial prime implicant cover table

p1

p2

p4

p5

Prime
implicant

Minterm

(b) After including

(c) After excluding

0 15

p3

p3 from the cover

x 0 1 xp3

in the cover

p1

p2

p4

p5

Prime
implicant

Minterm
0 3 10 15

Figure 4.40 Selection of a cover for the function in
Example 4.15.

4.9.3 Summary of the Tabular Method

The tabular method can be summarized as follows:

1. Starting with a list of cubes that represent the minterms where f = 1 or a don’t care
condition, generate the prime implicants by successive pairwise comparisons of the
cubes.

June 25, 2002 09:07 vra23151_ch04 Sheet number 53 Page number 201 black

4.10 A Cubical Technique for Minimization 201

2. Derive a cover table which indicates the minterms where f = 1 that are covered by
each prime implicant.

3. Include the essential prime implicants (if any) in the final cover and reduce the table
by removing both these prime implicants and the covered minterms.

4. Use the concept of row and column dominance to reduce the cover table further. A
dominated row is removed only if the cost of its prime implicant is greater than or
equal to the cost of the dominating row’s prime implicant.

5. Repeat steps 3 and 4 until the cover table is either empty or no further reduction of
the table is possible.

6. If the reduced cover table is not empty, then use the branching approach to determine
the remaining prime implicants that should be included in a minimum cost cover.

The tabular method illustrates how an algebraic technique can be used to generate the
prime implicants. It also shows a simple approach for dealing with the covering problem,
to find a minimum-cost cover. The method has some practical limitations. In practice,
functions are seldom defined in the form of minterms. They are usually given either in the
form of algebraic expressions or as sets of cubes. The need to start the minimization process
with a list of minterms means that the expressions or sets have to be expanded into this
form. This list may be very large. As larger cubes are generated, there will be numerous
comparisons performed and the computation will be slow. Using the cover table to select
the optimal set of prime implicants is also computationally intensive when large functions
are involved.

Many algebraic techniques have been developed, which aim to reduce the time that it
takes to generate the optimal covers. While most of these techniques are beyond the scope
of this book, we will briefly discuss one possible approach in the next section. A reader who
intends to use the CAD tools, but is not interested in the details of automated minimization,
may skip this section without loss of continuity.

4.10 A Cubical Technique for Minimization

Assume that the initial specification of a function f is given in terms of implicants that are not
necessarily either minterms or prime implicants. Then it is convenient to define an operation
that will generate other implicants that are not given explicitly in the initial specification,
but which will eventually lead to the prime implicants of f . One such possibility is known
as the ∗-product operation, which is usually pronounced the “star-product” operation. We
will refer to it simply as the ∗-operation.

∗-Operation
The ∗-operation provides a simple way of deriving a new cube by combining two cubes

that differ in the value of only one variable. Let A = A1A2 . . . An and B = B1B2 . . . Bn be
two cubes that are implicants of an n-variable function. Thus each coordinate Ai and Bi

is specified as having the value 0, 1, or x. There are two distinct steps in the ∗-operation.
First, the ∗-operation is evaluated for each pair Ai and Bi, in coordinates i = 1, 2, . . . , n,
according to the table in Figure 4.41 Then based on the results of using the table, a set of

June 25, 2002 09:07 vra23151_ch04 Sheet number 54 Page number 202 black

202 C H A P T E R 4 • Optimized Implementation of Logic Functions

o

o0 0

1 1

10 x

10 x
BiAi

0

1

x

Ai Bi*

Figure 4.41 The coordinate ∗-operation.

rules is applied to determine the overall result of the ∗-operation. The table in Figure 4.41
defines the coordinate ∗-operation, Ai ∗Bi. It specifies the result of Ai ∗Bi for each possible
combination of values of Ai and Bi. This result is the intersection (i.e., the common part)
of A and B in this coordinate. Note that when Ai and Bi have the opposite values (0 and 1,
or vice versa), the result of the coordinate ∗-operation is indicated by the symbol ø. We say
that the intersection of Ai and Bi is empty. Using the table, the complete ∗-operation for A
and B is defined as follows:

C = A ∗ B, such that

1. C = ø if Ai ∗ Bi = ø for more than one i.

2. Otherwise, Ci = Ai ∗ Bi when Ai ∗ Bi �= ø, and Ci = x for the coordinate where
Ai ∗ Bi = ø.

For example, let A = {0x0} and B = {111}. Then A1 ∗B1 = 0∗1 = ø, A2 ∗B2 = x∗1 = 1,
and A3∗B3 = 0∗1 = ø. Because the result is ø in two coordinates, it follows from condition
1 that A ∗ B = ø. In other words, these two cubes cannot be combined into another cube,
because they differ in two coordinates.

As another example, consider A = {11x} and B = {10x}. In this case A1 ∗B1 = 1∗1 =
1, A2 ∗ B2 = 1 ∗ 0 = ø, and A3 ∗ B3 = x ∗ x = x. According to condition 2 above, C1 = 1,
C2 = x, and C3 = x, which gives C = A ∗ B = {1xx}. A larger 2-cube is created from two
1-cubes that differ in one coordinate only.

The result of the ∗-operation may be a smaller cube than the two cubes involved in the
operation. Consider A = {1x1} and B = {11x}. Then C = A ∗ B = {111}. Notice that C
is included in both A and B, which means that this cube will not be useful in searching for
prime implicants. Therefore, it should be discarded by the minimization algorithm.

As a final example, consider A = {x10} and B = {0x1}. Then C = A ∗B = {01x}. All
three of these cubes are the same size, but C is not included in either A or B. Hence C has
to be considered in the search for prime implicants. The reader may find it helpful to draw
a Karnaugh map to see how cube C is related to cubes A and B.

Using the ∗-Operation to Find Prime Implicants
The essence of the ∗-operation is to find new cubes from pairs of existing cubes. In

particular, it is of interest to find new cubes that are not included in the existing cubes. A
procedure for finding the prime implicants may be organized as follows.

Suppose that a function f is specified by means of a set of implicants that are represented
as cubes. Let this set be denoted as the cover Ck of f . Let ci and cj be any two cubes in
Ck . Then apply the ∗-operation to all pairs of cubes in Ck ; let Gk+1 be the set of newly

June 25, 2002 09:07 vra23151_ch04 Sheet number 55 Page number 203 black

4.10 A Cubical Technique for Minimization 203

generated cubes. Hence

Gk+1 = ci ∗ cj for all ci, cjε Ck

Now a new cover for f may be formed by using the cubes in Ck and Gk+1. Some of these
cubes may be redundant because they are included in other cubes; they should be removed.
Let the new cover be

Ck+1 = Ck ∪ Gk+1 − redundant cubes

where ∪ denotes the logical union of two sets, and the minus sign (−) denotes the removal
of elements of a set. If Ck+1 �= Ck , then a new cover Ck+2 is generated using the same
process. If Ck+1 = Ck , then the cubes in the cover are the prime implicants of f . For an
n-variable function, it is necessary to repeat the step at most n times.

Redundant cubes that have to be removed are identified through pairwise comparison
of cubes. Cube A = A1A2 . . . An should be removed if it is included in some cube B =
B1B2 . . . Bn, which is the case if Ai = Bi or Bi = x for every coordinate i.

Example 4.16Consider the function f (x1, x2, x3) of Figure 4.9. Assume that f is initially specified as a set
of vertices that correspond to the minterms, m0, m1, m2, m3, and m7. Hence let the initial
cover be C0 = {000, 001, 010, 011, 111}. Using the ∗-operation to generate a new set of
cubes, we obtain G1 = {00x, 0x0, 0x1, 01x, x11}. Then C1 = C0 ∪G1 – redundant cubes.
Observe that each cube in C0 is included in one of the cubes in G1; therefore, all cubes in
C0 are redundant. Thus C1 = G1.

The next step is to apply the ∗-operation to the cubes in C1, which yields G2 = {000,
001, 0xx, 0x1, 010, 01x, 011}. Note that all of these cubes are included in the cube 0xx;
therefore, all but 0xx are redundant. Now it is easy to see that

C2 = C1 ∪ G2 – redundant terms

= {x11, 0xx}

since all cubes of C1, except x11, are redundant because they are covered by 0xx.
Applying the ∗-operation to C2 yields G3 = {011} and

C3 = C2 ∪ G3 – redundant terms

= {x11, 0xx}

Since C3 = C2, the conclusion is that the prime implicants of f are the cubes {x11, 0xx},
which represent the product terms x2x3 and x1. This is the same set of prime implicants that
we derived using a Karnaugh map in Figure 4.9.

Observe that the derivation of prime implicants in this example is similar to the tabular
method explained in section 4.9 because the starting point was a function, f , given as a set
of minterms.

Example 4.17As another example, consider the four-variable function of Figure 4.10. Assume that this
function is initially specified as the cover C0 = {0101, 1101, 1110, 011x, x01x}. Then
successive applications of the ∗-operation and removing the redundant terms gives

June 25, 2002 09:07 vra23151_ch04 Sheet number 56 Page number 204 black

204 C H A P T E R 4 • Optimized Implementation of Logic Functions

C1 = {x01x, x101, 01x1, x110, 1x10, 0x1x}

C2 = {x01x, x101, 01x1, 0x1x, xx10}

C3 = C2

Therefore, the prime implicants are x2x3, x2x3x4, x1x2x4, x1x3, and x3x4.

4.10.1 Determination of Essential Prime Implicants

From a cover that consists of all prime implicants, it is necessary to extract a minimal
cover. As we saw in section 4.2.2, all essential prime implicants must be included in the
minimal cover. To find the essential prime implicants, it is useful to define an operation
that determines a part of a cube (implicant) that is not covered by another cube. One such
operation is called the #-operation (pronounced the “sharp operation”), which is defined as
follows.

#-Operation
Again, let A = A1A2 · · ·An and B = B1B2 · · ·Bn be two cubes (implicants) of an

n-variable function. The sharp operation A#B leaves as a result “that part of A that is
not covered by B.” Similar to the ∗-operation, the #-operation has two steps: Ai#Bi is
evaluated for each coordinate i, and then a set of rules is applied to determine the overall
result. The sharp operation for each coordinate is defined in Figure 4.42. After this operation
is performed for all pairs (Ai, Bi), the complete #-operation is defined as follows:

C = A#B, such that

1. C = A if Ai#Bi = ø for some i.

2. C = ø if Ai#Bi = ε for all i.

3. Otherwise, C =⋃

i(A1, A2, . . . , Bi, . . . , An) , where the union is for all i for which
Ai = x and Bi �= x.

The first condition corresponds to the case where cubes A and B do not intersect at all;
namely, A and B differ in the value of at least one variable, which means that no part of
A is covered by B. For example, let A = 0x1 and B = 11x. The coordinate #-products are
A1#B1 = ø, A2#B2 = 0, and A3#B3 = ε. Then from rule 1 it follows that 0x1 # 11x = 0x1.

o

01

10 x
BiAi

0

1

x

Ai Bi#ε ε
ε ε

ε

o

Figure 4.42 The coordinate #-operation.

June 25, 2002 09:07 vra23151_ch04 Sheet number 57 Page number 205 black

4.10 A Cubical Technique for Minimization 205

The second condition reflects the case where A is fully covered by B. For example, 0x1
0xx = ø. The third condition is for the case where only a part of A is covered by B. In
this case the #-operation generates one or more cubes. Specifically, it generates one cube
for each coordinate i that is x in Ai, but is not x in Bi. Each cube generated is identical to
A, except that Ai is replaced by Bi. For example, 0xx # 01x = 00x, and 0xx # 010 = {00x,
0x1}.

We will now show how the #-operation can be used to find the essential prime impli-
cants. Let P be the set of all prime implicants of a given function f . Let pi denote one prime
implicant in the set P and let DC denote the don’t-care vertices for f . (We use superscripts
to refer to different prime implicants in this section because we are using subscripts to refer
to coordinate positions in cubes.) Then pi is an essential prime implicant if and only if

pi # (P − pi) # DC �= ø

This means that pi is essential if there exists at least one vertex for which f = 1 that is
covered by pi, but not by any other prime implicant. The #-operation is also performed with
the set of don’t-care cubes because vertices in pi that correspond to don’t-care conditions
are not essential to cover. The meaning of pi # (P − pi) is that the #-operation is applied
successively to each prime implicant in P. For example, consider P = {p1, p2, p3, p4} and
DC = {d1, d2}. To check whether p3 is essential, we evaluate

((((p3 # p1) # p2) # p4) # d 1) # d 2

If the result of this expression is not ø, then p3 is essential.

Example 4.18In Example 4.16 we determined that the cubes x11 and 0xx are the prime implicants of
the function f in Figure 4.9. We can discover whether each of these prime implicants is
essential as follows

x11 # 0xx = 111 �= ø

0xx # x11 = {00x, 0x0} �= ø

The cube x11 is essential because it is the only prime implicant that covers the vertex 111,
for which f = 1. The prime implicant 0xx is essential because it is the only one that covers
the vertices 000, 001, and 010. This can be seen in the Karnaugh map in Figure 4.9.

Example 4.19In Example 4.17 we found that the prime implicants of the function in Figure 4.10 are P =
{x01x, x101, 01x1, 0x1x, xx10}. Because this function has no don’t cares, we compute

x01x # (P – x01x) = 1011 �= ø

This is computed in the following steps: x01x # x101 = x01x, then x01x # 01x1 = x01x,
then x01x # 0x1x = 101x, and finally 101x # xx10 = 1011. Similarly, we obtain

June 25, 2002 09:07 vra23151_ch04 Sheet number 58 Page number 206 black

206 C H A P T E R 4 • Optimized Implementation of Logic Functions

x101 # (P – x101) = 1101 �= ø

01x1 # (P – 01x1) = ø

0x1x # (P – 0x1x) = ø

xx10 # (P – xx10) = 1110 �= ø

Therefore, the essential prime implicants are x01x, x101, and xx10 because they are the
only ones that cover the vertices 1011, 1101, and 1110, respectively. This is obvious from
the Karnaugh map in Figure 4.10.

When checking whether a cube A is essential, the #-operation with one of the cubes in
P−A may generate multiple cubes. If so, then each of these cubes has to be checked using
the #-operation with all of the remaining cubes in P − A.

4.10.2 Complete Procedure for Finding a Minimal Cover

Having introduced the ∗- and #-operations, we can now outline a complete procedure for
finding a minimal cover for any n-variable function. Assume that the function f is specified
in terms of vertices for which f = 1; these vertices are often referred to as the ON-set of
the function. Also, assume that the don’t-care conditions are specified as a DC-set. Then
the initial cover for f is a union of the ON and DC sets.

Prime implicants of f can be generated using the ∗-operation, as explained in section
4.10. Then the #-operation can be used to find the essential prime implicants as presented
in section 4.10.1. If the essential prime implicants cover the entire ON-set, then they form
the minimum-cost cover for f . Otherwise, it is necessary to include other prime implicants
until all vertices in the ON-set are covered.

A nonessential prime implicant pi should be deleted if there exists a less-expensive
prime implicant pj that covers all vertices of the ON-set that are covered by pi. If the
remaining nonessential prime implicants have the same cost, then a possible heuristic ap-
proach is to arbitrarily select one of them, include it in the cover, and determine the rest of
the cover. Then an alternative cover is generated by excluding this prime implicant, and
the lower-cost cover is chosen for implementation. We already used this approach, which
is often referred to as the branching heuristic, in sections 4.2.2 and 4.9.2.

The preceding discussion can be summarized in the form of the following minimization
procedure:

1. Let C0 = ON ∪ DC be the initial cover of function f and its don’t-care conditions.

2. Find all prime implicants of C0 using the ∗-operation; let P be this set of prime
implicants.

3. Find the essential prime implicants using the #-operation. A prime implicant pi is
essential if pi # (P − pi) # DC �= ø. If the essential prime implicants cover all
vertices of the ON-set, then these implicants form the minimum-cost cover.

4. Delete any nonessential pi that is more expensive (i.e., a smaller cube) than some
other prime implicant pj if pi # DC # pj = ø.

June 25, 2002 09:07 vra23151_ch04 Sheet number 59 Page number 207 black

4.10 A Cubical Technique for Minimization 207

5. Choose the lowest-cost prime implicants to cover the remaining vertices of the
ON-set. Use the branching heuristic on the prime implicants of equal cost and retain
the cover with the lowest cost.

Example 4.20To illustrate the minimization procedure, we will use the function

f (x1, x2, x3, x4, x5) =
∑

m(0, 1, 4, 8, 13, 15, 20, 21, 23, 26, 31)+ D(5, 10, 24, 28)

To help the reader follow the discussion, this function is also shown in the form of a
Karnaugh map in Figure 4.43.

Instead of f being specified in terms of minterms, let us assume that f is given as the
following SOP expression

f = x1x3x4x5 + x1x2x3x4x5 + x1x2x3x4x5 + x1x2x3x5 + x1x2x3x5 + x1x3x4x5 + x2x3x4x5

Also, we will assume that don’t cares are specified using the expression

DC = x1x2x4x5 + x1x2x3x4x5 + x1x2x3x4x5

Thus, the ON-set expressed as cubes is

ON = {0x000, 11010, 00001, 011x1, 101x1, 1x111, x0100}

and the don’t care set is

DC = {11x00, 01010, 00101}

The initial cover C0 consists of the ON-set and the DC-set:

C0 = {0x000, 11010, 00001, 011x1, 101x1, 1x111, x0100, 11x00, 01010, 00101}

x1x2x3x4 00 01 11 10

1

11 1

11

00

01

11

10

x1x2x3x4 00 01 11 10

d1

1

d

d

1 1

00

01

11

10

1

x5 0= x5 1=

d

Figure 4.43 The function for Example 4.20.

June 25, 2002 09:07 vra23151_ch04 Sheet number 60 Page number 208 black

208 C H A P T E R 4 • Optimized Implementation of Logic Functions

Using the ∗-operation, the subsequent covers obtained are

C1 = {0x000, 011x1, 101x1, 1x111, x0100, 11x00, 0000x, 00x00, x1000, 010x0, 110x0,

x1010, 00x01, x1111, 0x101, 1010x, x0101, 1x100, 0010x}

C2 = {0x000, 011x1, 101x1, 1x111, 11x00, x1111, 0x101, 1x100, x010x, 00x0x, x10x0}

C3 = C2

Therefore, P = C2.
Using the #-operation, we find that there are two essential prime implicants: 00x0x

(because it is the only one that covers the vertex 00001) and x10x0 (because it is the only one
that covers the vertex 11010). The minterms of f covered by these two prime implicants
are m(0, 1, 4, 8, 26).

Next, we find that 1x100 can be deleted because the only ON-set vertex that it covers is
10100 (m20), which is also covered by x010x and the cost of this prime implicant is lower.
Note that having removed 1x100, the prime implicant x010x becomes essential because
none of the other remaining prime implicants covers the vertex 10100. Therefore, x010x
has to be included in the final cover. It covers m(20, 21).

There remains to find prime implicants to cover m(13, 15, 23, 31). Using the branching
heuristic, the lowest-cost cover is obtained by including the prime implicants 011x1 and
1x111. Thus the final cover is

Cminimum = {00x0x, x10x0, x010x, 011x1, 1x111}

The corresponding sum-of-products expression is

f = x1x2x4 + x2x3x5 + x2x3x4 + x1x2x3x5 + x1x3x4x5

Although this procedure is tedious when performed by hand, it is not difficult to write a
computer program to implement the algorithm automatically. The reader should check the
validity of our solution by finding the optimal realization from the Karnaugh map in Fig-
ure 4.43.

4.11 Practical Considerations

The purpose of the preceding section was to give the reader some idea about how mini-
mization of logic functions may be automated for use in CAD tools. We chose a scheme
that is not too difficult to explain. From the practical point of view, this scheme has some
drawbacks. The main difficulty is that the number of cubes that must be considered in the
process can be extremely large.

If the goal of minimization is relaxed so that it is not imperative to find a minimum-cost
implementation, then it is possible to derive heuristic techniques that produce good results
in reasonable time. A technique of this type forms the basis of the widely used Espresso
program, which is available from the University of California at Berkeley via the World
Wide Web. Espresso is a two-level optimization program. Both input to the program and
its output are specified in the format of cubes. Instead of using the ∗-operation to find the

June 25, 2002 09:07 vra23151_ch04 Sheet number 61 Page number 209 black

4.12 CAD Tools 209

prime implicants, Espresso uses an implicant-expansion technique. (See problem 4.30 for
an illustration of the expansion of implicants.) A comprehensive explanation of Espresso
is given in [19], while simplified outlines can be found in [3, 12].

The University of California at Berkeley also provides two software programs that
can be used for design of multilevel circuits, called MIS [20] and SIS [21]. They allow a
user to apply various multilevel optimization techniques to a logic circuit. The user can
experiment with different optimization strategies by applying techniques such as factoring
and decomposition to all or part of a circuit. SIS also includes the Espresso algorithm for
two-level minimization of functions, as well as many other optimization techniques.

Numerous commercial CAD systems are on the market. Four companies whose prod-
ucts are widely used are Cadence Design Systems, Mentor Graphics, Synopsys, and Syn-
plicity. Information on their products is available on the World Wide Web. Each company
provides logic synthesis software that can be used to target various types of chips, such as
PLDs, gate arrays, standard cells, and custom chips. Because there are many possible ways
to synthesize a given circuit, as we saw in the previous sections, each commercial product
uses a proprietary logic optimization strategy based on heuristics.

To describe CAD tools, some new terminology has been invented. In particular, we
should mention two terms that are widely used in industry: technology-independent logic
synthesis and technology mapping. The first term refers to techniques that are applied when
optimizing a circuit without considering the resources available in the target chip. Most
of the techniques presented in this chapter are of this type. The second term, technology
mapping, refers to techniques that are used to ensure that the circuit produced by logic
synthesis can be realized using the logic resources available in the target chip. A good
example of technology mapping is the transformation from a circuit in the form of logic
operations such as AND and OR into a circuit that consists of only NAND operations. This
type of technology mapping is done when targeting a circuit to a gate array that contains
only NAND gates. Another example is the translation from logic operations to lookup
tables, which is done when targeting a design to an FPGA. It should be noted that the
terminology is sometimes used inconsistently. For instance, some CAD systems consider
factoring, which was discussed in section 4.6.1, to be technology independent, whereas
other systems consider it to be a part of the technology mapping. Still other systems, such
as MAX+plusII, do not use these two terms at all, even though they clearly implement both
types of techniques. We will not rely on these terms in this book and have mentioned them
only for completeness.

The next section provides a more detailed discussion of CAD tools. To give an example
of the features provided in these tools, we use the MAX+plusII system that accompanies the
book. Of course, different CAD systems offer different features. MAX+plusII synthesizes
designs for implementation in PLDs. It includes all the optimization techniques introduced
in this chapter.

4.12 CAD Tools

In section 2.9 we introduced the concept of a CAD system and described CAD tools for
performing design entry, initial synthesis, and functional simulation. In this section we

June 25, 2002 09:07 vra23151_ch04 Sheet number 62 Page number 210 black

210 C H A P T E R 4 • Optimized Implementation of Logic Functions

introduce the remaining tools in a typical CAD system, which are used for performing
logic synthesis and optimization, physical design, and timing simulation. The principles
behind such tools are quite general; the details may vary from one system to another. We
will discuss the main aspects of the tools in as general a fashion as possible. However, to
provide a sufficient degree of reality, we will use illustrative examples based on the Altera
MAX+plusII system that is provided with the book. To fully grasp the concepts presented
in the following discussion, the reader should go through the material in Tutorials 1 and 2,
which are presented in Appendices B and C.

A typical CAD system comprises tools for performing the following tasks:

• Design entry allows the designer to enter a description of the desired circuit in the form
of truth tables, schematic diagrams, or HDL code.

• Initial synthesis generates an initial circuit, based on data entered during the design
entry stage.

• Functional simulation is used to verify the functionality of the circuit, based on inputs
provided by the designer.

• Logic synthesis and optimization applies optimization techniques to derive an optimized
circuit.

• Physical design determines how to implement the optimized circuit in a given target
technology, for example, in a PLD chip.

• Timing simulation determines the propagation delays that are expected in the imple-
mented circuit.

• Chip configuration configures the actual chip to realize the designed circuit.

The first three of these tools are discussed in Chapter 2. The rest are described below.

4.12.1 Logic Synthesis and Optimization

The optimization techniques described in this chapter are automatically applied by CAD
tools when synthesizing logic circuits. Consider the Verilog code in Figure 4.44. It describes
the function f from Figure 4.5a in the canonical form, which consists of minterms. We
used CAD tools to synthesize f for implementation in a chip. The result obtained was

f = x2x3 + x1x3

which is the same minimal sum-of-products expression derived in Figure 4.5a. This result
was displayed in a report file, which is produced by the CAD system. The report file
includes a set of logic equations that describe the synthesized circuit.

CAD tools often include many optional features that can be invoked by the user. Figure
4.45 shows some of the logic synthesis options provided by MAX+plusII. Although the
reader may not recognize all the options shown, the meaning of terms such as minimization,
multilevel synthesis, factoring, and decomposition should be obvious at this point. Detailed
explanation of various synthesis procedures can be found in specialized texts [5, 22].

The optimized circuit produced by the logic synthesis tools depends both on the type
of logic resources available in the target chip and on the particular CAD system that is used.
For example, if the target chip is a CPLD, then each logic function in the circuit is expressed
in terms of the gates available in a macrocell. For an FPGA that contains lookup tables

June 25, 2002 09:07 vra23151_ch04 Sheet number 63 Page number 211 black

4.12 CAD Tools 211

module func1 (x1, x2, x3, f);
input x1, x2, x3;
output f;

assign f = (x1 & x2 & x3) | (x1 & x2 & x3) |
(x1 & x2 & x3) | (x1 & x2 & x3);

endmodule

Figure 4.44 Verilog code for the function in Figure 4.5a.

Figure 4.45 Logic synthesis options in MAX+plusII.

(LUTs), the number of inputs to each logic function in the circuit is constrained by the size
of the LUTs. If the target chip is a gate array, then the logic functions in the optimized
circuit are expressed using only the type of logic cells available in the gate array. Finally,
if standard-cell technology is used, then the circuit comprises whatever types of logic cells
can be fabricated on the standard-cell chip.

4.12.2 Physical Design

After logic synthesis the next step in the design flow is to determine exactly how to im-
plement the circuit in the target technology. This step is usually called physical design, or
layout synthesis. There are two main parts to physical design: placement and routing.

A placement CAD tool determines where in the target device each logic function in
the optimized circuit will be realized. The placement task is highly dependent on the

June 25, 2002 09:07 vra23151_ch04 Sheet number 64 Page number 212 black

212 C H A P T E R 4 • Optimized Implementation of Logic Functions

implementation technology. For example, if a PLD is used for implementation, then the
structure of the chip is predefined and the placement tool determines which logic resources
in the chip are to be used to realize each logic function in the circuit. In the case of a CPLD,
the logic functions are assigned to macrocells. For an FPGA each logic function is assigned
to a logic cell.

Continuing with our example, our placement tool realizes the function f from Figure
4.44 in an FPGA as depicted in Figure 4.46. The figure represents a screen capture of a
Floorplan Editor, which displays the results generated by the physical design tools. The
small squares in the diagram represent the logic cells in the FPGA, which are four-input
LUTs (see Appendix E). The logic cell at the top left is used to realize the function f . At
the bottom of the window, the Floorplan Editor shows the logic expression contained in
the LUT for f . Lines are drawn to indicate the input and output connections of this logic
cell. They connect to the I/O cells that are used for inputs x1, x2, and x3, as well as for the
output f .

After the placement has been completed, the next step is to decide which of the wires in
the chip are to be used to realize the required interconnections. This step is called routing.
Like the placement task, routing is highly dependent on the implementation technology.
For a CPLD the programming switches attached to the interconnection wires must be set
to connect the macrocells together as needed for the implemented circuit. Similarly, for
an FPGA the programming switches are used to connect the logic cells together. If the

Figure 4.46 The results of physical design for the Verilog code in Figure 4.44.

June 25, 2002 09:07 vra23151_ch04 Sheet number 65 Page number 213 black

4.12 CAD Tools 213

implementation technology is a gate array or a standard-cell chip, then the routing tool
specifies the interconnection wires that are to be fabricated between the rows of logic cells.
Some small examples of routing were presented in Chapter 3, in Figures 3.59 and 3.67.

Both the placement and routing tasks can be difficult problems to solve for the CAD
tools, especially for the larger devices, such as FPGAs, gate arrays, and standard-cell chips.
Much research effort has gone into the development of algorithms for these tasks. Detailed
explanations of these algorithms can be found in more specialized books [23, 24].

4.12.3 Timing Simulation

In section 2.9.3 we described functional simulation and said that it is used to ensure that a
logic circuit description entered into a CAD system functions as expected by the designer.
In functional simulation it is assumed that signal propagation delays through logic gates
are negligible. In this section we consider timing simulation, which simulates the actual
propagation delays in the technology chosen for implementation.

After the physical design tasks are completed, the CAD system has determined exactly
how the designed circuit is to be realized in the target technology. It is then possible for the
CAD tools to create a model of the circuit that includes all timing aspects of the target chip.
The model represents the delays associated with the logic resources in the chip (macrocells
or logic cells) and with the interconnection wires.

The results of timing simulation for the function f from Figure 4.44 are shown in
Figure 4.47. They were obtained using a timing simulator. The simulator allows the
designer to specify a waveform for each of the inputs x1, x2, and x3, and the tool generates
the corresponding waveform produced at the output f . Part (a) of the figure gives the tim-
ing expected when the circuit is implemented in an FPGA. Observe that a heavy vertical
line, which is called the reference line, is set at the point where f first makes a transition
from 0 to 1. The simulator specifies in the box labeled Ref that the reference line is set at
32.8 ns from the start time of the simulation. The change in x1x2x3 from 000 to 001 takes
place at 20 ns; hence 32.8 − 20 = 12.8 ns are required for the change in inputs to cause
f to change to 1. The reason for the delay at f is that the signals must propagate through
the transistor circuits in the FPGA. The timing aspects of transistor circuits are discussed
in Chapter 3.

Figure 4.47b shows the same simulation for the circuit when it is implemented in a
CPLD. Of course, the circuit implements the same function as when implemented in the
FPGA, but the timing is different. In the CPLD, f changes 7.5 ns after the inputs change.
The speed of a circuit may vary considerably when implemented in different types of chips.
Although our example suggests that the CPLD provides much faster speed than the FPGA,
the difference is exaggerated because of the small size of the circuit. In general, when larger
circuits are implemented, CPLDs and FPGAs provide similar speeds.

4.12.4 Summary of Design Flow

Figure 4.48 summarizes the design flow of a complete CAD system. After initial synthesis
the logic synthesis tool automatically optimizes the circuit being designed. The physical

June 25, 2002 09:07 vra23151_ch04 Sheet number 66 Page number 214 black

214 C H A P T E R 4 • Optimized Implementation of Logic Functions

(a) Timing in an FPGA

(b) Timing in a CPLD

Figure 4.47 Timing simulation for the Verilog code in Figure 4.44.

design tool then determines exactly how to implement the circuit in the chosen technology.
Timing simulation ensures that the implemented circuit meets the required performance.
Note that if functional correctness has already been ascertained using functional simulation,
as discussed in section 2.9, then the functionality of the circuit need not be verified using
timing simulation. However, if functional simulation was not done, then timing simulation
can be used to check for proper functionality as well. If timing or functional problems
are discovered, they are corrected by returning to the previous steps in the design flow.
For functional errors it is necessary to revisit the design entry step. For timing errors it
may be possible to correct the problems by using the logic synthesis tool. For example,
the window displayed in Figure 4.45 shows a sliding bar that can be used to change the
emphasis of the logic synthesis algorithms between circuit cost or circuit speed. Cost is
optimized by minimizing the amount of area needed on the chip to implement the circuit.
Speed is optimized by minimizing the propagation delay of signals in the circuit. It may

June 25, 2002 09:07 vra23151_ch04 Sheet number 67 Page number 215 black

4.12 CAD Tools 215

Design conception

Design correct?

Chip configuration

Timing simulation

No

Yes

Design entry, initial synthesis, and functional simulation

(see section 2.9)

Physical design

Logic synthesis/optimization

Figure 4.48 A complete CAD system.

also be possible to use a faster speed grade of the selected chip or to select a different type of
chip that results in a faster circuit, as in the example from Figure 4.47. If the logic synthesis
tool cannot resolve the timing problems, then it is necessary to return to the beginning of
the design flow to consider other design alternatives. The final step is to configure the target
chip to implement the desired circuit.

June 25, 2002 09:07 vra23151_ch04 Sheet number 68 Page number 216 black

216 C H A P T E R 4 • Optimized Implementation of Logic Functions

4.12.5 Examples of Circuits Synthesized fromVerilog Code

Section 2.10 shows how simple Verilog programs can be written to describe logic functions.
This section provides further examples of circuits designed using Verilog code. We show
the results of synthesizing the code for implementation in two different types of chips, a
CPLD and an FPGA.

Example 4.21 Consider the Verilog code in Figure 4.49. The logic expression for f corresponds to the
truth table in Figure 4.1. We derived the minimal sum-of-products form, f = x3 + x1x2,
using the Karnaugh map in Figure 4.5b. If we compile the Verilog code for implementation
in a CPLD, the CAD tools produce the expression

f = x3 + x1x2x3

It is easy to show that this expression is not fully minimized. Using the identity 16a in
section 2.5, the expression can be reduced to f = x3+ x1x2, which is the minimal form that
we derived manually. However, because the circuit is being implemented in a CPLD, the
extra literal in the product term x1x2x3 does not increase the cost. Figure 4.50 shows the
expression for f realized in a macrocell. Observe that since the XOR gate in the macrocell
is not used for the circuit, one input to the XOR gate is connected to 0.

As we have said before, CAD tools include many options that can affect the results of
the synthesis procedure. Some of the options available in MAX+plusII are shown in the
window in Figure 4.45. One of the options is called XOR synthesis, which is a synthesis
technique that attempts to use XOR gates as judiciously as possible. If this option is turned
on and the Verilog code in Figure 4.49 is synthesized again, the resulting expression for f
becomes

f = x3 ⊕ x1x2x3

The reader should verify that this is functionally equivalent to the sum-of-products form
given above. The implementation of this expression in a macrocell is depicted in Figure
4.51. The XOR gate is now used as part of the function, with one input connected to x3.
Since it occupies a single macrocell, the cost of the implementation is the same as for the
circuit in Figure 4.50. Although not true in this example, for some logic functions the XOR
gates lead to greatly reduced cost. We should note that it is even possible to realize any

module example4 21 (x1, x2, x3, f);
input x1, x2, x3;
output f;

assign f = (x1 & x2 & x3) | (x1 & x2 & x3) |
(x1 & x2 & x3) | (x1 & x2 & x3) | (x1 & x2 & x3);

endmodule

Figure 4.49 Verilog code for the function in Figure 4.1.

June 25, 2002 09:07 vra23151_ch04 Sheet number 69 Page number 217 black

4.12 CAD Tools 217

D Q

PAL-like block

(From interconnection wires)

x1 x2 x3 Unused

0

0 1

Figure 4.50 Implementation of the Verilog code in Figure 4.49.

D Q

PAL-like block

(From interconnection wires)

x1 x2 x3 Unused

0 1

Figure 4.51 Implementation of the Verilog code in Figure 4.49 using XOR synthesis.

arbitrary logic function using only AND and XOR gates [4]. We discuss some typical uses
of XOR gates in Chapter 5. As this example illustrates, for any given logic function, several
different implementations often have the same cost in a given chip.

Figure 4.52 gives the results of synthesizing the Verilog code in Figure 4.49 into an
FPGA. In this case the compiler generates the same sum-of-products form that we derived

June 25, 2002 09:07 vra23151_ch04 Sheet number 70 Page number 218 black

218 C H A P T E R 4 • Optimized Implementation of Logic Functions

0
0
1
1

0
1
0
1

1
0
1
0

f

0
0
1

0
1
0

1
1
1

1 1 0

0
0
0
0
1
1
1
1

d
d
d
d
d
d
d
d

i1 i2 i3 i4

i1

i2

i3

i4

x1
x2

x3

0

f

LUT

Figure 4.52 The Verilog code in Figure 4.49 implemented
in a LUT.

manually. Because the logic cells in the chip are four-input lookup tables, only a single
logic cell is needed for this function. The figure shows that the variables x1, x2, and x3 are
connected to the LUT inputs called i2, i3, and i4. Input i1 is not used because the function
requires only three inputs. The truth table in the LUT indicates that the unused input is
treated as a don’t care. Thus only half of the rows in the table are shown, since the other
half is identical. The unused LUT input is shown connected to 0 in the figure, but it could
just as well be connected to 1.

It is interesting to consider the benefits provided by the optimizations used in logic
synthesis. For the implementation in the CPLD, the function was simplified from the
original five product terms in the canonical form to just two product terms. However, both
the optimized and nonoptimized forms fit into a single macrocell in the chip, and thus they
have the same cost (Appendix E shows that the MAX 7000 CPLD has five product terms
in each macrocell). Similarly, for the FPGA, since a LUT is used for implementation, it
does not matter whether the function is minimized, because it fits in a single LUT. The
reason is that our example circuit is very small. For large circuits it is essential to perform
the optimization. Examples 4.22 and 4.23 illustrate logic functions for which the cost of
implementation is reduced when optimized.

Example 4.22 The Verilog code in Figure 4.53 corresponds to the function f1 in Figure 4.7. Because there
are six product terms in the canonical form, two macrocells would be needed in a MAX
7000 CPLD. When synthesized by the CAD tools, the resulting expression is

f = x2x3 + x1x3x4

which is the same as the expression derived in Figure 4.7. Because the optimized expression
has only two product terms, it can be realized using just one macrocell and hence results in
a lower cost.

When f1 is synthesized for implementation in an FPGA, the expression generated is
the same as for the CPLD. Since the function has only four inputs, it needs just one LUT.

June 25, 2002 09:07 vra23151_ch04 Sheet number 71 Page number 219 black

4.12 CAD Tools 219

module example4 22 (x1, x2, x3, x4, f);
input x1, x2, x3, x4;
output f;

assign f = (x1 & x2 & x3 & x4) | (x1 & x2 & x3 & x4) |
(x1 & x2 & x3 & x4) | (x1 & x2 & x3 & x4) |
(x1 & x2 & x3 & x4) | (x1 & x2 & x3 & x4);

endmodule

Figure 4.53 Verilog code for f1 in Figure 4.7.

Example 4.23In section 4.6 we used a seven-variable logic function as a motivation for multilevel syn-
thesis. This function is given in the Verilog code in Figure 4.54. The logic expression is
in minimal sum-of-products form. When it is synthesized for implementation in a CPLD,
no optimizations are performed by the CAD tools. The function requires one macrocell.
This function is more interesting when we consider its implementation in an FPGA with
four-input LUTs. Because there are seven inputs, more than one LUT is required. If the
function is implemented directly as given in the Verilog code, then five LUTs are needed,
as depicted in Figure 4.55a. Rather than showing the truth table programmed in each LUT,
we show the logic function that is implemented at the LUT output. Synthesis results in the
following expression:

f = (x1x6 + x2x7)(x3 + x4x5)

We derived the same expression by using factoring in section 4.6. As illustrated in
Figure 4.55b, it can be implemented using only two LUTs. One LUT produces the term
S = x1x6 + x2x7. The other LUT implements the four-input function f = Sx3 + Sx4x5.

module example4 23 (x1, x2, x3, x4, x5, x6, x7, f);
input x1, x2, x3, x4, x5, x6, x7;
output f;

assign f = (x1 & x3 & x6) | (x1 & x4 & x5 & x6) |
(x2 & x3 & x7) | (x2 & x4 & x5 & x7);

endmodule

Figure 4.54 Verilog code for the function of section 4.6.

June 25, 2002 09:07 vra23151_ch04 Sheet number 72 Page number 220 black

220 C H A P T E R 4 • Optimized Implementation of Logic Functions

x1

x6

x4

f

x5

0

x7

x2
x3

x2

x7

x4
x5

0

x6

x1
x3

x1x4x5x6

x1x3x6

x2x3x7

x2x4x5x7

(a) Sum-of-products realization

x1

x7

x2
x6

x1x6 x2x7+

x5

x3
x4

f

(b) Factored realization

Figure 4.55 Implementation of the Verilog code in Figure 4.54.

4.13 Concluding Remarks

This chapter has attempted to provide the reader with an understanding of various aspects
of synthesis for logic functions and how synthesis is automated using modern CAD tools.
Now that the reader is comfortable with the fundamental concepts, we can examine digital
circuits of a more sophisticated nature. The next chapter describes circuits that perform
arithmetic operations, which are a key part of computers.

June 25, 2002 09:07 vra23151_ch04 Sheet number 73 Page number 221 black

Problems 221

Problems

4.1 Find the minimum-cost SOPand POS forms for the function f (x1, x2, x3) =∑

m(1, 2, 3, 5).

4.2 Repeat problem 4.1 for the function f (x1, x2, x3) =∑

m(1, 4, 7)+ D(2, 5).

4.3 Repeat problem 4.1 for the function f (x1, . . . , x4) = �M (0, 1, 2, 4, 5, 7, 8, 9, 10, 12, 14,
15).

4.4 Repeat problem 4.1 for the function f (x1, . . . , x4) = ∑

m(0, 2, 8, 9, 10, 15) + D(1, 3, 6,
7).

4.5 Repeat problem 4.1 for the function f (x1, . . . , x5) = �M (1, 4, 6, 7, 9, 12,15, 17, 20, 21,
22, 23, 28, 31).

4.6 Repeat problem 4.1 for the function f (x1, . . . , x5) =∑

m(0, 1, 3, 4, 6, 8, 9, 11, 13, 14, 16,
19, 20, 21, 22, 24, 25)+ D(5, 7, 12, 15, 17, 23).

4.7 Repeat problem 4.1 for the function f (x1, . . . , x5) =∑

m(1, 4, 6, 7, 9, 10, 12, 15, 17, 19,
20, 23, 25, 26, 27, 28, 30, 31)+ D(8, 16, 21, 22).

4.8 Find 5 three-variable functions for which the product-of-sums form has lower cost than the
sum-of-products form.

4.9 A four-variable logic function that is equal to 1 if any three or all four of its variables are
equal to 1 is called a majority function. Design a minimum-cost circuit that implements
this majority function.

4.10 Derive a minimum-cost realization of the four-variable function that is equal to 1 if exactly
two or exactly three of its variables are equal to 1; otherwise it is equal to 0.

4.11 Prove or show a counter-example for the statement: If a function f has a unique minimum-
cost SOP expression, then it also has a unique minimum-cost POS expression.

4.12 A circuit with two outputs has to implement the following functions

f (x1, . . . , x4) =
∑

m(0, 2, 4, 6, 7, 9)+ D(10, 11)

g(x1, . . . , x4) =
∑

m(2, 4, 9, 10, 15)+ D(0, 13, 14)

Design the minimum-cost circuit and compare its cost with combined costs of two circuits
that implement f and g separately. Assume that the input variables are available in both
uncomplemented and complemented forms.

4.13 Repeat problem 4.12 for the following functions

f (x1, . . . , x5) =
∑

m(1, 4, 5, 11, 27, 28)+ D(10, 12, 14, 15, 20, 31)

g(x1, . . . , x5) =
∑

m(0, 1, 2, 4, 5, 8, 14, 15, 16, 18, 20, 24, 26, 28, 31)

+ D(10, 11, 12, 27)

4.14 Implement the logic circuit in Figure 4.23 using NAND gates only.

June 25, 2002 09:07 vra23151_ch04 Sheet number 74 Page number 222 black

222 C H A P T E R 4 • Optimized Implementation of Logic Functions

4.15 Implement the logic circuit in Figure 4.23 using NOR gates only.

4.16 Implement the logic circuit in Figure 4.25 using NAND gates only.

4.17 Implement the logic circuit in Figure 4.25 using NOR gates only.

4.18 Consider the function f = x3x5 + x1x2x4 + x1x2x4 + x1x3x4 + x1x3x4 + x1x2x5 + x1x2x5.
Derive a minimum-cost circuit that implements this function using NOT, AND, and OR
gates.

4.19 Derive a minimum-cost circuit that implements the function f (x1, . . . , x4) =∑

m(4, 7, 8,
11)+ D(12, 15).

4.20 Find the simplest realization of the function f (x1, . . . , x4) =∑

m(0, 3, 4, 7, 9, 10, 13, 14),
assuming that the logic gates have a maximum fan-in of two.

4.21 Find the minimum-cost circuit for the function f (x1, . . . , x4) = ∑

m(0, 4, 8, 13, 14, 15).
Assume that the input variables are available in uncomplemented form only. (Hint: use
functional decomposition.)

4.22 Use functional decomposition to find the best implementation of the function f (x1, . . . ,

x5) =∑

m(1, 2, 7, 9, 10, 18, 19, 25, 31)+ D(0, 15, 20, 26). How does your implementa-
tion compare with the lowest-cost SOP implementation? Give the costs.

4.23 Use the tabular method discussed in section 4.9 to find a minimum cost SOP realization for
the function

f (x1, . . . , x4) =
∑

m(0, 2, 4, 5, 7, 8, 9, 15)

4.24 Repeat problem 4.23 for the function

f (x1, . . . , x4) =
∑

m(0, 4, 6, 8, 9, 15)+ D(3, 7, 11, 13)

4.25 Repeat problem 4.23 for the function

f (x1, . . . , x4) =
∑

m(0, 3, 4, 5, 7, 9, 11)+ D(8, 12, 13, 14)

4.26 Show that the following distributive-like rules are valid

(A · B)#C = (A#C) · (B#C)

(A+ B)#C = (A#C)+ (B#C)

4.27 Use the cubical representation and the method discussed in section 4.10 to find a minimum-
cost SOP realization of the function f (x1, . . . , x4) =∑

m(0, 2, 4, 5, 7, 8, 9, 15).

4.28 Repeat problem 4.27 for the function f (x1, . . . , x5) = x1x3x5 + x1x2x3 + x2x3x4x5 +
x1x2x3x4 + x1x2x3x4x5 + x1x2x4x5 + x1x3x4x5.

4.29 Use the cubical representation and the method discussed in section 4.10 to find a minimum-
cost SOP realization of the function f (x1, . . . , x4) defined by the ON-set ON = {00x0, 100x,
x010, 1111} and the don’t-care set DC = {00x1, 011x}.

June 25, 2002 09:07 vra23151_ch04 Sheet number 75 Page number 223 black

Problems 223

4.30 In section 4.10.1 we showed how the ∗-product operation can be used to find the prime
implicants of a given function f . Another possibility is to find the prime implicants by
expanding the implicants in the initial cover of the function. An implicant is expanded
by removing one literal to create a larger implicant (in terms of the number of vertices
covered). A larger implicant is valid only if it does not include any vertices for which
f = 0. The largest valid implicants obtained in the process of expansion are the prime
implicants. Figure P4.1 illustrates the expansion of the implicant x1x2x3 of the function in
Figure 4.9, which is also used in Example 4.16. Note from Figure 4.9 that

f = x1x2x3 + x1x2x3 + x1x2x3

In Figure P4.1 the word NO is used to indicate that the expanded term is not valid,
because it includes one or more vertices from f . From the graph it is clear that the largest
valid implicants that arise from this expansion are x2x3 and x1; they are prime implicants
of f .

Expand the other four implicants given in the initial cover in Example 4.14 to find all
prime implicants of f . What is the relative complexity of this procedure compared to the
∗-product technique?

x2x3 x1x3 x1x2

x3 x2 x3 x1 x2 x1

x1x2x3

NONONONO

Figure P4.1 Expansion of implicant x1x2x3.

4.31 Repeat problem 4.30 for the function in Example 4.17. Expand the implicants given in the
initial cover C0.

4.32 Consider the logic expressions

f = x1x2x5+ x1x2x4x5+ x1x2x4x5+ x1x2x3x4+ x1x2x3x5+ x2x3x4x5+ x1x2x3x4x5

g = x2x3x4+ x2x3x4x5+ x1x3x4x5+ x1x2x4x5+ x1x3x4x5+ x1x2x3x5+ x1x2x3x4x5

Prove or disprove that f = g.

4.33 Consider the circuit in Figure P4.2, which implements functions f and g. What is the cost of
this circuit, assuming that the input variables are available in both true and complemented
Redesign the circuit to implement the same functions, but at as low a cost as possible. What
is the cost of your circuit?

June 25, 2002 09:07 vra23151_ch04 Sheet number 76 Page number 224 black

224 C H A P T E R 4 • Optimized Implementation of Logic Functions

f

g

x2

x4

x4

x1

x3

x1

x3

x2

x3

x4

x1

x3

x4

x2

x1

x1

x4

x3

x1

x4

Figure P4.2 Circuit for problem 4.33.

4.34 Repeat problem 4.33 for the circuit in Figure P4.3. Use only NAND gates in your circuit.

4.35 Write Verilog code to implement the circuit in Figure 4.25b using the gate level primitives.

4.36 Write Verilog code to implement the circuit in Figure 4.25b using the continuous assignment.

4.37 Write Verilog code to implement the circuit in Figure 4.27c using the gate level primitives.

4.38 Write Verilog code to implement the circuit in Figure 4.27c using the continuous assignment.

4.39 Write Verilog code to implement the circuit in Figure 4.28b using the gate level primitives.

4.40 Write Verilog code to implement the circuit in Figure 4.28b using the continuous assignment.

4.41 Write Verilog code to implement the function f (x1, . . . , x4) = ∑

m(0, 1, 2, 4, 5, 7, 8, 9,

11, 12, 14, 15) using the gate level primitives. Ensure that the resulting circuit is as simple
as possible.

June 25, 2002 09:07 vra23151_ch04 Sheet number 77 Page number 225 black

Problems 225

x1

x2

x2

x1

x3

x4

x2

x1

x2

x3

x1

x3

x2

g

f

Figure P4.3 Circuit for problem 4.34.

4.42 Write Verilog code to implement the function f (x1, . . . , x4) = ∑

m(0, 1, 2, 4, 5, 7, 8, 9,

11, 12, 14, 15) using the continuous assignment.

4.43 Repeat problem 4.41 for the function f (x1, . . . , x4) =∑

m(1, 4, 7, 14, 15)+ D(0, 5, 9).

4.44 Write Verilog code to implement the function f (x1, . . . , x4) = ∑

m(1, 4, 7, 14, 15) +
D(0, 5, 9) using the continuous assignment.

4.45 Write Verilog code to implement the function f (x1, . . . , x4) = �M (6, 8, 9, 12, 13) using
the gate level primitives. Ensure that the resulting circuit is as simple as possible.

4.46 Write Verilog code to implement the function f (x1, . . . , x4) = �M (6, 8, 9, 12, 13) using
the continuous assignment.

4.47 Repeat problem 4.45 for the function f (x1, . . . , x4) = �M (3, 11, 14)+ D(0, 2, 10, 12).

4.48 Write Verilog code to implement the function f (x1, . . . , x4) = �M (3, 11, 14) + D(0, 2,

10, 12). using the continuous assignment.

June 25, 2002 09:07 vra23151_ch04 Sheet number 78 Page number 226 black

226 C H A P T E R 4 • Optimized Implementation of Logic Functions

References

1. M. Karnaugh, “A Map Method for Synthesis of Combinatorial Logic Circuits,”
Transactions of AIEE, Communications and Electronics 72, part 1, November 1953,
pp. 593–599.

2. R. L. Ashenhurst, “The Decomposition of Switching Functions,” Proc. of the
Symposium on the Theory of Switching, 1957, Vol. 29 of Annals of Computation
Laboratory (Harvard University: Cambridge, MA, 1959), pp. 74–116.

3. F. J. Hill and G. R. Peterson, Computer Aided Logical Design with Emphasis on VLSI,
4th ed. (Wiley: New York, 1993).

4. T. Sasao, Logic Synthesis and Optimization (Kluwer: Boston, MA, 1993).

5. S. Devadas, A. Gosh, and K. Keutzer, Logic Synthesis (McGraw-Hill: New York,
1994).

6. W. V. Quine, “The Problem of Simplifying Truth Functions,” Amer. Math. Monthly 59
(1952), pp. 521–531.

7. E. J. McCluskey Jr., “Minimization of Boolean Functions,” Bell System Tech.
Journal, November 1956, pp. 1417–1444.

8. E. J. McCluskey, Logic Design Principles (Prentice-Hall: Englewood Cliffs, NJ,
1986).

9. J. F. Wakerly, Digital Design Principles and Practices (Prentice-Hall: Englewood
Cliffs, NJ, 1990).

10. J. P. Hayes, Introduction to Logic Design (Addison-Wesley: Reading, MA, 1993).

11. C. H. Roth Jr., Fundamentals of Logic Design, 4th ed. (West: St. Paul, MN, 1993).

12. R. H. Katz, Contemporary Logic Design (Benjamin/Cummings: Redwood City, CA,
1994).

13. V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit
Analysis and Design (Prentice-Hall: Englewood Cliffs, NJ, 1995).

14. J. P. Daniels, Digital Design from Zero to One (Wiley: New York, 1996).

15. P. K. Lala, Practical Digital Logic Design and Testing (Prentice-Hall: Englewood
Cliffs, NJ, 1996).

16. A. Dewey, Analysis and Design of Digital Systems with VHDL (PWS Publishing Co.:
Boston, MA, 1997).

17. M. M. Mano and C. R. Kime, Logic and Computer Design Fundamentals
(Prentice-Hall: Upper Saddle River, NJ, 1997).

18. D. D. Gajski, Principles of Digital Design (Prentice-Hall: Upper Saddle River, NJ,
1997).

19. R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli,
Logic Minimization Algorithms for VLSI Synthesis (Kluwer: Boston, MA, 1984).

20. R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang, “MIS: A
Multiple-Level Logic Synthesis Optimization System,” IEEE Transactions on
Computer-Aided Design, CAD-6, November 1987, pp. 1062–81.

June 25, 2002 09:07 vra23151_ch04 Sheet number 79 Page number 227 black

References 227

21. E. M. Sentovic, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,
P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli, “SIS: A System for
Sequential Circuit Synthesis,” Technical Report UCB/ERL M92/41, Electronics
Research Laboratory, Department of Electrical Engineering and Computer Science,
University of California, Berkeley, 1992.

22. G. De Micheli, Synthesis and Optimization of Digital Circuits (McGraw-Hill: New
York, 1994).

23. N. Sherwani, Algorithms for VLSI Physical Design Automation (Kluwer: Boston,
MA, 1995).

24. B. Preas and M. Lorenzetti, Physical Design Automation of VLSI Systems
(Benjamin/Cummings: Redwood City, CA, 1988).

June 18, 2002 15:54 vra23151_ch05 Sheet number 1 Page number 229 black

229

c h a p t e r

5
Number Representation
andArithmetic Circuits

5. Ne4–g5, Ng8–f6

June 18, 2002 15:54 vra23151_ch05 Sheet number 2 Page number 230 black

230 C H A P T E R 5 • Number Representation andArithmetic Circuits

In this chapter we will discuss logic circuits that perform arithmetic operations. We will explain how numbers
can be added, subtracted, and multiplied. We will also show how to write Verilog code to describe the
arithmetic circuits. These circuits provide an excellent platform for illustrating the power and versatility of
Verilog in specifying complex logic-circuit assemblies. The concepts involved in the design of the arithmetic
circuits are easily applied to a wide variety of other circuits.

Before tackling the design of arithmetic circuits, it is necessary to discuss how numbers are represented
in digital systems. In the previous chapters we dealt with logic variables in a general way, using variables to
represent either the states of switches or some general conditions. Now we will use the variables to represent
numbers. Several variables are needed to specify a number, with each variable corresponding to one digit of
the number.

5.1 Positional Number Representation

When dealing with numbers and arithmetic operations, it is convenient to use standard
symbols. Thus to represent addition we use the plus (+) symbol, and for subtraction we
use the minus (−) symbol. In previous chapters we used the + symbol to represent the
logical OR operation and − to denote the deletion of an element from a set. Even though
we will now use the same symbols for two different purposes, the meaning of each symbol
will usually be clear from the context of the discussion. In cases where there may be some
ambiguity, the meaning will be stated explicitly.

5.1.1 Unsigned Integers

The simplest numbers to consider are the integers. We will begin by considering positive
integers and then expand the discussion to include negative integers. Numbers that are
positive only are called unsigned, and numbers that can also be negative are called signed.
Representation of numbers that include a radix point (real numbers) is discussed later in
the chapter.

In the familiar decimal system, a number consists of digits that have 10 possible values,
from 0 to 9, and each digit represents a multiple of a power of 10. For example, the number
8547 represents 8 × 103 + 5 × 102 + 4 × 101 + 7 × 100. We do not normally write the
powers of 10 with the number, because they are implied by the positions of the digits. In
general, a decimal integer is expressed by an n-tuple comprising n decimal digits

D = dn−1dn−2 · · · d1d0

which represents the value

V (D) = dn−1 × 10n−1 + dn−2 × 10n−2 + · · · + d1 × 101 + d0 × 100

This is referred to as the positional number representation.
Because the digits have 10 possible values and each digit is weighted as a power of

10, we say that decimal numbers are base-10, or radix-10 numbers. Decimal numbers are
familiar, convenient, and easy to understand. However, in digital circuits it is not practical
to use digits that can assume 10 values. In digital systems we use the binary, or base-2,

June 18, 2002 15:54 vra23151_ch05 Sheet number 3 Page number 231 black

5.1 Positional Number Representation 231

system in which digits can be 0 or 1. Each binary digit is called a bit. In the binary number
system, the same positional number representation is used so that

B = bn−1bn−2 · · · b1b0

represents an integer that has the value

V (B) = bn−1 × 2n−1 + bn−2 × 2n−2 + · · · + b1 × 21 + b0 × 20 [5.1]

=
n−1
∑

i=0

bi × 2i

For example, the binary number 1101 represents the value

V = 1× 23 + 1× 22 + 0× 21 + 1× 20

Because a particular digit pattern has different meanings for different radices, we will
indicate the radix as a subscript when there is potential for confusion. Thus to specify that
1101 is a base-2 number, we will write (1101)2. Evaluating the preceding expression for V
gives V = 8+ 4+ 1 = 13. Hence

(1101)2 = (13)10

Note that the range of integers that can be represented by a binary number depends on the
number of bits used. For example, with four bits the largest number is (1111)2 = (15)10.
An example of a larger number is (10110111)2 = (183)10. In general, using n bits allows
representation of integers in the range 0 to 2n − 1.

In a binary number the right-most bit is usually referred to as the least-significant bit
(LSB). The left-most bit of an unsigned integer, which has the highest power of 2 associated
with it, is called the most-significant bit (MSB). In digital systems it is often convenient to
consider several bits together as a group. A group of four bits is called a nibble, and a group
of eight bits is called a byte.

5.1.2 Conversion between Decimal and Binary Systems

A binary number is converted into a decimal number simply by applying Equation 5.1 and
evaluating it using decimal arithmetic. Converting a decimal number into a binary number
is not quite as straightforward. The conversion can be performed by successively dividing
the decimal number by 2 as follows. Suppose that a decimal number D = dk−1 · · · d1d0,
with a value V , is to be converted into a binary number B = bn−1 · · · b2b1b0. Thus

V = bn−1 × 2n−1 + · · · + b2 × 22 + b1 × 21 + b0

If we divide V by 2, the result is

V

2
= bn−1 × 2n−2 + · · · + b2 × 21 + b1 + b0

2

The quotient of this integer division is bn−1 × 2n−2 + · · · + b2 × 2+ b1, and the remainder
is b0. If the remainder is 0, then b0 = 0; if it is 1, then b0 = 1. Observe that the quotient

June 18, 2002 15:54 vra23151_ch05 Sheet number 4 Page number 232 black

232 C H A P T E R 5 • Number Representation andArithmetic Circuits

is just another binary number, which comprises n− 1 bits, rather than n bits. Dividing this
number by 2 yields the remainder b1. The new quotient is

bn−1 × 2n−3 + · · · + b2

Continuing the process of dividing the new quotient by 2, and determining one bit in each
step, will produce all bits of the binary number. The process continues until the quotient
becomes 0. Figure 5.1 illustrates the conversion process, using the example (857)10 =
(1101011001)2. Note that the least-significant bit (LSB) is generated first and the most-
significant bit (MSB) is generated last.

5.1.3 Octal and Hexadecimal Representations

The positional number representation can be used for any radix. If the radix is r, then the
number

K = kn−1kn−2 · · · k1k0

has the value

V (K) =
n−1
∑

i=0

ki × ri

Our interest is limited to those radices that are most practical. We will use decimal numbers
because they are used by people, and we will use binary numbers because they are used by
computers. In addition, two other radices are useful—8 and 16. Numbers represented with
radix 8 are called octal numbers, while radix-16 numbers are called hexadecimal numbers.
In octal representation the digit values range from 0 to 7. In hexadecimal representation

Convert (857)10

Remainder
857 ÷ 2 = 428 1 LSB
428 ÷ 2 = 214 0
214 ÷ 2 = 107 0
107 ÷ 2 = 53 1
53 ÷ 2 = 26 1
26 ÷ 2 = 13 0
13 ÷ 2 = 6 1
6 ÷ 2 = 3 0
3 ÷ 2 = 1 1
1 ÷ 2 = 0 1 MSB

Result is (1101011001)2

Figure 5.1 Conversion from decimal to binary.

June 18, 2002 15:54 vra23151_ch05 Sheet number 5 Page number 233 black

5.1 Positional Number Representation 233

(often abbreviated as hex), each digit can have one of 16 values. The first 10 are denoted
the same as in the decimal system, namely, 0 to 9. Digits that correspond to the decimal
values 10, 11, 12, 13, 14, and 15 are denoted by the letters, A, B, C, D, E, and F. Table 5.1
gives the first 18 integers in these number systems.

Table 5.1 Numbers in different
systems.

Decimal Binary Octal Hexadecimal

00 00000 00 00
01 00001 01 01
02 00010 02 02
03 00011 03 03
04 00100 04 04
05 00101 05 05
06 00110 06 06
07 00111 07 07
08 01000 10 08
09 01001 11 09
10 01010 12 0A
11 01011 13 0B
12 01100 14 0C
13 01101 15 0D
14 01110 16 0E
15 01111 17 0F
16 10000 20 10
17 10001 21 11
18 10010 22 12

In computers the dominant number system is binary. The reason for using the octal and
hexadecimal systems is that they serve as a useful shorthand notation for binary numbers.
One octal digit represents three bits. Thus a binary number is converted into an octal number
by taking groups of three bits, starting from the least-significant bit, and replacing them
with the corresponding octal digit. For example, 101011010111 is converted as

1 0 1
︸︷︷︸

0 1 1
︸︷︷︸

0 1 0
︸︷︷︸

1 1 1
︸︷︷︸

5 3 2 7

which means that (101011010111)2 = (5327)8. If the number of bits is not a multiple of
three, then we add 0s to the left of the most-significant bit. For example, (10111011)2 =
(273)8 because

0 1 0
︸︷︷︸

1 1 1
︸︷︷︸

0 1 1
︸︷︷︸

2 7 3

Conversion from octal to binary is just as straightforward; each octal digit is simply replaced
by three bits that denote the same value.

June 18, 2002 15:54 vra23151_ch05 Sheet number 6 Page number 234 black

234 C H A P T E R 5 • Number Representation andArithmetic Circuits

Similarly, a hexadecimal digit is represented using four bits. For example, a 16-bit
number is represented using four hex digits, as in

(1010111100100101)2 = (AF25)16

because

1 0 1 0
︸ ︷︷ ︸

1 1 1 1
︸ ︷︷ ︸

0 0 1 0
︸ ︷︷ ︸

0 1 0 1
︸ ︷︷ ︸

A F 2 5

Zeros are added to the left of the most-significant bit if the number of bits is not a multiple
of four. For example, (1101101000)2 = (368)16 because

0 0 1 1
︸ ︷︷ ︸

0 1 1 0
︸ ︷︷ ︸

1 0 0 0
︸ ︷︷ ︸

3 6 8

Conversion from hexadecimal to binary involves straightforward substitution of each hex
digit by four bits that denote the same value.

Binary numbers used in modern computers often have 32 or 64 bits. Written as binary
n-tuples (sometimes called bit vectors), such numbers are awkward for people to deal with.
It is much simpler to deal with them in the form of 8- or 16-digit hex numbers. Because
the arithmetic operations in a digital system usually involve binary numbers, we will focus
on circuits that use such numbers. We will sometimes use the hexadecimal representation
as a convenient shorthand description.

We have introduced the simplest numbers—unsigned integers. It is necessary to be
able to deal with several other types of numbers. We will discuss the representation of
signed numbers, fixed-point numbers, and floating-point numbers later in this chapter. But
first we will examine some simple circuits that operate on numbers to give the reader a
feeling for digital circuits that perform arithmetic operations and to provide motivation for
further discussion.

5.2 Addition of Unsigned Numbers

Binary addition is performed in the same way as decimal addition except that the values of
individual digits can be only 0 or 1. The addition of 2 one-bit numbers entails four possible
combinations, as indicated in Figure 5.2a. Two bits are needed to represent the result of the
addition. The right-most bit is called the sum, s. The left-most bit, which is produced as
a carry-out when both bits being added are equal to 1, is called the carry, c. The addition
operation is defined in the form of a truth table in part (b) of the figure. The sum bit s is the
XOR function, which was introduced in section 3.9.1. The carry c is the AND function of
inputs x and y. A circuit realization of these functions is shown in Figure 5.2c. This circuit,
which implements the addition of only two bits, is called a half-adder.

A more interesting case is when larger numbers that have multiple bits are involved.
Then it is still necessary to add each pair of bits, but for each bit position i, the addition
operation may include a carry-in from bit position i − 1.

June 18, 2002 15:54 vra23151_ch05 Sheet number 7 Page number 235 black

5.2 Addition of Unsigned Numbers 235

Sum
s

0

1

1

0

Carry
c

0

0

0

1

0
0+

0
1+

1000

1
0+

10

1
1+

01

x
y+

sc

SumCarry

(a) The four possible cases

x y

0

0

1

1

0

1

0

1

(b) Truth table

x

y
s

c

HA
x

y

s

c

(c) Circuit (d) Graphical symbol

Figure 5.2 Half-adder.

Figure 5.3 gives an example of the addition operation. The operands are X = (01111)2 =
(15)10 and Y = (01010)2 = (10)10. Note that five bits are used to represent X and Y . Us-
ing five bits, it is possible to represent integers in the range from 0 to 31; hence the sum
S = X + Y = (25)10 can also be denoted as a five-bit integer. Note also the labeling of
individual bits, such that X = x4x3x2x1x0 and Y = y4y3y2y1y0. The figure shows the carries
generated during the addition process. For example, a carry of 0 is generated when x0 and
y0 are added, a carry of 1 is produced when x1 and y1 are added, and so on.

In Chapters 2 and 4 we designed logic circuits by first specifying their behavior in the
form of a truth table. This approach is impractical in designing an adder circuit that can add
the five-bit numbers in Figure 5.3. The required truth table would have 10 input variables, 5
for each number X and Y . It would have 210 = 1024 rows! A better approach is to consider
the addition of each pair of bits, xi and yi, separately.

mzr
Rectangle

June 18, 2002 15:54 vra23151_ch05 Sheet number 8 Page number 236 black

236 C H A P T E R 5 • Number Representation andArithmetic Circuits

X x4x3x2x1x0=

Y+ y4y3y2y1y0=

Generated carries

S s4s3s2s1s0=

15()10

10()10

25()10

0 1 1 1 1

0 1 0 1 0

1 1 1 0

1 1 0 0 1

Figure 5.3 An example of addition.

For bit position 0, there is no carry-in, and hence the addition is the same as for Figure
5.2. For each other bit position i, the addition involves bits xi and yi, and a carry-in ci. The
sum and carry-out functions of variables xi, yi, and ci are specified in the truth table in Figure
5.4a. The sum bit, si, is the modulo-2 sum of xi, yi, and ci. The carry-out, ci+1, is equal to
1 if the sum of xi, yi, and ci is equal to either 2 or 3. Karnaugh maps for these functions
are shown in part (b) of the figure. For the carry-out function the optimal sum-of-products
realization is

ci+1 = xiyi + xici + yici

For the si function a sum-of-products realization is

si = xiyici + xiyici + xiyici + xiyici

Amore attractive way of implementing this function is by using the XOR gates, as explained
below.

Use of XOR Gates
The XOR function of two variables is defined as x1⊕ x2 = x1x2+ x1x2. The preceding

expression for the sum bit can be manipulated into a form that uses only XOR operations
as follows

si = (xiyi + xiyi)ci + (xiyi + xiyi)ci

= (xi ⊕ yi)ci + (xi ⊕ yi)ci

= (xi ⊕ yi)⊕ ci

The XOR operation is associative; hence we can write

si = xi ⊕ yi ⊕ ci

Therefore, a single three-input XOR gate can be used to realize si.
The XOR gate generates as an output a modulo-2 sum of its inputs. The output is equal

to 1 if an odd number of inputs have the value 1, and it is equal to 0 otherwise. For this
reason the XOR is sometimes referred to as the odd function. Observe that the XOR has no
minterms that can be combined into a larger product term, as evident from the checkerboard
pattern for function si in the map in Figure 5.4b. The logic circuit implementing the truth
table in Figure 5.4a is given in Figure 5.4c. This circuit is known as a full-adder.

June 18, 2002 15:54 vra23151_ch05 Sheet number 9 Page number 237 black

5.2 Addition of Unsigned Numbers 237

0
0
0
1
0
1
1
1

ci 1+

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

ci xi yi

00 01 11 10

0

1

xiyi

ci

1

1

1

1

si xi yi ci⊕ ⊕=

00 01 11 10

0

1

xiyi

ci

1

1 1 1

ci 1+ xiyi xici yici+ +=

ci

xi

yi si

ci 1+

(a) Truth table

(b) Karnaugh maps

(c) Circuit

0
1
1
0
1
0
0
1

si

Figure 5.4 Full-adder.

Another interesting feature of XOR gates is that a two-input XOR gate can be thought
of as using one input as a control signal that determines whether the true or complemented
value of the other input will be passed through the gate as the output value. This is clear
from the definition of XOR, where xi ⊕ yi = xy + xy. Consider x to be the control input.
Then if x = 0, the output will be equal to the value of y. But if x = 1, the output will

mzr
Rectangle

June 18, 2002 15:54 vra23151_ch05 Sheet number 10 Page number 238 black

238 C H A P T E R 5 • Number Representation andArithmetic Circuits

be equal to the complement of y. In the derivation above, we used algebraic manipulation
to derive si = (xi ⊕ yi) ⊕ ci. We could have obtained the same expression immediately
by making the following observation. In the top half of the truth table in Figure 5.4a, ci

is equal to 0, and the sum function si is the XOR of xi and yi. In the bottom half of the
table, ci is equal to 1, while si is the complemented version of its top half. This observation
leads directly to our expression using 2 two-input XOR operations. We will encounter an
important example of using XOR gates to pass true or complemented signals under the
control of another signal in section 5.3.3.

In the preceding discussion we encountered the complement of the XOR operation,
which we denoted as x ⊕ y. This operation is used so commonly that it is given the distinct
name XNOR. A special symbol, 	, is often used to denote the XNOR operation, namely

x 	 y = x ⊕ y

The XNOR is sometimes also referred to as the coincidence operation because it produces
the output of 1 when its inputs coincide in value; that is, they are both 0 or both 1.

5.2.1 Decomposed Full-Adder

In view of the names used for the circuits, one can expect that a full-adder can be constructed
using half-adders. This can be accomplished by creating a multilevel circuit of the type
discussed in section 4.6.2. The circuit is given in Figure 5.5. It uses two half-adders to
form a full-adder. The reader should verify the functional correctness of this circuit.

HA

HAs

c

s

c
ci

xi

yi
ci 1+

si

ci

xi

yi

ci 1+

si

(a) Block diagram

(b) Detailed diagram

Figure 5.5 A decomposed implementation of the full-adder circuit.

mzr
Rectangle

June 18, 2002 15:54 vra23151_ch05 Sheet number 11 Page number 239 black

5.2 Addition of Unsigned Numbers 239

5.2.2 Ripple-CarryAdder

To perform addition by hand, we start from the least-significant digit and add pairs of digits,
progressing to the most-significant digit. If a carry is produced in position i, then this carry is
added to the operands in position i+1. The same arrangement can be used in a logic circuit
that performs addition. For each bit position we can use a full-adder circuit, connected as
shown in Figure 5.6. Note that to be consistent with the customary way of writing numbers,
the least-significant bit position is on the right. Carries that are produced by the full-adders
propagate to the left.

When the operands X and Y are applied as inputs to the adder, it takes some time before
the output sum, S, is valid. Each full-adder introduces a certain delay before its si and ci+1

outputs are valid. Let this delay be denoted as �t. Thus the carry-out from the first stage,
c1, arrives at the second stage �t after the application of the x0 and y0 inputs. The carry-out
from the second stage, c2, arrives at the third stage with a 2�t delay, and so on. The signal
cn−1 is valid after a delay of (n − 1)�t, which means that the complete sum is available
after a delay of n�t. Because of the way the carry signals “ripple” through the full-adder
stages, the circuit in Figure 5.6 is called a ripple-carry adder.

The delay incurred to produce the final sum and carry-out in a ripple-carry adder
depends on the size of the numbers. When 32- or 64-bit numbers are used, this delay
may become unacceptably high. Because the circuit in each full-adder leaves little room
for a drastic reduction in the delay, it may be necessary to seek different structures for
implementation of n-bit adders. We will discuss a technique for building high-speed adders
in section 5.4.

So far we have dealt with unsigned integers only. The addition of such numbers does
not require a carry-in for stage 0. In Figure 5.6 we included c0 in the diagram so that
the ripple-carry adder can also be used for subtraction of numbers, as we will see in sec-
tion 5.3.

FA

xn 1–

cn cn 1–

yn 1–

sn 1–

FA

x1

c2

y1

s1

FA
c1

x0 y0

s0

c0

MSB position LSB position

Figure 5.6 An n-bit ripple-carry adder.

June 18, 2002 15:54 vra23151_ch05 Sheet number 12 Page number 240 black

240 C H A P T E R 5 • Number Representation andArithmetic Circuits

5.2.3 Design Example

Suppose that we need a circuit that multiplies an eight-bit unsigned number by 3. Let
A = a7a6 · · · a1a0 denote the number and P = p9p8 · · · p1p0 denote the product P = 3A.
Note that 10 bits are needed to represent the product.

A simple approach to design the required circuit is to use two ripple-carry adders to
add three copies of the number A, as illustrated in Figure 5.7a. The symbol that denotes
each adder is a commonly used graphical symbol for adders. The letters xi, yi, si, and ci

indicate the meaning of the inputs and outputs according to Figure 5.6. The first adder
produces A + A = 2A. Its result is represented as eight sum bits and the carry from the
most-significant bit. The second adder produces 2A+A = 3A. It has to be a nine-bit adder
to be able to handle the nine bits of 2A, which are generated by the first adder. Because the
yi inputs have to be driven only by the eight bits of A, the ninth input y8 is connected to a
constant 0.

This approach is straightforward, but not very efficient. Because 3A = 2A+A, we can
observe that 2A can be generated by shifting the bits of A one bit-position to the left, which
gives the bit pattern a7a6a5a4a3a2a1a00. According to equation 5.1, this pattern is equal
to 2A. Then a single ripple-carry adder suffices for implementing 3A, as shown in Figure
5.7b. This is essentially the same circuit as the second adder in part (a) of the figure. Note
that the input x0 is connected to a constant 0. Note also that in the second adder in part (a)

the value of x0 is always 0, even though it is driven by the least-significant bit, s0, of the
sum of the first adder. Because x0 = y0 = a0 in the first adder, the sum bit s0 will be 0,
whether a0 is 0 or 1.

5.3 Signed Numbers

In the decimal system the sign of a number is indicated by a + or − symbol to the left
of the most-significant digit. In the binary system the sign of a number is denoted by the
left-most bit. For a positive number the left-most bit is equal to 0, and for a negative number
it is equal to 1. Therefore, in signed numbers the left-most bit represents the sign, and the
remaining n − 1 bits represent the magnitude, as illustrated in Figure 5.8. It is important
to note the difference in the location of the most-significant bit (MSB). In unsigned num-
bers all bits represent the magnitude of a number; hence all n bits are significant in defining
the magnitude. Therefore, the MSB is the left-most bit, bn−1. In signed numbers there are
n− 1 significant bits, and the MSB is in bit position bn−2.

5.3.1 Negative Numbers

Positive numbers are represented using the positional number representation as explained
in the previous section. Negative numbers can be represented in three different ways:
sign-and-magnitude, 1’s complement, and 2’s complement.

June 18, 2002 15:54 vra23151_ch05 Sheet number 13 Page number 241 black

5.3 Signed Numbers 241

x7 x0 y7 y0

x7 x0 y8 y0y7x8

s0s7

c7

0

s0s8

c8

P9 P8 P0P 3A= :

x1 x0 y8 y0y7x8

s0s8

c8

0 0

a7A :

P9 P8 P0P 3A= :

(a) Naive approach

(b) Efficient design

a0

a7A : a0

Figure 5.7 Circuit that multiplies an eight-bit unsigned number by 3.

June 18, 2002 15:54 vra23151_ch05 Sheet number 14 Page number 242 black

242 C H A P T E R 5 • Number Representation andArithmetic Circuits

bn 1– b1 b0

Magnitude

MSB

(a) Unsigned number

bn 1– b1 b0

Magnitude
Sign

(b) Signed number

bn 2–

0 denotes
1 denotes

+
– MSB

Figure 5.8 Formats for representation of integers.

Sign-and-Magnitude Representation
In the familiar decimal representation, the magnitude of both positive and negative

numbers is expressed in the same way. The sign symbol distinguishes a number as being
positive or negative. This scheme is called the sign-and-magnitude number representation.
The same scheme can be used with binary numbers in which case the sign bit is 0 or 1
for positive or negative numbers, respectively. For example, if we use four-bit numbers,
then +5 = 0101 and −5 = 1101. Because of its similarity to decimal sign-and-magnitude
numbers, this representation is easy to understand. However, as we will see shortly, this
representation is not well suited for use in computers. More suitable representations are
based on complementary systems, explained below.

1’s Complement Representation
In a complementary number system, the negative numbers are defined according to a

subtraction operation involving positive numbers. We will consider two schemes for binary
numbers: the 1’s complement and the 2’s complement. In the 1’s complement scheme, an
n-bit negative number, K , is obtained by subtracting its equivalent positive number, P,
from 2n − 1; that is, K = (2n − 1) − P. For example, if n = 4, then K = (24 − 1) − P
= (15)10 − P = (1111)2 − P. If we convert +5 to a negative, we get −5 = 1111 − 0101 =
1010. Similarly, +3 = 0011 and −3 = 1111 − 0011 = 1100. Clearly, the 1’s complement

June 18, 2002 15:54 vra23151_ch05 Sheet number 15 Page number 243 black

5.3 Signed Numbers 243

can be obtained simply by complementing each bit of the number, including the sign bit.
While 1’s complement numbers are easy to derive, they have some drawbacks when used
in arithmetic operations, as we will see in the next section.

2’s Complement Representation
In the 2’s complement scheme, a negative number, K , is obtained by subtracting its

equivalent positive number, P, from 2n; namely, K = 2n − P. Using our four-bit example,
−5 = 10000 − 0101 = 1011, and −3 = 10000 − 0011 = 1101. Finding 2’s complements in
this manner requires performing a subtraction operation that involves borrows. However,
we can observe that if K1 is the 1’s complement of P and K2 is the 2’s complement of P,
then

K1 = (2n − 1)− P

K2 = 2n − P

It follows that K2 = K1 + 1. Thus a simpler way of finding a 2’s complement of a number
is to add 1 to its 1’s complement because finding a 1’s complement is trivial. This is how
2’s complement numbers are obtained in logic circuits that perform arithmetic operations.

The reader will need to develop an ability to find 2’s complement numbers quickly.
There is a simple rule that can be used for this purpose.

Rule for Finding 2’s Complements Given a signed number, B = bn−1bn−2 · · · b1b0, its
2’s complement, K = kn−1kn−2 · · · k1k0, can be found by examining the bits of B from right
to left and taking the following action: copy all bits of B that are 0 and the first bit that is
1; then simply complement the rest of the bits.

For example, if B = 0110, then we copy k0 = b0 = 0 and k1 = b1 = 1, and
complement the rest so that k2 = b2 = 0 and k3 = b3 = 1. Hence K = 1010. As another
example, if B = 10110100, then K = 01001100. We leave the proof of this rule as an
exercise for the reader.

Table 5.2 illustrates the interpretation of all 16 four-bit patterns in the three signed-
number representations that we have considered. Note that for both sign-and-magnitude
representation and for 1’s complement representation there are two patterns that represent
the value zero. For 2’s complement there is only one such pattern. Also, observe that the
range of numbers that can be represented with four bits in 2’s complement form is −8 to
+7, while in the other two representations it is −7 to +7.

Using 2’s-complement representation, an n-bit number B = bn−1bn−2 · · · b1b0 repre-
sents the value

V (B) = (−bn−1 × 2n−1)+ bn−2 × 2n−2 + · · · + b1 × 21 + b0 × 20 [5.2]

Thus the largest negative number, 100 · · · 00, has the value −2n−1. The largest positive
number, 011 · · · 11, has the value 2n−1 − 1.

mzr
Rectangle

June 18, 2002 15:54 vra23151_ch05 Sheet number 16 Page number 244 black

244 C H A P T E R 5 • Number Representation andArithmetic Circuits

Table 5.2 Interpretation of four-bit signed integers.

Sign and
b3b2b1b0 magnitude 1’s complement 2’s complement

0111 +7 +7 +7

0110 +6 +6 +6

0101 +5 +5 +5

0100 +4 +4 +4

0011 +3 +3 +3

0010 +2 +2 +2

0001 +1 +1 +1

0000 +0 +0 +0

1000 −0 −7 −8

1001 −1 −6 −7

1010 −2 −5 −6

1011 −3 −4 −5

1100 −4 −3 −4

1101 −5 −2 −3

1110 −6 −1 −2

1111 −7 −0 −1

5.3.2 Addition and Subtraction

To assess the suitability of different number representations, it is necessary to investigate
their use in arithmetic operations—particularly in addition and subtraction. We can illustrate
the good and bad aspects of each representation by considering very small numbers. We will
use four-bit numbers, consisting of a sign bit and three significant bits. Thus the numbers
have to be small enough so that the magnitude of their sum can be expressed in three bits,
which means that the sum cannot exceed the value 7.

Addition of positive numbers is the same for all three number representations. It is
actually the same as the addition of unsigned numbers discussed in section 5.2. But there
are significant differences when negative numbers are involved. The difficulties that arise
become apparent if we consider operands with different combinations of signs.

Sign-and-Magnitude Addition
If both operands have the same sign, then the addition of sign-and-magnitude numbers

is simple. The magnitudes are added, and the resulting sum is given the sign of the operands.
However, if the operands have opposite signs, the task becomes more complicated. Then
it is necessary to subtract the smaller number from the larger one. This means that logic
circuits that compare and subtract numbers are also needed. We will see shortly that it
is possible to perform subtraction without the need for this circuitry. For this reason, the
sign-and-magnitude representation is not used in computers.

June 18, 2002 15:54 vra23151_ch05 Sheet number 17 Page number 245 black

5.3 Signed Numbers 245

1’s Complement Addition
An obvious advantage of the 1’s complement representation is that a negative number

is generated simply by complementing all bits of the corresponding positive number. Figure
5.9 shows what happens when two numbers are added. There are four cases to consider
in terms of different combinations of signs. As seen in the top half of the figure, the
computation of 5 + 2 = 7 and (−5) + 2 = (−3) is straightforward; a simple addition of
the operands gives the correct result. Such is not the case with the other two possibilities.
Computing 5 + (−2) = 3 produces the bit vector 10010. Because we are dealing with
four-bit numbers, there is a carry-out from the sign-bit position. Also, the four bits of the
result represent the number 2 rather than 3, which is a wrong result. Interestingly, if we
take the carry-out from the sign-bit position and add it to the result in the least-significant
bit position, the new result is the correct sum of 3. This correction is indicated in blue in
the figure. A similar situation arises when adding (−5) + (−2) = (−7). After the initial
addition the result is wrong because the four bits of the sum are 0111, which represents +7
rather than−7. But again, there is a carry-out from the sign-bit position, which can be used
to correct the result by adding it in the LSB position, as shown in Figure 5.9.

The conclusion from these examples is that the addition of 1’s complement numbers
may or may not be simple. In some cases a correction is needed, which amounts to an extra
addition that must be performed. Consequently, the time needed to add two 1’s complement
numbers may be twice as long as the time needed to add two unsigned numbers.

2’s Complement Addition
Consider the same combinations of numbers as used in the 1’s complement example.

Figure 5.10 indicates how the addition is performed using 2’s complement numbers. Adding
5 + 2 = 7 and (−5) + 2 = (−3) is straightforward. The computation 5 + (−2) = 3
generates the correct four bits of the result, namely 0011. There is a carry-out from the
sign-bit position, which we can simply ignore. The fourth case is (−5) + (−2) = (−7).
Again, the four bits of the result, 1001, give the correct sum (−7). In this case also, the
carry-out from the sign-bit position can be ignored.

++

1 1 0 0

1 0 1 0
0 0 1 0

0 1 1 1

0 1 0 1
0 0 1 0

++

0 1 1 1

1 0 1 0
1 1 0 1

0 0 1 0

0 1 0 1
1 1 0 1

1

1

0 0 1 1

1

1

1 0 0 0

2+()
5–()

3–()

+

5–()

7–()

+ 2–()

5+()
2+()

7+()

+

5+()

3+()

+ 2–()

Figure 5.9 Examples of 1’s complement addition.

June 18, 2002 15:54 vra23151_ch05 Sheet number 18 Page number 246 black

246 C H A P T E R 5 • Number Representation andArithmetic Circuits

++

1 1 0 1

1 0 1 1
0 0 1 0

0 1 1 1

0 1 0 1
0 0 1 0

++

1 0 0 1

1 0 1 1
1 1 1 0

0 0 1 1

0 1 0 1
1 1 1 0

11

ignore ignore

5+()
2+()

7+()

+

5+()

3+()

+ 2–()

2+()
5–()

3–()

+

5–()

7–()

+ 2–()

Figure 5.10 Examples of 2’s complement addition.

As illustrated by these examples, the addition of 2’s complement numbers is very
simple. When the numbers are added, the result is always correct. If there is a carry-out
from the sign-bit position, it is simply ignored. Therefore, the addition process is the same,
regardless of the signs of the operands. It can be performed by an adder circuit, such as
the one shown in Figure 5.6. Hence the 2’s complement notation is highly suitable for
the implementation of addition operations. We will now consider its use in subtraction
operations.

2’s Complement Subtraction
The easiest way of performing subtraction is to negate the subtrahend and add it to

the minuend. This is done by finding the 2’s complement of the subtrahend and then
performing the addition. Figure 5.11 illustrates the process. The operation 5 − (+2) = 3
involves finding the 2’s complement of +2, which is 1110. When this number is added to
0101, the result is 0011 = (+3) and a carry-out from the sign-bit position occurs, which is
ignored. A similar situation arises for (−5) − (+2) = (−7). In the remaining two cases
there is no carry-out, and the result is correct.

As a graphical aid to visualize the addition and subtraction examples in Figures 5.10
and 5.11, we can place all possible four-bit patterns on a modulo-16 circle given in Figure
5.12. If these bit patterns represented unsigned integers, they would be numbers 0 to 15. If
they represent 2’s-complement integers, then the numbers range from −8 to +7, as shown.
The addition operation is done by stepping in the clockwise direction by the magnitude of
the number to be added. For example, −5 + 2 is determined by starting at 1011 (= −5)
and moving clockwise two steps, giving the result 1101 (= −3). Subtraction is performed
by stepping in the counterclockwise direction. For example, −5− (+2) is determined by
starting at 1011 and moving counterclockwise two steps, which gives 1001 (= −7).

The key conclusion of this section is that the subtraction operation can be realized as
the addition operation, using a 2’s complement of the subtrahend, regardless of the signs of

June 18, 2002 15:54 vra23151_ch05 Sheet number 19 Page number 247 black

5.3 Signed Numbers 247

–
0 1 0 1
0 0 1 0

5+()
2+()

3+()

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

–
1 0 1 1
0 0 1 0–

1

ignore

+

1 0 0 1

1 0 1 1
1 1 1 0

–
0 1 0 1
1 1 1 0

5+()

7+()

– +

0 1 1 1

0 1 0 1
0 0 1 0

5–()

7–()

2+()

2–()

–
1 0 1 1
1 1 1 0– +

1 1 0 1

1 0 1 1
0 0 1 02–()

5–()

3–()

Figure 5.11 Examples of 2’s complement subtraction.

0000
0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

1+1–
2+

3+

4+

5+

6+
7+

2–

3–

4–

5–

6–
7– 8–

0

Figure 5.12 Graphical interpretation of four-bit 2’s complement
numbers.

mzr
Rectangle

June 18, 2002 15:54 vra23151_ch05 Sheet number 20 Page number 248 black

248 C H A P T E R 5 • Number Representation andArithmetic Circuits

the two operands. Therefore, it should be possible to use the same adder circuit to perform
both addition and subtraction.

5.3.3 Adder and Subtractor Unit

The only difference between performing addition and subtraction is that for subtraction it
is necessary to use the 2’s complement of one operand. Let X and Y be the two operands,
such that Y serves as the subtrahend in subtraction. From section 5.3.1 we know that a
2’s complement can be obtained by adding 1 to the 1’s complement of Y . Adding 1 in the
least-significant bit position can be accomplished simply by setting the carry-in bit c0 to 1.
A 1’s complement of a number is obtained by complementing each of its bits. This could be
done with NOT gates, but we need a more flexible circuit where we can use the true value
of Y for addition and its complement for subtraction.

In section 5.2 we explained that two-input XOR gates can be used to choose between
true and complemented versions of an input value, under the control of the other input. This
idea can be applied in the design of the adder/subtractor unit as follows. Assume that there
exists a control signal that chooses whether addition or subtraction is to be performed. Let
this signal be called Add/Sub. Also, let its value be 0 for addition and 1 for subtraction. To
indicate this fact, we placed a bar over Add. This is a commonly used convention, where
a bar over a name means that the action specified by the name is to be taken if the control
signal has the value 0. Now let each bit of Y be connected to one input of an XOR gate, with
the other input connected to Add/Sub. The outputs of the XOR gates represent Y if Add/Sub
= 0, and they represent the 1’s complement of Y if Add/Sub = 1. This leads to the circuit
in Figure 5.13. The main part of the circuit is an n-bit adder, which can be implemented
using the ripple-carry structure of Figure 5.6. Note that the control signal Add/Sub is also

s0s1sn 1–

x0x1xn 1–

cn n-bit adder

y0y1yn 1–

c0

Add ⁄ Sub
control

Figure 5.13 Adder/subtractor unit.

mzr
Rectangle

June 18, 2002 15:54 vra23151_ch05 Sheet number 21 Page number 249 black

5.3 Signed Numbers 249

connected to the carry-in c0. This makes c0 = 1 when subtraction is to be performed, thus
adding the 1 that is needed to form the 2’s complement of Y . When the addition operation
is performed, we will have ci = 0.

The combined adder/subtractor unit is a good example of an important concept in the
design of logic circuits. It is useful to design circuits to be as flexible as possible and to
exploit common portions of circuits for as many tasks as possible. This approach minimizes
the number of gates needed to implement such circuits, and it reduces the wiring complexity
substantially.

5.3.4 Radix-Complement Schemes

The idea of performing a subtraction operation by addition of a complement of the sub-
trahend is not restricted to binary numbers. We can gain some insight into the workings
of the 2’s complement scheme by considering its counterpart in the decimal number sys-
tem. Consider the subtraction of two-digit decimal numbers. Computing a result such as
74−33 = 41 is simple because each digit of the subtrahend is smaller than the correspond-
ing digit of the minuend; therefore, no borrow is needed in the computation. But computing
74−36 = 38 is not as simple because a borrow is needed in subtracting the least-significant
digit. If a borrow occurs, the computation becomes more complicated.

Suppose that we restructure the required computation as follows

74− 36 = 74+ 100− 100− 36

= 74+ (100− 36)− 100

Now two subtractions are needed. Subtracting 36 from 100 still involves borrows. But
noting that 100 = 99+ 1, these borrows can be avoided by writing

74− 36 = 74+ (99+ 1− 36)− 100

= 74+ (99− 36)+ 1− 100

The subtraction in parentheses does not require borrows; it is performed by subtracting each
digit of the subtrahend from 9. We can see a direct correlation between this expression and
the one used for 2’s complement, as reflected in the circuit in Figure 5.13. The operation
(99 − 36) is analogous to complementing the subtrahend Y to find its 1’s complement,
which is the same as subtracting each bit from 1. Using decimal numbers, we find the 9’s
complement of the subtrahend by subtracting each digit from 9. In Figure 5.13 we add
the carry-in of 1 to form the 2’s complement of Y . In our decimal example we perform
(99−36)+1 = 64. Here 64 is the 10’s complement of 36. For an n-digit decimal number,
N , its 10’s complement, K10, is defined as K10 = 10n −N , while its 9’s complement, K9, is
K9 = (10n − 1)− N .

Thus the required subtraction (74 − 36) can be performed by addition of the 10’s
complement of the subtrahend, as in

74− 36 = 74+ 64− 100

= 138− 100

= 38

June 18, 2002 15:54 vra23151_ch05 Sheet number 22 Page number 250 black

250 C H A P T E R 5 • Number Representation andArithmetic Circuits

The subtraction 138− 100 is trivial because it means that the leading digit in 138 is simply
deleted. This is analogous to ignoring the carry-out from the circuit in Figure 5.13, as
discussed for the subtraction examples in Figure 5.11.

Example 5.1 Suppose that A and B are n-digit decimal numbers. Using the above 10’s-complement
approach, B can be subtracted from A as follows:

A− B = A+ (10n − B)− 10n

If A ≥ B, then the operation A+ (10n − B) produces a carry-out of 1. This carry is equiva-
lent to 10n; hence it can be simply ignored.

But if A < B, then the operation A+ (10n−B) produces a carry-out of 0. Let the result
obtained be M , so that

A− B = M − 10n

We can rewrite this as

10n − (B− A) = M

The left side of this equation is the 10’s complement of (B − A). The 10’s complement of
a positive number represents a negative number that has the same magnitude. Hence M
correctly represents the negative value obtained from the computation A− B when A < B.
This concept is illustrated in the examples that follow.

Example 5.2 When dealing with binary signed numbers we use 0 in the left-most bit position to denote
a positive number and 1 to denote a negative number. If we wanted to build hardware that
operates on signed decimal numbers, we could use a similar approach. Let 0 in the left-most
digit position denote a positive number and let 9 denote a negative number. Note that 9 is
the 9’s complement of 0 in the decimal system, just as 1 is the 1’s complement of 0 in the
binary system.

Thus, using three-digit signed numbers, A = 045 and B = 027 are positive numbers
with magnitudes 45 and 27, respectively. The number B can be subtracted from A as follows

A− B = 045− 027

= 045+ 1000− 1000− 027

= 045+ (999− 027)+ 1− 1000

= 045+ 972+ 1− 1000

= 1018− 1000

= 018

This gives the correct answer of +18.

June 18, 2002 15:54 vra23151_ch05 Sheet number 23 Page number 251 black

5.3 Signed Numbers 251

Next consider the case where the minuend has lower value than the subtrahend. This
is illustrated by the computation

B− A = 027− 045

= 027+ 1000− 1000− 045

= 027+ (999− 045)+ 1− 1000

= 027+ 954+ 1− 1000

= 982− 1000

From this expression it appears that we still need to perform the subtraction 982 − 1000.
But as seen in Example 5.1, this can be rewritten as

982 = 1000+ B− A

= 1000− (A− B)

Therefore, 982 is the negative number that results when forming the 10’s complement of
(A − B). From the previous computation we know that (A − B) = 018, which denotes
+18. Thus the signed number 982 is the 10’s complement representation of −18, which is
the required result.

Example 5.3Let C = 955 and D = 973; hence the values of C and D are −45 and −27, respectively.
The number D can be subtracted from C as follows

C − D = 955− 973

= 955+ 1000− 1000− 973

= 955+ (999− 973)+ 1− 1000

= 955+ 026+ 1− 1000

= 982− 1000

The number 982 is the 10’s complement representation of −18, which is the correct result.
Consider now the case D − A, where D = 973 and A = 045:

D − A = 973− 045

= 973+ 1000− 1000− 045

= 973+ (999− 045)+ 1− 1000

= 973+ 954+ 1− 1000

= 1928− 1000

= 928

The result 928 is the 10’s complement representation of −72.
These examples illustrate that signed numbers can be subtracted without using a sub-

traction operation that involves borrows. The only subtraction needed is in forming the
9’s complement of the subtrahend, in which case each digit is simply subtracted from 9.

June 18, 2002 15:54 vra23151_ch05 Sheet number 24 Page number 252 black

252 C H A P T E R 5 • Number Representation andArithmetic Circuits

Thus a circuit that forms the 9’s complement, combined with a normal adder circuit, will
suffice for both addition and subtraction of decimal signed numbers. A key point is that the
hardware needs to deal only with n digits if n-digit numbers are used. Any carry that may
be generated from the left-most digit position is simply ignored.

The concept of subtracting a number by adding its radix-complement is general. If
the radix is r, then the r’s complement, Kr , of an n-digit number, N , is determined as
Kr = rn − N . The (r − 1)’s complement, Kr−1, is defined as Kr−1 = (rn − 1) − N ; it
is computed simply by subtracting each digit of N from the value (r − 1). The (r − 1)’s
complement is referred to as the diminished-radix complement. Circuits for forming the
(r−1)’s complements are simpler than those for general subtraction that involves borrows.
The circuits are particularly simple in the binary case, where the 1’s complement requires
just inverting each bit.

Example 5.4 In Figure 5.11 we illustrated the subtraction operation on binary numbers given in 2’s-
complement representation. Consider the computation (+5) − (+2) = (+3), using the
approach discussed above. Each number is represented by a four-bit pattern. The value 24

is represented as 10000. Then

0101− 0010 = 0101+ (10000− 0010)− 10000

= 0101+ (1111− 0010)+ 1− 10000

= 0101+ 1101+ 1− 10000

= 10011− 10000

= 0011

Because 5 > 2, there is a carry from the fourth bit position. It represents the value 24,
denoted by the pattern 10000.

Example 5.5 Consider now the computation (+2)− (+5) = (−3), which gives

0010− 0101 = 0010+ (10000− 0101)− 10000

= 0010+ (1111− 0101)+ 1− 10000

= 0010+ 1010+ 1− 10000

= 1101− 10000

Because 2 < 5, there is no carry from the fourth bit position. The answer, 1101, is the
2’s-complement representation of −3. Note that

1101 = 10000+ 0010− 0101

= 10000− (0101− 0010)

= 10000− 0011

indicating that 1101 is the 2’s complement of 0011 (+3).

June 18, 2002 15:54 vra23151_ch05 Sheet number 25 Page number 253 black

5.3 Signed Numbers 253

Example 5.6Finally, consider the case where the subtrahend is a negative number. The computation
(+5)− (−2) = (+7) is done as follows

0101− 1110 = 0101+ (10000− 1110)− 10000

= 0101+ (1111− 1110)+ 1− 10000

= 0101+ 0001+ 1− 10000

= 0111− 10000

While 5 > (−2), the pattern 1110 is greater than the pattern 0101 when the patterns are
treated as unsigned numbers. Therefore, there is no carry from the fourth bit position. The
answer 0111 is the 2’s complement representation of +7. Note that

0111 = 10000+ 0101− 1110

= 10000− (1110− 0101)

= 10000− 1001

and 1001 represents −7.

5.3.5 Arithmetic Overflow

The result of addition or subtraction is supposed to fit within the significant bits used to
represent the numbers. If n bits are used to represent signed numbers, then the result must
be in the range −2n−1 to 2n−1 − 1. If the result does not fit in this range, then we say that
arithmetic overflow has occurred. To ensure the correct operation of an arithmetic circuit,
it is important to be able to detect the occurrence of overflow.

Figure 5.14 presents the four cases where 2’s-complement numbers with magnitudes
of 7 and 2 are added. Because we are using four-bit numbers, there are three significant bits,
b2−0. When the numbers have opposite signs, there is no overflow. But if both numbers
have the same sign, the magnitude of the result is 9, which cannot be represented with just
three significant bits; therefore, overflow occurs. The key to determining whether overflow

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

c4 0=
c3 1=

c4 0=
c3 0=

c4 1=
c3 1=

c4 1=
c3 0=

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Figure 5.14 Examples for determination of overflow.

June 18, 2002 15:54 vra23151_ch05 Sheet number 26 Page number 254 black

254 C H A P T E R 5 • Number Representation andArithmetic Circuits

occurs is the carry-out from the MSB position, called c3 in the figure, and from the sign-bit
position, called c4. The figure indicates that overflow occurs when these carry-outs have
different values, and a correct sum is produced when they have the same value. Indeed, this
is true in general for both addition and subtraction of 2’s-complement numbers. As a quick
check of this statement, consider the examples in Figure 5.10 where the numbers are small
enough so that overflow does not occur in any case. In the top two examples in the figure,
there is a carry-out of 0 from both sign and MSB positions. In the bottom two examples,
there is a carry-out of 1 from both positions. Therefore, for the examples in Figures 5.10
and 5.14, the occurrence of overflow is detected by

Overflow = c3c4 + c3c4

= c3 ⊕ c4

For n-bit numbers we have

Overflow = cn−1 ⊕ cn

Thus the circuit in Figure 5.13 can be modified to include overflow checking with the
addition of one XOR gate.

5.3.6 Performance Issues

When buying a digital system, such as a computer, the buyer pays particular attention to
the performance that the system is expected to provide and to the cost of acquiring the
system. Superior performance usually comes at a higher cost. However, a large increase in
performance can often be achieved at a modest increase in cost. A commonly used indicator
of the value of a system is its price/performance ratio.

The addition and subtraction of numbers are fundamental operations that are performed
frequently in the course of a computation. The speed with which these operations are
performed has a strong impact on the overall performance of a computer. In light of this,
let us take a closer look at the speed of the adder/subtractor unit in Figure 5.13. We are
interested in the largest delay from the time the operands X and Y are presented as inputs,
until the time all bits of the sum S and the final carry-out, cn, are valid. Most of this delay
is caused by the n-bit adder circuit. Assume that the adder is implemented using the ripple-
carry structure in Figure 5.6 and that each full-adder stage is the circuit in Figure 5.4c. The
delay for the carry-out signal in this circuit, �t, is equal to two gate delays. From section
5.2.2 we know that the final result of the addition will be valid after a delay of n�t, which
is equal to 2n gate delays. In addition to the delay in the ripple-carry path, there is also a
delay in the XOR gates that feed either the true or complemented value of Y to the adder
inputs. If this delay is equal to one gate delay, then the total delay of the circuit in Figure
5.13 is 2n+1 gate delays. For a large n, say n = 32 or n = 64, the delay would lead to
unacceptably poor performance. Therefore, it is important to find faster circuits to perform
addition.

The speed of any circuit is limited by the longest delay along the paths through the
circuit. In the case of the circuit in Figure 5.13, the longest delay is along the path from
the yi input, through the XOR gate and through the carry circuit of each adder stage. The

June 18, 2002 15:54 vra23151_ch05 Sheet number 27 Page number 255 black

5.4 Fast Adders 255

longest delay is often referred to as the critical-path delay, and the path that causes this
delay is called the critical path.

5.4 Fast Adders

The performance of a large digital system is dependent on the speed of circuits that form
its various functional units. Obviously, better performance can be achieved using faster
circuits. This can be accomplished by using superior (usually newer) technology in which
the delays in basic gates are reduced. But it can also be accomplished by changing the overall
structure of a functional unit, which may lead to even more impressive improvement. In
this section we will discuss an alternative for implementation of an n-bit adder, which
substantially reduces the time needed to add numbers.

5.4.1 Carry-LookaheadAdder

To reduce the delay caused by the effect of carry propagation through the ripple-carry adder,
we can attempt to evaluate quickly for each stage whether the carry-in from the previous
stage will have a value 0 or 1. If a correct evaluation can be made in a relatively short time,
then the performance of the complete adder will be improved.

From Figure 5.4b the carry-out function for stage i can be realized as

ci+1 = xiyi + xici + yici

If we factor this expression as

ci+1 = xiyi + (xi + yi)ci

then it can be written as

ci+1 = gi + pici [5.3]

where

gi = xiyi

pi = xi + yi

The function gi is equal to 1 when both inputs xi and yi are equal to 1, regardless of the value
of the incoming carry to this stage, ci. Since in this case stage i is guaranteed to generate
a carry-out, g is called the generate function. The function pi is equal to 1 when at least
one of the inputs xi and yi is equal to 1. In this case a carry-out is produced if ci = 1. The
effect is that the carry-in of 1 is propagated through stage i; hence pi is called the propagate
function.

Expanding the expression 5.3 in terms of stage i − 1 gives

ci+1 = gi + pi(gi−1 + pi−1ci−1)

= gi + pigi−1 + pipi−1ci−1

June 18, 2002 15:54 vra23151_ch05 Sheet number 28 Page number 256 black

256 C H A P T E R 5 • Number Representation andArithmetic Circuits

The same expansion for other stages, ending with stage 0, gives

ci+1 = gi + pigi−1 + pipi−1gi−2 + · · · + pipi−1 · · · p2p1g0 + pipi−1 · · · p1p0c0 [5.4]

This expression represents a two-level AND-OR circuit in which ci+1 is evaluated very
quickly. An adder based on this expression is called a carry-lookahead adder.

To appreciate the physical meaning of expression 5.4, it is instructive to consider its
effect on the construction of a fast adder in comparison with the details of the ripple-
carry adder. We will do so by examining the detailed structure of the two stages that add
the least-significant bits, namely, stages 0 and 1. Figure 5.15 shows the first two stages
of a ripple-carry adder in which the carry-out functions are implemented as indicated in
expression 5.3. Each stage is essentially the circuit from Figure 5.4c except that an extra
OR gate is used (which produces the pi signal), instead of an AND gate because we factored
the sum-of-products expression for ci+1.

The slow speed of the ripple-carry adder is caused by the long path along which a carry
signal must propagate. In Figure 5.15 the critical path is from inputs x0 and y0 to the output
c2. It passes through five gates, as highlighted in blue. The path in other stages of an n-bit
adder is the same as in stage 1. Therefore, the total delay along the critical path is 2n+ 1.

x1 y1

g1 p1

s1

Stage 1

x0 y0

g0 p0

s0

Stage 0

c0

c1
c2

Figure 5.15 A ripple-carry adder based on Expression 5.3.

June 18, 2002 15:54 vra23151_ch05 Sheet number 29 Page number 257 black

5.4 Fast Adders 257

Figure 5.16 gives the first two stages of the carry-lookahead adder, using expression
5.4 to implement the carry-out functions. Thus

c1 = g0 + p0c0

c2 = g1 + p1g0 + p1p0c0

The critical path for producing the c2 signal is highlighted in blue. In this circuit, c2 is
produced just as quickly as c1, after a total of three gate delays. Extending the circuit to
n bits, the final carry-out signal cn would also be produced after only three gate delays
because expression 5.4 is just a large two-level (AND-OR) circuit.

The total delay in the n-bit carry-lookahead adder is four gate delays. The values of
all gi and pi signals are determined after one gate delay. It takes two more gate delays to
evaluate all carry signals. Finally, it takes one more gate delay (XOR) to generate all sum
bits. The key to the good performance of the adder is quick evaluation of carry signals.

x1 y1

g1 p1

s1

x0 y0

s0

c2

x0 y0

c0

c1

g0 p0

Figure 5.16 The first two stages of a carry-lookahead adder.

June 18, 2002 15:54 vra23151_ch05 Sheet number 30 Page number 258 black

258 C H A P T E R 5 • Number Representation andArithmetic Circuits

The complexity of an n-bit carry-lookahead adder increases rapidly as n becomes larger.
To reduce the complexity, we can use a hierarchical approach in designing large adders.
Suppose that we want to design a 32-bit adder. We can divide this adder into 4 eight-bit
blocks, such that bits b7−0 are block 0, bits b15−8 are block 1, bits b23−16 are block 2, and
bits b31−24 are block 3. Then we can implement each block as an eight-bit carry-lookahead
adder. The carry-out signals from the four blocks are c8, c16, c24, and c32. Now we have two
possibilities. We can connect the four blocks as four stages in a ripple-carry adder. Thus
while carry-lookahead is used within each block, the carries ripple between the blocks. This
circuit is illustrated in Figure 5.17.

Instead of using a ripple-carry approach between blocks, a faster circuit can be designed
in which a second-level carry-lookahead is performed to produce quickly the carry signals
between blocks. The structure of this “hierarchical carry-lookahead adder” is shown in
Figure 5.18. Each block in the top row includes an eight-bit carry-lookahead adder, based
on generate signals, gi, and propagate signals, pi, for each stage in the block, as discussed
before. However, instead of producing a carry-out signal from the most-significant bit of
the block, each block produces generate and propagate signals for the entire block. Let
Gj and Pj denote these signals for each block j. Now Gj and Pj can be used as inputs to
a second-level carry-lookahead circuit, at the bottom of Figure 5.18, which evaluates all
carries between blocks. We can derive the block generate and propagate signals for block
0 by examining the expression for c8

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4 + p7p6p5p4g3 + p7p6p5p4p3g2

+ p7p6p5p4p3p2g1 + p7p6p5p4p3p2p1g0 + p7p6p5p4p3p2p1p0c0

The last term in this expression specifies that, if all eight propagate functions are 1, then
the carry-in c0 is propagated through the entire block. Hence

P0 = p7p6p5p4p3p2p1p0

The rest of the terms in the expression for c8 represent all other cases when the block
produces a carry-out. Thus

G0 = g7 + p7g6 + p7p6g5 + · · · + p7p6p5p4p3p2p1g0

Block

x31 24–

c32 c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block

1
Block

0

Figure 5.17 A hierarchical carry-lookahead adder with ripple-carry between blocks.

June 18, 2002 15:54 vra23151_ch05 Sheet number 31 Page number 259 black

5.4 Fast Adders 259

Block

x15 8– y15 8– x7 0– y7 0–

3
Block

1
Block

0

Second-level lookahead

c0

s7 0–

P0G0P1G1P3G3

s15 8–s31 24–

c8c16c32

x31 24– y31 24–

c24

Figure 5.18 A hierarchical carry-lookahead adder.

The expression for c8 in the hierarchical adder is given by

c8 = G0 + P0c0

For block 1 the expressions for G1 and P1 have the same form as for G0 and P0 except that
each subscript i is replaced by i+ 8. The expressions for G2, P2, G3, and P3 are derived in
the same way. The expression for the carry-out of block 1, c16, is

c16 = G1 + P1c8

= G1 + P1G0 + P1P0c0

Similarly, the expressions for c24 and c32 are

c24 = G2 + P2G1 + P2P1G0 + P2P1P0c0

c32 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0c0

Using this scheme, it takes two more gate delays to produce the carry signals c8, c16, and
c24 than the time needed to generate the Gj and Pj functions. Therefore, since Gj and Pj

require three gate delays, c8, c16, and c24 are available after five gate delays. The time
needed to add two 32-bit numbers involves these five gate delays plus two more to produce
the internal carries in blocks 1, 2, and 3, plus one more gate delay (XOR) to generate each
sum bit. This gives a total of eight gate delays.

June 18, 2002 15:54 vra23151_ch05 Sheet number 32 Page number 260 black

260 C H A P T E R 5 • Number Representation andArithmetic Circuits

In section 5.3.5 we determined that it takes 2n+1 gate delays to add two numbers using
a ripple-carry adder. For 32-bit numbers this implies 65 gate delays. It is clear that the
carry-lookahead adder offers a large performance improvement. The trade-off is much
greater complexity of the required circuit.

Technology Considerations
The preceding delay analysis assumes that gates with any number of inputs can be used.

We know from Chapters 3 and 4 that the technology used to implement the gates limits the
fan-in to a rather small number of inputs. Therefore the reality of fan-in constraints must
be taken into account. To illustrate this problem, consider the expressions for the first eight
carries:

c1 = g0 + p0c0

c2 = g1 + p1g0 + p1p0c0

...

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4 + p7p6p5p4g3 + p7p6p5p4p3g2

+ p7p6p5p4p3p2g1 + p7p6p5p4p3p2p1g0 + p7p6p5p4p3p2p1p0c0

Suppose that the maximum fan-in of the gates is four inputs. Then it is impossible to
implement all of these expressions with a two-level AND-OR circuit. The biggest problem
is c8, where one of the AND gates requires nine inputs; moreover, the OR gate also requires
nine inputs. To meet the fan-in constraint, we can rewrite the expression for c8 as

c8 = (g7 + p7g6 + p7p6g5 + p7p6p5g4)+ [(p7p6p5p4)(g3 + p3g2 + p3p2g1 + p3p2p1g0)]
+ (p7p6p5p4)(p3p2p1p0)c0

To implement this expression we need 11 AND gates and three OR gates. The propagation
delay in generating c8 consists of one gate delay to develop all gi and pi, two gate delays
to produce the sum-of-products terms in parentheses, one gate delay to form the product
term in square brackets, and one delay for the final ORing of terms. Hence c8 is valid after
five gate delays, rather than the three gates delays that would be needed without the fan-in
constraint.

Because fan-in limitations reduce the speed of the carry-lookahead adder, some devices
that are characterized by low fan-in include dedicated circuitry for implementation of fast
adders. Examples of such devices include FPGAs whose logic blocks are based on lookup
tables.

Before we leave the topic of the carry-lookahead adder, we should consider an alterna-
tive implementation of the structure in Figure 5.16. The same functionality can be achieved
by using the circuit in Figure 5.19. In this case stage 0 is implemented using the circuit of
Figure 5.5 in which 2 two-input XOR gates are used to generate the sum bit, rather than
having 1 three-input XOR gate. The output of the first XOR gate can also serve as the
propagate signal p0. Thus the corresponding OR gate in Figure 5.16 is not needed. Stage
1 is constructed using the same approach.

The circuits in Figures 5.16 and 5.19 require the same number of gates. But is one of
them better in some way? The answer must be sought by considering the specific aspects of
the technology that is used to implement the circuits. If a CPLD or an FPGA is used, such as

June 18, 2002 15:54 vra23151_ch05 Sheet number 33 Page number 261 black

5.4 Fast Adders 261

x1 y1

g1 p1

s1 s0

c2

x0 y0

c0

c1

g0 p0

Figure 5.19 An alternative design for a carry-lookahead adder.

those in Figures 3.33 and 3.39, then it does not matter which circuit is chosen. A three-input
XOR function can be realized by one macrocell in the CPLD, using the sum-of-products
expression

si = xiyici + xiyici + xiyici + xiyici

because the macrocell allows for implementation of four product terms.
In the FPGA any three-input function can be implemented in a single logic cell; hence

it is easy to realize a three-input XOR. However, suppose that we want to build a carry-
lookahead adder on a custom chip. If the XOR gate is constructed using the approach
discussed in section 3.9.1, then a three-input XOR would actually be implemented using 2
two-input XOR gates, as we have done for the sum bits in Figure 5.19. Therefore, if the
first XOR gate realizes the function xi ⊕ yi, which is also the propagate function pi, then it
is obvious that the alternative in Figure 5.19 is more attractive. The important point of this

June 18, 2002 15:54 vra23151_ch05 Sheet number 34 Page number 262 black

262 C H A P T E R 5 • Number Representation andArithmetic Circuits

discussion is that optimization of logic circuits may depend on the target technology. The
CAD tools take this fact into account.

The carry-lookahead adder is a well-known concept. There exist standard chips that
implement a portion of the carry-lookahead circuitry. They are called carry-lookahead
generators. CAD tools often include predesigned subcircuits for adders, which designers
can use to design larger units.

5.5 Design ofArithmetic Circuits Using CADTools

In this section we show how the arithmetic circuits can be designed by using CAD tools.
Two different design methods are discussed: using schematic capture and using Verilog
code.

5.5.1 DesignofArithmeticCircuitsUsing Schematic Capture

An obvious way to design an arithmetic circuit via schematic capture is to draw a schematic
that contains the necessary logic gates. For example, to create an n-bit adder, we could first
draw a schematic that represents a full-adder. Then an n-bit ripple-carry adder could be
created by drawing a higher-level schematic that connects together n instances of the full-
adder. A hierarchical schematic created in this manner would look like the circuit shown in
Figure 5.6. We could also use this methodology to create an adder/subtractor circuit, such
as the circuit depicted in Figure 5.13.

The main problem with this approach is that it is cumbersome, especially when the
number of bits is large. This problem is even more apparent if we consider creating a
schematic for a carry-lookahead adder. As shown in section 5.4.1, the carry circuitry in
each stage of the carry-lookahead adder becomes increasingly more complex. Hence it is
necessary to draw a separate schematic for each stage of the adder. A better approach for
creating arithmetic circuits via schematic capture is to use predefined subcircuits.

We mentioned in section 2.9.1 that schematic capture tools provide a library of graphical
symbols that represent basic logic gates. These gates are used to create schematics of
relatively simple circuits. In addition to basic gates, most schematic capture tools also
provide a library of commonly used circuits, such as adders. Each circuit is provided as a
module that can be imported into a schematic and used as part of a larger circuit. In some
CAD systems the modules are referred to as macrofunctions, or megafunctions.

There are two main types of macrofunctions: technology dependent and technology
independent. A technology-dependent macrofunction is designed to suit a specific type
of chip. For example, in section 5.4.1 we described an expression for a carry-lookahead
adder that was designed to meet a fan-in constraint of four-input gates. A macrofunction
that implements this expression would be technology specific. A technology-independent
macrofunction can be implemented in any type of chip. A macrofunction for an adder
that represents different circuits for different types of chips is a technology-independent
macrofunction.

June 18, 2002 15:54 vra23151_ch05 Sheet number 35 Page number 263 black

5.5 Design of Arithmetic Circuits Using CAD Tools 263

Agood example of a library of macrofunctions is the Library of Parameterized Modules
(LPM) that is included as part of the MAX+plusII CAD system. Each module in the library
is technology independent. Also, each module is parameterized, which means that it can
be used in a variety of ways. For example, the LPM library includes an n-bit adder module,
named lpm_add_sub. The number of bits, n, is set by a parameter called LPM_WIDTH.

A schematic containing the lpm_add_sub module is given in Figure 5.20. The module
has several associated parameters, which are configured by using the CAD tools. The two
most important parameters for the purposes of our discussion are named LPM_WIDTH
and LPM_REPRESENTATION. As mentioned above LPM_WIDTH specifies the num-
ber of bits in the adder. The LPM_REPRESENTATION parameter specifies whether
signed or unsigned integers are used. This affects only the part of the module that de-
termines when arithmetic overflow occurs, as discussed in section 5.3.5. For the schematic
shown, LPM_WIDTH = 16, and signed numbers are used. The module can perform ad-
dition or subtraction, determined by the input add_sub. Thus the module represents an
adder/subtractor circuit, such as the one shown in Figure 5.13.

The numbers to be added by the lpm_add_sub module are connected to the terminals
called dataa[] and datab[]. The square brackets in these names mean that they represent
multibit numbers. In the schematic dataa[] and datab[] are connected to the 16-bit input
signals X [15..0] and Y [15..0]. The meaning of the syntax X [15..0] is that the signal X
represents 16 bits, named X [15], X [14], . . . , X [0]. The lpm_add_sub module produces
the sum on the terminal called result[], which is connected to the output S [15..0]. Figure
5.20 also shows that the carry-in is set to Gnd. The add_sub input is connected to logic
high, which configures the module as an adder. (Note that the logic high voltage is called
VCC in the schematic displayed by the CAD tool. We use VDD to denote this voltage level
in the book, but VCC is also used in the literature.) Finally, the carry-out from the module
is connected to the signal Cout, and the overflow terminal is connected to Overflow.

Besides the convenience in creating the schematic, the lpm_add_sub macrofunction has
another advantage. It allows the logic synthesis algorithms provided by the CAD system to

Figure 5.20 Schematic using an LPM adder/subtractor module.

June 18, 2002 15:54 vra23151_ch05 Sheet number 36 Page number 264 black

264 C H A P T E R 5 • Number Representation andArithmetic Circuits

generate different circuits for different chips and different optimization goals. For instance,
if the speed of the adder is not crucial, but it is important to keep the cost of the circuit low,
then the CAD system may generate a ripple-carry adder to implement the lpm_add_sub
module. But if speed is important, then a fast adder, such as the carry-lookahead adder,
can be generated. Some chips, such as FPGAs, include special-purpose circuitry for im-
plementing fast adders, as we mentioned in section 5.4.1. Using a technology-independent
macrofunction allows the CAD system to generate a circuit that makes use of such special-
purpose circuitry.

Examples of the results obtained when synthesizing a circuit from the schematic for
implementation in an FPGA are shown in Figures 5.21 and 5.22. In Figure 5.21 the logic
synthesis was performed with the goal of minimizing the cost of the circuit, as opposed to
the speed. This results in a ripple-carry adder. The figure shows a screen capture of the
timing simulator. The values of the 16-bit signals X, Y, and S are shown in the simulation
output as hexadecimal numbers. At the beginning of the simulation, both X and Y are set to
0000. After 50 ns, Y is changed to 0001. The correct sum is generated quickly, after about
13 ns, because the carry needs to ripple through only one stage of the adder in this case. The
next change in the inputs occurs at 150 ns, when X changes to 3FFF. To produce the new
sum, which is 4000, the adder must wait for its carry signals to ripple from the first stage
to the last stage. This is seen in the simulation output as a sequence of rapid changes in the
value of S, eventually settling at the correct sum. Observe that the simulator’s reference
line, the heavy vertical line in the figure, shows that the correct sum is produced 204.5 ns
from the start of the simulation. Because the change in inputs happened at 150 ns, the adder
takes 204.5 − 150 = 54.5 ns to compute the sum. At 250 ns, X changes to 7FFF, which
causes the sum to be 8000. This sum is too large for a positive 16-bit signed number; hence
Overflow is set to 1 to indicate the arithmetic overflow.

Figure 5.22 shows the same simulation input for the schematic in Figure 5.20 but with
the synthesized circuit optimized for speed. In this case the adder produced by the CAD
tools makes use of the dedicated carry-logic circuitry in the FPGA. In this adder it takes
about 23 ns to produce the sum.

Figure 5.21 Simulation results for the LPM adder optimized for cost.

June 18, 2002 15:54 vra23151_ch05 Sheet number 37 Page number 265 black

5.5 Design of Arithmetic Circuits Using CAD Tools 265

Figure 5.22 Simulation results for the LPM adder optimized for speed.

5.5.2 Design of Arithmetic Circuits Using Verilog

We said in section 5.5.1 that an obvious way to create an n-bit adder is to draw a hierarchical
schematic that contains n full-adders. This approach can also be followed by using Verilog,
by first creating a Verilog module for a full-adder and then defining a higher-level module
that uses n instances of the full-adder. As a first attempt at designing arithmetic circuits
using Verilog, we will show how to write the hierarchical code for a ripple-carry adder.

Suppose that we wish to implement the full-adder circuit given in Figure 5.4c, which
has the inputs Cin, x, and y, and produces the outputs s and Cout. One way of specifying
this circuit in Verilog is to use the gate level primitives as shown in Figure 5.23. Each of the
three AND gates in the circuit is defined by a separate statement. Verilog allows combining
such statements into a single statement as shown in Figure 5.24. In this case, commas are
used to separate the definition of each AND gate.

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

xor (s, x, y, Cin);
and (z1, x, y);
and (z2, x, Cin);
and (z3, y, Cin);
or (Cout, z1, z2, z3);

endmodule

Figure 5.23 Verilog code for the full-adder using gate level
primitives.

June 18, 2002 15:54 vra23151_ch05 Sheet number 38 Page number 266 black

266 C H A P T E R 5 • Number Representation andArithmetic Circuits

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

xor (s, x, y, Cin);
and (z1, x, y),

(z2, x, Cin),
(z3, y, Cin);

or (Cout, z1, z2, z3);

endmodule

Figure 5.24 Another version of Verilog code from Figure
5.23.

Another possibility is to use functional expressions as indicated in Figure 5.25. The
XOR operation is denoted by the ∧ sign. Again, it is possible to combine the two continuous
assignment statements into a single statement as shown in Figure 5.26.

Both of the above approaches result in the same full-adder circuit being synthesized.
We can now create a separate Verilog module for the ripple-carry adder, which instantiates

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

assign s = x ∧ y ∧ Cin;
assign Cout = (x & y) | (x & Cin) | (y & Cin);

endmodule

Figure 5.25 Verilog code for the full-adder using continuous
assignment.

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

assign s = x ∧ y ∧ Cin,
Cout = (x & y) | (x & Cin) | (y & Cin);

endmodule

Figure 5.26 Another version of Verilog code from Figure 5.25.

mzr
Rectangle

mzr
Rectangle

June 18, 2002 15:54 vra23151_ch05 Sheet number 39 Page number 267 black

5.5 Design of Arithmetic Circuits Using CAD Tools 267

the fulladd module as a subcircuit. One method of doing this is shown in Figure 5.27. The
module comprises the code for a four-bit ripple-carry adder, named adder4. One of the
four-bit numbers to be added is represented by the four signals x3, x2, x1, x0, and the other
number is represented by y3, y2, y1, y0. The sum is represented by s3, s2, s1, s0. The circuit
incorporates a carry input, carryin, into the least-significant bit position and a carry output,
carryout, from the most-significant bit position.

The four-bit adder in Figure 5.27 is described using four instantiation statements. Each
statement begins with the name of the module, fulladd, that is being instantiated. Next
comes an instance name, which can be any legal Verilog name. The instance names must
be unique. The least-significant stage in the adder is named stage0 and the most-significant
stage is stage3. The signal names in the adder4 module that are to be connected to each
input and output port on the fulladd module are then listed. These signals are listed in the
same order as in the fulladd module, namely the order Cin, x, y, s, Cout.

The signal names associated with each instance of the fulladd module implicitly specify
how the full-adders are connected together. For example, the carry-out of the stage0 instance
is connected to the carry-in of the stage1 instance. The synthesized circuit has the same
structure as the one shown in Figure 5.6. The fulladd module may be included in the same
Verilog source code file as the adder4 module, as we have done in Figure 5.27, but it may
also comprise a separate file. In the latter case, the location of the file fulladd has to be
indicated to the compiler.

module adder4 (carryin, x3, x2, x1, x0, y3, y2, y1, y0, s3, s2, s1, s0, carryout);
input carryin, x3, x2, x1, x0, y3, y2, y1, y0;
output s3, s2, s1, s0, carryout;

fulladd stage0 (carryin, x0, y0, s0, c1);
fulladd stage1 (c1, x1, y1, s1, c2);
fulladd stage2 (c2, x2, y2, s2, c3);
fulladd stage3 (c3, x3, y3, s3, carryout);

endmodule

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

assign s = x ∧ y ∧ Cin;
assign Cout = (x & y) | (x & Cin) | (y & Cin);

endmodule

Figure 5.27 Verilog code for a four-bit adder.

mzr
Rectangle

June 18, 2002 15:54 vra23151_ch05 Sheet number 40 Page number 268 black

268 C H A P T E R 5 • Number Representation andArithmetic Circuits

5.5.3 Using Vectored Signals

In Figure 5.27 each of the four-bit inputs and the four-bit output of the adder is represented
using single-bit signals. A more convenient approach is to use multibit signals, called
vectors, to represent the numbers. Just as a number is represented in a logic circuit as
signals on multiple wires, it can be represented in Verilog code as a multibit vector. An
example of an input vector is

input [3:0] W;

This statement defines W to be a four-bit vector. Its individual bits can be referred to by
using an index value in square brackets. Thus, the most-significant bit (MSB) is referred
to as W [3] and the least-significant bit (LSB) is W [0]. A two-bit vector that consists of the
two middle bits of W is denoted as W [2:1]. The symbol W refers to the entire vector.

Using vectors we can specify the four-bit adder as shown in Figure 5.28. In addition
to the input vectors X and Y , and output vector S, we chose to define the carry signals
between the full-adder stages as a three-bit vector C[3:1]. Note that the carry into stage0
is still called carryin, while the carry from stage3 is called carryout.

For specifying signals that are neither inputs nor outputs of a module, which are used
only for internal connections within the module, Verilog provides the wire type. In the
adder4 module we need three internal carry signals, which are defined as a three-bit vector
in the statement

wire [3:1] C;

In Figure 5.28, signal C[1] is used to connect the carry output of the full-adder in stage 0
to the carry input of the full-adder in stage 1. Similarly, C[2] and C[3] are used to connect
the other stages of the adder.

The vector specification gives the bit width in square brackets, as in W [3:0]. The bit
width is specified using the index of the MSB first and the LSB last. Hence, W [3] is MSB

module adder4 (carryin, X, Y, S, carryout);
input carryin;
input [3:0] X, Y;
output [3:0] S;
output carryout;
wire [3:1] C;

fulladd stage0 (carryin, X[0], Y[0], S[0], C[1]);
fulladd stage1 (C[1], X[1], Y[1], S[1], C[2]);
fulladd stage2 (C[2], X[2], Y[2], S[2], C[3]);
fulladd stage3 (C[3], X[3], Y[3], S[3], carryout);

endmodule

Figure 5.28 A four-bit adder using vectors.

mzr
Rectangle

June 18, 2002 15:54 vra23151_ch05 Sheet number 41 Page number 269 black

5.5 Design of Arithmetic Circuits Using CAD Tools 269

and W [0] is LSB. A reverse ordering can also be used. For example, Z[0:3] defines a
four-bit vector in which Z[0] is its MSB and Z[3] is its LSB. The terminology MSB and
LSB is natural when vectors are used to represent numbers. In other cases, the bit-select
index merely identifies a particular bit in a vector.

5.5.4 Using a Generic Specification

The approach in designing a ripple-carry adder presented in Figure 5.28 is rather restrictive
because the resulting circuit is of a predetermined size of four bits. A similar adder that
could add 32-bit numbers would require Verilog code with 32 instances of the full-adder
subcircuit defined in separate statements. From the designer’s point of view, it is preferable
to define a module that could be used to implement an adder of any size, where the size
may be given as a parameter.

Verilog allows the use of general parameters that can be given a specific value as
desired. For example, an n-bit vector representing a number may be given as W [n−1:0].
If n is defined in the Verilog statement

parameter n = 4;

then the bit range of W is [3:0].
The ripple-carry adder in Figure 5.6 can be described using the logic expressions

sk = xk ⊕ yk ⊕ ck

ck+1 = xkyk + xkck + ykck

for k = 0, 1, . . . , n− 1. Instead of instantiating full-adders as in Figure 5.28, these expres-
sions can be used in Verilog to specify the desired adder.

Figure 5.29 shows Verilog code that defines an n-bit adder. The inputs X and Y , and
the output sum S, are declared to be n-bit vectors. To simplify the use of carry signals in
the adder circuit, we defined a vector C that has n + 1 bits. Bit C[0] is the carry into the
LSB position, while C[n] is the carry from the MSB position. Hence C[0] = carryin and
carryout = C[n] in terms of the n-bit adder.

To specify the repetitive structure of the ripple-carry adder, Figure 5.29 introduces
the Verilog for statement. Like the if-else statement introduced in section 2.10.2, the for
statement is a procedural statement that must be placed inside an always block, as shown in
the figure. As explained in section 2.10.2, any signal that is assigned a value by a statement
within an always block must retain this value until it is again re-evaluated by changes in
the sensitivity variables given in the always statement. Such signals are declared to be of
reg type; they are carryout, S, and C signals in Figure 5.29. The sensitivity variables are
X , Y , and carryin.

In our example, the for loop consists of two statements delineated by begin and end.
These statements define the sum and carry functions for the adder stage that corresponds
to the value of the loop variable k. The range of k is from 0 to n − 1 and its value is
incremented by 1 for each pass through the loop. The Verilog for statement is similar to
the for loop in the C programming language. However, the C operators ++ and −− do not
exist in Verilog, hence incrementing or decrementing of the loop variable must be given as

June 18, 2002 15:54 vra23151_ch05 Sheet number 42 Page number 270 black

270 C H A P T E R 5 • Number Representation andArithmetic Circuits

module addern (carryin, X, Y, S, carryout);
parameter n = 32;
input carryin;
input X, Y;
output S;
output carryout;
reg [n 1:0]

[n 1:0]
[n 1:0]

S;
reg carryout;
reg [n:0] C;
integer k;

always @(X or Y or carryin)
begin

C[0] = carryin;
for (k = 0; k < n; k = k+1)
begin

S[k] = X[k] ∧ Y[k] ∧ C[k];
C[k+1] = (X[k] & Y[k]) | (X[k] & C[k]) | (Y[k] & C[k]);

end
carryout = C[n];

end

endmodule

Figure 5.29 A generic specification of a ripple-carry adder.

k = k+1 or k = k−1, rather than k++ or k−−. Note that k is declared to be an integer and
it is used to control the number of iterations of the for loop; it does not represent a physical
connection in the circuit. The effect of the for loop is to repeat the statements inside the
loop for each loop iteration. For instance, if k were set to 2 in this example, then the for
loop would be equivalent to the four statements

S[0] = X[0] ∧ Y[0] ∧ C[0];
C[1] = (X[0] & Y[0]) | (X[0] & C[0]) | (Y[0] & C[0]);
S[1] = X[1] ∧ Y[1] ∧ C[1];
C[2] = (X[1] & Y[1]) | (X[1] & C[1]) | (Y[1] & C[1]);

Since the value of n is 32, as declared in the parameter statement, the code in the figure
implements a 32-bit adder.

5.5.5 Nets and Variables in Verilog

A logic circuit is modeled in Verilog by a collection of interconnected logic elements and/or
by procedural statements that describe its behavior. Connections between logic elements are
defined using nets. Signals produced by procedural statements are referred to as variables.

mzr
Rectangle

June 18, 2002 15:54 vra23151_ch05 Sheet number 43 Page number 271 black

5.5 Design of Arithmetic Circuits Using CAD Tools 271

Nets
A net represents a node in a circuit. Nets can be of different types. For synthesis

purposes the only important nets are of wire type, which we used in section 5.5.3. A wire
connects an output of one logic element in a circuit to an input of another logic element.
It can be a scalar that represents a single connection or a vector that represents multiple
connections. For example, in Figure 5.27, carry signals c3, c2, and c1 are scalars that model
the connections between the full-adder modules. The specific connections are defined by
the way the full-adder modules are instantiated. In Figure 5.28, the same carry signals
are defined as a three-bit vector C. Observe that in Figure 5.27 the carry signals are not
explicitly declared to be of wire type. The reason is that nets do not have to be declared in
the code because Verilog syntax assumes that all signals are nets by default. Of course, the
code in the figure would also be correct if we include in it the declaration

wire c3, c2, c1;

In Figure 5.28 it is necessary to declare the existence of vector C; otherwise, the Verilog
compiler would not be able to determine that C[3], C[2], and C[1] are the constituent signals
of C. Since these signals are nets, the vector C is declared to be of wire type.

Another type of nets are the tri nets. This keyword declares a net to be of tri-state type,
which indicates that the signals may have the high-impedance value, z, in addition to logic
0 and 1. Nets of tri type are treated in the same way as the wire type. They are used only to
enhance the readability of code that includes tri-state gates. We will discuss the application
of tri nets in section 7.14 in Chapter 7.

Variables
Verilog provides variables to allow a circuit to be described in terms of its behavior.

A variable can be assigned a value in one Verilog statement, and it retains this value until
it is overwritten by a subsequent assignment statement. There are two types of variables:
reg and integer. As mentioned in section 2.10.2, all signals that are assigned a value using
procedural statements must be declared as variables by using the reg or integer keywords.
The scalar carryout and the vectors S and C in Figure 5.29 are examples of the reg type.
The loop variable k in the same figure illustrates the integer type. It serves as a loop index.
Such variables are useful for describing a circuit’s behavior; they do not usually correspond
directly to signals in the resulting circuit.

Further discussion of nets and variables is given in section A.6 in Appendix A.

5.5.6 Arithmetic Assignment Statements

Arithmetic operations are used so often that it is convenient to have them incorporated
directly into a hardware description language. Verilog implements such operations using
arithmetic assignment statements and vectors. If the following vectors are defined

input [n−1:0] X, Y;
output [n−1:0] S;

June 18, 2002 15:54 vra23151_ch05 Sheet number 44 Page number 272 black

272 C H A P T E R 5 • Number Representation andArithmetic Circuits

then, the arithmetic assignment statement

S = X + Y;

represents an n-bit adder.
In addition to the + operator, which is used for addition, Verilog also provides other

arithmetic operators. The Verilog operators are discussed fully in sections 6.6.5 of Chapter 6
and A.7 of Appendix A. The complete Verilog code that includes the preceding statement is
given in Figure 5.30. Since there is a single statement in the always block, it is not necessary
to include the begin and end delimiters. This code defines a circuit that generates the n sum
bits, but it does not include the carry-out signal. Also, it does not provide the arithmetic
overflow signal. One way in which these signals can be added is given in Figure 5.31.

The carry-out from the MSB position, n − 1, can be derived from the values of xn−1,
yn−1, and sn−1 by using the expression

carryout = xn−1yn−1 + xn−1sn−1 + yn−1sn−1

(Note that this is just a normal logic expression in which the + sign represents the OR
operation.) The expression for arithmetic overflow was defined in section 5.3.4 as cn⊕cn−1.
In our case, cn corresponds to carryout, but there is no direct way of accessing cn−1, which
is the carry from bit-position n− 2. It can be shown that the expression xn−1⊕ yn−1⊕ sn−1

corresponds to cn−1, thus

overflow = carryout ⊕ xn−1 ⊕ yn−1 ⊕ sn−1

The reader should verify the validity of these expressions as an exercise.
Another way of including the carry-out and overflow signals is shown in Figure 5.32.

The (n+1)-bit vector named Sum is used. The extra bit, Sum[n], becomes the carry-out
from bit-position n − 1 in the adder. The statement used to assign the sum of X, Y, and
carryin to the Sum signal uses an unusual syntax. The meaning of the terms in brackets,
namely {1’b0, X} and {1’b0, Y}, is that a 0 is concatenated on the left of the n-bit vectors
X and Y to create (n+1)-bit vectors. In Verilog the { , } operator is called the concatenate

module addern (carryin, X, Y, S);
parameter n = 32;
input carryin;
input [n 1:0] X, Y;
output [n 1:0] S;
reg [n 1:0] S;

always @(X or Y or carryin)
S = X + Y + carryin;

endmodule

Figure 5.30 Specification of an n-bit adder using arithmetic
assignment.

June 18, 2002 15:54 vra23151_ch05 Sheet number 45 Page number 273 black

5.5 Design of Arithmetic Circuits Using CAD Tools 273

parameter n = 32;
input carryin;
input X, Y;
output S;
output carryout, overflow;
reg S;
reg carryout, overflow;

always @(X or Y or carryin)
begin

S = X + Y + carryin;
carryout = (X[n 1] & Y[n 1]) | (X[n 1] & S[n 1]) | (Y[n 1] & S[n 1]);
overflow = carryout ∧ X[n−1] ∧ Y[n−1] ∧ S[n−1];

end

endmodule

[n 1:0]
[n 1:0]

[n 1:0]

module addern (carryin, X, Y, S, carryout, overflow);

Figure 5.31 An n-bit adder with carry-out and overflow signals.

module addern (carryin, X, Y, S, carryout, overflow);
parameter n = 32;
input carryin;
input X, Y;
output S;
output carryout, overflow;
reg S;
reg carryout, overflow;
reg [n:0] Sum;

always @(X or Y or carryin)
begin

Sum = {1’b0, X} + {1’b0, Y} + carryin;
S = Sum[n 1:0];
carryout = Sum[n];
overflow = carryout ∧ X[n 1] ∧ Y[n 1] ∧ S[n 1];

end

endmodule

[n 1:0]
[n 1:0]

[n 1:0]

Figure 5.32 An alternative specification of n-bit adder with carry-out
and overflow signals.

mzr
Rectangle

June 18, 2002 15:54 vra23151_ch05 Sheet number 46 Page number 274 black

274 C H A P T E R 5 • Number Representation andArithmetic Circuits

operator. If A is an m-bit vector and B is a k-bit vector, then {A, B} creates an (m+ k)-bit
vector comprising A as its most-significant m bits and B as its least-significant k bits. The
notation 1’b0 represents a one-bit binary number that has the value 0. The reason that the
concatenate operator is used in Figure 5.32 is to cause Sum[n] to be equivalent to the carry
from bit position n− 1. In effect, we created xn = yn = 0 so that

Sum[n] = 0 + 0 + cn−1

This example is useful because it provides a simple introduction to the concept of concate-
nation. But we could have written simply

Sum = X + Y + carryin;

Because Sum is an (n+1)-bit vector, the summation will be performed as if X and Y were
(n+1)-bit vectors in which 0s are padded on the left.

Another detail to observe from the figure is the statement

S = Sum[n−1:0];

This assigns the lower n bits of Sum to the output sum S. The next statement assigns the
carry-out from the addition, Sum[n], to the output signal carryout.

We show the code in Figures 5.31 and 5.32 to illustrate some features of Verilog in the
context of adder design. In general, a given design task can be performed using different
approaches, as we will see throughout the book. Let us attempt another specification of the
n-bit adder. In Figure 5.32 we use an (n+1)-bit vector, Sum, as an intermediate signal needed
to produce the n bits of S and the carry-out from the adder stage n− 1. This requires two
Verilog statements that extract the desired bits from Sum. We showed how concatenation
can be used to pad a 0 to vectors X and Y , but pointed out that this is not necessary because
a vector is automatically padded with 0s if it is involved in an arithmetic operation that
produces a result of greater bit size. We can use concatenation more effectively on the left
side of the addition statement by concatenating carryout to the S vector so that

{carryout, S} = X + Y + carryin;

Then there is no need for the Sum signal and the Verilog code is simplified as indicated in
Figure 5.33. Since both figures, 5.32 and 5.33, describe the same behavior of the adder, the
Verilog compiler is likely to generate the same circuit for either figure. The code in Figure
5.33 is simpler and more elegant.

Note that the same approach can be used to specify a full-adder circuit, as shown in
Figure 5.34. Unlike the specifications in Figures 5.23 to 5.26, which define the structure of
the full-adder in terms of basic logic operations, in this case the code describes its behavior
and the Verilog compiler implements the suitable details using the target technology.

When the Verilog compiler translates the code, it generates an adder circuit to implement
the + operator. When using the MAX+plusII CAD system, the adder used by the compiler
is actually the lpm_add_sub module shown in Figure 5.20. The compiler automatically
sets the parameters for the module so that it represents an n-bit adder corresponding to the
value of n declared in a parameter statement. The logic synthesis algorithms can generate
different circuits for different goals, such as cost or speed optimization, as discussed in

June 18, 2002 15:54 vra23151_ch05 Sheet number 47 Page number 275 black

5.5 Design of Arithmetic Circuits Using CAD Tools 275

module addern (carryin, X, Y, S, carryout, overflow);
parameter n = 32;
input carryin;
input [n 1:0] X, Y;
output [n 1:0] S;
output carryout, overflow;
reg [n 1:0] S;
reg carryout, overflow;

always @(X or Y or carryin)
begin

{carryout, S} = X + Y + carryin;

end

endmodule

overflow = carryout ∧ X[n 1] ∧ Y[n 1] ∧ S[n 1];

Figure 5.33 Simplified complete specification of n-bit adder.

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;
reg s, Cout;

always @(x or y or Cin)
{Cout, s} = x + y + Cin;

endmodule

Figure 5.34 Behavioral specification of a full-adder.

section 4.12. For completeness, we should also mention that the lpm_add_sub module can
be directly instantiated in Verilog code, in a similar way that the fulladd component was
instantiated in Figure 5.28. An example of this is given in section A.12, in Appendix A.

5.5.7 Representation of Numbers in Verilog Code

Numbers can be given as constants in Verilog code. They can be given as binary (b), octal
(o), hexadecimal (h), or decimal (d) numbers. Their size can be either fixed or unspecified.
For sized numbers the format is

<size_in_bits>’<radix_identifier><significant_digits>

mzr
Rectangle

mzr
Line

June 18, 2002 15:54 vra23151_ch05 Sheet number 48 Page number 276 black

276 C H A P T E R 5 • Number Representation andArithmetic Circuits

The size is a decimal number that gives the number of bits needed, the radix is identified
using letters b, o, h, or d, and the digits are given in the notation of the radix used. For
example, the decimal number 2217 can be represented using 12 bits as follows

12’b100010101001
12’o4251
12’h8A9
12’d2217

Unsized numbers are given without specifying the size. For example, the decimal number
278 may be given as

’b100010110
’o426
’h116
278

For decimal numbers it is not necessary to give the radix identifier d. When an unsized
number is used in an expression the Verilog compiler gives it a certain size, which is typically
the same as the size of the other operand(s) in the expression.

Negative numbers are represented by placing the minus sign in front. Thus, if −5 is
specified as −4’b101, it will be interpreted as a four-bit 2’s-complement of 5, which is
1011.

The specified size may exceed the number of bits that are actually needed to represent a
given number. In this case, the final representation is padded to the left to yield the required
size. However, if there are more digits than can fit into the number of bits given as the size,
the extra digits will be ignored.

To improve readability, it is possible to use the underscore character. Instead of writing
12’b100010101001, it is easier to visualize the same number as 12’b1000_1010_1001.

When numbers are used in the design of a circuit they become signals carried by wires
and manipulated by logic gates. So far, we have implicitly assumed that signals in a digital
circuit have values 0 and 1. In Chapter 3 we saw that a wire may be in a high-impedance
state, z. In Chapter 4 we sometimes used x to denote a signal that could be either 0 or 1.
These possibilities are included in Verilog, where any signal can have four possible values:
0, 1, z, and x. The symbol x is used to denote an unknown logic value, which could be any
of 0, 1, or z. A constant used in a Verilog design may be given as 8’hz3, which is the same
as 8’bzzzz0011. The specification 8’bx or 8’hx denotes an unknown eight-bit number. The
z and x values cannot be used with the decimal radix. When padding occurs, it is normally
0s that are padded to the left. But if the leftmost digit given is z or x, then these values are
padded to the left. We should note that either lower- or upper-case letters can be used for
the signal values z and x, as well as the radix identifiers b, o, h, and d.

Numbers represented by vectors of different bit sizes can be used in arithmetic opera-
tions. Suppose that A is an eight-bit vector and B is a four-bit vector. Then the statement

C = A + B;

will generate an eight-bit sum vector C. The result will be correct if B is a positive number.

June 18, 2002 15:54 vra23151_ch05 Sheet number 49 Page number 277 black

5.6 Multiplication 277

However, if B is a negative number expressed in 2’s complement representation, the result
will be incorrect because 0s will be padded on the left to make B an eight-bit vector for the
purpose of the addition operation. The value of a positive number does not change if 0s are
appended as the most-significant bits; the value of a negative number does not change if
1s are appended as the most-significant bits. Such replication of the sign bit is called sign
extension. Therefore, for correct operation it is necessary to use a sign-extended version of
B, which can be accomplished with concatenation in the statement

C = A + {4{B[3]}, B};

The notation 4{B[3]} denotes that the bit B[3] is replicated four times; it is equivalent to
writing {B[3], B[3], B[3], B[3]}. This is referred to as the replication operator, which is
discussed in section 6.6.5 in Chapter 6. If we want to generate a carry-out signal from bit
position 7, then we could adopt the approach in Figure 5.32 by using the statement

C = {1’b0, A} + {1’b0, 4{B[3]}, B};

5.6 Multiplication

Before we discuss the general issue of multiplication, we should note that a binary number,
B, can be multiplied by 2 simply by adding a zero to the right of its least-significant bit. This
effectively moves all bits of B to the left, and we say that B is shifted left by one bit position.
Thus if B = bn−1bn−2 · · · b1b0, then 2 × B = bn−1bn−2 · · · b1b00. (We have already used
this fact in section 5.2.3.) Similarly, a number is multiplied by 2k by shifting it left by k bit
positions. This is true for both unsigned and signed numbers.

We should also consider what happens if a binary number is shifted right by k bit
positions. According to the positional number representation, this action divides the number
by 2k . For unsigned numbers the shifting amounts to adding k zeros to the left of the most-
significant bit. For example, if B is an unsigned number, then B÷ 2 = 0bn−1bn−2 · · · b2b1.
Note that bit b0 is lost when shifting to the right. For signed numbers it is necessary to
preserve the sign. This is done by shifting the bits to the right and filling from the left with the
value of the sign bit. Hence if B is a signed number, then B ÷ 2 = bn−1bn−1bn−2 · · · b2b1.
For instance, if B = 011000 = (24)10, then B ÷ 2 = 001100 = (12)10 and B ÷ 4 =
000110 = (6)10. Similarly, if B = 101000 = −(24)10, then B ÷ 2 = 110100 = −(12)10

and B÷4 = 111010 = −(6)10. The reader should also observe that the smaller the positive
number, the more 0s there are to the left of the first 1, while for a negative number there are
more 1s to the left of the first 0.

Now we can turn our attention to the general task of multiplication. Two binary numbers
can be multiplied using the same method as we use for decimal numbers. We will focus our
discussion on multiplication of unsigned numbers. Figure 5.35a shows how multiplication
is performed manually, using four-bit numbers. Each multiplier bit is examined from right
to left. If a bit is equal to 1, an appropriately shifted version of the multiplicand is added
to form a partial product. If the multiplier bit is equal to 0, then nothing is added. The
sum of all shifted versions of the multiplicand is the desired product. Note that the product
occupies eight bits.

June 18, 2002 15:54 vra23151_ch05 Sheet number 50 Page number 278 black

278 C H A P T E R 5 • Number Representation andArithmetic Circuits

×

1 1 1 0

1 1 1 0
1 0 1 1

1 1 1 0
0 0 0 0

1 1 1 0

1 0 0 1 1 0 1 0

Multiplicand M
Multiplier Q

Product P

(14)
(11)

(154)

×

1 1 1 0

1 1 1 0
1 0 1 1

1 1 1 0

1 0 0 1 1 0 1 0

Multiplicand M
Multiplier Q

Product P

(11)
(14)

(154)

+

1 0 1 0 1
0 0 0 0+

0 1 0 1 0
1 1 1 0+

Partial product 0

Partial product 1

Partial product 2

(a) Multiplication by hand

(b) Multiplication for implementation in hardware

Figure 5.35 Multiplication of unsigned numbers.

The same scheme can be used to design a multiplier circuit. We will stay with four-bit
numbers to keep the discussion simple. Let the multiplicand, multiplier, and product be
denoted as M = m3m2m1m0, Q = q3q2q1q0, and P = p7p6p5p4p3p2p1p0, respectively.
One simple way of implementing the multiplication scheme is to use a sequential approach,
where an eight-bit adder is used to compute partial products. As a first step, the bit q0 is
examined. If q0 = 1, then M is added to the initial partial product, which is initialized to
0. If q0 = 0, then 0 is added to the partial product. Next q1 is examined. If q1 = 1, then
the value 2 × M is added to the partial product. The value 2 × M is created simply by
shifting M one bit position to the left. Similarly, 4 ×M is added to the partial product if
q2 = 1, and 8×M is added if q3 = 1. We will show in Chapter 10 how such a circuit may
be implemented.

This sequential approach leads to a relatively slow circuit, primarily because a single
eight-bit adder is used to perform all additions needed to generate the partial products and
the final product. A much faster circuit can be obtained if multiple adders are used to
compute the partial products.

June 18, 2002 15:54 vra23151_ch05 Sheet number 51 Page number 279 black

5.6 Multiplication 279

5.6.1 Array Multiplier for Unsigned Numbers

Figure 5.35b indicates how multiplication may be performed by using multiple adders. In
each step a four-bit adder is used to compute the new partial product. Note that as the
computation progresses, the least-significant bits are not affected by subsequent additions;
hence they can be passed directly to the final product, as indicated by blue arrows. Of
course, these bits are a part of the partial products as well.

A fast multiplier circuit can be designed using an array structure that is similar to
the organization in Figure 5.35b. Consider a 4 × 4 example, where the multiplicand and
multiplier are M = m3m2m1m0 and Q = q3q2q1q0, respectively. The partial product 0,
PP0 = pp03 pp02 pp01 pp00, can be generated using the AND of q0 with each bit of M .
Thus

PP0 = m3q0 m2q0 m1q0 m0q0

Partial product 1, PP1, is generated using the AND of q1 with M and adding it to PP0 as
follows

PP0: 0 pp03 pp02 pp01 pp00

+ m3q1 m2q1 m1q1 m0q0 0

PP1: pp14 pp13 pp12 pp11 pp10

Similarly, partial product 2, PP2, is generated using the AND of q2 with M and adding to
PP1, and so on.

A circuit that implements the preceding operations is arranged in an array, as shown in
Figure 5.36a. There are two types of blocks in the array. Part (b) of the figure shows the
details of the blocks in the top row, and part (c) shows the block used in the second and
third rows. Observe that the shifted versions of the multiplicand are provided by routing
the mk signals diagonally from one block to another. The full-adder included in each block
implements a ripple-carry adder to generate each partial product. It is possible to design
even faster multipliers by using other types of adders [1].

5.6.2 Multiplication of Signed Numbers

Multiplication of unsigned numbers illustrates the main issues involved in the design of
multiplier circuits. Multiplication of signed numbers is somewhat more complex.

If the multiplier operand is positive, it is possible to use essentially the same scheme as
for unsigned numbers. For each bit of the multiplier operand that is equal to 1, a properly
shifted version of the multiplicand must be added to the partial product. The multiplicand
can be either positive or negative.

Since shifted versions of the multiplicand are added to the partial products, it is
important to ensure that the numbers involved are represented correctly. For example,
if the two right-most bits of the multiplier are both equal to 1, then the first addition
must produce the partial product PP1 = M + 2M , where M is the multiplicand. If
M = mn−1mn−2 · · ·m1m0, then PP1 = mn−1mn−2 · · ·m1m0 + mn−1mn−2 · · ·m1m00. The

June 18, 2002 15:54 vra23151_ch05 Sheet number 52 Page number 280 black

280 C H A P T E R 5 • Number Representation andArithmetic Circuits

0

0

0

p7 p6 p5 p4 p3 p2 p1 p0

q2

q1

q3

q0

m3 m2 m1 m00

PP1

PP2

(a) Structure of the circuit

mk

q j

cin

Bit of PPi

FAcout

(c) A block in the bottom two rows

mk

q1

cinFAcout

(b) A block in the top row

q0

mk 1+

Figure 5.36 A 4× 4 multiplier circuit.

adder that performs this addition comprises circuitry that adds two operands of equal length.
Since shifting the multiplicand to the left, to generate 2M , results in one of the operands
having n + 1 bits, the required addition has to be performed using the second operand,
M , represented also as an (n + 1)-bit number. An n-bit signed number is represented
as an (n + 1)-bit number by using sign extension, that is, by replicating the sign bit as
the new left-most bit. Thus M = mn−1mn−2 · · ·m1m0 is represented using (n+ 1) bits as
M = mn−1mn−1mn−2 · · ·m1m0.

mzr
Rectangle

June 18, 2002 15:54 vra23151_ch05 Sheet number 53 Page number 281 black

5.6 Multiplication 281

When a shifted version of the multiplicand is added to a partial product, overflow has
to be avoided. Hence the new partial product must be larger by one extra bit. Figure
5.37a illustrates the process of multiplying two positive numbers. The sign-extended bits
are shown in blue. Part (b) of the figure involves a negative multiplicand. Note that the
resulting product has 2n bits in both cases.

For a negative multiplier operand, it is possible to convert both the multiplier and the
multiplicand into their 2’s complements because this will not change the value of the result.
Then the scheme for a positive multiplier can be used.

×

0 0 0 1 1 1 0

0 1 1 1 0
0 1 0 1 1

0 0 1 1 1 0

0 0 1 0 1 0 1
0 0 0 0 0 0

Multiplicand M
Multiplier Q

Product P

(+14)
(+11)

(+154)

+

+

0 0 0 1 0 1 0
0 0 1 1 1 0+

0 0 1 0 0 1 1
0 0 0 0 0 0+

0 0 1 0 0 1 1 0 1 0

Partial product 0

Partial product 1

Partial product 2

Partial product 3

×

1 1 1 0 0 1 0

1 0 0 1 0
0 1 0 1 1

1 1 0 0 1 0

1 1 0 1 0 1 1
0 0 0 0 0 0

Multiplicand M
Multiplier Q

Product P

(14)
(+11)

(154)

+

+

1 1 1 0 1 0 1
1 1 0 0 1 0+

1 1 0 1 1 0 0
0 0 0 0 0 0+

1 1 0 1 1 0 0 1 1 0

Partial product 0

Partial product 1

Partial product 2

Partial product 3

–

–

(a) Positive multiplicand

(b) Negative multiplicand

Figure 5.37 Multiplication of signed numbers.

June 18, 2002 15:54 vra23151_ch05 Sheet number 54 Page number 282 black

282 C H A P T E R 5 • Number Representation andArithmetic Circuits

We have presented a relatively simple scheme for multiplication of signed numbers.
There exist other techniques that are more efficient but also more complex. We will not
pursue these techniques, but an interested reader may consult reference [1].

We have discussed circuits that perform addition, subtraction, and multiplication. An-
other arithmetic operation that is needed in computer systems is division. Circuits that
perform division are more complex; we will present an example in Chapter 10. Various
techniques for performing division are usually discussed in books on the subject of computer
organization, and can be found in references [1, 2].

5.7 Other Number Representations

In the previous sections we dealt with binary integers represented in the positional number
representation. Other types of numbers are also used in digital systems. In this section we
will discuss briefly three other types: fixed-point, floating-point, and binary-coded decimal
numbers.

5.7.1 Fixed-Point Numbers

A fixed-point number consists of integer and fraction parts. It can be written in the posi-
tional number representation as

B = bn−1bn−2 · · · b1b0 . b−1b−2 · · · b−k

The value of the number is

V (B) =
n−1
∑

i=−k

bi × 2i

The position of the radix point is assumed to be fixed; hence the name fixed-point number.
If the radix point is not shown, then it is assumed to be to the right of the least-significant
digit, which means that the number is an integer.

Logic circuits that deal with fixed-point numbers are essentially the same as those used
for integers. We will not discuss them separately.

5.7.2 Floating-Point Numbers

Fixed-point numbers have a range that is limited by the significant digits used to represent
the number. For example, if we use eight digits and a sign to represent decimal integers,
then the range of values that can be represented is 0 to ±99999999. If eight digits are
used to represent a fraction, then the representable range is 0.00000001 to ±0.99999999.
In scientific applications it is often necessary to deal with numbers that are very large or
very small. Instead of using the fixed-point representation, which would require many
significant digits, it is better to use the floating-point representation in which numbers are

June 18, 2002 15:54 vra23151_ch05 Sheet number 55 Page number 283 black

5.7 Other Number Representations 283

represented by a mantissa comprising the significant digits and an exponent of the radix R.
The format is

Mantissa × RExponent

The numbers are often normalized, such that the radix point is placed to the right of the first
nonzero digit, as in 5.234× 1043 or 6.31× 10−28.

Binary floating-point representation has been standardized by the Institute of Electrical
and Electronic Engineers (IEEE) [3]. Two sizes of formats are specified in this standard—
a single-precision 32-bit format and a double-precision 64-bit format. Both formats are
illustrated in Figure 5.38.

Single-Precision Floating-Point Format
Figure 5.38a depicts the single-precision format. The left-most bit is the sign bit—0

for positive and 1 for negative numbers. There is an 8-bit exponent field, E, and a 23-bit
mantissa field, M . The exponent is with respect to the radix 2. Because it is necessary to
be able to represent both very large and very small numbers, the exponent can be either
positive or negative. Instead of simply using an 8-bit signed number as the exponent, which
would allow exponent values in the range −128 to 127, the IEEE standard specifies the
exponent in the excess-127 format. In this format the value 127 is added to the value of the
actual exponent so that

Exponent = E − 127

In this way E becomes a positive integer. This format is convenient for adding and subtract-
ing floating-point numbers because the first step in these operations involves comparing the
exponents to determine whether the mantissas must be appropriately shifted to add/subtract

Sign

32 bits

23 bits of mantissa
excess-127
exponent

8-bit

52 bits of mantissa11-bit excess-1023
exponent

64 bits

Sign

S M

S M

(a) Single precision

(c) Double precision

E

+

E

0 denotes
–1 denotes

Figure 5.38 IEEE Standard floating-point formats.

mzr
Rectangle

June 18, 2002 15:54 vra23151_ch05 Sheet number 56 Page number 284 black

284 C H A P T E R 5 • Number Representation andArithmetic Circuits

the significant bits. The range of E is 0 to 255. The extreme values of E = 0 and E = 255
are taken to denote the exact zero and infinity, respectively. Therefore, the normal range of
the exponent is −126 to 127, which is represented by the values of E from 1 to 254.

The mantissa is represented using 23 bits. The IEEE standard calls for a normalized
mantissa, which means that the most-significant bit is always equal to 1. Thus it is not
necessary to include this bit explicitly in the mantissa field. Therefore, if M is the bit vector
in the mantissa field, the actual value of the mantissa is 1.M , which gives a 24-bit mantissa.
Consequently, the floating-point format in Figure 5.35a represents the number

Value = ±1.M × 2E−127

The size of the mantissa field allows the representation of numbers that have the precision
of about seven decimal digits. The exponent field range of 2−126 to 2127 corresponds to
about 10±38.

Double-Precision Floating-Point Format
Figure 5.38b shows the double-precision format, which uses 64 bits. Both the exponent

and mantissa fields are larger. This format allows greater range and precision of numbers.
The exponent field has 11 bits, and it specifies the exponent in the excess-1023 format,
where

Exponent = E − 1023

The range of E is 0 to 2047, but again the values E = 0 and E = 2047 are used to indicate
the exact 0 and infinity, respectively. Thus the normal range of the exponent is −1022 to
1023, which is represented by the values of E from 1 to 2046.

The mantissa field has 52 bits. Since the mantissa is assumed to be normalized, its
actual value is again 1.M . Therefore, the value of a floating-point number is

Value = ±1.M × 2E−1023

This format allows representation of numbers that have the precision of about 16 decimal
digits and the range of approximately 10±308.

Arithmetic operations using floating-point operands are significantly more complex
than signed integer operations. Because this is a rather specialized domain, we will not
elaborate on the design of logic circuits that can perform such operations. For a more
complete discussion of floating-point operations, the reader may consult references [1, 2].

5.7.3 Binary-Coded-Decimal Representation

In digital systems it is possible to represent decimal numbers simply by encoding each digit
in binary form. This is called the binary-coded-decimal (BCD) representation. Because
there are 10 digits to encode, it is necessary to use four bits per digit. Each digit is encoded
by the binary pattern that represents its unsigned value, as shown in Table 5.3. Note that
only 10 of the 16 available patterns are used in BCD, which means that the remaining 6
patterns should not occur in logic circuits that operate on BCD operands; these patterns
are usually treated as don’t-care conditions in the design process. BCD representation was
used in some early computers as well as in many handheld calculators. Its main virtue is

June 18, 2002 15:54 vra23151_ch05 Sheet number 57 Page number 285 black

5.7 Other Number Representations 285

Table 5.3 Binary-coded
decimal digits.

Decimal digit BCD code

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

that it provides a format that is convenient when numerical information is to be displayed
on a simple digit-oriented display. Its drawbacks are complexity of circuits that perform
arithmetic operations and the fact that six of the possible code patterns are wasted.

Even though the importance of BCD representation has diminished, it is still encoun-
tered. To give the reader an indication of the complexity of the required circuits, we will
consider BCD addition in some detail.

BCD Addition
The addition of two BCD digits is complicated by the fact that the sum may exceed

9, in which case a correction will have to be made. Let X = x3x2x1x0 and Y = y3y2y1y0

represent the two BCD digits and let S = s3s2s1s0 be the desired sum digit, S = X + Y .
Obviously, if X +Y ≤ 9, then the addition is the same as the addition of 2 four-bit unsigned
binary numbers. But, if X + Y > 9, then the result requires two BCD digits. Moreover,
the four-bit sum obtained from the four-bit adder may be incorrect.

There are two cases where some correction has to be made: when the sum is greater
than 9 but no carry-out is generated using four bits, and when the sum is greater than 15 so
that a carry-out is generated using four bits. Figure 5.39 illustrates these cases. In the first
case the four-bit addition yields 7+ 5 = 12 = Z . To obtain a correct BCD result, we must
generate S = 2 and a carry-out of 1. The necessary correction is apparent from the fact
that the four-bit addition is a modulo-16 scheme, whereas decimal addition is a modulo-10
scheme. Therefore, a correct decimal digit can be generated by adding 6 to the result of
four-bit addition whenever this result exceeds 9. Thus we can arrange the computation as
follows

Z = X + Y

If Z ≤ 9, then S = Z and carry-out = 0

if Z > 9, then X = Z + 6 and carry-out = 1

June 18, 2002 15:54 vra23151_ch05 Sheet number 58 Page number 286 black

286 C H A P T E R 5 • Number Representation andArithmetic Circuits

+

1 1 0 0

0 1 1 1
0 1 0 1+

X
Y

Z

+
7
5

12
0 1 1 0+

1 0 0 1 0carry

+

1 0 0 0 1

1 0 0 0
1 0 0 1+

X
Y

Z

+
8
9

17
0 1 1 0+

1 0 1 1 1carry

S = 2

S = 7

Figure 5.39 Addition of BCD digits.

The second example in Figure 5.39 shows what happens when X +Y > 15. In this case the
four least-significant bits of Z represent the digit 1, which is wrong. But a carry is generated,
which corresponds to the value 16, that must be taken into account. Again adding 6 to the
intermediate sum Z provides the necessary correction.

Figure 5.40 gives a block diagram of a one-digit BCD adder that is based on this
scheme. The block that detects whether Z > 9 produces an output signal, Adjust, which
controls the multiplexer that provides the correction when needed. A second four-bit adder
generates the corrected sum bits. If Adjust = 0, then S = Z + 0; if Adjust = 1, then
S = Z + 6 and carry-out = 1.

The one-digit BCD adder can be specified in Verilog code by describing its behavior as
shown in Figure 5.41. Inputs X and Y , and output S are defined as four-bit numbers. The
intermediate sum, Z , is defined as a five-bit number. The if-else statement is used to provide
the adjustment explained above; hence it is not necessary to use an explicit Adjust signal.
To verify the functional correctness of the code, we performed a functional simulation. An
example of the obtained results is given in Figure 5.42.

If we wish to derive a circuit to implement the block diagram in Figure 5.40 by hand,
instead of by using Verilog, then the following approach can be used. To define the Adjust
function, we can observe that the intermediate sum will exceed 9 if the carry-out from the
four-bit adder is equal to 1, or if z3 = 1 and either z2 or z1 (or both) are equal to 1. Hence
the logic expression for this function is

Adjust = Carry-out+ z3(z2 + z1)

Instead of implementing another complete four-bit adder to perform the correction, we can
use a simpler circuit because the addition of constant 6 does not require the full capabil-
ity of a four-bit adder. Note that the least-significant bit of the sum, s0, is not affected at
all; hence s0 = z0. Atwo-bit adder may be used to develop bits s2 and s1. Bit s3 is the same as

June 18, 2002 15:54 vra23151_ch05 Sheet number 59 Page number 287 black

5.7 Other Number Representations 287

Four-bit adder

Detect if

MUX

Four-bit adder

sum 9>
6 0

X Y

Z

cout

cin
Carry-out

Adjust

S

0

Figure 5.40 Block diagram for a one-digit BCD adder.

module bcdadd (Cin, X, Y, S, Cout);
input Cin;
input [3:0] X, Y;
output [3:0] S;
output Cout;
reg [3:0] S;
reg Cout;
reg [4:0] Z;

always @(X or Y or Cin)
begin

Z = X + Y + Cin;
if (Z < 10)

{Cout, S} = Z;
else

{Cout, S} = Z + 6;
end

endmodule

Figure 5.41 Verilog code for a one-digit BCD adder.

June 18, 2002 15:54 vra23151_ch05 Sheet number 60 Page number 288 black

288 C H A P T E R 5 • Number Representation andArithmetic Circuits

Figure 5.42 Functional simulation of the Verilog code in Figure 5.41.

cou t

Four-bit adder

Two-bit adder

s3 s2 s1 s0

z3 z2 z1 z0

x3 x2 x1 x0 y3 y2 y1 y0

c in

Figure 5.43 Circuit for a one-digit BCD adder.

z3 if the carry-out from the two-bit adder is 0, and it is equal to z3 if this carry-out is equal
to 1. A complete circuit that implements this scheme is shown in Figure 5.43. Using the
one-digit BCD adder as a basic block, it is possible to build larger BCD adders in the same
way as a binary full-adder is used to build larger ripple-carry binary adders.

June 18, 2002 15:54 vra23151_ch05 Sheet number 61 Page number 289 black

5.8 ASCII Character Code 289

Subtraction of BCD numbers can be handled with the radix-complement approach. Just
as we use 2’s complement representation to deal with negative binary numbers, we can use
10’s complement representation to deal with decimal numbers. We leave the development
of such a scheme as an exercise for the reader (see problem 5.19).

5.8 ASCII Character Code

The most popular code for representing information in digital systems is used for both letters
and numbers, as well as for some control characters. It is known as the ASCII code, which
stands for the American Standard Code for Information Interchange. The code specified by
this standard is presented in Table 5.4.

The ASCII code uses seven-bit patterns to denote 128 different characters. Ten of the
characters are decimal digits 0 to 9. Note that the high-order bits have the same pattern,
b6b5b4 = 011, for all 10 digits. Each digit is identified by the low-order four bits, b3−0,
using the binary patterns for these digits. Capital and lowercase letters are encoded in a
way that makes sorting of textual information easy. The codes for A to Z are in ascending
numerical sequence, which means that the task of sorting letters (or words) is accomplished
by a simple arithmetic comparison of the codes that represent the letters.

Characters that are either letters of the alphabet or numbers are referred to as alphanu-
meric characters. In addition to these characters, the ASCII code includes punctuation
marks such as ! and ?; commonly used symbols such as & and %; and a collection of
control characters. The control characters are those needed in computer systems to handle
and transfer data among various devices. For example, the carriage return character, which
is abbreviated as CR in the table, indicates that the carriage, or cursor position, of an output
device, say, printer or display, should return to the left-most column.

TheASCII code is used to encode information that is handled as text. It is not convenient
for representation of numbers that are used as operands in arithmetic operations. For this
purpose, it is best to convert ASCII-encoded numbers into a binary representation that we
discussed before.

The ASCII standard uses seven bits to encode a character. In computer systems a more
natural size is eight bits, or one byte. There are two common ways of fitting an ASCII-
encoded character into a byte. One is to set the eighth bit, b7, to 0. Another is to use this
bit to indicate the parity of the other seven bits, which means showing whether the number
of 1s in the seven-bit code is even or odd.

Parity
The concept of parity is widely used in digital systems for error-checking purposes.

When digital information is transmitted from one point to another, perhaps by long wires, it
is possible for some bits to become corrupted during the transmission process. For example,
the sender may transmit a bit whose value is equal to 1, but the receiver observes a bit whose
value is 0. Suppose that a data item consists of n bits. A simple error-checking mechanism
can be implemented by including an extra bit, p, which indicates the parity of the n-bit item.
Two kinds of parity can be used. For even parity the p bit is given the value such that the
total number of 1s in the n + 1 transmitted bits (comprising the n-bit data and the parity

June 18, 2002 15:54 vra23151_ch05 Sheet number 62 Page number 290 black

290 C H A P T E R 5 • Number Representation andArithmetic Circuits

Table 5.4 The seven-bit ASCII code.

Bit
positions Bit positions 654

3210 000 001 010 011 100 101 110 111

0000 NUL DLE SPACE 0 @ P ´ p

0001 SOH DC1 ! 1 A Q a q

0010 STX DC2 ” 2 B R b r

0011 ETX DC3 # 3 C S c s

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U e u

0110 ACK SYN & 6 F V f v

0111 BEL ETB ’ 7 G W g w

1000 BS CAN (8 H X h x

1001 HT EM) 9 I Y i y

1010 LF SUB * : J Z j z

1011 VT ESC + ; K [k {

1100 FF FS , < L \ 1 |
1101 CR GS - = M] m }

1110 SO RS . > N ˆ n ˜

1111 SI US / ? O — ◦ DEL

NUL Null/Idle SI Shift in

SOH Start of header DLE Data link escape

STX Start of text DC1-DC4 Device control

ETX End of text NAK Negative acknowledgement

EOT End of transmission SYN Synchronous idle

ENQ Enquiry ETB End of transmitted block

ACQ Acknowledgement CAN Cancel (error in data)

BEL Audible signal EM End of medium

BS Back space SUB Special sequence

HT Horizontal tab ESC Escape

LF Line feed FS File separator

VT Vertical tab GS Group separator

FF Form feed RS Record separator

CR Carriage return US Unit separator

SO Shift out DEL Delete/Idle

Bit positions of code format = 6 5 4 3 2 1 0

June 18, 2002 15:54 vra23151_ch05 Sheet number 63 Page number 291 black

Problems 291

bit p) is even. For odd parity the p bit is given the value that makes the total number of 1s
odd. The sender generates the p bit based on the n-bit data item that is to be transmitted.
The receiver checks whether the parity of the received item is correct.

Parity generating and checking circuits can be realized with XOR gates. For example,
for a four-bit data item consisting of bits x3x2x1x0, the even parity bit can be generated as

p = x3 ⊕ x2 ⊕ x1 ⊕ x0

At the receiving end the checking is done using

c = p⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0

If c = 0, then the received item shows the correct parity. If c = 1, then an error has
occurred. Note that observing c = 0 is not a guarantee that the received item is correct.
If two or any even number of bits have their values inverted during the transmission, the
parity of the data item will not be changed; hence the error will not be detected. But if an
odd number of bits are corrupted, then the error will be detected.

The attractiveness of parity checking lies in its simplicity. There exist other more
sophisticated schemes that provide more reliable error-checking mechanisms [4]. We will
discuss parity circuits again in section 9.3.

Problems

5.1 Determine the decimal values of the following unsigned numbers:
(a) (0111011110)2

(b) (1011100111)2

(c) (3751)8

(d) (A25F)16

(e) (F0F0)16

5.2 Determine the decimal values of the following 1’s complement numbers:
(a) 0111011110
(b) 1011100111
(c) 1111111110

5.3 Determine the decimal values of the following 2’s complement numbers:
(a) 0111011110
(b) 1011100111
(c) 1111111110

5.4 Convert the decimal numbers 73, 1906,−95, and−1630 into signed 12-bit numbers in the
following representations:
(a) Sign and magnitude
(b) 1’s complement
(c) 2’s complement

June 18, 2002 15:54 vra23151_ch05 Sheet number 64 Page number 292 black

292 C H A P T E R 5 • Number Representation andArithmetic Circuits

5.5 Perform the following operations involving eight-bit 2’s complement numbers and indicate
whether arithmetic overflow occurs. Check your answers by converting to decimal sign-
and-magnitude representation.

00110110 01110101 11011111
+01000101 +11011110 +10111000

00110110 01110101 11010011
−00101011 −11010110 −11101100

5.6 Prove that the XOR operation is associative, which means that xi⊕(yi⊕zi) = (xi⊕yi)⊕zi.

5.7 Show that the circuit in Figure 5.5 implements the full-adder specified in Figure 5.4a.

5.8 Prove the validity of the simple rule for finding the 2’s complement of a number, which
was presented in section 5.3. Recall that the rule states that scanning a number from right
to left, all 0s and the first 1 are copied; then all remaining bits are complemented.

5.9 Prove the validity of the expression Overflow = cn ⊕ cn−1 for addition of n-bit signed
numbers.

5.10 In section 5.5.4 we stated that a carry-out signal, ck , from bit position k − 1 of an adder
circuit can be generated as ck = xk ⊕ yk ⊕ sk , where xk and yk are inputs and sk is the sum
bit. Verify the correctness of this statement.

5.11 Consider the circuit in Figure P5.1. Can this circuit be used as one stage in a carry-ripple
adder? Discuss the pros and cons.

5.12 Determine the number of gates needed to implement an n-bit carry-lookahead adder, as-
suming no fan-in constraints. Use AND, OR, and XOR gates with any number of inputs.

5.13 Determine the number of gates needed to implement an eight-bit carry-lookahead adder
assuming that the maximum fan-in for the gates is four.

5.14 In Figure 5.18 we presented the structure of a hierarchical carry-lookahead adder. Show
the complete circuit for a four-bit version of this adder, built using 2 two-bit blocks.

5.15 What is the critical delay path in the multiplier in Figure 5.33? What is the delay along this
path in terms of the number of gates?

5.16 (a) Write a Verilog module to describe the circuit block in Figure 5.36b. Use the CAD tools
to synthesize a circuit from the code and verify its functional correctness.
(b) Write a Verilog module to describe the circuit block in Figure 5.36c. Use the CAD tools
to synthesize a circuit from the code and verify its functional correctness.
(c) Write a Verilog module to describe the 4 × 4 multiplier shown in Figure 5.36a. Your
code should be hierarchical and should use the subcircuits designed in parts (a) and (b).
Synthesize a circuit from the code and verify its functional correctness.

5.17 Consider the Verilog code in Figure P5.2. Given the relationship between the signals IN and
OUT, what is the functionality of the circuit described by the code? Comment on whether
or not this code represents a good style to use for the functionality that it represents.

June 18, 2002 15:54 vra23151_ch05 Sheet number 65 Page number 293 black

Problems 293

ci 1+

gi

pixi

yi

i

si

VDD

c

Figure P5.1 Circuit for problem 5.11.

module problem5 17 (IN, OUT);
input [3:0] IN;
output [3:0] OUT;
reg [3:0] OUT;

always @(IN)
if (IN == 4’b0101) OUT = 4’b0001;
else if (IN == 4’b0110) OUT = 4’b0010;
else if (IN == 4’b0111) OUT = 4’b0011;
else if (IN == 4’b1001) OUT = 4’b0010;
else if (IN == 4’b1010) OUT = 4’b0100;
else if (IN == 4’b1011) OUT = 4’b0110;
else if (IN == 4’b1101) OUT = 4’b0011;
else if (IN == 4’b1110) OUT = 4’b0110;
else if (IN == 4’b1111) OUT = 4’b1001;
else OUT = 4’b0000;

endmodule

Figure P5.2 The code for problem 5.17.

June 18, 2002 15:54 vra23151_ch05 Sheet number 66 Page number 294 black

294 C H A P T E R 5 • Number Representation andArithmetic Circuits

5.18 Design a circuit that generates the 9’s complement of a BCD digit. Note that the 9’s
complement of d is 9− d .

5.19 Derive a scheme for performing subtraction using BCD operands. Show a block diagram
for the subtractor circuit.
Hint: Subtraction can be performed easily if the operands are in the 10’s complement (radix
complement) representation. In this representation the sign digit is 0 for a positive number
and 9 for a negative number.

5.20 Write complete Verilog code for the circuit that you derived in problem 5.19.

5.21 Suppose that we want to determine how many of the bits in a three-bit unsigned number
are equal to 1. Design the simplest circuit that can accomplish this task.

5.22 Repeat problem 5.21 for a six-bit unsigned number.

5.23 Repeat problem 5.21 for an eight-bit unsigned number.

5.24 Show a graphical interpretation of three-digit decimal numbers, similar to Figure 5.12. The
left-most digit is 0 for positive numbers and 9 for negative numbers. Verify the validity of
your answer by trying a few examples of addition and subtraction.

5.25 In a ternary number system there are three digits: 0, 1, and 2. Figure P5.3 defines a ternary
half-adder. Design a circuit that implements this half-adder using binary-encoded signals,
such that two bits are used for each ternary digit. Let A = a1a0, B = b1b0, and Sum = s1s0;
note that Carry is just a binary signal. Use the following encoding: 00 = (0)3, 01 = (1)3,
and 10 = (2)3. Minimize the cost of the circuit.

A B

0 0 0 0

0 1 0 1

0 2 0 2

1 0 0 1

1 1 0 2

1 2 1 0

2 0 0 2

2 1 1 0

2 2 1 1

Carry Sum

Figure P5.3 Ternary half-adder.

June 18, 2002 15:54 vra23151_ch05 Sheet number 67 Page number 295 black

References 295

5.26 Design a ternary full-adder circuit, using the approach described in problem 5.25.

5.27 Consider the subtractions 26− 27 = 99 and 18− 34 = 84. Using the concepts presented
in section 5.3.4, explain how these answers (99 and 84) can be interpreted as the correct
signed results of these subtractions.

References

1. V. C. Hamacher, Z. G. Vranesic and S. G. Zaky, Computer Organization, 5th ed.
(McGraw-Hill: New York, 2002).

2. D. A. Patterson and J. L. Hennessy, Computer Organization and Design—The
Hardware/Software Interface, 2nd ed. (Morgan Kaufmann: San Francisco, CA,
1998).

3. Institute of Electrical and Electronic Engineers (IEEE), “A Proposed Standard for
Floating-Point Arithmetic,” Computer 14, no. 3 (March 1981), pp. 51–62.

4. W. W. Peterson and E. J. Weldon Jr., Error-Correcting Codes, 2nd ed. (MIT Press:
Boston, MA, 1972).

June 13, 2002 15:36 vra23151_ch06 Sheet number 1 Page number 297 black

297

c h a p t e r

6
Combinational-Circuit Building

Blocks

6. Bf1–d3, e7–e6

June 13, 2002 15:36 vra23151_ch06 Sheet number 2 Page number 298 black

298 C H A P T E R 6 • Combinational-Circuit Building Blocks

Previous chapters have introduced the basic techniques for design of logic circuits. In practice, a few types
of logic circuits are often used as building blocks in larger designs. This chapter discusses a number of these
blocks and gives examples of their use. The chapter also includes a major section on Verilog, which describes
several key features of the language.

6.1 Multiplexers

Multiplexers were introduced briefly in Chapters 2 and 3. A multiplexer circuit has a
number of data inputs, one or more select inputs, and one output. It passes the signal value
on one of the data inputs to the output. The data input is selected by the values of the select
inputs. Figure 6.1 shows a 2-to-1 multiplexer. Part (a) gives the symbol commonly used.
The select input, s, chooses as the output of the multiplexer either input w0 or w1. The
multiplexer’s functionality can be described in the form of a truth table as shown in part (b)

of the figure. Part (c) gives a sum-of-products implementation of the 2-to-1 multiplexer,
and part (d) illustrates how it can be constructed with transmission gates.

Figure 6.2a depicts a larger multiplexer with four data inputs, w0, . . . , w3, and two
select inputs, s1 and s0. As shown in the truth table in part (b) of the figure, the two-bit
number represented by s1s0 selects one of the data inputs as the output of the multiplexer.
A sum-of-products implementation of the 4-to-1 multiplexer appears in Figure 6.2c. It

(a) Graphical symbol

f

s

w0

w1

0

1

(b) Truth table

0
1

f

fs

w0

w1

(c) Sum-of-products circuit

s

w0

w1

f

s

w0

w1

(d) Circuit with transmission gates

Figure 6.1 A 2-to-1 multiplexer.

June 13, 2002 15:36 vra23151_ch06 Sheet number 3 Page number 299 black

6.1 Multiplexers 299

(a) Graphical symbol

f

s1

w0
w1

00

01

(b) Truth table

w0
w1

s0

w2
w3

10

11

0
0
1
1

1
0
1

fs1

0

s0

w2
w3

f

(c) Circuit

s1

w0

w1

s0

w2

w3

Figure 6.2 A 4-to-1 multiplexer.

realizes the multiplexer function

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

It is possible to build larger multiplexers using the same approach. Usually, the num-
ber of data inputs, n, is an integer power of two. A multiplexer that has n data inputs,
w0, . . . , wn−1, requires � log2n � select inputs. Larger multiplexers can also be constructed
from smaller multiplexers. For example, the 4-to-1 multiplexer can be built using three
2-to-1 multiplexers as illustrated in Figure 6.3. If the 4-to-1 multiplexer is implemented
using transmission gates, then the structure in this figure is always used. Figure 6.4 shows
how a 16-to-1 multiplexer is constructed with five 4-to-1 multiplexers.

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 4 Page number 300 black

300 C H A P T E R 6 • Combinational-Circuit Building Blocks

s0

w0

w1

0

1

w2

w3

0

1

f
0

1

s1

Figure 6.3 Using 2-to-1 multiplexers to build a 4-to-1
multiplexer.

w8

w11

s1

w0

s0

w3

w4

w7

w12

w15

s3

s2

f

Figure 6.4 A 16-to-1 multiplexer.

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 5 Page number 301 black

6.1 Multiplexers 301

Example 6.1Figure 6.5 shows a circuit that has two inputs, x1 and x2, and two outputs, y1 and y2. As
indicated by the blue lines, the function of the circuit is to allow either of its inputs to be
connected to either of its outputs, under the control of another input, s. A circuit that has
n inputs and k outputs, whose sole function is to provide a capability to connect any input
to any output, is usually referred to as an n×k crossbar switch. Crossbars of various sizes
can be created, with different numbers of inputs and outputs. When there are two inputs
and two outputs, it is called a 2×2 crossbar.

Figure 6.5b shows how the 2×2 crossbar can be implemented using 2-to-1 multiplexers.
The multiplexer select inputs are controlled by the signal s. If s = 0, the crossbar connects
x1 to y1 and x2 to y2, while if s = 1, the crossbar connects x1 to y2 and x2 to y1. Crossbar
switches are useful in many practical applications in which it is necessary to be able to
connect one set of wires to another set of wires, where the connection pattern changes from
time to time.

Example 6.2We introduced field-programmable gate array (FPGA) chips in section 3.6.5. Figure 3.39
depicts a small FPGAthat is programmed to implement a particular circuit. The logic blocks
in the FPGA have two inputs, and there are four tracks in each routing channel. Each of the
programmable switches that connects a logic block input or output to an interconnection
wire is shown as an X. A small part of Figure 3.39 is reproduced in Figure 6.6a. For clarity,
the figure shows only a single logic block and the interconnection wires and switches
associated with its input terminals.

x1 0

1

x2 0

1

s

y1

y2

x1

x2

y1

y2

(a) A 2x2 crossbar switch

(b) Implementation using multiplexers

s

Figure 6.5 A practical application of multiplexers.

June 13, 2002 15:36 vra23151_ch06 Sheet number 6 Page number 302 black

302 C H A P T E R 6 • Combinational-Circuit Building Blocks

i1

i2

f

(a) Part of the FPGA in Figure 3.39

Storage
cell

0/1

0/1

i1

i2

f

(b) Implementation using pass transistors

i1

i2

f

(c) Implementation using multiplexers

0/1 0/1 0/1

0/1 0/1 0/1

0/10/1

0/10/1

Figure 6.6 Implementing programmable switches in an FPGA.

June 13, 2002 15:36 vra23151_ch06 Sheet number 7 Page number 303 black

6.1 Multiplexers 303

One way in which the programmable switches can be implemented is illustrated in
Figure 6.6b. Each X in part (a) of the figure is realized using an NMOS transistor controlled
by a storage cell. This type of programmable switch was also shown in Figure 3.68. We
described storage cells briefly in section 3.6.5 and will discuss them in more detail in section
10.1. Each cell stores a single logic value, either 0 or 1, and provides this value as the output
of the cell. Each storage cell is built by using several transistors. Thus the eight cells shown
in the figure use a significant amount of chip area.

The number of storage cells needed can be reduced by using multiplexers, as shown
in Figure 6.6c. Each logic block input is fed by a 4-to-1 multiplexer, with the select inputs
controlled by storage cells. This approach requires only four storage cells, instead of eight.
In commercial FPGAs the multiplexer-based approach is usually adopted.

6.1.1 Synthesis of Logic Functions Using Multiplexers

Multiplexers are useful in many practical applications, such as those described above. They
can also be used in a more general way to synthesize logic functions. Consider the example
in Figure 6.7a. The truth table defines the function f = w1 ⊕ w2. This function can be
implemented by a 4-to-1 multiplexer in which the values of f in each row of the truth table
are connected as constants to the multiplexer data inputs. The multiplexer select inputs are
driven by w1 and w2. Thus for each valuation of w1w2, the output f is equal to the function
value in the corresponding row of the truth table.

The above implementation is straightforward, but it is not very efficient. A better
implementation can be derived by manipulating the truth table as indicated in Figure 6.7b,
which allows f to be implemented by a single 2-to-1 multiplexer. One of the input signals,
w1 in this example, is chosen as the select input of the 2-to-1 multiplexer. The truth table
is redrawn to indicate the value of f for each value of w1. When w1 = 0, f has the same
value as input w2, and when w1 = 1, f has the value of w2. The circuit that implements
this truth table is given in Figure 6.7c. This procedure can be applied to synthesize a circuit
that implements any logic function.

Example 6.3Figure 6.8a gives the truth table for the three-input majority function, and it shows how the
truth table can be modified to implement the function using a 4-to-1 multiplexer. Any two
of the three inputs may be chosen as the multiplexer select inputs. We have chosen w1 and
w2 for this purpose, resulting in the circuit in Figure 6.8b.

Example 6.4Figure 6.9a indicates how the function f = w1⊕w2⊕w3 can be implemented using 2-to-1
multiplexers. When w1 = 0, f is equal to the XOR of w2 and w3, and when w1 = 1, f is the
XNOR of w2 and w3. The left multiplexer in the circuit produces w2 ⊕w3, using the result
from Figure 6.7, and the right multiplexer uses the value of w1 to select either w2⊕w3 or its

June 13, 2002 15:36 vra23151_ch06 Sheet number 8 Page number 304 black

304 C H A P T E R 6 • Combinational-Circuit Building Blocks

(a) Implementation using a 4-to-1 multiplexer

f

w1

0
1

0
1

w2

1
0

0
0
1
1

1
0
1

fw1

0

w2

1
0

(b) Modified truth table

0
1

0
0
1
1

1
0
1

fw1

0

w2

1
0

f
w2

w1

0
1

fw1

w2

w2

(c) Circuit

Figure 6.7 Synthesis of a logic function using mutiplexers.

complement. Note that we could have derived this circuit directly by writing the function
as f = (w2 ⊕ w3)⊕ w1.

Figure 6.10 gives an implementation of the three-input XOR function using a 4-to-1
multiplexer. Choosing w1 and w2 for the select inputs results in the circuit shown.

6.1.2 Multiplexer Synthesis Using Shannon’s Expansion

Figures 6.8 through 6.10 illustrate how truth tables can be interpreted to implement logic
functions using multiplexers. In each case the inputs to the multiplexers are the constants
0 and 1, or some variable or its complement. Besides using such simple inputs, it is pos-
sible to connect more complex circuits as inputs to a multiplexer, allowing functions to be
synthesized using a combination of multiplexers and other logic gates. Suppose that we

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 9 Page number 305 black

6.1 Multiplexers 305

w3

w3

f

w1

0

w2

1

(a) Modified truth table

(b) Circuit

00
0
1
1

1
0
1

fw1

0

w2

1

0 0

0 1

1 0

1 1

0

0

0

1

0 0

0 1

1 0

1 1

0

1

1

1

w1 w2 w3 f

0

0

0

0

1

1

1

1

w3

Figure 6.8 Implementation of the three-input majority function
using a 4-to-1 multiplexer.

(a) Truth table

0 0

0 1

1 0

1 1

0

1

1

0

0 0

0 1

1 0

1 1

1

0

0

1

w1 w2 w3 f

0

0

0

0

1

1

1

1

w2 w3⊕

w2 w3⊕

f

w3

w1

(b) Circuit

w2

Figure 6.9 Three-input XOR implemented with 2-to-1 multiplexers.

mzr
Rectangle

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 10 Page number 306 black

306 C H A P T E R 6 • Combinational-Circuit Building Blocks

f

w1

w2

(a) Truth table (b) Circuit

0 0

0 1

1 0

1 1

0

1

1

0

0 0

0 1

1 0

1 1

1

0

0

1

w1 w2 w3 f

0

0

0

0

1

1

1

1

w3

w3

w3

w3

w3

Figure 6.10 Three-input XOR implemented with a 4-to-1 multiplexer.

want to implement the three-input majority function in Figure 6.8 using a 2-to-1 multiplexer
in this way. Figure 6.11 shows an intuitive way of realizing this function. The truth table
can be modified as shown on the right. If w1 = 0, then f = w2w3, and if w1 = 1, then
f = w2 + w3. Using w1 as the select input for a 2-to-1 multiplexer leads to the circuit in
Figure 6.11b.

This implementation can be derived using algebraic manipulation as follows. The
function in Figure 6.11a is expressed in sum-of-products form as

f = w1w2w3 + w1w2w3 + w1w2w3 + w1w2w3

It can be manipulated into

f = w1(w2w3)+ w1(w2w3 + w2w3 + w2w3)

= w1(w2w3)+ w1(w2 + w3)

which corresponds to the circuit in Figure 6.11b.
Multiplexer implementations of logic functions require that a given function be decom-

posed in terms of the variables that are used as the select inputs. This can be accomplished
by means of a theorem proposed by Claude Shannon [1].

Shannon’s Expansion Theorem Any Boolean function f (w1, . . . , wn) can be written in
the form

f (w1, w2, . . . , wn) = w1 · f (0, w2, . . . , wn)+ w1 · f (1, w2, . . . , wn)

This expansion can be done in terms of any of the n variables. We will leave the proof of
the theorem as an exercise for the reader (see problem 6.9).

To illustrate its use, we can apply the theorem to the three-input majority function,
which can be written as

f (w1, w2, w3) = w1w2 + w1w3 + w2w3

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 11 Page number 307 black

6.1 Multiplexers 307

(a) Truth table

0 0

0 1

1 0

1 1

0

0

0

1

0 0

0 1

1 0

1 1

0

1

1

1

w1 w2 w3 f

0

0

0

0

1

1

1

1

(b) Circuit

0
1

fw1

w2w3

w2 w3+

f

w3

w1w2

Figure 6.11 The three-input majority function implemented using a
2-to-1 multiplexer.

Expanding this function in terms of w1 gives

f = w1(w2w3)+ w1(w2 + w3)

which is the expression that we derived above.
For the three-input XOR function, we have

f = w1 ⊕ w2 ⊕ w3

= w1 · (w2 ⊕ w3)+ w1 · (w2 ⊕ w3)

which gives the circuit in Figure 6.9b.
In Shannon’s expansion the term f (0, w2, . . . , wn) is called the cofactor of f with respect

to w1; it is denoted in shorthand notation as fw1 . Similarly, the term f (1, w2, . . . , wn) is
called the cofactor of f with respect to w1, written fw1 . Hence we can write

f = w1fw1 + w1fw1

In general, if the expansion is done with respect to variable wi, then fwi denotes
f (w1, . . . , wi−1, 1, wi+1, . . . , wn) and

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 12 Page number 308 black

308 C H A P T E R 6 • Combinational-Circuit Building Blocks

f (w1, . . . , wn) = wifwi + wifwi

The complexity of the logic expression may vary, depending on which variable, wi, is used,
as illustrated in Example 6.5.

Example 6.5 For the function f = w1w3 + w2w3, decomposition using w1 gives

f = w1fw1 + w1fw1

= w1(w3 + w2)+ w1(w2w3)

Using w2 instead of w1 produces

f = w2fw2 + w2fw2

= w2(w1w3)+ w2(w1 + w3)

Finally, using w3 gives

f = w3fw3 + w3fw3

= w3(w2)+ w3(w1)

The results generated using w1 and w2 have the same cost, but the expression produced
using w3 has a lower cost. In practice, the CAD tools that perform decompositions of this
type try a number of alternatives and choose the one that produces the best result.

Shannon’s expansion can be done in terms of more than one variable. For example,
expanding a function in terms of w1 and w2 gives

f (w1, . . . , wn) = w1w2 · f (0, 0, w3, . . . , wn)+ w1w2 · f (0, 1, w3, . . . , wn) +
w1w2 · f (1, 0, w3, …̧, wn)+ w1w2 · f (1, 1, w3, . . . , wn)

This expansion gives a form that can be implemented using a 4-to-1 multiplexer. If Shan-
non’s expansion is done in terms of all n variables, then the result is the canonical sum-of-
products form, which was defined in section 2.6.1.

Example 6.6 Assume that we wish to implement the function

f = w1w3 + w1w2 + w1w3

using a 2-to-1 multiplexer and any other necessary gates. Shannon’s expansion using w1

gives

f = w1fw1 + w1fw1

= w1(w3)+ w1(w2 + w3)

The corresponding circuit is shown in Figure 6.12a. Assume now that we wish to use a
4-to-1 multiplexer instead. Further decomposition using w2 gives

f = w1w2fw1w2 + w1w2fw1w2 + w1w2fw1w2 + w1w2fw1w2

= w1w2(w3)+ w1w2(w3)+ w1w2(w3)+ w1w2(1)

The circuit is shown in Figure 6.12b.

June 13, 2002 15:36 vra23151_ch06 Sheet number 13 Page number 309 black

6.1 Multiplexers 309

(a) Using a 2-to-1 multiplexer

f

w2

w1

w3

f

w1

w2

w3

(b) Using a 4-to-1 multiplexer

1

Figure 6.12 The circuits synthesized in Example 6.6.

Example 6.7Consider the three-input majority function

f = w1w2 + w1w3 + w2w3

We wish to implement this function using only 2-to-1 multiplexers. Shannon’s expansion
using w1 yields

f = w1(w2w3)+ w1(w2 + w3 + w2w3)

= w1(w2w3)+ w1(w2 + w3)

Let g = w2w3 and h = w2 + w3. Expansion of both g and h using w2 gives

g = w2(0)+ w2(w3)

h = w2(w3)+ w2(1)

The corresponding circuit is shown in Figure 6.13. It is equivalent to the 4-to-1 multiplexer
circuit derived using a truth table in Figure 6.8.

Example 6.8In section 3.6.5 we said that most FPGAs use lookup tables for their logic blocks. Assume
that an FPGA exists in which each logic block is a three-input lookup table (3-LUT).
Because it stores a truth table, a 3-LUT can realize any logic function of three variables.
Using Shannon’s expansion, any four-variable function can be realized with at most three
3-LUTs. Consider the function

f = w2w3 + w1w2w3 + w2w3w4 + w1w2w4

June 13, 2002 15:36 vra23151_ch06 Sheet number 14 Page number 310 black

310 C H A P T E R 6 • Combinational-Circuit Building Blocks

w2

0
w3

1

f

w1

Figure 6.13 The circuit synthesized in Example 6.7.

Expansion in terms of w1 produces

f = w1fw1 + w1fw1

= w1(w2w3 + w2w3 + w2w3w4)+ w1(w2w3 + w2w3w4 + w2w4)

= w1(w2w3 + w2w3)+ w1(w2w3 + w2w3w4 + w2w4)

A circuit with three 3-LUTs that implements this expression is shown in Figure 6.14a.
Decomposition of the function using w2, instead of w1, gives

w2
w3

f

w4

w1

f w1

(a) Using three 3-LUTs

(b) Using two 3-LUTs

f w1

w1
w3

f

w4

0
f w2

w2

0

Figure 6.14 Circuits synthesized in Example 6.8.

June 13, 2002 15:36 vra23151_ch06 Sheet number 15 Page number 311 black

6.2 Decoders 311

f = w2fw2 + w2fw2

= w2(w3 + w1w4)+ w2(w1w3 + w3w4)

Observe that f w2
= fw2 ; hence only two 3-LUTs are needed, as illustrated in Figure 6.14b.

The LUT on the right implements the two-variable function w2fw2 + w2f w2
.

Since it is possible to implement any logic function using multiplexers, general-purpose
chips exist that contain multiplexers as their basic logic resources. Both Actel Corporation
[2] and QuickLogic Corporation [3] offer FPGAs in which the logic block comprises an ar-
rangement of multiplexers. Texas Instruments offers gate array chips that have multiplexer-
based logic blocks [4].

6.2 Decoders

Decoder circuits are used to decode encoded information. A binary decoder, depicted in
Figure 6.15, is a logic circuit with n inputs and 2n outputs. Only one output is asserted
at a time, and each output corresponds to one valuation of the inputs. The decoder also
has an enable input, En, that is used to disable the outputs; if En = 0, then none of the
decoder outputs is asserted. If En= 1, the valuation of wn−1 · · ·w1w0 determines which of
the outputs is asserted. An n-bit binary code in which exactly one of the bits is set to 1 at a
time is referred to as one-hot encoded, meaning that the single bit that is set to 1 is deemed
to be “hot.” The outputs of a binary decoder are one-hot encoded.

A 2-to-4 decoder is given in Figure 6.16. The two data inputs are w1 and w0. They
represent a two-bit number that causes the decoder to assert one of the outputs y0, . . . , y3.
Although a decoder can be designed to have either active-high or active-low outputs, in
Figure 6.16 active-high outputs are assumed. Setting the inputs w1w0 to 00, 01, 10, or 11
causes the output y0, y1, y2, or y3 to be set to 1, respectively. A graphical symbol for the
decoder is given in part (b) of the figure, and a logic circuit is shown in part (c).

Larger decoders can be built using the sum-of-products structure in Figure 6.16c, or
else they can be constructed from smaller decoders. Figure 6.17 shows how a 3-to-8 decoder
is built with two 2-to-4 decoders. The w2 input drives the enable inputs of the two decoders.
The top decoder is enabled if w2 = 0, and the bottom decoder is enabled if w2 = 1. This
concept can be applied for decoders of any size. Figure 6.18 shows how five 2-to-4 decoders
can be used to construct a 4-to-16 decoder. Because of its treelike structure, this type of
circuit is often referred to as a decoder tree.

w0

wn 1–

n
inputs

EnEnable

2n

outputs

y0

y2n 1–

Figure 6.15 An n-to-2n binary decoder.

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 16 Page number 312 black

312 C H A P T E R 6 • Combinational-Circuit Building Blocks

(b) Graphical symbol(a) Truth table

0
0
1
1

1
0
1

y0w1

0

w0

(c) Logic circuit

w1

w0

x x

1
1

0

1
1

En

0
0
0

1

0

y1

1
0
0

0

0

y2

0
1
0

0

0

y3

0
0
1

0

0

y0

y1

y2

y3

En

w0

En

y0

w1 y1

y2

y3

Figure 6.16 A 2-to-4 decoder.

w2

w0 y0

y1

y2

y3

w0

En

y0

w1 y1

y2

y3

w0

En

y0

w1 y1

y2

y3

y4

y5

y6

y7

w1

En

Figure 6.17 A 3-to-8 decoder using two 2-to-4 decoders.

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 17 Page number 313 black

6.2 Decoders 313

w0

En

y0

w1 y1

y2

y3

y8

y9

y10

y11

w2

w0 y0

y1

y2

y3

w0

En

y0

w1 y1

y2

y3

w0

En

y0

w1 y1

y2

y3

y4

y5

y6

y7

w1

w0

En

y0

w1 y1

y2

y3

y12

y13

y14

y15

w0

En

y0

w1 y1

y2

y3

w3

En

Figure 6.18 A 4-to-16 decoder built using a decoder tree.

Example 6.9Decoders are useful for many practical purposes. In Figure 6.2c we showed the sum-of-
products implementation of the 4-to-1 multiplexer, which requiresAND gates to distinguish
the four different valuations of the select inputs s1 and s0. Since a decoder evaluates the
values on its inputs, it can be used to build a multiplexer as illustrated in Figure 6.19. The
enable input of the decoder is not needed in this case, and it is set to 1. The four outputs of
the decoder represent the four valuations of the select inputs.

Example 6.10In Figure 3.59 we showed how a 2-to-1 multiplexer can be constructed using two tri-state
buffers. This concept can be applied to any size of multiplexer, with the addition of a
decoder. An example is shown in Figure 6.20. The decoder enables one of the tri-state
buffers for each valuation of the select lines, and that tri-state buffer drives the output, f ,
with the selected data input. We have now seen that multiplexers can be implemented in
various ways. The choice of whether to employ the sum-of-products form, transmission
gates, or tri-state buffers depends on the resources available in the chip being used. For

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 18 Page number 314 black

314 C H A P T E R 6 • Combinational-Circuit Building Blocks

w1

w0

w0

En

y0

w1 y1

y2

y3

w2

w3

f

s0
s1

1

Figure 6.19 A 4-to-1 multiplexer built using a decoder.

instance, most FPGAs that use lookup tables for their logic blocks do not contain tri-state
buffers. Hence multiplexers must be implemented in the sum-of-products form using the
lookup tables (see problem 6.15).

6.2.1 Demultiplexers

We showed in section 6.1 that a multiplexer has one output, n data inputs, and � log2n �
select inputs. The purpose of the multiplexer circuit is to multiplex the n data inputs onto
the single data output under control of the select inputs. A circuit that performs the opposite
function, namely, placing the value of a single data input onto multiple data outputs, is

w1

w0

w0

En

y0

w1 y1

y2

y3

f

s0
s1

1 w2

w3

Figure 6.20 A 4-to-1 multiplexer built using a decoder and tri-state
buffers.

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 19 Page number 315 black

6.2 Decoders 315

called a demultiplexer. The demultiplexer can be implemented using a decoder circuit. For
example, the 2-to-4 decoder in Figure 6.16 can be used as a 1-to-4 demultiplexer. In this
case the En input serves as the data input for the demultiplexer, and the y0 to y3 outputs
are the data outputs. The valuation of w1w0 determines which of the outputs is set to the
value of En. To see how the circuit works, consider the truth table in Figure 6.16a. When
En = 0, all the outputs are set to 0, including the one selected by the valuation of w1w0.
When En = 1, the valuation of w1w0 sets the appropriate output to 1.

In general, an n-to-2n decoder circuit can be used as a 1-to-n demultiplexer. However, in
practice decoder circuits are used much more often as decoders rather than as demultiplexers.
In many applications the decoder’s En input is not actually needed; hence it can be omitted.
In this case the decoder always asserts one of its data outputs, y0, . . . , y2n−1, according to
the valuation of the data inputs, wn−1 . . . w0. Example 6.11 uses a decoder that does not
have the En input.

Example 6.11One of the most important applications of decoders is in memory blocks, which are used to
store information. Such memory blocks are included in digital systems, such as computers,
where there is a need to store large amounts of information electronically. One type of
memory block is called a read-only memory (ROM). A ROM consists of a collection of
storage cells, where each cell permanently stores a single logic value, either 0 or 1. Figure
6.21 shows an example of a ROM block. The storage cells are arranged in 2m rows with n

Sel2

Sel1

Sel0

Sel2m 1–

Address

Read

d0dn 1– dn 2–

m
-t

o-
2m

 d
ec

od
er

0/1 0/1 0/1

0/10/10/1

0/1 0/1 0/1

0/10/10/1

Data

a0

a1

am 1–

Figure 6.21 A 2m × n read-only memory (ROM) block.

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 20 Page number 316 black

316 C H A P T E R 6 • Combinational-Circuit Building Blocks

cells per row. Thus each row stores n bits of information. The location of each row in the
ROM is identified by its address. In the figure the row at the top of the ROM has address
0, and the row at the bottom has address 2m − 1. The information stored in the rows can
be accessed by asserting the select lines, Sel0 to Sel2m−1. As shown in the figure, a decoder
with m inputs and 2m outputs is used to generate the signals on the select lines. Since
the inputs to the decoder choose the particular address (row) selected, they are called the
address lines. The information stored in the row appears on the data outputs of the ROM,
dn−1, . . . , d0, which are called the data lines. Figure 6.21 shows that each data line has
an associated tri-state buffer that is enabled by the ROM input named Read. To access, or
read, data from the ROM, the address of the desired row is placed on the address lines and
Read is set to 1.

Many different types of memory blocks exist. In a ROM the stored information can
be read out of the storage cells, but it cannot be changed (see problem 6.31). Another
type of ROM allows information to be both read out of the storage cells and stored, or
written, into them. Reading its contents is the normal operation, whereas writing requires
a special procedure. Such a memory block is called a programmable ROM (PROM). The
storage cells in a PROM are usually implemented using EEPROM transistors. We discussed
EEPROM transistors in section 3.10 to show how they are used in PLDs. Other types of
memory blocks are discussed in section 10.1.

6.3 Encoders

An encoder performs the opposite function of a decoder. It encodes given information into
a more compact form.

6.3.1 Binary Encoders

A binary encoder encodes information from 2n inputs into an n-bit code, as indicated in
Figure 6.22. Exactly one of the input signals should have a value of 1, and the outputs
present the binary number that identifies which input is equal to 1. The truth table for a
4-to-2 encoder is provided in Figure 6.23a. Observe that the output y0 is 1 when either
input w1 or w3 is 1, and output y1 is 1 when input w2 or w3 is 1. Hence these outputs can be
generated by the circuit in Figure 6.23b. Note that we assume that the inputs are one-hot

2n

inputs

w0

w2n 1–

y0

yn 1–

n
outputs

Figure 6.22 A 2n-to-n binary encoder.

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 21 Page number 317 black

6.3 Encoders 317

(a) Truth table

0
0
1
1

1
0
1

w3 y1

0

y0

(b) Circuit

w1

w0

0
0
1

0

w2

0
1
0

0

w1

1
0
0

0

w0

0
0
0

1

y0

w2

w3
y1

Figure 6.23 A 4-to-2 binary encoder.

encoded. All input patterns that have multiple inputs set to 1 are not shown in the truth
table, and they are treated as don’t-care conditions.

Encoders are used to reduce the number of bits needed to represent given information.
A practical use of encoders is for transmitting information in a digital system. Encoding
the information allows the transmission link to be built using fewer wires. Encoding is also
useful if information is to be stored for later use because fewer bits need to be stored.

6.3.2 Priority Encoders

Another useful class of encoders is based on the priority of input signals. In a priority
encoder each input has a priority level associated with it. The encoder outputs indicate the
active input that has the highest priority. When an input with a high priority is asserted, the
other inputs with lower priority are ignored. The truth table for a 4-to-2 priority encoder is
shown in Figure 6.24. It assumes that w0 has the lowest priority and w3 the highest. The
outputs y1 and y0 represent the binary number that identifies the highest priority input set
to 1. Since it is possible that none of the inputs is equal to 1, an output, z, is provided to
indicate this condition. It is set to 1 when at least one of the inputs is equal to 1. It is set to
0 when all inputs are equal to 0. The outputs y1 and y0 are not meaningful in this case, and
hence the first row of the truth table can be treated as a don’t-care condition for y1 and y0.

The behavior of the priority encoder is most easily understood by first considering
the last row in the truth table. It specifies that if input w3 is 1, then the outputs are set to
y1y0 = 11. Because w3 has the highest priority level, the values of inputs w2, w1, and w0

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 22 Page number 318 black

318 C H A P T E R 6 • Combinational-Circuit Building Blocks

d
0
0
1

0
1
0

w0 y1

d

y0

1 1

0
1

1

1
1

z

1
x
x

0

x

w1

0
1
x

0

x

w2

0
0
1

0

x

w3

0
0
0

0

1

Figure 6.24 Truth table for a 4-to-2 priority encoder.

do not matter. To reflect the fact that their values are irrelevant, w2, w1, and w0 are denoted
by the symbol x in the truth table. The second-last row in the truth table stipulates that if
w2 = 1, then the outputs are set to y1y0 = 10, but only if w3 = 0. Similarly, input w1

causes the outputs to be set to y1y0 = 01 only if both w3 and w2 are 0. Input w0 produces
the outputs y1y0 = 00 only if w0 is the only input that is asserted.

Alogic circuit that implements the truth table can be synthesized by using the techniques
developed in Chapter 4. However, a more convenient way to derive the circuit is to define
a set of intermediate signals, i0, . . . , i3, based on the observations above. Each signal, ik ,
is equal to 1 only if the input with the same index, wk , represents the highest-priority input
that is set to 1. The logic expressions for i0, . . . , i3 are

i0 = w3w2w1w0

i1 = w3w2w1

i2 = w3w2

i3 = w3

Using the intermediate signals, the rest of the circuit for the priority encoder has the same
structure as the binary encoder in Figure 6.23, namely

y0 = i1 + i3
y1 = i2 + i3

The output z is given by

z = i1 + i2 + i3 + i4

6.4 Code Converters

The purpose of the decoder and encoder circuits is to convert from one type of input
encoding to a different output encoding. For example, a 3-to-8 binary decoder converts
from a binary number on the input to a one-hot encoding at the output. An 8-to-3 binary
encoder performs the opposite conversion. There are many other possible types of code
converters. One common example is a BCD-to-7-segment decoder, which converts one
binary-coded decimal (BCD) digit into information suitable for driving a digit-oriented

June 13, 2002 15:36 vra23151_ch06 Sheet number 23 Page number 319 black

6.4 Code Converters 319

display. As illustrated in Figure 6.25a, the circuit converts the BCD digit into seven signals
that are used to drive the segments in the display. Each segment is a small light-emitting
diode (LED), which glows when driven by an electrical signal. The segments are labeled
from a to g in the figure. The truth table for the BCD-to-7-segment decoder is given in
Figure 6.25c. For each valuation of the inputs w3, . . . , w0, the seven outputs are set to
display the appropriate BCD digit. Note that the last 6 rows of a complete 16-row truth
table are not shown. They represent don’t-care conditions because they are not legal BCD
codes and will never occur in a circuit that deals with BCD data. A circuit that implements
the truth table can be derived using the synthesis techniques discussed in Chapter 4. Finally,
we should note that although the word decoder is traditionally used for this circuit, a more
appropriate term is code converter. The term decoder is more appropriate for circuits that
produce one-hot encoded outputs.

ce

1
0
1
1

1
1
1

w0 a

1

b

0 1

1
1

1

0
1

1
0
1

0

0

w1

0
1
1

0

0

w2

0
0
0

0

1

w3

0
0
0

0

0

c

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1001

1
1
1
1

0
1
1

0

1 1

1
1

1

1
1

0
1
1

1

d

0

1
0

0

1
0

e

1
0
1

1

1

0
1

0

0
1

0
0
0

1

f

1

0
0

1

1
1

g

1
0
1

1

1

1
1

1

0
1

(c) Truth table

(a) Code converter

w0

a

w1

b
c
dw2

w3
e
f
g

a

g

bf

d

(b) 7-segment display

Figure 6.25 A BCD-to-7-segment display code converter.

June 13, 2002 15:36 vra23151_ch06 Sheet number 24 Page number 320 black

320 C H A P T E R 6 • Combinational-Circuit Building Blocks

6.5 Arithmetic Comparison Circuits

Chapter 5 presented arithmetic circuits that perform addition, subtraction, and multiplication
of binary numbers. Another useful type of arithmetic circuit compares the relative sizes
of two binary numbers. Such a circuit is called a comparator. This section considers the
design of a comparator that has two n-bit inputs, A and B, which represent unsigned binary
numbers. The comparator produces three outputs, called AeqB, AgtB, and AltB. The AeqB
output is set to 1 if A and B are equal. The AgtB output is 1 if A is greater than B, and the
AltB output is 1 if A is less than B.

The desired comparator can be designed by creating a truth table that specifies the three
outputs as functions of A and B. However, even for moderate values of n, the truth table is
large. A better approach is to derive the comparator circuit by considering the bits of A and
B in pairs. We can illustrate this by a small example, where n = 4.

Let A = a3a2a1a0 and B = b3b2b1b0. Define a set of intermediate signals called
i3, i2, i1, and i0. Each signal, ik , is 1 if the bits of A and B with the same index are equal.
That is, ik = ak ⊕ bk . The comparator’s AeqB output is then given by

AeqB = i3i2i1i0

An expression for the AgtB output can be derived by considering the bits of A and B in the
order from the most-significant bit to the least-significant bit. The first bit-position, k, at
which ak and bk differ determines whether A is less than or greater than B. If ak = 0 and
bk = 1, then A < B. But if ak = 1 and bk = 0, then A > B. The AgtB output is defined by

AgtB = a3b3 + i3a2b2 + i3i2a1b1 + i3i2i1a0b0

The ik signals ensure that only the first digits, considered from the left to the right, of A and
B that differ determine the value of AgtB.

The AltB output can be derived by using the other two outputs as

AltB = AeqB+ AgtB

A logic circuit that implements the four-bit comparator circuit is shown in Figure 6.26. This
approach can be used to design a comparator for any value of n.

6.6 Verilog for Combinational Circuits

Having presented a number of useful building block circuits, we will now consider how
such circuits can be described in Verilog. Rather than using gates or logic expressions,
we will specify the circuits in terms of their behavior. We will also give a more rigorous
description of previously used behavioral Verilog constructs and introduce some new ones.

mzr
Line

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 25 Page number 321 black

6.6 Verilog for Combinational Circuits 321

i0

i1

i2

i3

b0

a0

b1

a1

b2

a2

b3

a3

AeqB

AgtB

AltB

Figure 6.26 A four-bit comparator circuit.

6.6.1 The Conditional Operator

In a logic circuit it is often necessary to choose between several possible signals or values
based on the state of some condition. A typical example is a multiplexer circuit in which
the output is equal to the data input signal chosen by the valuation of the select inputs. For
simple implementation of such choices Verilog provides a conditional operator (?:) which
assigns one of two values depending on a conditional expression. It involves three operands
used in the syntax

conditional_expression ? true_expression : false_expression

If the conditional expression evaluates to 1 (true), then the value of true_expression is
chosen; otherwise, the value of false_expression is chosen. For example, the statement

A = (B < C) ? (D + 5) : (D + 2);

mzr
Rectangle

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 26 Page number 322 black

322 C H A P T E R 6 • Combinational-Circuit Building Blocks

module mux2to1 (w0, w1, s, f);
input w0, w1, s;
output f;

assign f = s ? w1 : w0;

endmodule

Figure 6.27 A 2-to-1 multiplexer specified using the
conditional operator.

means that if B is less than C, the value of A will be D + 5 or else A will have the value
D+2. We used parentheses in the expression to improve readability; they are not necessary.
The conditional operator can be used both in continuous assignment statements and in
procedural statements inside an always block.

Example 6.12 A 2-to-1 multiplexer can be defined using the conditional operator in an assign statement
as shown in Figure 6.27. The module, named mux2to1, has the inputs w0, w1, and s, and
the output f . The signal s is used for the selection criterion. The output f is equal to w1 if
the select input s has the value 1; otherwise, f is equal to w0. Figure 6.28 shows how the
same multiplexer can be defined by using the conditional operator inside an always block.

The same approach can be used to define a 4-to-1 multiplexer by nesting the conditional
operators as indicated in Figure 6.29. The module is named mux4to1. Its two select inputs,
which are called s1 and s0 in Figure 6.2, are represented by the two-bit vector S. The first
conditional expression tests the value of bit s1. If s1 = 1, then s0 is tested and f is set to w3

if s0 = 1 and f is set to w2 if s0 = 0. This corresponds to the third and fourth rows of the
truth table in Figure 6.2b. Similarly, if s1 = 0 the conditional operator on the right chooses
f = w1 if s0 = 1 and f = w0 if s0 = 0, thus realizing the first two rows of the truth table.

module mux2to1 (w0, w1, s, f);
input w0, w1, s;
output f;
reg f;

always @(w0 or w1 or s)
f = s ? w1 : w0;

endmodule

Figure 6.28 An alternative specification of a 2-to-1
multiplexer using the conditional operator.

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 27 Page number 323 black

6.6 Verilog for Combinational Circuits 323

module mux4to1 (w0, w1, w2, w3, S, f);
input w0, w1, w2, w3;
input [1:0] S;
output f;

assign f = S[1] ? (S[0] ? w3 : w2) : (S[0] ? w1 : w0);

endmodule

Figure 6.29 A 4-to-1 multiplexer specified using the conditional operator.

6.6.2 The If-Else Statement

We have already used the if-else statement in previous chapters. It has the syntax

if (conditional_expression) statement;
else statement;

The conditional expression may use the operators given in Table A.1. If the expression
is evaluated to true then the first statement (or a block of statements delineated by begin
and end keywords) is executed or else the second statement (or a block of statements) is
executed.

Example 6.13Figure 6.30 shows how the if-else statement can be used to describe a 2-to-1 multiplexer.
The if clause states that f is assigned the value of w0 when s = 0. Else, f is assigned the
value of w1.

The if-else statement can be used to implement larger multiplexers. A4-to-1 multiplexer
is shown in Figure 6.31. The if-else clauses set f to the value of one of the inputs w0, . . . , w3,

module mux2to1 (w0, w1, s, f);
input w0, w1, s;
output f;
reg f;

always @(w0 or w1 or s)
if (s == 0)

f = w0;
else

f = w1;

endmodule

Figure 6.30 Code for a 2-to-1 multiplexer using the
if-else statement.

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 28 Page number 324 black

324 C H A P T E R 6 • Combinational-Circuit Building Blocks

module mux4to1 (w0, w1, w2, w3, S, f);
input w0, w1, w2, w3;
input [1:0] S;
output f;
reg f;

always @(w0 or w1 or w2 or w3 or S)
if (S == 2’b00)

f = w0;
else if (S == 2’b01)

f = w1;
else if (S == 2’b10)

f = w2;
else if (S == 2’b11)

f = w3;

endmodule

Figure 6.31 Code for a 4-to-1 multiplexer using the if-else
statement.

depending on the valuation of S. Compiling the code results in the circuit shown in Figure
6.2c.

Another way of defining the same circuit is presented in Figure 6.32. In this case, a
four-bit vector W is defined instead of single-bit signals w0, w1, w2, and w3. Also, the four
different values of S are specified as decimal rather than binary numbers.

Example 6.14 Figure 6.4 shows how a 16-to-1 multiplexer is built using five 4-to-1 multiplexers. Figure
6.33 presents Verilog code for this circuit using five instantiations of the mux4to1 module.
The data inputs to the mux16to1 module are the 16-bit vector W , and the select inputs are
the four-bit vector S16. In the Verilog code signal names are needed for the outputs of the
four 4-to-1 multiplexers on the left of Figure 6.4. A four-bit signal named M is used for
this purpose. The first multiplexer instantiated, Mux1, corresponds to the multiplexer at
the top left of Figure 6.4. Its first four ports, which correspond to w0, . . . , w3 in Figure
6.31, are driven by the signals W [0], . . . , W [3]. The syntax S16[1:0] is used to attach
the signals S16[1] and S16[0] to the two-bit S port of the mux4to1 module. The M [0]
signal is connected to the multiplexer’s output port. Similarly, Mux2, Mux3, and Mux4 are
instantiations of the next three multiplexers on the left. The multiplexer on the right of
Figure 6.4 is instantiated as Mux5. The signals M [0], . . . , M [3] are connected to its data
inputs, and bits S16[3] and S16[2], which are specified by the syntax S16[3:2], are attached
to the select inputs. The output port generates the mux16to1 output f . Compiling the code
results in the multiplexer function

f = s3s2s1s0w0 + s3s2s1s0w1 + s3s2s1s0w2 + · · · + s3s2s1s0w14 + s3s2s1s0w15

June 13, 2002 15:36 vra23151_ch06 Sheet number 29 Page number 325 black

6.6 Verilog for Combinational Circuits 325

module mux4to1 (W, S, f);
input [0:3] W;
input [1:0] S;
output f;
reg f;

always @(W or S)
if (S == 0)

f = W[0];
else if (S == 1)

f = W[1];
else if (S == 2)

f = W[2];
else if (S == 3)

f = W[3];

endmodule

Figure 6.32 Alternative specification of a 4-to-1
multiplexer.

module mux16to1 (W, S16, f);
input [0:15] W;
input [3:0] S16;
output f;
wire [0:3] M;

mux4to1 Mux1 (W[0:3], S16[1:0], M[0]);
mux4to1 Mux2 (W[4:7], S16[1:0], M[1]);
mux4to1 Mux3 (W[8:11], S16[1:0], M[2]);
mux4to1 Mux4 (W[12:15], S16[1:0], M[3]);
mux4to1 Mux5 (M[0:3], S16[3:2], f);

endmodule

Figure 6.33 Hierarchical code for a 16-to-1 multiplexer.

Since the mux4to1 module is being instantiated in the code of Figure 6.33, it is necessary
to either include the code of Figure 6.32 in the same file as the mux16to1 module or place
the mux4to1 module in a separate file in the same directory, or a directory with a specified
path so that the Verilog compiler can find it. Observe that if the code in Figure 6.31 were
used as the required mux4to1 module, then we would have to list the ports separately, as in
W [0], W [1], W [2], W [3], rather than as the vector W [0:3].

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 30 Page number 326 black

326 C H A P T E R 6 • Combinational-Circuit Building Blocks

6.6.3 The Case Statement

The if-else statement provides the means for choosing an alternative based on the value of
an expression. When there are many possible alternatives, the code based on this statement
may become awkward to read. Instead, it is often possible to use the Verilog case statement
which is defined as

case (expression)
alternative1: statement;
alternative2: statement;
·
·
·
alternativej: statement;
[default: statement;]

endcase

The controlling expression and each alternative are compared bit by bit. When there is
one or more matching alternative, the statement(s) associated with the first match (only)
is executed. When the specified alternatives do not cover all possible valuations of the
controlling expression, the optional default clause should be included. Otherwise, the
Verilog compiler will synthesize memory elements to deal with the unspecified possibilities;
we will discuss this issue in Chapter 7.

Example 6.15 The case statement can be used to define a 4-to-1 multiplexer as shown in Figure 6.34. The
four values that the select vector S can have are given as decimal numbers, but they could
also be given as binary numbers.

module mux4to1 (W, S, f);
input [0:3] W;
input [1:0] S;
output f;
reg f;

always @(W or S)
case (S)

0: f = W[0];
1: f = W[1];
2: f = W[2];
3: f = W[3];

endcase

endmodule

Figure 6.34 A 4-to-1 multiplexer defined using the
case statement.

June 13, 2002 15:36 vra23151_ch06 Sheet number 31 Page number 327 black

6.6 Verilog for Combinational Circuits 327

Example 6.16Figure 6.35 shows how a case statement can be used to describe the truth table for a 2-to-4
binary decoder. The module is called dec2to4. The data inputs are the two-bit vector W ,
and the enable input is En. The four outputs are represented by the four-bit vector Y .

In the truth table for the decoder in Figure 6.16a, the inputs are listed in the order
En w1 w0. To represent these three signals in the controlling expression, the Verilog code
uses the concatenate operator to combine the En and W signals into a three-bit vector. The
four alternatives in the case statement correspond to the truth table in Figure 6.16a where
En = 1, and the decoder outputs have the same patterns as in the first four rows of the
truth table. The last clause uses the default keyword and sets the decoder outputs to 0000,
because it represents all other cases, namely those where En = 0.

Example 6.17The 2-to-4 decoder can be specified using a combination of if-else and case statements as
given in Figure 6.36. The case alternatives are evaluated if En = 1; otherwise, all four bits
of the output Y are set to the value 0.

Example 6.18The tree structure of the 4-to-16 decoder in Figure 6.18 can be defined as shown in Figure
6.37. The inputs are a four-bit vector W and an enable signal En. The outputs are represented
by the 16-bit vector Y . The circuit uses five instances of the 2-to-4 decoder defined in either
Figure 6.35 or 6.36. The outputs of the leftmost decoder in Figure 6.18 are denoted as the
four-bit vector M in Figure 6.37.

module dec2to4 (W, Y, En);
input [1:0] W;
input En;
output [0:3] Y;
reg [0:3] Y;

always @(W or En)
case ({En, W})

3’b100: Y = 4’b1000;
3’b101: Y = 4’b0100;
3’b110: Y = 4’b0010;
3’b111: Y = 4’b0001;
default: Y = 4’b0000;

endcase

endmodule

Figure 6.35 Verilog code for a 2-to-4 binary decoder.

June 13, 2002 15:36 vra23151_ch06 Sheet number 32 Page number 328 black

328 C H A P T E R 6 • Combinational-Circuit Building Blocks

module dec2to4 (W, Y, En);
input [1:0] W;
input En;
output [0:3] Y;
reg [0:3] Y;

always @(W or En)
begin

if (En == 0)
Y = 4’b0000;

else
case (W)

0: Y = 4’b1000;
1: Y = 4’b0100;
2: Y = 4’b0010;
3: Y = 4’b0001;

endcase
end

endmodule

Figure 6.36 Alternative code for a 2-to-4 binary
decoder.

module dec4to16 (W, Y, En);
input [3:0] W;
input En;
output [0:15] Y;
wire [0:3] M;

dec2to4 Dec1 (W[3:2], M[0:3], En);
dec2to4 Dec2 (W[1:0], Y[0:3], M[0]);
dec2to4 Dec3 (W[1:0], Y[4:7], M[1]);
dec2to4 Dec4 (W[1:0], Y[8:11], M[2]);
dec2to4 Dec5 (W[1:0], Y[12:15], M[3]);

endmodule

Figure 6.37 Verilog code for a 4-to-16 decoder.

Example 6.19 Another example of a case statement is given in Figure 6.38. The module, seg7, repre-
sents the BCD-to-7-segment decoder in Figure 6.25. The BCD input is the four-bit vector
named bcd, and the seven outputs are the seven-bit vector named leds. The case alterna-
tives are listed so that they resemble the truth table in Figure 6.25c. Note that there is a
comment to the right of the case statement, which labels the seven outputs with the letters

mzr
Rectangle

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 33 Page number 329 black

6.6 Verilog for Combinational Circuits 329

module seg7 (bcd, leds);
input [3:0] bcd;
output [1:7] leds;
reg [1:7] leds;

always @(bcd)
case (bcd) //abcdefg

0: leds = 7’b1111110;
1: leds = 7’b0110000;
2: leds = 7’b1101101;
3: leds = 7’b1111001;
4: leds = 7’b0110011;
5: leds = 7’b1011011;
6: leds = 7’b1011111;
7: leds = 7’b1110000;
8: leds = 7’b1111111;
9: leds = 7’b1111011;
default: leds = 7’bx;

endcase

endmodule

Figure 6.38 Code for a BCD-to-7-segment decoder.

from a to g. These labels indicate to the reader the correlation between the bits of the leds
vector in the Verilog code and the seven segments in Figure 6.25b. The final case alterna-
tive sets all seven bits of leds to x. Recall that x is used in Verilog to denote a don’t-care
condition. This alternative represents the don’t-care conditions discussed for Figure 6.25,
which are the cases where the bcd input does not represent a valid BCD digit.

Example 6.20An arithmetic logic unit (ALU) is a logic circuit that performs various Boolean and arithmetic
operations on n-bit operands. In section 3.5 we discussed a family of standard chips called
the 7400-series chips. We said that some of these chips contain basic logic gates, and
others provide commonly used logic circuits. One example of an ALU is the chip called
the 74381. Table 6.1 specifies the functionality of this chip. It has 2 four-bit data inputs, A
and B, a three-bit select input, S, and a four-bit output, F . As the table shows, F is defined
by various arithmetic or Boolean operations on the inputs A and B. In this table + means
arithmetic addition, and−means arithmetic subtraction. To avoid confusion, the table uses
the words XOR, OR, and AND for the Boolean operations. Each Boolean operation is done
in a bitwise fashion. For example, F = A AND B produces the four-bit result f0 = a0b0,
f1 = a1b1, f2 = a2b2, and f3 = a3b3.

Figure 6.39 shows how the functionality of the 74381 ALU can be described in Verilog
code. The case statement shown corresponds directly to Table 6.1. To check the function-
ality of the code, we synthesized a circuit for implementation in a PLD, and show a timing

June 13, 2002 15:36 vra23151_ch06 Sheet number 34 Page number 330 black

330 C H A P T E R 6 • Combinational-Circuit Building Blocks

Table 6.1 The functionality
of the 74381
ALU.

Inputs Outputs
Operation s2 s1 s0 F

Clear 0 0 0 0 0 0 0

B−A 0 0 1 B− A

A−B 0 1 0 A− B

ADD 0 1 1 A+ B

XOR 1 0 0 A XOR B

OR 1 0 1 A OR B

AND 1 1 0 A AND B

Preset 1 1 1 1 1 1 1

// 74381 ALU
module alu (s, A, B, F);

input [2:0] s;
input [3:0] A, B;
output [3:0] F;
reg [3:0] F;

always @(s or A or B)
case (s)

0: F = 4’b0000;
1: F = B A;
2: F = A B;
3: F = A + B;
4: F = A ∧ B;
5: F = A | B;
6: F = A & B;
7: F = 4’b1111;

endcase

endmodule

Figure 6.39 Code that represents the functionality of
the 74381 ALU chip.

simulation in Figure 6.40. For each valuation of s, the circuit generates the appropriate
Boolean or arithmetic operation.

mzr
Rectangle

June 13, 2002 15:36 vra23151_ch06 Sheet number 35 Page number 331 black

6.6 Verilog for Combinational Circuits 331

Figure 6.40 Timing simulation for the code in Figure 6.39.

The Casex and Casez Statements
In the case statement it is possible to use the logic values 0, 1, z, and x in the case

alternatives. Abit-by-bit comparison is used to determine the match between the expression
and one of the alternatives.

Verilog provides two variants of the case statement that treat the z and x values in
a different way. The casez statement treats all z values in the case alternatives and the
controlling expression as don’t cares. The casex statement treats all z and x values as don’t
cares.

Example 6.21Figure 6.41 gives Verilog code for the priority encoder defined in Figure 6.24. The desired
priority scheme is realized by using a casex statement. The first alternative specifies that,
if the input w3 is 1, then the output is set to y1y0 = 3. This assignment does not depend on
the values of inputs w2, w1, or w0; hence their values do not matter. The other alternatives
in the casex statement are evaluated only if w3 = 0. The second alternative states that if
w2 is 1, then y1y0 = 2. If w2 = 0, then the next alternative results in y1y0 = 1 if w1 = 1. If
w3 = w2 = w1 = 0 and w0 = 1, then the fourth alternative results in y1y0 = 0.

The priority encoder’s output z must be set to 1 whenever at least one of the data inputs
is 1. This output is set to 1 at the start of the always block. If none of the four alternatives
matches the value of W , then the default clause is executed. It consists of a two-statement
block that resets z to 0 and indicates that the Y output can be set to any pattern because it
will be ignored.

6.6.4 The For Loop

If the structure of a desired circuit exhibits a certain regularity, it may be possible to define
the circuit using a for loop. We introduced the for loop in section 5.5.4, where it was useful
in a generic specification of a ripple-carry adder. The for loop has the syntax

for (initial_index; terminal_index; increment) statement;

June 13, 2002 15:36 vra23151_ch06 Sheet number 36 Page number 332 black

332 C H A P T E R 6 • Combinational-Circuit Building Blocks

module priority (W, Y, z);
input [3:0] W;
output [1:0] Y;
output z;
reg [1:0] Y;
reg z;

always @(W)
begin

z = 1;
casex (W)

4’b1xxx: Y = 3;
4’b01xx: Y = 2;
4’b001x: Y = 1;
4’b0001: Y = 0;
default: begin

z = 0;
Y = 2’bx;

end
endcase

end

endmodule

Figure 6.41 Verilog code for a priority encoder.

A loop control variable, which has to be of type integer, is set to the value given as the
initial index. It is used in the statement or a block of statements delineated by begin and end
keywords. After each iteration, the control variable is changed as defined in the increment.
The iterations end after the control variable has reached the terminal index.

Unlike for loops in high-level programming languages, the Verilog for loop does not
specify changes that take place in time through successive loop iterations. Instead, during
each iteration it specifies a different subcircuit. In Figure 5.29 the for loop was used to
define a cascade of full-adder subcircuits to form an n-bit ripple-carry adder. The for loop
can be used to define many other structures as illustrated by the next two examples.

Example 6.22 Figure 6.42 shows how the for loop can be used to specify a 2-to-4 decoder circuit. The
effect of the loop is to repeat the if-else statement four times, for k = 0, . . . , 3. The first
loop iteration sets y0 = 1 if W = 0 and En = 1. Similarly, the other three iterations set the
values of y1, y2, and y3 according to the values of W and En.

This arrangement can be used to specify a large n-to-2n decoder simply by increasing
the sizes of vectors W and Y accordingly, and making n − 1 be the terminal index value
of k.

June 13, 2002 15:36 vra23151_ch06 Sheet number 37 Page number 333 black

6.6 Verilog for Combinational Circuits 333

module dec2to4 (W, Y, En);
input [1:0] W;
input En;
output [0:3] Y;
reg [0:3] Y;
integer k;

always @(W or En)
for (k = 0; k <= 3; k = k+1)

if ((W == k) && (En == 1))
Y[k] = 1;

else
Y[k] = 0;

endmodule

Figure 6.42 A 2-to-4 binary decoder specified using the for
loop.

Example 6.23The priority encoder of Figure 6.24 can be defined by the Verilog code in Figure 6.43. In
the always block, the output bits y1 and y0 are first set to the don’t-care state and z is cleared
to 0. Then, if one or more of the four inputs w3, . . . , w0 is equal to 1, the for loop will set
the valuation of y1y0 to match the index of the highest priority input that has the value 1.
Note that each successive iteration through the loop corresponds to a higher priority. Verilog
semantics specify that a signal that receives multiple assignments in an always block retains
the last assignment. Thus the iteration that corresponds to the highest priority input that is
equal to 1 will override any setting of Y established during the previous iterations.

6.6.5 Verilog Operators

In this section we discuss the Verilog operators that are useful for synthesizing logic circuits.
Table 6.2 lists these operators in groups that reflect the type of operation performed. A more
complete listing of the operators is given in Table A.1.

To illustrate the results produced by the various operators, we will use three-bit vectors
A[2:0], B[2:0] and C[2:0], as well as scalars f and w.

Bitwise Operators
Bitwise operators operate on individual bits of operands. The∼ operator forms the 1’s

complement of the operand such that the statement

C = ∼A;

produces the result c2 = a2, c1 = a1, and c0 = a0, where ai and ci are the bits of the vectors
A and C.

June 13, 2002 15:36 vra23151_ch06 Sheet number 38 Page number 334 black

334 C H A P T E R 6 • Combinational-Circuit Building Blocks

module priority (W, Y, z);
input [3:0] W;
output [1:0] Y;
output z;
reg [1:0] Y;
reg z;
integer k;

always @(W)
begin

Y = 2’bx;
z = 0;
for (k = 0; k < 4; k = k+1)

if (W[k])
begin

Y = k;
z = 1;

end
end

endmodule

Figure 6.43 A priority encoder specified using the for
loop.

Other bitwise operators operate on pairs of bits. The statement

C = A & B;

generates c2 = a2 · b2, c1 = a1 · b1, and c0 = a0 · b0. Similarly, the | and ∧ operators
perform bitwise OR and XOR operations. The ∧∼ operator, which can also be written as
∼∧, produces the XNOR such that

C = A∼∧ B;

gives c2 = a2 ⊕ b2, c1 = a1 ⊕ b1, and c0 = a0 ⊕ b0. If the operands are of unequal size,
then the shorter operand is extended by padding 0s to the left.

A scalar function may be assigned a value as a result of a bitwise operation on two
vector operands. In this case, it is only the least-significant bits of the operands that are
involved in the operation. Hence the statement

f = A ∧ B;

yields f = a0 ⊕ b0.
The bitwise operations may involve operands that include the unknown logic value x.

Then the operations are performed according to the truth tables in Figure 6.44. For example,
if P = 4’b101x and Q = 4’b1001, then P & Q = 4’b100x while P | Q = 4’b1011.

June 13, 2002 15:36 vra23151_ch06 Sheet number 39 Page number 335 black

6.6 Verilog for Combinational Circuits 335

Table 6.2 Verilog operators.

Operator type Operator symbols Operation performed Number of operands

Bitwise ∼ 1’s complement 1
& Bitwise AND 2
| Bitwise OR 2
∧ Bitwise XOR 2

∼ ∧ or ∧ ∼ Bitwise XNOR 2

Logical ! NOT 1
&& AND 2
‖ OR 2

Reduction & Reduction AND 1
∼& Reduction NAND 1
| Reduction OR 1
∼ | Reduction NOR 1
∧ Reduction XOR 1

∼ ∧ or ∧ ∼ Reduction XNOR 1

Arithmetic + Addition 2
− Subtraction 2
− 2’s complement 1
∗ Multiplication 2
/ Division 2

Relational > Greater than 2
< Less than 2

>= Greater than or equal to 2
<= Less than or equal to 2

Equality == Logical equality 2
! = Logical inequality 2

Shift >> Right shift 2
<< Left shift 2

Concatenation {,} Concatenation Any number

Replication {{}} Replication Any number

Conditional ?: Conditional 3

Logical Operators
The ! operator has the same effect on a scalar operand as the ∼ operator. Thus, f = !w

= ∼w. But the effect on a vector operand is different, namely if

f = !A;

then f = a2 + a1 + a0.
The && operator implements the AND operation such that

f = A && B;

produces f = (a2 + a1 + a0) · (b2 + b1 + b0). Similarly, using the || operator in

f = A || B;

gives f = (a2 + a1 + a0)+ (b2 + b1 + b0).

June 13, 2002 15:36 vra23151_ch06 Sheet number 40 Page number 336 black

336 C H A P T E R 6 • Combinational-Circuit Building Blocks

& 0 1 x | 0 1 x

0 0 0 0 0 0 1 x

1 0 1 x 1 1 1 1

x 0 x x x x 1 x

∧ 0 1 x ∧ 0 1 x

0 0 1 x 0 1 0 x

1 1 0 x 1 0 1 x

x x x x x x x x

Figure 6.44 Truth tables for bitwise operators.

Reduction Operators
The reduction operators perform an operation on the bits of a single vector operand

and produce a one-bit result. Using the & operator in

f = &A;

produces f = a2 · a1 · a0. Similarly,

f = ∧A;

gives f = a2 ⊕ a1 ⊕ a0, and so on. As an example of reduction operator use, consider the
parity function discussed in section 5.8. The XOR circuit that computes the parity bit, p,
of an n-bit vector X can be defined with the statement

p = ∧X;

Arithmetic Operators
We have already encountered the arithmetic operators in Chapter 5. They perform

standard arithmetic operations. Thus

C = A + B;

puts the three-bit sum of A plus B into C, while

C = A− B;

puts the difference of A and B into C. The operation

C = −A;

places the 2’s complement of A into C.
The addition, subtraction, and multiplication operations are supported by most CAD

synthesis tools. However, the division operation is often not supported. When the Verilog
compiler encounters an arithmetic operator, it usually synthesizes it by using an appropriate
module from a library.

June 13, 2002 15:36 vra23151_ch06 Sheet number 41 Page number 337 black

6.6 Verilog for Combinational Circuits 337

Relational Operators
The relational operators are typically used as conditions in if-else and for statements.

These operators function in the same way as the corresponding operators in the C program-
ming language. An expression that uses the relational operators returns the value 1 if it is
evaluated as true, and the value 0 if evaluated as false. If there are any x (unknown) or z
bits in the operands, then the expression takes the value x.

Example 6.24The use of relational operators in the if-else statement is illustrated in Figure 6.45. The
defined circuit is the four-bit comparator described in section 6.5.

Equality Operators
The expression (A == B) is evaluated as true if A is equal to B and false otherwise. The

!= operator has the opposite effect. The result is ambiguous (x) if either operand contains
x or z values.

Shift Operators
A vector operand can be shifted to the right or left by a number of bits specified as a

constant. When bits are shifted, the vacant bit positions are filled with 0s. For example,

B = A << 1;

module compare (A, B, AeqB, AgtB, AltB);
input [3:0] A, B;
output AeqB, AgtB, AltB;
reg AeqB, AgtB, AltB;

always @(A or B)
begin

AeqB = 0;
AgtB = 0;
AltB = 0;
if (A == B)

AeqB = 1;
else if (A > B)

AgtB = 1;
else

AltB = 1;
end

endmodule

Figure 6.45 Verilog code for a four-bit comparator.

June 13, 2002 15:36 vra23151_ch06 Sheet number 42 Page number 338 black

338 C H A P T E R 6 • Combinational-Circuit Building Blocks

results in b2 = a1, b1 = a0, and b0 = 0. Similarly,

B = A >> 2;

yields b2 = b1 = 0 and b0 = a2.

Concatenate Operator
This operator concatenates two or more vectors to create a larger vector. For example,

D = {A, B};

defines the six-bit vector D = a2a1a0b2b1b0. Similarly, the concatenation

E = {3’b111, A, 2’b00};

produces the eight-bit vector E = 111a2a1a000.

Replication Operator
This operator allows repetitive concatenation of the same vector, which is replicated the

number of times indicated in the replication constant. For example, {3{A}} is equivalent to
writing {A, A, A}. The specification {4{2’b10}} produces the eight-bit vector 10101010.

The replication operator may be used in conjunction with the concatenate operator. For
instance, {2{A}, 3{B}} is equivalent to {A, A, B, B, B}. We introduced the concatenate
and replication operators in section 5.5.6 and illustrated their use in specifying the adder
circuits.

Conditional Operator
The conditional operator is discussed fully in section 6.6.1.

Operator Precedence
The Verilog operators are assumed to have the precedence indicated in Table 6.3.

The order of precedence is from top to bottom; operators in the top row have the highest
precedence and those in the bottom row have the lowest precedence. The operators listed
in the same row have the same precedence.

The designer can use parentheses to change the precedence of operators in Verilog code
or remove any possible misinterpretation. It is a good practice to use parentheses to make
the code unambiguous and easy to read.

6.6.6 The Generate Construct

The Verilog-2001 standard provides a generate loop capability that can be used to create
multiple instances of subcircuits, which is not available in the previous Verilog standard.
A subcircuit may be defined in a block of statements delineated by the generate and end-
generate keywords. The subcircuit is instantiated multiple times using a generate-index
variable. This variable is defined using the genvar keyword and it can have only positive
integer values. It is not possible to use an index declared as a normal integer variable.

June 13, 2002 15:36 vra23151_ch06 Sheet number 43 Page number 339 black

6.6 Verilog for Combinational Circuits 339

Table 6.3 Precedence of Verilog operators.

Operator type Operator symbols Precedence

Complement ! ∼ − Highest procedence

Arithmetic ∗ /
+ −

Shift << >>

Relational < <= > >=
Equality == ! =
Reduction & ∼&

∧ ∼∧
| ∼ |

Logical &&
‖

Conditional ?: Lowest precedence

Example 6.25Figure 6.46 shows how the generate construct can be used to specify an n-bit ripple-carry
adder. The subcircuit is a full-adder defined structurally in terms of primitive gates as
introduced in Figure 5.23. The for loop causes the full-adder block to be instantiated n
times.

In this example, the for statement is used in the generate block to control the selection
of the generated objects. The generate block can also contain if-else and case statements
to determine which objects are generated.

The generate construct is a powerful mechanism that enhances the design capability
of Verilog. Because it is a recent addition to the Verilog standard, it is not supported by
some synthesis tools.

6.6.7 Tasks and Functions

In high-level programming languages it is possible to use subroutines and functions to
avoid replicating specific routines that may be needed in several places of a given program.
Verilog provides similar capabilities, known as tasks and functions. They can be used to
modularize large designs and make the Verilog code easier to understand.

Verilog Task
A task is declared by the keyword task and it comprises a block of statements that ends

with the keyword endtask. The task must be included in the module that calls it. It may
have input and output ports. These are not the ports of the module that contains the task,

June 13, 2002 15:36 vra23151_ch06 Sheet number 44 Page number 340 black

340 C H A P T E R 6 • Combinational-Circuit Building Blocks

module addern (carryin, X, Y, S, carryout);
parameter n = 32;
input carryin;
input [n-1:0] X, Y;
output [n-1:0] S;
output carryout;
wire [n:0] C;

genvar k;
assign C[0] = carryin;
assign carryout = C[n];
generate

for (k = 0; k < n; k = k+1)
begin: fulladd stage

wire z1, z2, z3; //wires within full-adder
xor (S[k], X[k], Y[k], C[k]);
and (z1, X[k], Y[k]);
and (z2, X[k], C[k]);
and (z3, Y[k], C[k]);
or (C[k+1], z1, z2, z3);

end
endgenerate

endmodule

Figure 6.46 Using the generate loop to define an n-bit
ripple-carry adder.

which are used to make external connections to the module. The task ports are used only
to pass values between the module and the task.

Example 6.26 In Figure 6.33 we showed the Verilog code for a 16-to-1 multiplexer that instantiates five
copies of a 4-to-1 multiplexer circuit given in a separate module named mux4to1. The same
circuit can be specified using the task approach as shown in Figure 6.47. Observe the key
differences. The task mux4to1 is included in the module mux16to1. It is called from an
always block by means of an appropriate case statement. The output of a task must be a
variable, hence g is of reg type.

Verilog Function
A function is declared by the keyword function and it comprises a block of statements

that ends with the keyword endfunction. The function must have at least one input and it
returns a single value that is placed where the function is invoked.

June 13, 2002 15:36 vra23151_ch06 Sheet number 45 Page number 341 black

6.6 Verilog for Combinational Circuits 341

module mux16to1 (W, S16, f);
input [0:15] W;
input [3:0] S16;
output f;
reg f;

always @(W or S16)
case (S16[3:2])

0: mux4to1 (W[0:3], S16[1:0], f);
1: mux4to1 (W[4:7], S16[1:0], f);
2: mux4to1 (W[8:11], S16[1:0], f);
3: mux4to1 (W[12:15], S16[1:0], f);

endcase

// Task that specifies a 4-to-1 multiplexer
task mux4to1;

input [0:3] X;
input [1:0] S4;
output g;
reg g;

case (S4)
0: g = X[0];
1: g = X[1];
2: g = X[2];
3: g = X[3];

endcase
endtask

endmodule

Figure 6.47 Use of a task in Verilog code.

Example 6.27Figure 6.48 shows how the code in Figure 6.47 can be written to use a function. The Verilog
compiler essentially inserts the body of the function at each place where it is called. Hence
the clause

0: f = mux4to1 (W[0:3], S16[1:0]);

becomes

0: case (S16[1:0])
0: f = W[0];
1: f = W[1];
2: f = W[2];
3: f = W[3];

endcase

June 13, 2002 15:36 vra23151_ch06 Sheet number 46 Page number 342 black

342 C H A P T E R 6 • Combinational-Circuit Building Blocks

module mux16to1 (W, S16, f);
input [0:15] W;
input [3:0] S16;
output f;
reg f;

// Function that specifies a 4-to-1 multiplexer
function mux4to1;

input [0:3] X;
input [1:0] S4;

case (S4)
0: mux4to1 = X[0];
1: mux4to1 = X[1];
2: mux4to1 = X[2];
3: mux4to1 = X[3];

endcase
endfunction

always @(W or S16)
case (S16[3:2])

0: f = mux4to1 (W[0:3], S16[1:0]);
1: f = mux4to1 (W[4:7], S16[1:0]);
2: f = mux4to1 (W[8:11], S16[1:0]);
3: f = mux4to1 (W[12:15], S16[1:0]);

endcase

endmodule

Figure 6.48 The code from Figure 6.47 using a function.

The function serves as a convenience that makes the mux16to1 module compact and easier
to read.

A Verilog function can invoke another function but it cannot call a Verilog task. A task
may call another task and it may invoke a function. In Figure 6.47 we defined the task after
the always block that calls it. In contrast, in Figure 6.48 we defined the function before
the always block that invokes it. Both possibilities are allowed in the Verilog standard for
both tasks and functions. However, some tools require functions to be defined before the
statements that invoke them.

June 13, 2002 15:36 vra23151_ch06 Sheet number 47 Page number 343 black

6.7 Concluding Remarks 343

6.7 Concluding Remarks

This chapter has introduced a number of circuit building blocks. Examples using these
blocks to construct larger circuits will be presented in Chapters 7 and 10. To describe the
building block circuits efficiently, several Verilog constructs have been introduced. In many
cases a given circuit can be described in various ways, using different constructs. A circuit
that can be described using an if-else statement can also be described using a case statement
or perhaps a for loop. In general, there are no strict rules that dictate when one style should
be preferred over another. With experience the user develops a sense for which types of
statements work well in a particular design situation. Personal preference also influences
how the code is written.

Verilog is not a programming language, and Verilog code should not be written as if it
were a computer program. The statements discussed in this chapter can be used to create
large, complex circuits. A good way to design such circuits is to construct them using well-
defined modules, in the manner that we illustrated for the multiplexers, decoders, encoders,
and so on. Additional examples using the Verilog statements introduced in this chapter are
given in Chapters 7 and 8. In Chapter 10 we provide a number of examples of using Verilog
code to describe larger digital systems. For more information on Verilog, the reader can
consult more specialized books [5-11].

In the next chapter we introduce logic circuits that include the ability to store logic
signal values in memory elements.

Problems

6.1 Show how the function f (w1, w2, w3) =∑

m(0, 2, 3, 4, 5, 7) can be implemented using a
3-to-8 binary decoder and an OR gate.

6.2 Show how the function f (w1, w2, w3) = ∑

m(1, 2, 3, 5, 6) can be implemented using a
3-to-8 binary decoder and an OR gate.

6.3 Consider the function f = w1w3+w2w3+w1w2. Use the truth table to derive a circuit for
f that uses a 2-to-1 multiplexer.

6.4 Repeat problem 6.3 for the function f = w2w3 + w1w2.

6.5 For the function f (w1, w2, w3) = ∑

m(0, 2, 3, 6), use Shannon’s expansion to derive an
implementation using a 2-to-1 multiplexer and any other necessary gates.

6.6 Repeat problem 6.5 for the function f (w1, w2, w3) =∑

m(0, 4, 6, 7).

6.7 Consider the function f = w2 + w1w3 + w1w3. Show how repeated application of Shan-
non’s expansion can be used to derive the minterms of f .

6.8 Repeat problem 6.7 for f = w2 + w1w3.

6.9 Prove Shannon’s expansion theorem presented in section 6.1.2.

June 13, 2002 15:36 vra23151_ch06 Sheet number 48 Page number 344 black

344 C H A P T E R 6 • Combinational-Circuit Building Blocks

6.10 Section 6.1.2 shows Shannon’s expansion in sum-of-products form. Using the principle of
duality, derive the equivalent expression in product-of-sums form.

6.11 Consider the function f = w1w2+w2w3+w1w2w3. Give a circuit that implements f using
the minimal number of two-input LUTs. Show the truth table implemented inside each
LUT.

6.12 For the function in problem 6.11, the cost of the minimal sum-of-products expression is 14,
which includes four gates and 10 inputs to the gates. Use Shannon’s expansion to derive a
multilevel circuit that has a lower cost and give the cost of your circuit.

6.13 Consider the function f (w1, w2, w3, w4) =∑

m(0, 1, 3, 6, 8, 9, 14, 15). Derive an imple-
mentation using the minimum possible number of three-input LUTs.

6.14 Give two examples of logic functions with five inputs, w1, . . . , w5, that can be realized
using 2 four-input LUTs.

6.15 Assume that an FPGA exists in which the logic blocks are 4-LUTs. What is the minimum
number of 4-LUTs needed to construct a 4-to-1 multiplexer with select inputs s1 and s0

and data inputs w3, w2, w1, and w0? Show two different circuits that can implement the
desired multiplexer using the minimum number of 4-LUTs. Indicate the logic function
implemented on the output of each LUT.

6.16 Actel Corporation manufactures an FPGA family called Act 1, which has the multiplexer-
based logic block illustrated in Figure P6.1. Show how the function f = w2w3 + w1w3 +
w2w3 can be implemented using only one Act 1 logic block.

i3

i4
i5

i8

f

i2

i6

i1

i7

Figure P6.1 The Actel Act 1 logic block.

6.17 Show how the function f = w1w3+w1w3+w2w3+w1w2 can be realized using Act 1 logic
blocks. Note that there are no NOT gates in the chip; hence complements of signals have
to be generated using the multiplexers in the logic block.

June 13, 2002 15:36 vra23151_ch06 Sheet number 49 Page number 345 black

Problems 345

6.18 Consider the Verilog code in Figure P6.2. What type of circuit does the code represent?
Comment on whether or not the style of code used is a good choice for the circuit it
represents.

module problem6 18 (W, En, y0, y1, y2, y3);
input [1:0] W;
input En;
output y0, y1, y2, y3;
reg y0, y1, y2, y3;

always @(W or En)
begin

y0 = 0;
y1 = 0;
y2 = 0;
y3 = 0;
if (En)

if (W == 0) y0 = 1;
else if (W == 1) y1 = 1;
else if (W == 2) y2 = 1;
else y3 = 1;

end

endmodule

Figure P6.2 Code for problem 6.18.

6.19 Write Verilog code that represents the function in problem 6.2, using a case statement.

6.20 Write Verilog code for a 4-to-2 binary encoder.

6.21 Write Verilog code for an 8-to-3 binary encoder.

6.22 Figure P6.3 shows a modified version of the code for a 2-to-4 decoder in Figure 6.42. This
code is almost correct but contains one error. What is the error?

6.23 Derive the circuit for an 8-to-3 priority encoder.

6.24 Using a casex statement, write Verilog code for an 8-to-3 priority encoder.

6.25 Repeat problem 6.24, using a for loop.

6.26 Create a Verilog module named if2to4 that represents a 2-to-4 binary decoder using an
if-else statement. Create a second module named h3to8 that represents the 3-to-8 binary
decoder in Figure 6.17 using two instances of the if2to4 module.

June 13, 2002 15:36 vra23151_ch06 Sheet number 50 Page number 346 black

346 C H A P T E R 6 • Combinational-Circuit Building Blocks

module dec2to4 (W, Y, En);
input [1:0] W;
input En;
output [0:3] Y;
reg [0:3] Y;
integer k;

always @(W or En)
for (k = 0; k <= 3; k = k+1)

if (W == k)
Y[k] = En;

endmodule

Figure P6.3 Code for problem 6.22.

6.27 Create a Verilog module named h6to64 that represents a 6-to-64 binary decoder. Use the
treelike structure in Figure 6.18, in which the 6-to-64 decoder is built using nine instances
of the h3to8 decoder created in problem 6.26.

6.28 Write Verilog code that represents the circuit in Figure 6.19. Use the dec2to4 module in
Figure 6.35 as a subcircuit in your code.

6.29 Derive minimal sum-of-products expressions for the outputs a, b, and c of the 7-segment
display in Figure 6.25.

6.30 Derive minimal sum-of-products expressions for the outputs d , e, f , and g of the 7-segment
display in Figure 6.25.

6.31 Figure 6.21 shows a block diagram of a ROM. A circuit that implements a small ROM, with
four rows and four columns, is depicted in Figure P6.4. Each X in the figure represents a
switch that determines whether the ROM produces a 1 or 0 when that location is read.
(a) Show how a switch (X) can be realized using a single NMOS transistor.
(b) Draw the complete 4×4 ROM circuit, using your switches from part (a). The ROM
should be programmed to store the bits 0101 in row 0 (the top row), 1010 in row 1, 1100 in
row 2, and 0011 in row 3 (the bottom row).
(c) Show how each (X) can be implemented as a programmable switch (as opposed to
providing either a 1 or 0 permanently), using an EEPROM cell as shown in Figure 3.64.
Briefly describe how the storage cell is used.

6.32 Show the complete circuit for a ROM using the storage cells designed in Part (a) of problem
6.31 that realizes the logic functions

d3 = a0 ⊕ a1

d2 = a0 ⊕ a1

d1 = a0a1

d0 = a0 + a1

June 13, 2002 15:36 vra23151_ch06 Sheet number 51 Page number 347 black

References 347

d3 d2 d1 d0

VDD

2-
to

-4
 d

ec
od

er

a0

a1

Figure P6.4 A 4× 4 ROM circuit.

References

1. C. E. Shannon, “Symbolic Analysis of Relay and Switching Circuits,” Transactions
AIEE 57 (1938), pp. 713–723.

2. Actel Corporation, “MX FPGA Data Sheet,” http://www.actel.com.

3. QuickLogic Corporation, “pASIC 3 FPGA Data Sheet,” http://www.quicklogic.com.

4. R. Landers, S. Mahant-Shetti, and C. Lemonds, “A Multiplexer-Based Architecture
for High-Density, Low Power Gate Arrays,” IEEE Journal of Solid-State Circuits 30,
no. 4 (April 1995).

5. D. A. Thomas and P. R. Moorby, The Verilog Hardware Description Language, 4th
ed., (Kluwer: Norwell, MA, 1998).

6. S. Palnitkar, Verilog HDL—A Guide to Digital Design and Synthesis, (Prentice-Hall:
Upper Saddle River, NJ, 1996).

7. D. R. Smith and P. D. Franzon, Verilog Styles for Synthesis of Digital Systems,
(Prentice-Hall: Upper Saddle River, NJ, 2000).

8. Z. Navabi, Verilog Digital System Design, (McGraw-Hill: New York, 1999).

9. J. Bhasker, Verilog HDL Synthesis—A Practical Primer, (Star Galaxy Publishing:
Allentown, PA, 1998).

10. D. J. Smith, HDL Chip Design, (Doone Publications: Madison, AL, 1996).

11. S. Sutherland, Verilog 2001—A Guide to the New Features of the Verilog Hardware
Description Language, (Kluwer: Hingham, MA, 2001).

June 18, 2002 15:56 vra23151_ch07 Sheet number 1 Page number 349 black

349

c h a p t e r

7
Flip-Flops, Registers, Counters,

and a Simple Processor

7. Ng1–f3, h7–h6

June 18, 2002 15:56 vra23151_ch07 Sheet number 2 Page number 350 black

350 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

In previous chapters we considered combinational circuits where the value of each output depends solely on
the values of signals applied to the inputs. There exists another class of logic circuits in which the values of the
outputs depend not only on the present values of the inputs but also on the past behavior of the circuit. Such
circuits include storage elements that store the values of logic signals. The contents of the storage elements
are said to represent the state of the circuit. When the circuit’s inputs change values, the new input values
either leave the circuit in the same state or cause it to change into a new state. Over time the circuit changes
through a sequence of states as a result of changes in the inputs. Circuits that behave in this way are referred
to as sequential circuits.

In this chapter we will introduce circuits that can be used as storage elements. But first, we
will motivate the need for such circuits by means of a simple example. Suppose that we wish
to control an alarm system, as shown in Figure 7.1. The alarm mechanism responds to the
control input On/Off . It is turned on when On/Off = 1, and it is off when On/Off = 0. The
desired operation is that the alarm turns on when the sensor generates a positive voltage
signal, Set, in response to some undesirable event. Once the alarm is triggered, it must
remain active even if the sensor output goes back to zero. The alarm is turned off manually
by means of a Reset input. The circuit requires a memory element to remember that the
alarm has to be active until the Reset signal arrives.

Figure 7.2 gives a rudimentary memory element, consisting of a loop that has two
inverters. If we assume that A = 0, then B = 1. The circuit will maintain these values
indefinitely. We say that the circuit is in the state defined by these values. If we assume
that A = 1, then B = 0, and the circuit will remain in this second state indefinitely. Thus
the circuit has two possible states. This circuit is not useful, because it lacks some practical
means for changing its state.

A more useful circuit is shown in Figure 7.3. It includes a mechanism for changing
the state of the circuit in Figure 7.2, using two transmission gates of the type discussed in
section 3.9. One transmission gate, TG1, is used to connect the Data input terminal to point

Memory
element Alarm

Sensor

Reset

Set

On Off⁄

Figure 7.1 Control of an alarm system.

A B

Figure 7.2 A simple memory element.

June 18, 2002 15:56 vra23151_ch07 Sheet number 3 Page number 351 black

7.1 Basic Latch 351

A B
OutputData

Load

TG1

TG2

Figure 7.3 A controlled memory element.

A in the circuit. The second, TG2, is used as a switch in the feedback loop that maintains the
state of the circuit. The transmission gates are controlled by the Load signal. If Load = 1,
then TG1 is on and the point A will have the same value as the Data input. Since the value
presently stored at Output may not be the same value as Data, the feedback loop is broken
by having TG2 turned off when Load = 1. When Load changes to zero, then TG1 turns
off and TG2 turns on. The feedback path is closed and the memory element will retain its
state as long as Load = 0. This memory element cannot be applied directly to the system
in Figure 7.1, but it is useful for many other applications, as we will see later.

7.1 Basic Latch

Instead of using the transmission gates, we can construct a similar circuit using ordinary
logic gates. Figure 7.4 presents a memory element built with NOR gates. Its inputs, Set
and Reset, provide the means for changing the state, Q, of the circuit. A more usual way
of drawing this circuit is given in Figure 7.5a, where the two NOR gates are said to be
connected in cross-coupled style. The circuit is referred to as a basic latch. Its behavior is
described by the truth table in Figure 7.5b. When both inputs, R and S, are equal to 0 the
latch maintains its existing state. This state may be either Qa = 0 and Qb = 1, or Qa = 1
and Qb = 0, which is indicated in the truth table by stating that the Qa and Qb outputs have
values 0/1 and 1/0, respectively. Observe that Qa and Qb are complements of each other in
this case. When R = 0 and S = 1, the latch is set into a state where Qa = 1 and Qb = 0.
When R = 1 and S = 0, the latch is reset into a state where Qa = 0 and Qb = 1. The fourth
possibility is to have R = S = 1. In this case both Qa and Qb will be 0.

Figure 7.5c gives a timing diagram for the latch, assuming that the propagation de-
lay through the NOR gates is negligible. Of course, in a real circuit the changes in the
waveforms would be delayed according to the propagation delays of the gates. We assume
that initially Qa = 0 and Qb = 1. The state of the latch remains unchanged until time t2,

June 18, 2002 15:56 vra23151_ch07 Sheet number 4 Page number 352 black

352 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Reset

Set Q

Figure 7.4 A memory element with NOR gates.

S R Qa Qb

0 0

0 1

1 0

1 1

0/1 1/0

0 1

1 0

0 0

(a) Circuit (b) Truth table

Time

1

0

1

0

1

0

1

0

R

S

Qa

Qb

Qa

Qb

?

?

(c) Timing diagram

R

S

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

(No change)

Figure 7.5 A basic latch built with NOR gates.

June 18, 2002 15:56 vra23151_ch07 Sheet number 5 Page number 353 black

7.2 Gated SR Latch 353

when S becomes equal to 1, causing Qb to change to 0, which in turn causes Qa to change
to 1. The causality relationship is indicated by the arrows in the diagram. When S goes to
0 at t3, there is no change in the state because both S and R are then equal to 0. At t4 we
have R = 1, which causes Qa to go to 0, which in turn causes Qb to go to 1. At t5 both S
and R are equal to 1, which forces both Qa and Qb to be equal to 0. As soon as S returns to
0, at t6, Qb becomes equal to 1 again. At t8 we have S = 1 and R = 0, which causes Qb = 0
and Qa = 1. An interesting situation occurs at t10. From t9 to t10 we have Qa = Qb = 0
because R = S = 1. Now if both R and S change to 0 at t10, both Qa and Qb will go to 1.
But having both Qa and Qb equal to 1 will immediately force Qa = Qb = 0. There will
be an oscillation between Qa = Qb = 0 and Qa = Qb = 1. If the delays through the two
NOR gates are exactly the same, the oscillation will continue indefinitely. In a real circuit
there will invariably be some difference in the delays through these gates, and the latch will
eventually settle into one of its two stable states, but we don’t know which state it will be.
This uncertainty is indicated in the waveforms by dashed lines.

The oscillations discussed above illustrate that even though the basic latch is a simple
circuit, careful analysis has to be done to fully appreciate its behavior. In general, any
circuit that contains one or more feedback paths, such that the state of the circuit depends
on the propagation delays through logic gates, has to be designed carefully. We discuss
timing issues in detail in Chapter 9.

The latch in Figure 7.5a can perform the functions needed for the memory element in
Figure 7.1, by connecting the Set signal to the S input and Reset to the R input. The Qa

output provides the desired On/Off signal. To initialize the operation of the alarm system,
the latch is reset. Thus the alarm is off. When the sensor generates the logic value 1, the
latch is set and Qa becomes equal to 1. This turns on the alarm mechanism. If the sensor
output returns to 0, the latch retains its state where Qa = 1; hence the alarm remains turned
on. The only way to turn off the alarm is by resetting the latch, which is accomplished by
making the Reset input equal to 1.

7.2 Gated SR Latch

In section 7.1 we saw that the basic SR latch can serve as a useful memory element. It
remembers its state when both the S and R inputs are 0. It changes its state in response
to changes in the signals on these inputs. The state changes occur at the time when the
changes in the signals occur. If we cannot control the time of such changes, then we don’t
know when the latch may change its state.

In the alarm system of Figure 7.1, it may be desirable to be able to enable or disable
the entire system by means of a control input, Enable. Thus when enabled, the system
would function as described above. In the disabled mode, changing the Set input from 0 to
1 would not cause the alarm to turn on. The latch in Figure 7.5a cannot provide the desired
operation. But the latch circuit can be modified to respond to the input signals S and R only
when Enable = 1. Otherwise, it would maintain its state.

The modified circuit is depicted in Figure 7.6a. It includes two AND gates that provide
the desired control. When the control signal Clk is equal to 0, the S ′ and R′ inputs to the

June 18, 2002 15:56 vra23151_ch07 Sheet number 6 Page number 354 black

354 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

(a) Circuit

Q

Q

R′

S′

R

S

R

Clk

Q

Q

S

1

0

1

0

1

0

1

0

1

0

Time

(c) Timing diagram

Clk

?

?

S R

x x

0 0

0 1

1 0

Q(t) (No change)

0

1

Clk

0

1

1

1

1 11

Q t 1+()

Q(t) (No change)

x

S Q

Q

Clk

R

(d) Graphical symbol

(b) Truth table

Figure 7.6 Gated SR latch.

latch will be 0, regardless of the values of signals S and R. Hence the latch will maintain its
existing state as long as Clk = 0. When Clk changes to 1, the S ′ and R′ signals will be the
same as the S and R signals, respectively. Therefore, in this mode the latch will behave as
we described in section 7.1. Note that we have used the name Clk for the control signal that
allows the latch to be set or reset, rather than call it the Enable signal. The reason is that

June 18, 2002 15:56 vra23151_ch07 Sheet number 7 Page number 355 black

7.2 Gated SR Latch 355

such circuits are often used in digital systems where it is desirable to allow the changes in
the states of memory elements to occur only at well-defined time intervals, as if they were
controlled by a clock. The control signal that defines these time intervals is usually called
the clock signal. The name Clk is meant to reflect this nature of the signal.

Circuits of this type, which use a control signal, are called gated latches. Because our
circuit exhibits set and reset capability, it is called a gated SR latch. Figure 7.6b describes
its behavior. It defines the state of the Q output at time t+1, namely, Q(t+1), as a function
of the inputs S, R, and Clk. When Clk= 0, the latch will remain in the state it is in at time t,
that is, Q(t), regardless of the values of inputs S and R. This is indicated by specifying S = x
and R = x, where x means that the signal value can be either 0 or 1. (Recall that we already
used this notation in Chapter 4.) When Clk = 1, the circuit behaves as the basic latch in
Figure 7.5. It is set by S = 1 and reset by R = 1. The last row of the truth table, where
S = R = 1, shows that the state Q(t + 1) is undefined because we don’t know whether it
will be 0 or 1. This corresponds to the situation described in section 7.1 in conjunction with
the timing diagram in Figure 7.5 at time t10. At this time both S and R inputs go from 1
to 0, which causes the oscillatory behavior that we discussed. If S = R = 1, this situation
will occur as soon as Clk goes from 1 to 0. To ensure a meaningful operation of the gated
SR latch, it is essential to avoid the possibility of having both the S and R inputs equal to 1
when Clk changes from 1 to 0.

A timing diagram for the gated SR latch is given in Figure 7.6c. It shows Clk as a
periodic signal that is equal to 1 at regular time intervals to suggest that this is how the
clock signal usually appears in a real system. The diagram presents the effect of several
combinations of signal values. Observe that we have labeled one output as Q and the other
as its complement Q, rather than Qa and Qb as in Figure 7.5. Since the undefined mode,
where S = R = 1, must be avoided in practice, the normal operation of the latch will have
the outputs as complements of each other. Moreover, we will often say that the latch is set
when Q = 1, and it is reset when Q = 0. A graphical symbol for the gated SR latch is
given in Figure 7.6d .

7.2.1 Gated SR Latch with NAND Gates

So far we have implemented the basic latch with cross-coupled NOR gates. We can also
construct the latch with NAND gates. Using this approach, we can implement the gated SR
latch as depicted in Figure 7.7. The behavior of this circuit is described by the truth table

S

R

Clk

Q

Q

Figure 7.7 Gated SR latch with NAND gates.

June 18, 2002 15:56 vra23151_ch07 Sheet number 8 Page number 356 black

356 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

in Figure 7.6b. Note that in this circuit, the clock is gated by NAND gates, rather than by
AND gates. Note also that the S and R inputs are reversed in comparison with the circuit in
Figure 7.6a. The circuit with NAND gates requires fewer transistors than the circuit with
AND gates. We will use the circuit in Figure 7.7, in preference to the circuit in Figure 7.6a.

7.3 Gated D Latch

In section 7.2 we presented the gated SR latch and showed how it can be used as the memory
element in the alarm system of Figure 7.1. This latch is useful for many other applications.
In this section we describe another gated latch that is even more useful in practice. It has a
single data input, called D, and it stores the value on this input, under the control of a clock
signal. It is called a gated D latch.

To motivate the need for a gated D latch, consider the adder/subtractor unit discussed
in Chapter 5 (Figure 5.13). When we described how that circuit is used to add numbers, we
did not discuss what is likely to happen with the sum bits that are produced by the adder.
Adder/subtractor units are often used as part of a computer. The result of an addition or
subtraction operation is often used as an operand in a subsequent operation. Therefore, it
is necessary to be able to remember the values of the sum bits generated by the adder until
they are needed again. We might think of using the basic latches to remember these bits,
one bit per latch. In this context, instead of saying that a latch remembers the value of a
bit, it is more illuminating to say that the latch stores the value of the bit or simply “stores
the bit.” We should think of the latch as a storage element.

But can we obtain the desired operation using the basic latches? We can certainly reset
all latches before the addition operation begins. Then we would expect that by connecting
a sum bit to the S input of a latch, the latch would be set to 1 if the sum bit has the value 1;
otherwise, the latch would remain in the 0 state. This would work fine if all sum bits are 0 at
the start of the addition operation and, after some propagation delay through the adder, some
of these bits become equal to 1 to give the desired sum. Unfortunately, the propagation
delays that exist in the adder circuit cause a big problem in this arrangement. Suppose that
we use a ripple-carry adder. When the X and Y inputs are applied to the adder, the sum
outputs may alternate between 0 and 1 a number of times as the carries ripple through the
circuit. This situation was illustrated in the timing diagram in Figure 5.21. The problem is
that if we connect a sum bit to the S input of a latch, then if the sum bit is temporarily a 1
and then settles to 0 in the final result, the latch will remain set to 1 erroneously.

The problem caused by the alternating values of the sum bits in the adder could be
solved by using the gated SR latches, instead of the basic latches. Then we could arrange
that the clock signal is 0 during the time needed by the adder to produce a correct sum.
After allowing for the maximum propagation delay in the adder circuit, the clock should
go to 1 to store the values of the sum bits in the gated latches. As soon as the values have
been stored, the clock can return to 0, which ensures that the stored values will be retained
until the next time the clock goes to 1. To achieve the desired operation, we would also
have to reset all latches to 0 prior to loading the sum-bit values into these latches. This is

June 18, 2002 15:56 vra23151_ch07 Sheet number 9 Page number 357 black

7.3 Gated D Latch 357

an awkward way of dealing with the problem, and it is preferable to use the gated D latches
instead.

Figure 7.8a shows the circuit for a gated D latch. It is based on the gated SR latch, but
instead of using the S and R inputs separately, it has just one data input, D. For convenience
we have labeled the points in the circuit that are equivalent to the S and R inputs. If D = 1,
then S = 1 and R = 0, which forces the latch into the state Q = 1. If D = 0, then S = 0
and R = 1, which causes Q = 0. Of course, the changes in state occur only when Clk = 1.

Q

S

R

Clk

D
(Data)

D Q

QClk

Clk D

0
1
1

x
0
1

0
1

Q t 1+()

Q t()

(a) Circuit

(b) Truth table (c) Graphical symbol

t1 t2 t3 t4

Time

Clk

D

Q

(d) Timing diagram

Q

Figure 7.8 Gated D latch.

June 18, 2002 15:56 vra23151_ch07 Sheet number 10 Page number 358 black

358 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

It is important to observe that in this circuit it is impossible to have the troublesome
situation where S = R = 1. In the gated D latch, the output Q merely tracks the value of
the input D while Clk= 1. As soon as Clk goes to 0, the state of the latch is frozen until the
next time the clock signal goes to 1. Therefore, the gated D latch stores the value of the D
input seen at the time the clock changes from 1 to 0. Figure 7.8 also gives the truth table,
the graphical symbol, and the timing diagram for the gated D latch.

The timing diagram illustrates what happens if the D signal changes while Clk = 1.
During the third clock pulse, starting at t3, the output Q changes to 1 because D = 1. But
midway through the pulse D goes to 0, which causes Q to go to 0. This value of Q is stored
when Clk changes to 0. Now no further change in the state of the latch occurs until the next
clock pulse, at t4. The key point to observe is that as long as the clock has the value 1, the Q
output follows the D input. But when the clock has the value 0, the Q output cannot change.
In Chapter 3 we saw that the logic values are implemented as low and high voltage levels.
Since the output of the gated D latch is controlled by the level of the clock input, the latch
is said to be level sensitive. The circuits in Figures 7.6 through 7.8 are level sensitive. We
will show in section 7.4 that it is possible to design storage elements for which the output
changes only at the point in time when the clock changes from one value to the other. Such
circuits are said to be edge triggered.

At this point we should reconsider the circuit in Figure 7.3. Careful examination of
that circuit shows that it behaves in exactly the same way as the circuit in Figure 7.8a. The
Data and Load inputs correspond to the D and Clk inputs, respectively. The Output, which
has the same signal value as point A, corresponds to the Q output. Point B corresponds to
Q. Therefore, the circuit in Figure 7.3 is also a gated D latch. An advantage of this circuit
is that it can be implemented using fewer transistors than the circuit in Figure 7.8a.

7.3.1 Effects of Propagation Delays

In the previous discussion we ignored the effects of propagation delays. In practical circuits
it is essential to take these delays into account. Consider the gated D latch in Figure 7.8a.
It stores the value of the D input that is present at the time the clock signal changes from
1 to 0. It operates properly if the D signal is stable (that is, not changing) at the time Clk
goes from 1 to 0. But it may lead to unpredictable results if the D signal also changes at
this time. Therefore, the designer of a logic circuit that generates the D signal must ensure
that this signal is stable when the critical change in the clock signal takes place.

Figure 7.9 illustrates the critical timing region. The minimum time that the D signal
must be stable prior to the negative edge of the Clk signal is called the setup time, tsu, of
the latch. The minimum time that the D signal must remain stable after the negative edge
of the Clk signal is called the hold time, th, of the latch. The values of tsu and th depend on
the technology used. Manufacturers of integrated circuit chips provide this information on
the data sheets that describe their chips. Typical values for CMOS technology are tsu = 3
ns and th = 2 ns. We will give examples of how setup and hold times affect the speed of
operation of circuits in section 7.13. The behavior of storage elements when setup or hold
times are violated is discussed in section 10.3.3.

June 18, 2002 15:56 vra23151_ch07 Sheet number 11 Page number 359 black

7.4 Master-Slave and Edge-Triggered D Flip-Flops 359

tsu

th

Clk

D

Q

Figure 7.9 Setup and hold times.

7.4 Master-Slave and Edge-Triggered D Flip-Flops

In the level-sensitive latches, the state of the latch keeps changing according to the values of
input signals during the period when the clock signal is active (equal to 1 in our examples).
As we will see in sections 7.8 and 7.9, there is also a need for storage elements that can
change their states no more than once during one clock cycle. We will discuss two types
of circuits that exhibit such behavior.

7.4.1 Master-Slave D Flip-Flop

Consider the circuit given in Figure 7.10a, which consists of two gated D latches. The first,
called master, changes its state while Clock= 1. The second, called slave, changes its state
while Clock= 0. The operation of the circuit is such that when the clock is high, the master
tracks the value of the D input signal and the slave does not change. Thus the value of Qm

follows any changes in D, and the value of Qs remains constant. When the clock signal
changes to 0, the master stage stops following the changes in the D input. At the same time,
the slave stage responds to the value of the signal Qm and changes state accordingly. Since
Qm does not change while Clock = 0, the slave stage can undergo at most one change of
state during a clock cycle. From the external observer’s point of view, namely, the circuit
connected to the output of the slave stage, the master-slave circuit changes its state at the
negative-going edge of the clock. The negative edge is the edge where the clock signal
changes from 1 to 0. Regardless of the number of changes in the D input to the master
stage during one clock cycle, the observer of the Qs signal will see only the change that
corresponds to the D input at the negative edge of the clock.

The circuit in Figure 7.10 is called a master-slave D flip-flop. The term flip-flop denotes
a storage element that changes its output state at the edge of a controlling clock signal. The
timing diagram for this flip-flop is shown in Figure 7.10b. A graphical symbol is given in
Figure 7.10c. In the symbol we use the > mark to denote that the flip-flop responds to the
“active edge” of the clock. We place a bubble on the clock input to indicate that the active
edge for this particular circuit is the negative edge.

June 18, 2002 15:56 vra23151_ch07 Sheet number 12 Page number 360 black

360 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

D Q

Q

Master Slave

D

Clock

Q

Q

D Q

Q

Qm Qs

D

Clock

Qm

Q Qs=

D Q

Q

(a) Circuit

(b) Timing diagram

(c) Graphical symbol

ClkClk

Figure 7.10 Master-slave D flip-flop.

7.4.2 Edge-Triggered D Flip-Flop

The output of the master-slave D flip-flop in Figure 7.10a responds on the negative edge
of the clock signal. The circuit can be changed to respond to the positive clock edge by
connecting the slave stage directly to the clock and the master stage to the complement of
the clock. A different circuit that accomplishes the same task is presented in Figure 7.11a.

June 18, 2002 15:56 vra23151_ch07 Sheet number 13 Page number 361 black

7.4 Master-Slave and Edge-Triggered D Flip-Flops 361

D

Clock

P4

P3

P1

P2

5

6

1

2

3

4

D Q

Q

(a) Circuit

(b) Graphical symbol

Clock

Q

Q

Figure 7.11 A positive-edge-triggered D flip-flop.

It requires only six NAND gates and, hence, fewer transistors. The operation of the circuit
is as follows. When Clock = 0, the outputs of gates 2 and 3 are high. Thus P1 = P2 = 1,
which maintains the output latch, comprising gates 5 and 6, in its present state. At the same
time, the signal P3 is equal to D, and P4 is equal to its complement D. When Clock changes
to 1, the following changes take place. The values of P3 and P4 are transmitted through
gates 2 and 3 to cause P1 = D and P2 = D, which sets Q = D and Q = D. To operate
reliably, P3 and P4 must be stable when Clock changes from 0 to 1. Hence the setup time
of the flip-flop is equal to the delay from the D input through gates 4 and 1 to P3. The hold
time is given by the delay through gate 3 because once P2 is stable, the changes in D no
longer matter.

For proper operation it is necessary to show that, after Clock changes to 1, any further
changes in D will not affect the output latch as long as Clock= 1. We have to consider two
cases. Suppose first that D = 0 at the positive edge of the clock. Then P2 = 0, which will

June 18, 2002 15:56 vra23151_ch07 Sheet number 14 Page number 362 black

362 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

keep the output of gate 4 equal to 1 as long as Clock = 1, regardless of the value of the D
input. The second case is if D = 1 at the positive edge of the clock. Then P1 = 0, which
forces the outputs of gates 1 and 3 to be equal to 1, regardless of the D input. Therefore,
the flip-flop ignores changes in the D input while Clock = 1.

Figure 7.11b gives a graphical symbol for this flip-flop. The clock input indicates that
the positive edge of the clock is the active edge. A similar circuit, constructed with NOR
gates, can be used as a negative-edge-triggered flip-flop.

Level-Sensitive versus Edge-Triggered Storage Elements
Figure 7.12 shows three different types of storage elements that are driven by the same

data and clock inputs. The first element is a gated D latch, which is level sensitive. The
second one is a positive-edge-triggered D flip-flop, and the third one is a negative-edge-
triggered D flip-flop. To accentuate the differences between these storage elements, the
D input changes its values more than once during each half of the clock cycle. Observe
that the gated D latch follows the D input as long as the clock is high. The positive-edge-
triggered flip-flop responds only to the value of D when the clock changes from 0 to 1. The
negative-edge-triggered flip-flop responds only to the value of D when the clock changes
from 1 to 0.

7.4.3 D Flip-Flops with Clear and Preset

Flip-flops are often used for implementation of circuits that can have many possible states,
where the response of the circuit depends not only on the present values of the circuit’s
inputs but also on the particular state that the circuit is in at that time. We will discuss
a general form of such circuits in Chapter 8. A simple example is a counter circuit that
counts the number of occurrences of some event, perhaps passage of time. We will discuss
counters in detail in section 7.9. A counter comprises a number of flip-flops, whose outputs
are interpreted as a number. The counter circuit has to be able to increment or decrement the
number. It is also important to be able to force the counter into a known initial state (count).
Obviously, it must be possible to clear the count to zero, which means that all flip-flops
must have Q = 0. It is equally useful to be able to preset each flip-flop to Q = 1, to insert
some specific count as the initial value in the counter. These features can be incorporated
into the circuits of Figures 7.10 and 7.11 as follows.

Figure 7.13a shows an implementation of the circuit in Figure 7.10a using NAND
gates. The master stage is just the gated D latch of Figure 7.8a. Instead of using another
latch of the same type for the slave stage, we can use the slightly simpler gated SR latch of
Figure 7.7. This eliminates one NOT gate from the circuit.

A simple way of providing the clear and preset capability is to add an extra input to
each NAND gate in the cross-coupled latches, as indicated in blue. Placing a 0 on the Clear
input will force the flip-flop into the state Q = 0. If Clear = 1, then this input will have no
effect on the NAND gates. Similarly, Preset = 0 forces the flip-flop into the state Q = 1,
while Preset = 1 has no effect. To denote that the Clear and Preset inputs are active when
their value is 0, we placed an overbar on the names in the figure. We should note that the
circuit that uses this flip-flop should not try to force both Clear and Preset to 0 at the same
time. A graphical symbol for this flip-flop is shown in Figure 7.13b.

June 18, 2002 15:56 vra23151_ch07 Sheet number 15 Page number 363 black

7.4 Master-Slave and Edge-Triggered D Flip-Flops 363

D

Clock

Qa

Qb

D Q

Q

(b) Timing diagram

D Q

Q

D Q

Q

D

Clock Qa

Qb

Qc

Qc

Qb

Qa

(a) Circuit

Clk

Qc

Figure 7.12 Comparison of level-sensitive and edge-triggered D storage elements.

A similar modification can be done on the edge-triggered flip-flop of Figure 7.11a, as
indicated in Figure 7.14a. Again, both Clear and Preset inputs are active low. They do not
disturb the flip-flop when they are equal to 1.

In the circuits in Figures 7.13a and 7.14a, the effect of a low signal on either the Clear
or Preset input is immediate. For example, if Clear = 0 then the flip-flop goes into the state
Q = 0 immediately, regardless of the value of the clock signal. In such a circuit, where the
Clear signal is used to clear a flip-flop without regard to the clock signal, we say that the

June 18, 2002 15:56 vra23151_ch07 Sheet number 16 Page number 364 black

364 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Q

Q

D

Clock

(a) Circuit

D Q

Q

Preset

Clear

(b) Graphical symbol

Clear

Preset

Figure 7.13 Master-slave D flip-flop with Clear and Preset.

flip-flop has an asynchronous clear. In practice, it is often preferable to clear the flip-flops
on the active edge of the clock. Such synchronous clear can be accomplished as shown
in Figure 7.15. The flip-flop operates normally when the Clear input is equal to 1. But if
Clear goes to 0, then on the next positive edge of the clock the flip-flop will be cleared to
0. We will examine the clearing of flip-flops in more detail in section 7.10.

7.5 T Flip-Flop

The D flip-flop is a versatile storage element that can be used for many purposes. By in-
cluding some simple logic circuitry to drive its input, the D flip-flop may appear to be a
different type of storage element. An interesting modification is presented in Figure 7.16a.
This circuit uses a positive-edge-triggered D flip-flop. The feedback connections make the
input signal D equal to either the value of Q or Q under the control of the signal that is
labeled T . On each positive edge of the clock, the flip-flop may change its state Q(t). If

June 18, 2002 15:56 vra23151_ch07 Sheet number 17 Page number 365 black

7.5 T Flip-Flop 365

Preset

Clear

D

Clock

(a) Circuit

(b) Graphical symbol

Q

Q

Clear

Preset

D Q

Q

Figure 7.14 Positive-edge-triggered D flip-flop with Clear and Preset.

D

Clock Q

Q
Clear

D Q

Q

Figure 7.15 Synchronous reset for a D flip-flop.

June 18, 2002 15:56 vra23151_ch07 Sheet number 18 Page number 366 black

366 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

D Q

Q

Q

Q
T

Clock

(a) Circuit

Clock

T

Q

(d) Timing diagram

T Q

Q

T

0

1

Q t 1+()

Q t()

Q t()

(b) Truth table (c) Graphical symbol

Figure 7.16 T flip-flop.

T = 0, then D = Q and the state will remain the same, that is, Q(t + 1) = Q(t). But if
T = 1, then D = Q and the new state will be Q(t + 1) = Q(t). Therefore, the overall
operation of the circuit is that it retains its present state if T = 0, and it reverses its present
state if T = 1.

The operation of the circuit is specified in the form of a truth table in Figure 7.16b.
Any circuit that implements this truth table is called a T flip-flop. The name T flip-flop
derives from the behavior of the circuit, which “toggles” its state when T = 1. The toggle
feature makes the T flip-flop a useful element for building counter circuits, as we will see
in section 7.9.

June 18, 2002 15:56 vra23151_ch07 Sheet number 19 Page number 367 black

7.6 JK Flip-Flop 367

7.5.1 Configurable Flip-Flops

For some circuits one type of flip-flop may lead to a more efficient implementation than a
different type of flip-flop. In general purpose chips like PLDs, the flip-flops that are provided
are sometimes configurable, which means that a flip-flop circuit can be configured to be
either D, T, or some other type. For example, in some PLDs the flip-flops can be configured
as either D or T types (see problems 7.6 and 7.8).

7.6 JK Flip-Flop

Another interesting circuit can be derived from Figure 7.16a. Instead of using a single
control input, T , we can use two inputs, J and K , as indicated in Figure 7.17a. For this
circuit the input D is defined as

D = J Q+ KQ

A corresponding truth table is given in Figure 7.17b. The circuit is called a JK flip-flop. It
combines the behaviors of SR and T flip-flops in a useful way. It behaves as the SR flip-flop,

D Q

Q

Q

Q

J

Clock

(a) Circuit

J Q

Q

K

0

1

Q t 1+()

Q t()

0

(b) Truth table (c) Graphical symbol

K

J

0

0

0 11

1 Q t()1
K

Figure 7.17 JK flip-flop.

June 18, 2002 15:56 vra23151_ch07 Sheet number 20 Page number 368 black

368 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

where J = S and K = R, for all input values except J = K = 1. For the latter case, which
has to be avoided in the SR flip-flop, the JK flip-flop toggles its state like the T flip-flop.

The JK flip-flop is a versatile circuit. It can be used for straight storage purposes, just
like the D and SR flip-flops. But it can also serve as a T flip-flop by connecting the J and
K inputs together.

7.7 Summary of Terminology

We have used the terminology that is quite common. But the reader should be aware that
different interpretations of the terms latch and flip-flop can be found in the literature. Our
terminology can be summarized as follows:

Basic latch is a feedback connection of two NOR gates or two NAND gates, which
can store one bit of information. It can be set to 1 using the S input and reset to 0
using the R input.

Gated latch is a basic latch that includes input gating and a control input signal. The
latch retains its existing state when the control input is equal to 0. Its state may be
changed when the control signal is equal to 1. In our discussion we referred to the
control input as the clock. We considered two types of gated latches:

• Gated SR latch uses the S and R inputs to set the latch to 1 or reset it to 0,
respectively.

• Gated D latch uses the D input to force the latch into a state that has the same
logic value as the D input.

A flip-flop is a storage element based on the gated latch principle, which can have its
output state changed only on the edge of the controlling clock signal. We considered
two types:

• Edge-triggered flip-flop is affected only by the input values present when the
active edge of the clock occurs.

• Master-slave flip-flop is built with two gated latches. The master stage is active
during half of the clock cycle, and the slave stage is active during the other half.
The output value of the flip-flop changes on the edge of the clock that activates
the transfer into the slave stage. Master-slave flip-flops can be edge-triggered or
level sensitive. If the master stage is a gated D latch, then it behaves as an
edge-triggered flip-flop. If the master stage is a gated SR latch, then the flip-flop
is level sensitive (see problem 7.19).

7.8 Registers

A flip-flop stores one bit of information. When a set of n flip-flops is used to store n bits of
information, such as an n-bit number, we refer to these flip-flops as a register. A common
clock is used for each flip-flop in a register, and each flip-flop operates as described in the

June 18, 2002 15:56 vra23151_ch07 Sheet number 21 Page number 369 black

7.8 Registers 369

previous sections. The term register is merely a convenience for referring to n-bit structures
consisting of flip-flops.

7.8.1 Shift Register

In section 5.6 we explained that a given number is multiplied by 2 if its bits are shifted
one bit position to the left and a 0 is inserted as the new least-significant bit. Similarly, the
number is divided by 2 if the bits are shifted one bit-position to the right. A register that
provides the ability to shift its contents is called a shift register.

Figure 7.18a shows a four-bit shift register that is used to shift its contents one bit-
position to the right. The data bits are loaded into the shift register in a serial fashion using
the In input. The contents of each flip-flop are transferred to the next flip-flop at each
positive edge of the clock. An illustration of the transfer is given in Figure 7.18b, which
shows what happens when the signal values at In during eight consecutive clock cycles are
1, 0, 1, 1, 1, 0, 0, and 0, assuming that the initial state of all flip-flops is 0.

D Q

QClock

D Q

Q

D Q

Q

D Q

Q

In Out

t0

t1

t2

t3

t4

t5

t6

t7

1

0

1

1

1

0

0

0

0

1

0

1

1

1

0

0

0

0

1

0

1

1

1

0

0

0

0

1

0

1

1

1

0

0

0

0

1

0

1

1

Q1 Q2 Q3 Q4 Out=In

(b) A sample sequence

(a) Circuit

Q1 Q2 Q3 Q4

Figure 7.18 A simple shift register.

June 18, 2002 15:56 vra23151_ch07 Sheet number 22 Page number 370 black

370 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

To implement a shift register, it is necessary to use either edge-triggered or master-slave
flip-flops. The level-sensitive gated latches are not suitable, because a change in the value
of In would propagate through more than one latch during the time when the clock is equal
to 1.

7.8.2 Parallel-Access Shift Register

In computer systems it is often necessary to transfer n-bit data items. This may be done by
transmitting all bits at once using n separate wires, in which case we say that the transfer
is performed in parallel. But it is also possible to transfer all bits using a single wire, by
performing the transfer one bit at a time, in n consecutive clock cycles. We refer to this
scheme as serial transfer. To transfer an n-bit data item serially, we can use a shift register
that can be loaded with all n bits in parallel (in one clock cycle). Then during the next n
clock cycles, the contents of the register can be shifted out for serial transfer. The reverse
operation is also needed. If bits are received serially, then after n clock cycles the contents
of the register can be accessed in parallel as an n-bit item.

Figure 7.19 shows a four-bit shift register that allows the parallel access. Instead of
using the normal shift register connection, the D input of each flip-flop is connected to

Q3 Q2 Q1 Q0

Clock
Parallel input

Parallel output

Shift/LoadSerial
input

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Figure 7.19 Parallel-access shift register.

June 18, 2002 15:56 vra23151_ch07 Sheet number 23 Page number 371 black

7.9 Counters 371

two different sources. One source is the preceding flip-flop, which is needed for the shift-
register operation. The other source is the external input that corresponds to the bit that is
to be loaded into the flip-flop as a part of the parallel-load operation. The control signal
Shift/Load is used to select the mode of operation. If Shift/Load = 0, then the circuit
operates as a shift register. If Shift/Load = 1, then the parallel input data are loaded into
the register. In both cases the action takes place on the positive edge of the clock.

In Figure 7.19 we have chosen to label the flip-flops outputs as Q3, . . . , Q0 because
shift registers are often used to hold binary numbers. The contents of the register can be
accessed in parallel by observing the outputs of all flip-flops. The flip-flops can also be
accessed serially, by observing the values of Q0 during consecutive clock cycles while the
contents are being shifted. A circuit in which data can be loaded in series and then accessed
in parallel is called a series-to-parallel converter. Similarly, the opposite type of circuit is a
parallel-to-series converter. The circuit in Figure 7.19 can perform both of these functions.

7.9 Counters

In Chapter 5 we dealt with circuits that perform arithmetic operations. We showed how
adder/subtractor circuits can be designed, either using a simple cascaded (ripple-carry)
structure that is inexpensive but slow or using a more complex carry-lookahead structure
that is both more expensive and faster. In this section we examine special types of addition
and subtraction operations, which are used for the purpose of counting. In particular, we
want to design circuits that can increment or decrement a count by 1. Counter circuits are
used in digital systems for many purposes. They may count the number of occurrences of
certain events, generate timing intervals for control of various tasks in a system, keep track
of time elapsed between specific events, and so on.

Counters can be implemented using the adder/subtractor circuits discussed in Chap-
ter 5 and the registers discussed in section 7.8. However, since we only need to change the
contents of a counter by 1, it is not necessary to use such elaborate circuits. Instead, we
can use much simpler circuits that have a significantly lower cost. We will show how the
counter circuits can be designed using T and D flip-flops.

7.9.1 Asynchronous Counters

The simplest counter circuits can be built using T flip-flops because the toggle feature is
naturally suited for the implementation of the counting operation.

Up-Counter with T Flip-Flops
Figure 7.20a gives a three-bit counter capable of counting from 0 to 7. The clock inputs

of the three flip-flops are connected in cascade. The T input of each flip-flop is connected
to a constant 1, which means that the state of the flip-flop will be reversed (toggled) at each
positive edge of its clock. We are assuming that the purpose of this circuit is to count the
number of pulses that occur on the primary input called Clock. Thus the clock input of
the first flip-flop is connected to the Clock line. The other two flip-flops have their clock
inputs driven by the Q output of the preceding flip-flop. Therefore, they toggle their state

June 18, 2002 15:56 vra23151_ch07 Sheet number 24 Page number 372 black

372 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

T Q

QClock

T Q

Q

T Q

Q

1

Q0 Q1 Q2

(a) Circuit

Clock

Q0

Q1

Q2

Count 0 1 2 3 4 5 6 7 0

(b) Timing diagram

Figure 7.20 A three-bit up-counter.

whenever the preceding flip-flop changes its state from Q = 1 to Q = 0, which results in a
positive edge of the Q signal.

Figure 7.20b shows a timing diagram for the counter. The value of Q0 toggles once each
clock cycle. The change takes place shortly after the positive edge of the Clock signal. The
delay is caused by the propagation delay through the flip-flop. Since the second flip-flop
is clocked by Q0, the value of Q1 changes shortly after the negative edge of the Q0 signal.
Similarly, the value of Q2 changes shortly after the negative edge of the Q1 signal. If we
look at the values Q2Q1Q0 as the count, then the timing diagram indicates that the counting
sequence is 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, and so on. This circuit is a modulo-8 counter. Because
it counts in the upward direction, we call it an up-counter.

The counter in Figure 7.20a has three stages, each comprising a single flip-flop. Only
the first stage responds directly to the Clock signal; we say that this stage is synchronized
to the clock. The other two stages respond after an additional delay. For example, when
Count= 3, the next clock pulse will cause the Count to go to 4. As indicated by the arrows
in the timing diagram in Figure 7.20b, this change requires the toggling of the states of
all three flip-flops. The change in Q0 is observed only after a propagation delay from the
positive edge of Clock. The Q1 and Q2 flip-flops have not yet changed; hence for a brief

June 18, 2002 15:56 vra23151_ch07 Sheet number 25 Page number 373 black

7.9 Counters 373

time the count is Q2Q1Q0 = 010. The change in Q1 appears after a second propagation
delay, at which point the count is 000. Finally, the change in Q2 occurs after a third delay,
at which point the stable state of the circuit is reached and the count is 100. This behavior is
similar to the rippling of carries in the ripple-carry adder circuit of Figure 5.6. The circuit
in Figure 7.20a is an asynchronous counter, or a ripple counter.

Down-Counter with T Flip-Flops
A slight modification of the circuit in Figure 7.20a is presented in Figure 7.21a. The

only difference is that in Figure 7.21a the clock inputs of the second and third flip-flops are
driven by the Q outputs of the preceding stages, rather than by the Q outputs. The timing
diagram, given in Figure 7.21b, shows that this circuit counts in the sequence 0, 7, 6, 5, 4,
3, 2, 1, 0, 7, and so on. Because it counts in the downward direction, we say that it is a
down-counter.

It is possible to combine the functionality of the circuits in Figures 7.20a and 7.21a
to form a counter that can count either up or down. Such a counter is called an up/down-
counter. We leave the derivation of this counter as an exercise for the reader (problem
7.16).

T Q

QClock

T Q

Q

T Q

Q

1

Q0 Q1 Q2

(a) Circuit

Clock

Q0

Q1

Q2

Count 0 7 6 5 4 3 2 1 0

(b) Timing diagram

Figure 7.21 A three-bit down-counter.

June 18, 2002 15:56 vra23151_ch07 Sheet number 26 Page number 374 black

374 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

7.9.2 Synchronous Counters

The asynchronous counters in Figures 7.20a and 7.21a are simple, but not very fast. If a
counter with a larger number of bits is constructed in this manner, then the delays caused
by the cascaded clocking scheme may become too long to meet the desired performance
requirements. We can build a faster counter by clocking all flip-flops at the same time,
using the approach described below.

Synchronous Counter with T Flip-Flops
Table 7.1 shows the contents of a three-bit up-counter for eight consecutive clock

cycles, assuming that the count is initially 0. Observing the pattern of bits in each row of
the table, it is apparent that bit Q0 changes on each clock cycle. Bit Q1 changes only when
Q0 = 1. Bit Q2 changes only when both Q1 and Q0 are equal to 1. In general, for an n-bit
up-counter, a given flip-flop changes its state only when all the preceding flip-flops are in
the state Q = 1. Therefore, if we use T flip-flops to realize the counter, then the T inputs
are defined as

T0 = 1

T1 = Q0

T2 = Q0Q1

T3 = Q0Q1Q2

·
·
·

Tn = Q0Q1 · · ·Qn−1

An example of a four-bit counter based on these expressions is given in Figure 7.22a.
Instead of using AND gates of increased size for each stage, which may lead to fan-in
problems, we use a factored arrangement, as shown in the figure. This arrangement does
not slow down the response of the counter, because all flip-flops change their states after a

Table 7.1 Derivation of the synchronous
up-counter.

0
0
1
1

0
1
0
1

0
1
2
3

0
0
1

0
1
0

4
5
6

1 17

0
0
0
0
1
1
1
1

Clock cycle

0 08 0

Q2 Q1 Q0
Q1 changes

Q2 changes

June 18, 2002 15:56 vra23151_ch07 Sheet number 27 Page number 375 black

7.9 Counters 375

T Q

QClock

T Q

Q

T Q

Q

1
Q0 Q1 Q2

(a) Circuit

Clock

Q0

Q1

Q2

Count 0 1 2 3 5 9 12 14 0

(b) Timing diagram

T Q

Q

Q3

Q3

4 6 87 10 11 13 15 1

Figure 7.22 A four-bit synchronous up-counter.

propagation delay from the positive edge of the clock. Note that a change in the value of
Q0 may have to propagate through several AND gates to reach the flip-flops in the higher
stages of the counter, which requires a certain amount of time. This time must not exceed
the clock period. Actually, it must be less than the clock period minus the setup time for
the flip-flops.

Figure 7.22b gives a timing diagram. It shows that the circuit behaves as a modulo-16
up-counter. Because all changes take place with the same delay after the active edge of the
Clock signal, the circuit is called a synchronous counter.

Enable and Clear Capability
The counters in Figures 7.20 through 7.22 change their contents in response to each

clock pulse. Often it is desirable to be able to inhibit counting, so that the count remains
in its present state. This may be accomplished by including an Enable control signal, as
indicated in Figure 7.23. The circuit is the counter of Figure 7.22, where the Enable signal
controls directly the T input of the first flip-flop. Connecting the Enable also to the AND-

June 18, 2002 15:56 vra23151_ch07 Sheet number 28 Page number 376 black

376 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

T Q

QClock

T Q

Q

Enable

Clear

T Q

Q

T Q

Q

Figure 7.23 Inclusion of Enable and Clear capability.

gate chain means that if Enable = 0, then all T inputs will be equal to 0. If Enable = 1,
then the counter operates as explained previously.

In many applications it is necessary to start with the count equal to zero. This is easily
achieved if the flip-flops can be cleared, as explained in section 7.4.3. The clear inputs on
all flip-flops can be tied together and driven by a Clear control input.

Synchronous Counter with D Flip-Flops
While the toggle feature makes T flip-flops a natural choice for the implementation

of counters, it is also possible to build counters using other types of flip-flops. The JK
flip-flops can be used in exactly the same way as the T flip-flops because if the J and K
inputs are tied together, a JK flip-flop becomes a T flip-flop. We will now consider using D
flip-flops for this purpose.

It is not obvious how D flip-flops can be used to implement a counter. We will present
a formal method for deriving such circuits in Chapter 8. Here we will present a circuit
structure that meets the requirements but will leave the derivation for Chapter 8. Fig-
ure 7.24 gives a four-bit up-counter that counts in the sequence 0, 1, 2, . . . , 14, 15, 0, 1,
and so on. The count is indicated by the flip-flop outputs Q3Q2Q1Q0. If we assume that
Enable = 1, then the D inputs of the flip-flops are defined by the expressions

D0 = Q0 = 1⊕ Q0

D1 = Q1 ⊕ Q0

D2 = Q2 ⊕ Q1Q0

D3 = Q3 ⊕ Q2Q1Q0

For a larger counter the ith stage is defined by

Di = Qi ⊕ Qi−1Qi−2 · · ·Q1Q0

We will show how to derive these equations in Chapter 8.
We have included the Enable control signal so that the counter counts the clock pulses

only if Enable = 1. In effect, the above equations are modified to implement the circuit in
the figure as follows

D0 = Q0 ⊕ Enable

D1 = Q1 ⊕ Q0 · Enable

June 18, 2002 15:56 vra23151_ch07 Sheet number 29 Page number 377 black

7.9 Counters 377

Clock

Enable D Q

Q

D Q

Q

D Q

Q

D Q

Q

Q0

Q1

Q2

Q3

Output
carry

Figure 7.24 A four-bit counter with D flip-flops.

D2 = Q2 ⊕ Q1 · Q0 · Enable

D3 = Q3 ⊕ Q2 · Q1 · Q0 · Enable

The operation of the counter is based on our observation for Table 7.1 that the state of the
flip-flop in stage i changes only if all preceding flip-flops are in the state Q = 1. This
makes the output of the AND gate that feeds stage i equal to 1, which causes the output of
the XOR gate connected to Di to be equal to Qi. Otherwise, the output of the XOR gate
provides Di = Qi, and the flip-flop remains in the same state. This resembles the carry
propagation in a carry-lookahead adder circuit (see section 5.4); hence the AND-gate chain
can be thought of as the carry chain. Even though the circuit is only a four-bit counter, we
have included an extra AND that produces the “output carry.” This signal makes it easy to
concatenate two such four-bit counters to create an eight-bit counter.

June 18, 2002 15:56 vra23151_ch07 Sheet number 30 Page number 378 black

378 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Finally, the reader should note that the counter in Figure 7.24 is essentially the same
as the circuit in Figure 7.23. We showed in Figure 7.16a that a T flip-flop can be formed
from a D flip-flop by providing the extra gating that gives

D = QT + QT

= Q⊕ T

Thus in each stage in Figure 7.24, the D flip-flop and the associated XOR gate implement
the functionality of a T flip-flop.

7.9.3 Counters with Parallel Load

Often it is necessary to start counting with the initial count being equal to 0. This state can
be achieved by using the capability to clear the flip-flops as indicated in Figure 7.23. But
sometimes it is desirable to start with a different count. To allow this mode of operation,
a counter circuit must have some inputs through which the initial count can be loaded.
Using the Clear and Preset inputs for this purpose is a possibility, but a better approach is
discussed below.

The circuit of Figure 7.24 can be modified to provide the parallel-load capability as
shown in Figure 7.25. A two-input multiplexer is inserted before each D input. One input to
the multiplexer is used to provide the normal counting operation. The other input is a data
bit that can be loaded directly into the flip-flop. A control input, Load, is used to choose the
mode of operation. The circuit counts when Load = 0. A new initial value, D3D2D1D0, is
loaded into the counter when Load = 1.

7.10 Reset Synchronization

We have already mentioned that it is important to be able to clear, or reset, the contents
of a counter prior to commencing a counting operation. This can be done using the clear
capability of the individual flip-flops. But we may also be interested in resetting the count to
0 during the normal counting process. An n-bit up-counter functions naturally as a modulo-
2n counter. Suppose that we wish to have a counter that counts modulo some base that is
not a power of 2. For example, we may want to design a modulo-6 counter, for which the
counting sequence is 0, 1, 2, 3, 4, 5, 0, 1, and so on.

The most straightforward approach is to recognize when the count reaches 5 and then
reset the counter. An AND gate can be used to detect the occurrence of the count of 5.
Actually, it is sufficient to ascertain that Q2 = Q0 = 1, which is true only for 5 in our
desired counting sequence. A circuit based on this approach is given in Figure 7.26a. It
uses a three-bit synchronous counter of the type depicted in Figure 7.25. The parallel-load
feature of the counter is used to reset its contents when the count reaches 5. The resetting
action takes place at the positive clock edge after the count has reached 5. It involves
loading D2D1D0 = 000 into the flip-flops. As seen in the timing diagram in Figure 7.26b,

June 18, 2002 15:56 vra23151_ch07 Sheet number 31 Page number 379 black

7.10 Reset Synchronization 379

Enable D Q

Q

Q0

D Q

Q

Q1

D Q

Q

Q2

D Q

Q

Q3

D0

D1

D2

D3

Load

Clock

Output
carry

0

1

0

1

0

1

0

1

Figure 7.25 A counter with parallel-load capability.

June 18, 2002 15:56 vra23151_ch07 Sheet number 32 Page number 380 black

380 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Enable

Q0

Q1

Q2

D0

D1

D2

Load

Clock

1

0

0

0

Clock

0 1 2 3 4 5 0 1

Clock

Count

Q0

Q1

Q2

(a) Circuit

(b) Timing diagram

Figure 7.26 A modulo-6 counter with synchronous reset.

the desired counting sequence is achieved, with each value of the count being established
for one full clock cycle. Because the counter is reset on the active edge of the clock, we
say that this type of counter has a synchronous reset.

Consider now the possibility of using the clear feature of individual flip-flops, rather
than the parallel-load approach. The circuit in Figure 7.27a illustrates one possibility. It
uses the counter structure of Figure 7.22a. Since the clear inputs are active when low, a
NAND gate is used to detect the occurrence of the count of 5 and cause the clearing of all
three flip-flops. Conceptually, this seems to work fine, but closer examination reveals a
potential problem. The timing diagram for this circuit is given in Figure 7.27b. It shows a
difficulty that arises when the count is equal to 5. As soon as the count reaches this value,
the NAND gate triggers the resetting action. The flip-flops are cleared to 0 a short time after
the NAND gate has detected the count of 5. This time depends on the gate delays in the

June 18, 2002 15:56 vra23151_ch07 Sheet number 33 Page number 381 black

7.10 Reset Synchronization 381

T Q

QClock

T Q

Q

T Q

Q

1
Q0 Q1 Q2

(a) Circuit

Clock

Q0

Q1

Q2

Count

(b) Timing diagram

0 1 2 3 4 5 0 1 2

Figure 7.27 A modulo-6 counter with asynchronous reset.

circuit, but not on the clock. Therefore, signal values Q2Q1Q0 = 101 are maintained for a
time that is much less than a clock cycle. Depending on a particular application of such a
counter, this may be adequate, but it may also be completely unacceptable. For example, if
the counter is used in a digital system where all operations in the system are synchronized
by the same clock, then this narrow pulse denoting Count = 5 would not be seen by the
rest of the system. To solve this problem, we could try to use a modulo-7 counter instead,
assuming that the system would ignore the short pulse that denotes the count of 6. This is
not a good way of designing circuits, because undesirable pulses often cause unforeseen
difficulties in practice. The approach employed in Figure 7.27a is said to use asynchronous
reset.

The timing diagrams in Figures 7.26b and 7.27b suggest that synchronous reset is a
better choice than asynchronous reset. The same observation is true if the natural counting
sequence has to be broken by loading some value other than zero. The new value of the
count can be established cleanly using the parallel-load feature. The alternative of using
the clear and preset capability of individual flip-flops to set their states to reflect the desired
count has the same problems as discussed in conjunction with the asynchronous reset.

June 18, 2002 15:56 vra23151_ch07 Sheet number 34 Page number 382 black

382 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

7.11 Other Types of Counters

In this section we discuss three other types of counters that can be found in practical
applications. The first uses the decimal counting sequence, and the other two generate
sequences of codes that do not represent binary numbers.

7.11.1 BCD Counter

Binary-coded-decimal (BCD) counters can be designed using the approach explained in
section 7.10. A two-digit BCD counter is presented in Figure 7.28. It consists of two
modulo-10 counters, one for each BCD digit, which we implemented using the parallel-
load four-bit counter of Figure 7.25. Note that in a modulo-10 counter it is necessary to
reset the four flip-flops after the count of 9 has been obtained. Thus the Load input to each
stage is equal to 1 when Q3 = Q0 = 1, which causes 0s to be loaded into the flip-flops at
the next positive edge of the clock signal. Whenever the count in stage 0, BCD0, reaches 9
it is necessary to enable the second stage so that it will be incremented when the next clock

Enable

Q0

Q1

Q2

D0

D1

D2

Load

Clock

1

0

0

0

Clock

Q30 D3

Enable

Q0

Q1

Q2

D0

D1

D2

Load

Clock

0

0

0

Q30 D3

BCD0

BCD1

Clear

Figure 7.28 A two-digit BCD counter.

June 18, 2002 15:56 vra23151_ch07 Sheet number 35 Page number 383 black

7.11 Other Types of Counters 383

pulse arrives. This is accomplished by keeping the Enable signal for BCD1 low at all times
except when BCD0 = 9.

In practice, it has to be possible to clear the contents of the counter by activating some
control signal. Two OR gates are included in the circuit for this purpose. The control input
Clear can be used to load 0s into the counter. Observe that in this case Clear is active when
high. Verilog code for a two-digit BCD counter is given in Figure 7.81.

In any digital system there is usually one or more clock signals used to drive all
synchronous circuitry. In the preceding counter, as well as in all counters presented in the
previous figures, we have assumed that the objective is to count the number of clock pulses.
Of course, these counters can be used to count the number of pulses in any signal that may
be used in place of the clock signal.

7.11.2 Ring Counter

In the preceding counters the count is indicated by the state of the flip-flops in the counter.
In all cases the count is a binary number. Using such counters, if an action is to be taken
as a result of a particular count, then it is necessary to detect the occurrence of this count.
This may be done using AND gates, as illustrated in Figures 7.26 through 7.28.

It is possible to devise a counterlike circuit in which each flip-flop reaches the state
Qi = 1 for exactly one count, while for all other counts Qi = 0. Then Qi indicates directly
an occurrence of the corresponding count. Actually, since this does not represent binary
numbers, it is better to say that the outputs of the flips-flops represent a code. Such a circuit
can be constructed from a simple shift register, as indicated in Figure 7.29a. The Q output
of the last stage in the shift register is fed back as the input to the first stage, which creates
a ringlike structure. If a single 1 is injected into the ring, this 1 will be shifted through
the ring at successive clock cycles. For example, in a four-bit structure, the possible codes
Q0Q1Q2Q3 will be 1000, 0100, 0010, and 0001. As we said in section 6.2, such encoding,
where there is a single 1 and the rest of the code variables are 0, is called a one-hot code.

The circuit in Figure 7.29a is referred to as a ring counter. Its operation has to be
initialized by injecting a 1 into the first stage. This is achieved by using the Start control
signal, which presets the left-most flip-flop to 1 and clears the others to 0. We assume that
all changes in the value of the Start signal occur shortly after an active clock edge so that
the flip-flop timing parameters are not violated.

The circuit in Figure 7.29a can be used to build a ring counter with any number of
bits, n. For the specific case of n = 4, part (b) of the figure shows how a ring counter
can be constructed using a two-bit up-counter and a decoder. When Start is set to 1, the
counter is reset to 00. After Start changes back to 0, the counter increments its value in the
normal way. The 2-to-4 decoder, described in section 6.2, changes the counter output into
a one-hot code. For the count values 00, 01, 10, 11, 00, and so on, the decoder produces
Q0Q1Q2Q3 = 1000, 0100, 0010, 0001, 1000, and so on. This circuit structure can be used
for larger ring counters, as long as the number of bits is a power of two. We will give
an example of a larger circuit that uses the ring counter in Figure 7.29b as a subcircuit in
section 7.14.

June 18, 2002 15:56 vra23151_ch07 Sheet number 36 Page number 384 black

384 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

D Q

Q

Clock

D Q

Q

D Q

Q

Start

Q0 Q1 Qn 1–

Clock

Q0

Start

Two-bit up-counter

w0 En

y0

w1

y1 y2 y3

1

Q1 Q2 Q3

2-to-4 decoder

Q1 Q0

(a) An n-bit ring counter

Clock

Clear

(b) A four-bit ring counter

Figure 7.29 Ring counter.

7.11.3 Johnson Counter

An interesting variation of the ring counter is obtained if, instead of the Q output, we take
the Q output of the last stage and feed it back to the first stage, as shown in Figure 7.30. This
circuit is known as a Johnson counter. An n-bit counter of this type generates a counting
sequence of length 2n. For example, a four-bit counter produces the sequence 0000, 1000,
1100, 1110, 1111, 0111, 0011, 0001, 0000, and so on. Note that in this sequence, only a
single bit has a different value for two consecutive codes.

June 18, 2002 15:56 vra23151_ch07 Sheet number 37 Page number 385 black

7.12 Using Storage Elements with CAD Tools 385

D Q

Q

Clock

D Q

Q

D Q

Q

Q0 Q1 Qn 1–

Reset

Figure 7.30 Johnson counter.

To initialize the operation of the Johnson counter, it is necessary to reset all flip-flops,
as shown in the figure. Observe that neither the Johnson nor the ring counter will generate
the desired counting sequence if not initialized properly.

7.11.4 Remarks on Counter Design

The sequential circuits presented in this chapter, namely, registers and counters, have a
regular structure that allows the circuits to be designed using an intuitive approach. In
Chapter 8 we will present a more formal approach to design of sequential circuits and show
how the circuits presented in this chapter can be derived using this approach.

7.12 Using Storage Elements with CAD Tools

This section shows how circuits with storage elements can be designed using either schema-
tic capture or Verilog code.

7.12.1 Including Storage Elements in Schematics

One way to create a circuit is to draw a schematic that builds latches and flip-flops from
logic gates. Because these storage elements are used in many applications, most CAD
systems provide them as prebuilt modules. Figure 7.31 shows a schematic created with
a schematic capture tool, which includes three types of flip-flops that are imported from
a library provided as part of the CAD system. The top element is a gated D latch, the
middle element is a positive-edge-triggered D flip-flop, and the bottom one is a positive-
edge-triggered T flip-flop. The D and T flip-flops have asynchronous, active-low clear and
preset inputs. If these inputs are not connected in a schematic, then the CAD tool makes
them inactive by assigning the default value of 1 to them.

June 18, 2002 15:56 vra23151_ch07 Sheet number 38 Page number 386 black

386 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Figure 7.31 Three types of storage elements in a schematic.

When the gated D latch is synthesized for implementation in a chip, the CAD tool may
not generate the cross-coupled NOR or NAND gates shown in section 7.2. In some chips,
such as a CPLD, theAND-OR circuit depicted in Figure 7.32 may be preferable. This circuit
is functionally equivalent to the cross-coupled version in section 7.2. The sum-of-products
circuit is used because it is more suitable for implementation in a CPLD macrocell. One
aspect of this circuit should be mentioned. From the functional point of view, it appears
that the circuit can be simplified by removing the AND gate with the inputs Data and Latch.
Without this gate, the top AND gate sets the value stored in the latch when the clock is 1,
and the bottom AND gate maintains the stored value when the clock is 0. But without this
gate, the circuit has a timing problem known as a static hazard. A detailed explanation of
hazards will be given in section 9.6.

Data

Clock

Latch

Figure 7.32 Gated D latch generated by CAD tools.

June 18, 2002 15:56 vra23151_ch07 Sheet number 39 Page number 387 black

7.12 Using Storage Elements with CAD Tools 387

The circuit in Figure 7.31 can be implemented in a CPLD as shown in Figure 7.33.
The D and T flip-flops are realized using the flip-flops on the chip that are configurable as
either D or T types. The figure depicts in blue the gates and wires needed to implement the
circuit in Figure 7.31.

The results of a timing simulation for the implementation in Figure 7.33 are given in
Figure 7.34. The Latch signal, which is the output of the gated D latch, implemented as
indicated in Figure 7.32, follows the Data input whenever the Clock signal is 1. Because

D Q

D Q

D Q

T Q

Data

Latch

Flip-flop

Toggle

Clock

0

1

1

1

0

0

0

0

1

1

PAL-like block

Interconnection wires

(Other macrocells not shown)

Figure 7.33 Implementation of the schematic in Figure 7.31 in a CPLD.

June 18, 2002 15:56 vra23151_ch07 Sheet number 40 Page number 388 black

388 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Figure 7.34 Timing simulation for the storage elements in Figure 7.31.

of propagation delays in the chip, the Latch signal is delayed in time with respect to the
Data signal. Since the Flipflop signal is the output of the D flip-flop, it changes only after
a positive clock edge. Similarly, the output of the T flip-flop, called Toggle in the figure,
toggles when Data = 1 and a positive clock edge occurs. The timing diagram illustrates
the delay from when the positive clock edge occurs at the input pin of the chip until a
change in the flip-flop output appears at the output pin of the chip. This time is called the
clock-to-output time, tco.

7.12.2 Using Verilog Constructs for Storage Elements

In section 6.6 we described a number of Verilog constructs. We now show how these con-
structs can be used to describe storage elements.

Asimple way of specifying a storage element is by using the if-else statement to describe
the desired behavior responding to changes in the levels of data and clock inputs. Consider
the always block

always @(Control or B)
if (Control)

A = B;

where A is a variable of reg type. This code specifies that the value of A should be made
equal to the value of B when Control = 1. But the statement does not indicate an action that
should occur when Control = 0. In the absence of an assigned value, the Verilog compiler
assumes that the value of A caused by the if statement must be maintained until the next time
this if statement is evaluated. This notion of implied memory is realized by instantiating a
latch in the circuit.

Example 7.1 CODE FOR A GATED D LATCH The code in Figure 7.35 defines a module named D_latch,
which has the inputs D and Clk and the output Q. The if clause defines that the Q output
must take the value of D when Clk = 1. Since no else clause is given, a latch will be
synthesized to maintain the value of Q when Clk= 0. Therefore, the code describes a gated

June 18, 2002 15:56 vra23151_ch07 Sheet number 41 Page number 389 black

7.12 Using Storage Elements with CAD Tools 389

module D latch (D, Clk, Q);
input D, Clk;
output Q;
reg Q;

always @(D or Clk)
if (Clk)

Q = D;

endmodule

Figure 7.35 Code for a gated D latch.

D latch. The sensitivity list includes Clk and D because both of these signals can cause a
change in the value of the Q output.

An always construct is used to define a circuit that responds to changes in the signals
that appear in the sensitivity list. While in the examples presented so far the always blocks
are sensitive to the levels of signals, it is also possible to specify that a response should take
place only at a particular edge of a signal. The desired edge is specified by using the Verilog
keywords posedge and negedge, which are used to implement edge-triggered circuits.

Example 7.2CODE FOR A D FLIP-FLOP Figure 7.36 defines a module named flipflop, which is a
positive-edge-triggered D flip-flop. The sensitivity list contains only the clock signal be-
cause it is the only signal that can cause a change in the Q output. The keyword posedge
specifies that a change may occur only on the positive edge of Clock. At this time the output

module flipflop (D, Clock, Q);
input D, Clock;
output Q;
reg Q;

always @(posedge Clock)
Q = D;

endmodule

Figure 7.36 Code for a D flip-flop.

June 18, 2002 15:56 vra23151_ch07 Sheet number 42 Page number 390 black

390 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Q is set to the value of the input D. Since Q is of reg type it will maintain its value between
the positive edges of the clock.

7.12.3 Blocking and Non-Blocking Assignments

In all our Verilog examples presented so far we have used the equal sign for assignments,
as in

f = x1 & x2;

or

C = A + B;

or

Q = D;

This notation is called a blocking assignment. A Verilog compiler evaluates the statements
in an always block in the order in which they are written. If a variable is given a value by
a blocking assignment statement, then this new value is used in evaluating all subsequent
statements in the block.

Example 7.3 Consider the code in Figure 7.37. Since the always block is sensitive to the positive clock
edge, both Q1 and Q2 will be implemented as the outputs of D flip-flops. However, because
blocking assignments are involved, these two flip-flops will not be connected in cascade,
as the reader might expect. The first statement

Q1 = D;

sets Q1 to the value of D. This new value is used in evaluating the subsequent statement

module example7 3 (D, Clock, Q1, Q2);
input D, Clock;
output Q1, Q2;
reg Q1, Q2;

always @(posedge Clock)
begin

Q1 = D;
Q2 = Q1;

end

endmodule

Figure 7.37 Incorrect code for two cascaded flip-flops.

June 18, 2002 15:56 vra23151_ch07 Sheet number 43 Page number 391 black

7.12 Using Storage Elements with CAD Tools 391

Q2 = Q1;

which results in Q2 = Q1 = D. The synthesized circuit has two parallel flip-flops, as illustrated
in Figure 7.38. A synthesis tool will likely delete one of these redundant flip-flops as an
optimization step.

Verilog also provides a non-blocking assignment, denoted with <=. All non-blocking
assignment statements in an always block are evaluated using the values that the variables
have when the always block is entered. Thus, a given variable has the same value for all
statements in the block. The meaning of non-blocking is that the result of each assignment
is not seen until the end of the always block.

Example 7.4Figure 7.39 gives the same code as in Figure 7.37, but using non-blocking assignments. In
the two statements

Q1 <= D;
Q2 <= Q1;

the variables Q1 and Q2 have some value at the start of evaluating the always block, and
then they change to a new value concurrently at the end of the always block. This code
generates a cascaded connection between flip-flops, which implements the shift register
depicted in Figure 7.40.

The differences between blocking and non-blocking assignments are illustrated further
by the following two examples.

D Q

Q

D Q

Q

D

Clock

Q2

Q1

Figure 7.38 Circuit for Example 7.3.

June 18, 2002 15:56 vra23151_ch07 Sheet number 44 Page number 392 black

392 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

module example7 4 (D, Clock, Q1, Q2);
input D, Clock;
output Q1, Q2;
reg Q1, Q2;

always @(posedge Clock)
begin

Q1 <= D;
Q2 <= Q1;

end

endmodule

Figure 7.39 Code for two cascaded flip-flops.

D Q

QClock

D Q

Q

D
Q1 Q2

Figure 7.40 Circuit defined in Figure 7.39.

Example 7.5 Code that involves some gates in addition to flip-flops is defined in Figure 7.41 using
blocking assignment statements. The resulting circuit is given in Figure 7.42. Both f and
g are implemented as the outputs of D flip-flops, because the sensitivity list of the always
block specifies the event posedge Clock. Since blocking assignments are used, the updated
value of f generated by the statement f = x1 & x2 has to be seen immediately by the
following statement g = f | x3. Thus, the AND gate that produces x1 & x2 is connected to
the OR gate that feeds the g flip-flop, as shown in Figure 7.42.

Example 7.6 If non-blocking assignments are used, as given in Figure 7.43, then both f and g are updated
simultaneously. Hence, the previous value of f is used in updating the value of g, which
means that the output of the flip-flop that generates f is connected to the OR gate that feeds
the g flip-flop. This gives rise to the circuit in Figure 7.44.

It is interesting to consider what circuit would be synthesized if the statements that
specify f and g were reversed. For the code in Figure 7.41 the impact would be significant.
If g is evaluated first, then the second statement does not depend on the first one, because
f does not depend on g. The resulting circuit would be the same as the one in Figure 7.44.

June 18, 2002 15:56 vra23151_ch07 Sheet number 45 Page number 393 black

7.12 Using Storage Elements with CAD Tools 393

module example7 5 (x1, x2, x3, Clock, f, g);
input x1, x2, x3, Clock;
output f, g;
reg f, g;

always @(posedge Clock)
begin

f = x1 & x2;
g = f | x3;

end

endmodule

Figure 7.41 Code for Example 7.5.

Clock

D Q

Q

D Q

Q

g

f

x3

x1

x2

Figure 7.42 Circuit for Example 7.5.

module example7 6 (x1, x2, x3, Clock, f, g);
input x1, x2, x3, Clock;
output f, g;
reg f, g;

always @(posedge Clock)
begin

f <= x1 & x2;
g <= f | x3;

end

endmodule

Figure 7.43 Code for Example 7.6.

June 18, 2002 15:56 vra23151_ch07 Sheet number 46 Page number 394 black

394 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Clock

D Q

Q

D Q

Q

g

f

x3

x1

x2

Figure 7.44 Circuit for Example 7.6.

Reversing the statement order would make no difference for the code in Figure 7.43, in
which the non-blocking assignment is used.

The use of blocking assignments for sequential circuits can easily lead to wrong results,
as demonstrated in Figure 7.38. The dependence on ordering of blocking assignments is
dangerous, as shown in the previous example. It is better to use non-blocking assignments
to describe sequential circuits.

7.12.4 Non-Blocking Assignments for Combinational
Circuits

A natural question at this point is whether non-blocking assignments can be used for combi-
national circuits. The answer is that they can be used in most situations, but when subsequent
assignments in an always block depend on the results of previous assignments, the non-
blocking assignments can generate nonsensical circuits. As an example, assume that we
have a three-bit vector A = a2a1a0, and we wish to generate a combinational function f
that is equal to 1 when there are two adjacent bits in A that have the value 1. One way to
specify this function with blocking assignments is

always @(A)
begin

f = A[1] & A[0];
f = f | (A[2] & A[1]);

end

These statements produce the desired logic function, which is f = a1a0 + a2a1. Consider
now changing the code to use the non-blocking assignments

f <= A[1] & A[0];
f <= f | (A[2] & A[1]);

June 18, 2002 15:56 vra23151_ch07 Sheet number 47 Page number 395 black

7.12 Using Storage Elements with CAD Tools 395

There are two key aspects of the Verilog semantics relevant to this code:

1. The results of non-blocking assignments are visible only after all of the statements in
the always block have been evaluated.

2. When there are multiple assignments to the same variable inside an always block, the
result of the last assignment is maintained.

In this example, f has an unspecified initial value when we enter the always block. The
first statement assigns f = a1a0, but this result is not visible to the second statement. It still
sees the original unspecified value of f . The second assignment overrides (deletes!) the
first assignment and produces the logic function f = f + a2a1. This expression does not
correspond to a combinational circuit, because it represents an AND-OR circuit in which
the OR-gate is fed back to itself. It is best to use blocking assignments when describing
combinational circuits, so as to avoid accidentally creating a sequential circuit.

7.12.5 Flip-Flops with Clear Capability

By using a particular sensitivity list and a specific style of if-else statement, it is possible
to include clear (or preset) signals on flip-flops.

Example 7.7ASYNCHRONOUS CLEAR Figure 7.45 gives a module that defines a D flip-flop with
an asynchronous active-low reset (clear) input. When Resetn, the reset input, is equal to
0, the flip-flop’s Q output is set to 0. Note that the sensitivity list specifies the negative
edge of Resetn as an event trigger along with the positive edge of the clock. We cannot
omit the keyword negedge because the sensitivity list cannot have both edge-triggered and
level-sensitive signals.

module flipflop (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output Q;
reg Q;

always @(negedge Resetn or posedge Clock)
if (!Resetn)

Q <= 0;
else

Q <= D;

endmodule

Figure 7.45 D flip-flop with asynchronous reset.

June 18, 2002 15:56 vra23151_ch07 Sheet number 48 Page number 396 black

396 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

module flipflop (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output Q;
reg Q;

always @(posedge Clock)
if (!Resetn)

Q <= 0;
else

Q <= D;

endmodule

Figure 7.46 D flip-flop with synchronous reset.

Example 7.8 SYNCHRONOUS CLEAR Figure 7.46 shows how a D flip-flop with a synchronous reset
input can be described. In this case the reset signal is acted upon only when a positive
clock edge arrives. This code generates the circuit in Figure 7.15, which has an AND gate
connected to the flip-flop’s D input.

7.13 Using Registers and Counters with CADTools

In this section we show how registers and counters can be included in circuits designed
with the aid of CAD tools. Examples are given using both schematic capture and Verilog
code.

7.13.1 Including Registers and Counters in Schematics

In section 5.5.1 we explained that a CAD system usually includes libraries of prebuilt
subcircuits. We introduced the library of parameterized modules (LPM) and used the
adder/subtractor module, lpm_add_sub, as an example. The LPM includes modules that
constitute flip-flops, registers, counters, and many other useful circuits. Figure 7.47 shows
a symbol that represents the lpm_ ff module. This module is a register with one or more
positive-edge-triggered flip-flops that can be of either D or T type. The module has param-
eters that allow the number of flip-flops and flip-flop type to be chosen. In this case we
chose to have four D flip-flops. The tutorial in Appendix D explains how the configuration
of the module is done.

The D inputs to the four flip-flops, called data on the graphical symbol, are connected
to the four-bit input signal Data[3..0]. The module’s asynchronous active-high reset (clear)
input, aclr, is shown in the schematic. The flip-flop outputs, q, are attached to the output
symbol labeled Q[3..0].

June 18, 2002 15:56 vra23151_ch07 Sheet number 49 Page number 397 black

7.13 Using Registers and Counters with CAD Tools 397

Figure 7.47 The lpm_ff parameterized flip-flop module.

In section 7.3 we said that a useful application of D flip-flops is to hold the results of an
arithmetic computation, such as the output from an adder circuit. An example is given in
Figure 7.48, which uses two LPM modules, lpm_add_sub and lpm_ ff. The lpm_add_sub
module was described in section 5.5.1. Its parameters, which are not shown in Figure 7.48,
are set to configure the module as a four-bit adder circuit. The adder’s four-bit data input
dataa is driven by the Data[3..0] input signal. The sum bits, result, are connected to the
data inputs of the lpm_ ff, which is configured as a four-bit D register with asynchronous
clear. The register generates the output of the circuit, Q[3..0], which appears on the left
side of the schematic. This signal is fed back to the datab input of the adder. The sum bits

Figure 7.48 An adder with registered feedback.

June 18, 2002 15:56 vra23151_ch07 Sheet number 50 Page number 398 black

398 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

from the adder are also provided as an output of the circuit, Sum[3..0], for ease of reference
in the discussion that follows. If the register is first cleared to 0000, then the circuit can be
used to add the binary numbers on the Data[3..0] input to a sum that is being accumulated
in the register, if a new number is applied to the input during each clock cycle. A circuit
that performs this function is referred to as an accumulator circuit.

We synthesized a circuit from the schematic and implemented the four-bit adder using
the carry-lookahead structure. A timing simulation for the circuit appears in Figure 7.49.
After resetting the circuit, the Data input is set to 0001. The adder produces the sum
0000 + 0001 = 0001, which is then clocked into the register at the 60 ns point in time.
After the tco delay, Q[3..0] becomes 0001, and this causes the adder to produce the new sum
0001+0001 = 0010. The time needed to generate the new sum is determined by the speed
of the adder circuit, which produces the sum after 12.5 ns in this case. The new sum does
not appear at the Q output until after the next positive clock edge, at 100 ns. The adder then
produces 0011 as the next sum. When Sum changes from 0010 to 0011, some oscillations
appear in the timing diagram, caused by the propagation of carry signals through the adder
circuit. These oscillations are not seen at the Q output, because Sum is stable by the time the
next positive clock edge occurs. Moving forward to the 180 ns point in time, Sum= 0100,
and this value is clocked into the register. The adder produces the new sum 0101. Then at
200 ns Data is changed to 0010, which causes the sum to change to 0100+ 0010 = 0110.
At the next positive clock edge, Q is set to 0110; the value Sum = 0101 that was present
temporarily in the circuit is not observed at the Q output. The circuit continues to add 0010
to the Q output at each successive positive clock edge.

Having simulated the behavior of the circuit, we should consider whether or not we
can conclude with some certainty that the circuit works properly. Ideally, it is prudent to
test all possible combinations of a circuit’s inputs before declaring that it works as desired.
However, in practice, such testing is often not feasible because of the number of input
combinations that exist. For the circuit in Figure 7.48, we could verify that a correct sum
is produced by the adder, and we could also check that each of the four flip-flops in the
register properly stores either 0 or 1. We will discuss issues associated with the testing of
circuits in Chapter 11.

For the circuit in Figure 7.48 to work properly, the following timing constraints must
be met. When the register is clocked by a positive clock edge, a change of signal value

Figure 7.49 Timing simulation of the circuit from Figure 7.48.

June 18, 2002 15:56 vra23151_ch07 Sheet number 51 Page number 399 black

7.13 Using Registers and Counters with CAD Tools 399

at the register’s output must propagate through the feedback path to the datab input of the
adder. The adder then produces a new sum, which must propagate to the data input of the
register. For the chip used to implement the circuit, the total delay incurred is 14 ns. The
delay can be broken down as follows: It takes 2 ns from when the register is clocked until
a change in its output reaches the datab input of the adder. The adder produces a new sum
in 8 ns, and it takes 4 ns for the sum to propagate to the register’s data input. In Figure 7.49
the clock period is 40 ns. Hence, after the new sum arrives at the data input of the register,
there remain 40 − 14 = 26 ns until the next positive clock edge occurs. The data input
must be stable for the amount of the setup time, tsu = 3 ns, before the clock edge. Hence
we have 26− 3 = 23 ns to spare. The clock period can be decreased by as much as 23 ns
and the circuit will still work. But if the clock period is less than 40 − 23 = 17 ns, then
the circuit will not function properly. Of course, if a different chip were used to implement
the circuit, then different timing results would be produced. CAD systems provide tools
that can automatically determine the minimum allowable clock period for which a circuit
will work correctly. The tutorial in Appendix D shows how this is done using the tools that
accompany the book.

7.13.2 Using Library Modules in Verilog Code

The predefined subcircuits in a library of modules such as the LPM library can be instantiated
in Verilog code. Figure 7.50 instantiates the lpm_shiftreg module, which is an n-bit shift
register. The module’s parameters are set using defparam statements. The number of
flip-flops in the shift register is set to 4 using the parameter lpm_width = 4. The module
can be configured to shift either left or right. The parameter lpm_direction = “RIGHT” sets
the shift direction to be from the left to the right. The code uses the module’s asynchronous
active-high clear input, aclr, and the active-high parallel-load input, load, which allows the
shift register to be loaded with the parallel data on the module’s data input. When shifting
takes place, the value on the shiftin input is shifted into the left-most flip-flop and the bit
shifted out appears on the right-most bit of the q parallel output. The code uses named

module shift (Clock, Reset, w, Load, R, Q);
input Clock, Reset, w, Load;
input [3:0] R;
output [3:0] Q ;

lpm shiftreg shift right (.data(R), .aclr(Reset), .clock(Clock),
.load(Load), .shiftin(w), .q(Q)) ;
defparam shift right.lpm width = 4;
defparam shift right.lpm direction = “RIGHT”;

endmodule

Figure 7.50 Instantiation of the lpm_shiftreg module.

June 18, 2002 15:56 vra23151_ch07 Sheet number 52 Page number 400 black

400 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

ports to connect the input and output signals of the shift module to the ports of the module.
For example, the R input signal is connected to the module’s data port. This is specified
by writing .data(R) in the instantiation statement. Similarly, .aclr(Reset) specifies that the
Reset input signal is connected to the aclr port on the module, and so on. When translated
into a circuit, the lpm_shiftreg has the structure shown in Figure 7.19.

Predefined modules also exist for the various types of counters, which are commonly
needed in logic circuits. An example is the lpm_counter module, which is a variable-width
counter with parallel-load inputs.

7.13.3 Using Verilog Constructs for Registers
and Counters

Rather than instantiating predefined subcircuits for registers, shift registers, counters, and
the like, the circuits can be described in Verilog code. Figure 7.45 gives code for a D
flip-flop. One way to describe an n-bit register is to write hierarchical code that includes
n instances of the D flip-flop subcircuit. A simpler approach is to use the same code as in
Figure 7.45 and define the D input and Q output as multibit signals.

Example 7.9 AN N-BIT REGISTER Since registers of different sizes are often needed in logic circuits, it
is advantageous to define a register module for which the number of flip-flops can be easily
changed. The code for an n-bit register is given in Figure 7.51. The parameter n specifies
the number of flip-flops in the register. By changing this parameter, the code can represent
a register of any size.

module regn (D, Clock, Resetn, Q);

input [n 1:0] D;
input Clock, Resetn;
output Q;
reg Q;

always @(negedge Resetn or posedge Clock)
if (!Resetn)

Q <= 0;
else

Q <= D;

endmodule

[n 1:0]
[n 1:0]

parameter n = 16;

Figure 7.51 Code for an n-bit register with asynchronous clear.

June 18, 2002 15:56 vra23151_ch07 Sheet number 53 Page number 401 black

7.13 Using Registers and Counters with CAD Tools 401

Example 7.10A FOUR-BIT SHIFT REGISTER Assume that we wish to write Verilog code that represents the
four-bit parallel-access shift register in Figure 7.19. One approach is to write hierarchical
code that uses four subcircuits. Each subcircuit consists of a D flip-flop with a 2-to-1
multiplexer connected to the D input. Figure 7.52 defines the module named muxdff, which
represents this subcircuit. The two data inputs are named D0 and D1, and they are selected
using the Sel input. The if-else statement specifies that on the positive clock edge if Sel
= 0, then Q is assigned the value of D0; otherwise, Q is assigned the value of D1.

Figure 7.53 defines the four-bit shift register. The module Stage3 instantiates the left-
most flip-flop, which has the output Q3, and the module Stage0 instantiates the right-most
flip-flop, Q0. When L = 1, the register is loaded in parallel from the R input; and when
L = 0, shifting takes place in the left to right direction. Serial data is shifted into the
most-significant bit, Q3, from the w input.

module muxdff (D0, D1, Sel, Clock, Q);
input D0, D1, Sel, Clock;
output Q;
reg Q;

always @(posedge Clock)
if (!Sel)

Q <= D0;
else

Q <= D1;

endmodule

Figure 7.52 Code for a D flip-flop with a 2-to-1 multiplexer on
the D input.

module shift4 (R, L, w, Clock, Q);
input [3:0] R;
input L, w, Clock;
output [3:0] Q;
wire [3:0] Q;

muxdff Stage3 (w, R[3], L, Clock, Q[3]);
muxdff Stage2 (Q[3], R[2], L, Clock, Q[2]);
muxdff Stage1 (Q[2], R[1], L, Clock, Q[1]);
muxdff Stage0 (Q[1], R[0], L, Clock, Q[0]);

endmodule

Figure 7.53 Hierarchical code for a four-bit shift register.

June 18, 2002 15:56 vra23151_ch07 Sheet number 54 Page number 402 black

402 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Example 7.11 ALTERNATIVE CODE FOR A FOUR-BIT SHIFT REGISTER A different style of code for the
four-bit shift register is given in Figure 7.54. Instead of using subcircuits, the shift register is
defined using the approach presented in Example 7.4. All actions take place at the positive
edge of the clock. If L = 1, the register is loaded in parallel with the four bits of input R.
If L = 0, the contents of the register are shifted to the right and the value of the input w is
loaded into the most-significant bit Q3.

Example 7.12 AN N-BIT SHIFT REGISTER Figure 7.55 shows the code that can be used to represent shift
registers of any size. The parameter n, which has the default value 16 in the figure, sets
the number of flip-flops. The code is identical to that in Figure 7.54 with two exceptions.
First, R and Q are defined in terms of n. Second, the else clause that describes the shifting
operation is generalized to work for any number of flip-flops by using a for loop.

Example 7.13 UP-COUNTER Figure 7.56 represents a four-bit up-counter with a reset input, Resetn, and
an enable input, E. The outputs of the flip-flops in the counter are represented by the vector
named Q. The if statement specifies an asynchronous reset of the counter if Resetn = 0.
The else if clause specifies that if E = 1 the count is incremented on the positive clock
edge.

module shift4 (R, L, w, Clock, Q);
input [3:0] R;
input L, w, Clock;
output [3:0] Q;
reg [3:0] Q;

always @(posedge Clock)
if (L)

Q <= R;
else
begin

Q[0] <= Q[1];
Q[1] <= Q[2];
Q[2] <= Q[3];
Q[3] <= w;

end

endmodule

Figure 7.54 Alternative code for a four-bit shift register.

June 18, 2002 15:56 vra23151_ch07 Sheet number 55 Page number 403 black

7.13 Using Registers and Counters with CAD Tools 403

module shiftn (R, L, w, Clock, Q);
parameter n = 16;
input R;
input L, w, Clock;
output Q;
reg Q;
integer k;

always @(posedge Clock)
if (L)

Q <= R;
else
begin

for (k = 0; k < n 1; k = k+1)
Q[k] <= Q[k+1];

Q[n 1] <= w;
end

endmodule

[n 1:0]

[n 1:0]
[n 1:0]

Figure 7.55 An n-bit shift register.

module upcount (Resetn, Clock, E, Q);
input Resetn, Clock, E;
output [3:0] Q;
reg [3:0] Q;

always @(negedge Resetn or posedge Clock)
if (!Resetn)

Q <= 0;
else if (E)

Q <= Q + 1;

endmodule

Figure 7.56 Code for a four-bit up-counter.

Example 7.14UP-COUNTER WITH PARALLEL LOAD The code in Figure 7.57 defines an up-counter that
has a parallel-load input in addition to a reset input. The parallel data is provided as the
input vector R. The first if statement provides the same asynchronous reset as in Figure
7.56. The else if clause specifies that if L = 1 the flip-flops in the counter are loaded in

June 18, 2002 15:56 vra23151_ch07 Sheet number 56 Page number 404 black

404 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

module upcount (R, Resetn, Clock, E, L, Q);
input [3:0] R;
input Resetn, Clock, E, L;
output [3:0] Q;
reg [3:0] Q;

always @(negedge Resetn or posedge Clock)
if (!Resetn)

Q <= 0;
else if (L)

Q <= R;
else if (E)

Q <= Q + 1;

endmodule

Figure 7.57 A four-bit up-counter with a parallel load.

parallel from the R inputs on the positive clock edge. If L = 0, the count is incremented,
under control of the enable input E.

Example 7.15 DOWN-COUNTER WITH PARALLEL LOAD Figure 7.58 shows the code for a down-counter
named downcount. A down-counter is normally used by loading it with some starting count
and then decrementing its contents. The starting count is represented in the code by the
vector R. On the positive clock edge, if L = 1 the counter is loaded with the input R, and
if L = 0 the count is decremented. The counter also includes an enable input, E. Setting

module downcount (R, Clock, E, L, Q);
parameter n = 8;
input R;
input Clock, L, E;
output Q;
reg Q;

always @(posedge Clock)
if (L)

Q <= R;
else if (E)

Q <= Q 1;

endmodule

[n 1:0]

[n 1:0]
[n 1:0]

Figure 7.58 A down-counter with a parallel load.

June 18, 2002 15:56 vra23151_ch07 Sheet number 57 Page number 405 black

7.14 Design Examples 405

module updowncount (R, Clock, L, E, up down, Q);
parameter n = 8;
input R;
input Clock, L, E, up down;
output − Q;
reg Q;
integer direction;

always @(posedge Clock)
begin

if (up down)
direction = 1;

else
direction = −1;

if (L)
Q <= R;

else if (E)
Q <= Q + direction;

end

endmodule

[n 1:0]

[n 1:0]
[n 1:0]

Figure 7.59 Code for an up/down counter.

E = 0 prevents the contents of the flip-flops from changing when an active clock edge
occurs.

Example 7.16UP/DOWN COUNTER Verilog code for an up/down counter is given in Figure 7.59.
This module combines the capabilities of the counters defined in Figures 7.57 and 7.58. It
includes a control signal up_down that governs the direction of counting. It also includes
an integer variable named direction, which is equal to 1 for up-count and equal to −1 for
down-count.

7.14 Design Examples

This section presents examples of digital systems that make use of some of the building
blocks described in this chapter and in Chapter 6.

7.14.1 Bus Structure

Digital systems often contain a set of registers used to store data. Figure 7.60 gives an
example of a system that has k n-bit registers, R1 to Rk. Each register is connected to a

June 18, 2002 15:56 vra23151_ch07 Sheet number 58 Page number 406 black

406 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

R1in Rkin

Bus

Clock

R1out R2in R2out Rkout

Control circuit
Function

R1 R2 Rk

Data

Extern

Figure 7.60 A digital system with k registers.

common set of n wires, which are used to transfer data into and out of the registers. This
common set of wires is usually called a bus. In addition to registers, in a real system other
types of circuit blocks would be connected to the bus. The figure shows how n bits of data
can be placed on the bus from another circuit block, using the control input Extern. The
data stored in any of the registers can be transferred via the bus to a different register or to
another circuit block that is connected to the bus.

It is essential to ensure that only one circuit block attempts to place data onto the bus
wires at any given time. In Figure 7.60 each register is connected to the bus through an n-bit
tri-state buffer. A control circuit is used to ensure that only one of the tri-state buffer enable
inputs, R1out, . . . , Rkout , is asserted at a given time. The control circuit also produces the
signals R1in, . . . , Rkin, which control when data is loaded into each register. In general, the
control circuit could perform a number of functions, such as transferring the data stored in
one register into another register and the like. Figure 7.60 shows an input signal named
Function that instructs the control circuit to perform a particular task. The control circuit is
synchronized by a clock input, which is the same clock signal that controls the k registers.

Figure 7.61 provides a more detailed view of how the registers from Figure 7.60 can
be connected to a bus. To keep the picture simple, 2 two-bit registers are shown, but the
same scheme can be used for larger registers. For register R1, two tri-state buffers en-
abled by R1out are used to connect each flip-flop output to a wire in the bus. The D input on

June 18, 2002 15:56 vra23151_ch07 Sheet number 59 Page number 407 black

407

D
Q Q

C
lo

ck

D
Q Q

R
1 in

R
1 o

u
t

D
Q Q

D
Q Q

R
2 in

R
2 o

u
t

B
us

R
1

R
2

Fi
g

u
re

7
.6

1
D
et
ai
ls
fo
r
co
nn

ec
tin
g
re
gi
ste

rs
to

a
bu

s.

June 18, 2002 15:56 vra23151_ch07 Sheet number 60 Page number 408 black

408 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

each flip-flop is connected to a 2-to-1 multiplexer, whose select input is controlled by R1in.
If R1in = 0, the flip-flops are loaded from their Q outputs; hence the stored data does
not change. But if R1in = 1, data is loaded into the flip-flops from the bus. Instead of
using multiplexers on the flip-flop inputs, one could attempt to connect the D inputs on
the flip-flops directly to the bus. Then it is necessary to control the clock inputs on all
flip-flops to ensure that they are clocked only when new data should be loaded into the
register. This approach is not good because it may happen that different flip-flops will be
clocked at slightly different times, leading to a problem known as clock skew. A detailed
discussion of the issues related to the clocking of flip-flops is provided in section 10.3.

The system in Figure 7.60 can be used in many different ways, depending on the design
of the control circuit and on how many registers and other circuit blocks are connected to
the bus. As a simple example, consider a system that has three registers, R1, R2, and R3.
Each register is connected to the bus as indicated in Figure 7.61. We will design a control
circuit that performs a single function—it swaps the contents of registers R1 and R2, using
R3 for temporary storage.

The required swapping is done in three steps, each needing one clock cycle. In the first
step the contents of R2 are transferred into R3. Then the contents of R1 are transferred into
R2. Finally, the contents of R3, which are the original contents of R2, are transferred into
R1. Note that we say that the contents of one register, Ri, are “transferred” into another
register, Rj. This jargon is commonly used to indicate that the new contents of Rj will be
a copy of the contents of Ri. The contents of Ri are not changed as a result of the transfer.
Therefore, it would be more precise to say that the contents of Ri are “copied” into Rj.

Using a Shift Register for Control
There are many ways to design a suitable control circuit for the swap operation. One

possibility is to use the left-to-right shift register shown in Figure 7.62. Assume that the
reset input is used to clear the flip-flops to 0. Hence the control signals R1in, R1out , and so
on are not asserted, because the shift register outputs have the value 0. The serial input w
normally has the value 0. We assume that changes in the value of w are synchronized to
occur shortly after the active clock edge. This assumption is reasonable because w would
normally be generated as the output of some circuit that is controlled by the same clock
signal. When the desired swap should be performed, w is set to 1 for one clock cycle, and
then w returns to 0. After the next active clock edge, the output of the left-most flip-flop

D Q

QClock

D Q

Q

D Q

Q

w

R2out R3in,

Reset

R1out R2in, R3out R1in,

Figure 7.62 A shift-register control circuit.

June 18, 2002 15:56 vra23151_ch07 Sheet number 61 Page number 409 black

7.14 Design Examples 409

becomes equal to 1, which asserts both R2out and R3in. The contents of register R2 are
placed onto the bus wires and are loaded into register R3 on the next active clock edge.
This clock edge also shifts the contents of the shift register, resulting in R1out = R2in = 1.
Note that since w is now 0, the first flip-flop is cleared, causing R2out = R3in = 0. The
contents of R1 are now on the bus and are loaded into R2 on the next clock edge. After this
clock edge the shift register contains 001 and thus asserts R3out and R1in. The contents of
R3 are now on the bus and are loaded into R1 on the next clock edge.

Using the control circuit in Figure 7.62, when w changes to 1 the swap operation does
not begin until after the next active clock edge. We can modify the control circuit so that
it starts the swap operation in the same clock cycle in which w changes to 1. One possible
approach is illustrated in Figure 7.63. The reset signal is used to set the shift-register
contents to 100, by presetting the left-most flip-flop to 1 and clearing the other two flip-
flops. As long as w = 0, the output control signals are not asserted. When w changes to 1,
the signals R2out and R3in are immediately asserted and the contents of R2 are placed onto
the bus. The next active clock edge loads this data into R3 and also shifts the shift register
contents to 010. Since the signal R1out is now asserted, the contents of R1 appear on the
bus. The next clock edge loads this data into R2 and changes the shift register contents to
001. The contents of R3 are now on the bus; this data is loaded into R1 at the next clock
edge, which also changes the shift register contents to 100. We assume that w had the value
1 for only one clock cycle; hence the output control signals are not asserted at this point.
It may not be obvious to the reader how to design a circuit such as the one in Figure 7.63,
because we have presented the design in an ad hoc fashion. In section 8.3 we will show
how this circuit can be designed using a more formal approach.

The circuit in Figure 7.63 assumes that a preset input is available on the left-most
flip-flop. If the flip-flop has only a clear input, then we can use the equivalent circuit
shown in Figure 7.64. In this circuit we use the Q output of the left-most flip-flop and also
complement the input to this flip-flop by using a NOR gate instead of an OR gate.

D Q

QClock

D Q

Q

D Q

Q

w

R2out R3in, R1out R2in, R3out R1in,

P

Reset

Figure 7.63 A modified control circuit.

June 18, 2002 15:56 vra23151_ch07 Sheet number 62 Page number 410 black

410 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

D Q

QClock

D Q

Q

D Q

Q

w

R2out R3in, R1out R2in, R3out R1in,

Reset

Figure 7.64 A modified version of the circuit in Figure 7.63.

Using Multiplexers to Implement a Bus
In Figure 7.60 we used tri-state buffers to control access to the bus. An alternative

approach is to use multiplexers, as depicted in Figure 7.65. The outputs of each register
are connected to a multiplexer. This multiplexer’s output is connected to the inputs of the
registers, thus realizing the bus. The multiplexer select inputs determine which register’s
contents appear on the bus. Although the figure shows just one multiplexer symbol, we
actually need one multiplexer for each bit in the registers. For example, assume that
there are 4 eight-bit registers, R1 to R4, plus the externally-supplied eight-bit Data. To

Data

R1in

Multiplexers

R2in Rkin

Bus

Clock

S j 1–

S0

R1 R2 Rk

Figure 7.65 Using multiplexers to implement a bus.

June 18, 2002 15:56 vra23151_ch07 Sheet number 63 Page number 411 black

7.14 Design Examples 411

interconnect them, we need eight 5-to-1 multiplexers. In Figure 7.62 we used a shift
register to implement the control circuit. A similar approach can be used with multiplexers.
The signals that control when data is loaded into a register, like R1in, can still be connected
directly to the shift-register outputs. However, instead of using control signals like R1out

to place the contents of a register onto the bus, we have to generate the select inputs for the
multiplexers. One way to do so is to connect the shift-register outputs to an encoder circuit
that produces the select inputs for the multiplexer. We discussed encoder circuits in section
6.3.

The tri-state buffer and multiplexer approaches for implementing a bus are both equally
valid. However, some types of chips, such as most PLDs, do not contain a sufficient number
of tri-state buffers to realize even moderately large buses. In such chips the multiplexer-
based approach is the only practical alternative. In practice, circuits are designed with CAD
tools. If the designer describes the circuit using tri-state buffers, but there are not enough
such buffers in the target device, then the CAD tools automatically produce an equivalent
circuit that uses multiplexers.

Verilog Code
This section presents Verilog code for our circuit example that swaps the contents of

two registers. We first give the code for the style of circuit in Figure 7.60 that uses tri-state
buffers to implement the bus and then give the code for the style of circuit in Figure 7.65
that uses multiplexers. The code is written in a hierarchical fashion, using subcircuits for
the registers, tri-state buffers, and the shift register. Figure 7.66 gives the code for an n-bit
register of the type in Figure 7.61. The number of bits in the register is set by the parameter
n, which has the default value of 8. The register is specified such that if the input Rin = 1,
then the flip-flops are loaded from the n-bit input R. Otherwise, the flip-flops retain their
presently stored values.

Figure 7.67 gives the code for a subcircuit that represents n tri-state buffers, each
enabled by the input E. The inputs to the buffers are the n-bit signal Y , and the outputs
are the n-bit signal F . The conditional assignment statement specifies that the output of

module regn (R, Rin, Clock, Q);
parameter n = 8;
input R;
input Rin, Clock;
output Q;
reg Q;

always @(posedge Clock)
if (Rin)

Q <= R;

endmodule

[n 1:0]

[n 1:0]
[n 1:0]

Figure 7.66 Code for an n-bit register of the type in Figure
7.61.

June 18, 2002 15:56 vra23151_ch07 Sheet number 64 Page number 412 black

412 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

module trin (Y, E, F);
parameter n = 8;
input Y;
input E;
output F;
wire F;

assign F = E ? Y : ’bz;

endmodule

[n 1:0]

[n 1:0]
[n 1:0]

Figure 7.67 Code for an n-bit tri-state module.

each buffer is set to F = Y if E = 1; otherwise, the output is set to the high impedance
value z. The conditional assignment statement uses an unsized number to define the high
impedance case. The Verilog compiler will make the size of this number the same as the
size of vector Y , namely n. We cannot define the number as n’bz because the size of a sized
number cannot be given as a parameter.

Figure 7.68 defines a shift register that can be used to implement the control circuit
in Figure 7.62. The number of flip-flops is set by the generic parameter m, which has the
default value of 4. The shift register has an active-low asynchronous reset input. The shift
operation is defined with a for loop in the style used in Example 7.12.

module shiftr (Resetn, w, Clock, Q);
parameter m = 4;
input Resetn, w, Clock;
output [1:m] Q;
reg [1:m] Q;
integer k;

always @(negedge Resetn or posedge Clock)
if (!Resetn)

Q <= 0;
else
begin

for (k = m; k > 1 ; k = k 1)
Q[k] <= Q[k 1];

Q[1] <= w;
end

endmodule

Figure 7.68 Code for the shift register in Figure 7.62.

June 18, 2002 15:56 vra23151_ch07 Sheet number 65 Page number 413 black

7.14 Design Examples 413

The code in Figure 7.69 represents a digital system like the one in Figure 7.60, with 3
eight-bit registers, R1, R2, and R3. The circuit in Figure 7.60 includes tri-state buffers that
are used to place n bits of externally supplied data on the bus. In Figure 7.69, these buffers
are instantiated in the module tri_ext. Each of the eight buffers is enabled by the input
signal Extern, and the data inputs on the buffers are attached to the eight-bit signal Data.
When Extern = 1, the value of Data is placed on the bus, which is represented by the signal
BusWires. The BusWires vector represents the circuit’s output as well as the internal bus
wiring. We declared this vector to be of tri type rather than of wire type. The keyword tri
is treated in the same way as the keyword wire by the Verilog compiler. The designation tri
makes it obvious to a reader that the synthesized connections will have tri-state capability.

We assume that a three-bit control signal named RinExt exists, which allows the ex-
ternally supplied data to be loaded from the bus into register R1, R2, or R3. The RinExt

module swap (Data, Resetn, w, Clock, Extern, RinExt, BusWires);
input [7:0] Data;
input Resetn, w, Clock, Extern;
input [1:3] RinExt;
output [7:0] BusWires;
tri [7:0] BusWires;
wire [1:3] Rin, Rout, Q;
wire [7:0] R1, R2, R3;

shiftr control (Resetn, w, Clock, Q);
defparam control.m = 3;

assign Rin[1] = RinExt[1] | Q[3];
assign Rin[2] = RinExt[2] | Q[2];
assign Rin[3] = RinExt[3] | Q[1];
assign Rout[1] = Q[2];
assign Rout[2] = Q[1];
assign Rout[3] = Q[3];

regn reg 1 (BusWires, Rin[1], Clock, R1);
regn reg 2 (BusWires, Rin[2], Clock, R2);
regn reg 3 (BusWires, Rin[3], Clock, R3);

trin tri ext (Data, Extern, BusWires);
trin tri 1 (R1, Rout[1], BusWires);
trin tri 2 (R2, Rout[2], BusWires);
trin tri 3 (R3, Rout[3], BusWires);

endmodule

Figure 7.69 A digital system like the one in Figure 7.60.

June 18, 2002 15:56 vra23151_ch07 Sheet number 66 Page number 414 black

414 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

input is not shown in Figure 7.60, to keep the figure simple, but it would be generated by
the same external circuit block that produces Extern and Data. When RinExt[1] = 1, the
data on the bus is loaded into register R1; when RinExt[2] = 1, the data is loaded into R2;
and when RinExt[3] = 1, the data is loaded into R3.

In Figure 7.69 the three-bit shift register is instantiated using the shiftr module under
the instance name control. The outputs of the shift register are the three-bit signal Q. The
parameter that defines the number of flip-flops in the shiftr module, m, has the default value
of 4. Since we need to instantiate only a three-bit shift register, we have to change the value
of parameter m. The parameter is set with the statement

defparam control.m = 3;

The defparam statement defines the values of the parameters indicated. The intended
module instance is identified using the syntax instance_name.parameter_name. In our
example, the instance name is control and the parameter name is m.

The next three statements in Figure 7.69 connect Q to the control signals that determine
when data is loaded into each register, which are represented by the three-bit signal Rin.
The signals Rin[1], Rin[2], and Rin[3] in the code correspond to the signals R1in, R2in, and
R3in in Figure 7.60. As specified in Figure 7.62, the left-most shift-register output, Q[1],
controls when data is loaded into register R3. Similarly, Q[2] controls register R2, and Q[3]
controls R1. Each bit in Rin is ORed with the corresponding bit in RinExt so that externally
supplied data can be stored in the registers as discussed above. The code also connects the
shift-register outputs to the enable inputs, Rout, on the tri-state buffers. Figure 7.62 shows
that Q[1] is used to put the contents of R2 onto the bus; hence Rout[2] is assigned the value
of Q[1]. Similarly, Rout[1] is assigned the value of Q[2], and Rout[3] is assigned the value
of Q[3]. The remaining statements in the code instantiate the registers and tri-state buffers
in the system.

Verilog Code Using Multiplexers
Figure 7.70 shows how the code in Figure 7.69 can be modified to use multiplexers

instead of tri-state buffers. Using the circuit structure shown in Figure 7.65, the bus is
implemented with eight 4-to-1 multiplexers. Three of the data inputs on each 4-to-1 mul-
tiplexer are connected to one bit from registers R1, R2, and R3. The fourth data input is
connected to one bit of the Data input signal to allow externally supplied data to be written
into the registers. When the shift register’s contents are 000, the multiplexers select Data
to be placed on the bus. This data is loaded into the register selected by RinExt. It is loaded
into R1 if RinExt[1] = 1, R2 if RinExt[2] = 1, and R3 if RinExt[3] = 1.

The Rout signal in Figure 7.69, which enables the tri-state buffers connected to the bus,
is not needed for the multiplexer implementation. Instead, we have to provide the select
inputs on the multiplexers. In Figure 7.70, the shift-register outputs are called Q. These
signals generate the Rin control signals for the registers in the same way as shown in Figure
7.69. We said in the discussion concerning Figure 7.65 that an encoder is needed between
the shift-register outputs and the multiplexer select inputs. A suitable encoder is described
in the first if-else statement in Figure 7.70. It produces the multiplexer select inputs, which
are named S. It sets S = 00 when the shift register contains 000, S = 10 when the shift
register contains 100, and so on, as given in the code. The multiplexers are described by

June 18, 2002 15:56 vra23151_ch07 Sheet number 67 Page number 415 black

7.14 Design Examples 415

module swapmux (Data, Resetn, w, Clock, RinExt, BusWires);
input [7:0] Data;
input Resetn, w, Clock;
input [1:3] RinExt;
output [7:0] BusWires;
reg [7:0] BusWires;
wire [1:3] Rin, Q;
wire [7:0] R1, R2, R3;
reg [1:0] S;

shiftr control (Resetn, w, Clock, Q);
defparam control.m = 3;

assign Rin[1] = RinExt[1] | Q[3];
assign Rin[2] = RinExt[2] | Q[2];
assign Rin[3] = RinExt[3] | Q[1];
regn reg 1 (BusWires, Rin[1], Clock, R1);
regn reg 2 (BusWires, Rin[2], Clock, R2);
regn reg 3 (BusWires, Rin[3], Clock, R3);

always @(Q or Data or R1 or R2 or R3 or S)
begin

// Encoder
if (Q == 3’b000) S = 2’b00;
else if (Q == 3’b100) S = 2’b10;
else if (Q == 3’b010) S = 2’b01;
else S = 2’b11;

// Multiplexers
if (S == 2’b00) BusWires = Data;
else if (S == 2’b01) BusWires = R1;
else if (S == 2’b10) BusWires = R2;
else BusWires = R3;

end

endmodule

Figure 7.70 Using multiplexers to implement a bus.

the second if-else statement, which places the value of Data onto the bus (BusWires) if
S = 00, the contents of register R1 if S = 01, and so on. Using this scheme, when the swap
operation is not active, the multiplexers place the bits from the Data input on the bus.

As described above, Figure 7.70 uses two if-else statements, one to describe an encoder
and the other to describe the bus multiplexers. A simpler approach is to write a single if-else
statement as shown in Figure 7.71. Here, each clause specifies directly which signal should

June 18, 2002 15:56 vra23151_ch07 Sheet number 68 Page number 416 black

416 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

module swapmux (Data, Resetn, w, Clock, RinExt, BusWires);
input [7:0] Data;
input Resetn, w, Clock;
input [1:3] RinExt;
output [7:0] BusWires;
reg [7:0] BusWires;
wire [1:3] Rin, Q;
wire [7:0] R1, R2, R3;

shiftr control (Resetn, w, Clock, Q);
defparam control.m = 3;

assign Rin[1] = RinExt[1] | Q[3];
assign Rin[2] = RinExt[2] | Q[2];
assign Rin[3] = RinExt[3] | Q[1];

regn reg 1 (BusWires, Rin[1], Clock, R1);
regn reg 2 (BusWires, Rin[2], Clock, R2);
regn reg 3 (BusWires, Rin[3], Clock, R3);

always @(Q or Data or R1 or R2 or R3)
begin

if (Q == 3’b000) BusWires = Data;
else if (Q == 3’b100) BusWires = R2;
else if (Q == 3’b010) BusWires = R1;
else BusWires = R3;

end

endmodule

Figure 7.71 A simplified version of the specification in Figure 7.70.

appear on BusWires for each pattern of the shift-register outputs. The circuit generated from
the code in Figure 7.71 is equivalent to the one generated from the code in Figure 7.70.

Figure 7.72 gives an example of a timing simulation for a circuit synthesized from the
code in Figure 7.71. In the first half of the simulation, the circuit is reset, and the contents
of registers R1 and R2 are initialized. The hex value 55 is loaded into R1, and the value AA
is loaded into R2. The clock edge at 275 ns, marked by the vertical reference line in Figure
7.72, loads the value w = 1 into the shift register. The contents of R2 (AA) then appear on
the bus and are loaded into R3 by the clock edge at 325 ns. Following this clock edge, the
contents of the shift register are 010, and the data stored in R1 (55) is on the bus. The clock
edge at 375 ns loads this data into R2 and changes the shift register to 001. The contents
of R3 (AA) now appear on the bus and are loaded into R1 by the clock edge at 425 ns. The
shift register is now in state 000, and the swap is completed.

June 18, 2002 15:56 vra23151_ch07 Sheet number 69 Page number 417 black

7.14 Design Examples 417

Figure 7.72 Timing simulation for the Verilog code in Figure 7.71.

7.14.2 Simple Processor

A second example of a digital system like the one in Figure 7.60 is shown in Figure 7.73.
It has four n-bit registers, R0, . . . , R3, that are connected to the bus with tri-state buffers.
External data can be loaded into the registers from the n-bit Data input, which is connected
to the bus using tri-state buffers enabled by the Extern control signal. The system also
includes an adder/subtractor module. One of its data inputs is provided by an n-bit register,
A, that is attached to the bus, while the other data input, B, is directly connected to the bus.
If the AddSub signal has the value 0, the module generates the sum A+ B; if AddSub = 1,
the module generates the difference A − B. To perform the subtraction, we assume that
the adder/subtractor includes the required XOR gates to form the 2’s complement of B, as
discussed in section 5.3. The register G stores the output produced by the adder/subtractor.
The A and G registers are controlled by the signals Ain, Gin, and Gout .

The system in Figure 7.73 can perform various functions, depending on the design of
the control circuit. As an example, we will design a control circuit that can perform the four
operations listed in Table 7.2. The left column in the table shows the name of an operation
and its operands; the right column indicates the function performed in the operation. For
the Load operation the meaning of Rx ← Data is that the data on the external Data input
is transferred across the bus into any register, Rx, where Rx can be R0 to R3. The Move
operation copies the data stored in register Ry into register Rx. In the table the square
brackets, as in [Rx], refer to the contents of a register. Since only a single transfer across
the bus is needed, both the Load and Move operations require only one step (clock cycle)
to be completed. The Add and Sub operations require three steps, as follows: In the first step

June 18, 2002 15:56 vra23151_ch07 Sheet number 70 Page number 418 black

418

R
3 in

B
us

C
lo

ck

R
0 in

R
0 o

u
t

R
3 o

u
t

C
on

tr
ol

 c
ir

cu
it

Fu
nc

tio
n

G

R
0

R
3

A A
dd

Su
b

A
in

G
in

G
o

u
t

E
xt

er
n

D
at

a

w

D
on

e

B

Fi
g

u
re

7
.7

3
A
di
gi
ta
ls
ys
te
m

th
at

im
pl
em

en
ts
a
si
m
pl
e
pr
oc
es
so
r.

June 18, 2002 15:56 vra23151_ch07 Sheet number 71 Page number 419 black

7.14 Design Examples 419

Table 7.2 Operations performed
in the processor.

Operation Function performed

Load Rx, Data Rx← Data

Move Rx, Ry Rx← [Ry]
Add Rx, Ry Rx← [Rx] + [Ry]
Sub Rx, Ry Rx← [Rx] − [Ry]

the contents of Rx are transferred across the bus into register A. Then in the next step, the
contents of Ry are placed onto the bus. The adder/subtractor module performs the required
function, and the results are stored in register G. Finally, in the third step the contents of G
are transferred into Rx.

A digital system that performs the types of operations listed in Table 7.2 is usually
called a processor. The specific operation to be performed at any given time is indicated
using the control circuit input named Function. The operation is initiated by setting the w
input to 1, and the control circuit asserts the Done output when the operation is completed.

In Figure 7.60 we used a shift register to implement the control circuit. It is possible
to use a similar design for the system in Figure 7.73. To illustrate a different approach,
we will base the design of the control circuit on a counter. This circuit has to generate the
required control signals in each step of each operation. Since the longest operations (Add
and Sub) need three steps (clock cycles), a two-bit counter can be used. Figure 7.74 shows
a two-bit up-counter connected to a 2-to-4 decoder. Decoders are discussed in section
6.2. The decoder is enabled at all times by setting its enable (En) input permanently to the
value 1. Each of the decoder outputs represents a step in an operation. When no operation
is currently being performed, the count value is 00; hence the T0 output of the decoder is

Clock

T 0

Reset

Up-counter
Clear

w0 En

y0

w1

y1 y2 y3

1

T 1 T 2 T 3

2-to-4 decoder

Q1 Q0

Figure 7.74 A part of the control circuit for the processor.

June 18, 2002 15:56 vra23151_ch07 Sheet number 72 Page number 420 black

420 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

asserted. In the first step of an operation, the count value is 01, and T1 is asserted. During the
second and third steps of the Add and Sub operations, T2 and T3 are asserted, respectively.

In each of steps T0 to T3, various control signal values have to be generated by the
control circuit, depending on the operation being performed. Figure 7.75 shows that the
operation is specified with six bits, which form the Function input. The two left-most bits,
F = f1 f0, are used as a two-bit number that identifies the operation. To represent Load,
Move, Add, and Sub, we use the codes f1 f0 = 00, 01, 10, and 11, respectively. The inputs
Rx1Rx0 are a binary number that identifies the Rx operand, while Ry1Ry0 identifies the Ry
operand. The Function inputs are stored in a six-bit Function Register when the FRin signal
is asserted.

Figure 7.75 also shows three 2-to-4 decoders that are used to decode the information
encoded in the F , Rx, and Ry inputs. We will see shortly that these decoders are included
as a convenience because their outputs provide simple-looking logic expressions for the
various control signals.

The circuits in Figures 7.74 and 7.75 form a part of the control circuit. Using the input
w and the signals T0, . . . , T3, I0, . . . , I3, X0, . . . , X3, and Y0, . . . , Y3, we will show how to
derive the rest of the control circuit. It has to generate the outputs Extern, Done, Ain, Gin,
Gout , AddSub, R0in, . . . , R3in, and R0out, . . . , R3out . The control circuit also has to generate
the Clear and FRin signals used in Figures 7.74 and 7.75.

Clear and FRin are defined in the same way for all operations. Clear is used to ensure
that the count value remains at 00 as long as w = 0 and no operation is being executed. Also,
it is used to clear the count value to 00 at the end of each operation. Hence an appropriate

Clock

X0

w0 En

y0

w1

y1 y2 y3

1

X1 X2 X3

2-to-4 decoder

Function Register

Y 0

w0 En

y0

w1

y1 y2 y3

1

Y 1 Y 2 Y 3

2-to-4 decoder

I0

En

y0 y1 y2 y3

1

I1 I2 I3

2-to-4 decoder

FRin

f 1 f 0 Rx1 Rx0 Ry1 Ry0

w0w1

Function

Figure 7.75 The function register and decoders.

June 18, 2002 15:56 vra23151_ch07 Sheet number 73 Page number 421 black

7.14 Design Examples 421

logic expression is

Clear = w T0 + Done

The FRin signal is used to load the values on the Function inputs into the Function Register
when w changes to 1. Hence

FRin = wT0

The rest of the outputs from the control circuit depend on the specific step being performed
in each operation. The values that have to be generated for each signal are shown in Table
7.3. Each row in the table corresponds to a specific operation, and each column represents
one time step. The Extern signal is asserted only in the first step of the Load operation.
Therefore, the logic expression that implements this signal is

Extern = I0T1

Done is asserted in the first step of Load and Move, as well as in the third step of Add and
Sub. Hence

Done = (I0 + I1)T1 + (I2 + I3)T3

The Ain, Gin, and Gout signals are asserted in the Add and Sub operations. Ain is asserted in
step T1, Gin is asserted in T2, and Gout is asserted in T3. The AddSub signal has to be set to
0 in the Add operation and to 1 in the Sub operation. This is achieved with the following
logic expressions

Ain = (I2 + I3)T1

Gin = (I2 + I3)T2

Gout = (I2 + I3)T3

AddSub = I3

The values of R0in, . . . , R3in are determined using either the X0, . . . , X3 signals or the
Y0, . . . , Y3 signals. In Table 7.3 these actions are indicated by writing either Rin = X or
Rin = Y . The meaning of Rin = X is that R0in = X0, R1in = X1, and so on. Similarly, the
values of R0out, . . . , R3out are specified using either Rout = X or Rout = Y .

Table 7.3 Control signals asserted in each operation/time step.

T1 T2 T3

(Load): I0 Extern, Rin = X ,

Done

(Move): I1 Rin = X , Rout = Y ,

Done

(Add): I2 Rout = X , Ain Rout = Y , Gin, Gout , Rin = X ,

AddSub = 0 Done

(Sub): I3 Rout = X , Ain Rout = Y , Gin, Gout , Rin = X ,

AddSub = 1 Done

June 18, 2002 15:56 vra23151_ch07 Sheet number 74 Page number 422 black

422 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

We will develop the expressions for R0in and R0out by examining Table 7.3 and then
show how to derive the expressions for the other register control signals. The table shows
that R0in is set to the value of X0 in the first step of both the Load and Move operations and
in the third step of both the Add and Sub operations, which leads to the expression

R0in = (I0 + I1)T1X0 + (I2 + I3)T3X0

Similarly, R0out is set to the value of Y0 in the first step of Move. It is set to X0 in the first
step of Add and Sub and to Y0 in the second step of these operations, which gives

R0out = I1T1Y0 + (I2 + I3)(T1X0 + T2Y0)

The expressions for R1in and R1out are the same as those for R0in and R0out except that X1

and Y1 are used in place of X0 and Y0. The expressions for R2in, R2out , R3in, and R3out are
derived in the same way.

The circuits shown in Figures 7.74 and 7.75, combined with the circuits represented
by the above expressions, implement the control circuit in Figure 7.73.

Processors are extremely useful circuits that are widely used. We have presented only
the most basic aspects of processor design. However, the techniques presented can be
extended to design realistic processors, such as modern microprocessors. The interested
reader can refer to books on computer organization for more details on processor design
[1–2].

Verilog Code
In this section we give two different styles of Verilog code for describing the system in

Figure 7.73. The first style uses tri-state buffers to represent the bus, and it gives the logic
expressions shown above for the outputs of the control circuit. The second style of code
uses multiplexers to represent the bus, and it uses case statements that correspond to Table
7.3 to describe the outputs of the control circuit.

Verilog code for an up-counter is shown in Figure 7.56. A modified version of this
counter, named upcount, is shown in the code in Figure 7.76. It has a synchronous reset
input, which is active high. Other subcircuits that we use in the Verilog code for the
processor are the dec2to4, regn, and trin modules in Figures 6.35, 7.66, and 7.67.

module upcount (Clear, Clock, Q);
input Clear, Clock;
output [1:0] Q;
reg [1:0] Q;

always @(posedge Clock)
if (Clear)

Q <= 0;
else

Q <= Q + 1;

endmodule

Figure 7.76 A two-bit up-counter with synchronous reset.

June 18, 2002 15:56 vra23151_ch07 Sheet number 75 Page number 423 black

7.14 Design Examples 423

Complete code for the processor is given in Figure 7.77. The instantiated modules
counter and decT represent the subcircuits in Figure 7.74. Note that we have assumed that
the circuit has an active-high reset input, Reset, which is used to initialize the counter to
00. The statement assign Func = {F, Rx, Ry} uses the concatenate operator to create the
six-bit signal Func, which represents the inputs to the Function Register in Figure 7.75.
The functionreg module represents the Function Register with the data inputs Func and the

module proc (Data, Reset, w, Clock, F, Rx, Ry, Done, BusWires);
input [7:0] Data;
input Reset, w, Clock;
input [1:0] F, Rx, Ry;
output [7:0] BusWires;
output Done;
wire [7:0] BusWires;
reg [0:3] Rin, Rout;
reg [7:0] Sum;
wire Clear, AddSub, Extern, Ain, Gin, Gout, FRin;
wire [1:0] Count;
wire [0:3] T, I, Xreg, Y;
wire [7:0] R0, R1, R2, R3, A, G;
wire [1:6] Func, FuncReg;
integer k;

upcount counter (Clear, Clock, Count);
dec2to4 decT (Count, 1, T);

assign Clear = Reset | Done | (w & T[0]);
assign Func = {F, Rx, Ry};
assign FRin = w & T[0];

regn functionreg (Func, FRin, Clock, FuncReg);
defparam functionreg.n = 6;

dec2to4 decI (FuncReg[1:2], 1, I);
dec2to4 decX (FuncReg[3:4], 1, Xreg);
dec2to4 decY (FuncReg[5:6], 1, Y);

assign Extern = I[0] & T[1];
assign Done = ((I[0] | I[1]) & T[1]) | ((I[2] | I[3]) & T[3]);
assign Ain = (I[2] | I[3]) & T[1];
assign Gin = (I[2] | I[3]) & T[2];
assign Gout = (I[2] | I[3]) & T[3];
assign AddSub = I[3];

. . . continued in Part b.

Figure 7.77 Code for the prcoessor (Part a).

June 18, 2002 15:56 vra23151_ch07 Sheet number 76 Page number 424 black

424 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

// RegCntl
always @(I or T or Xreg or Y)

for (k = 0; k < 4; k = k+1)
begin

Rin[k] = ((I[0] | I[1]) & T[1] & Xreg[k]) |
((I[2] | I[3]) & T[1] & Y[k]);

Rout[k] = (I[1] & T[1] & Y[k]) | ((I[2] | I[3]) &
((T[1] & Xreg[k]) | (T[2] & Y[k])));

end

trin tri ext (Data, Extern, BusWires);
regn reg 0 (BusWires, Rin[0], Clock, R0);
regn reg 1 (BusWires, Rin[1], Clock, R1);
regn reg 2 (BusWires, Rin[2], Clock, R2);
regn reg 3 (BusWires, Rin[3], Clock, R3);

trin tri 0 (R0, Rout[0], BusWires);
trin tri 1 (R1, Rout[1], BusWires);
trin tri 2 (R2, Rout[2], BusWires);
trin tri 3 (R3, Rout[3], BusWires);
regn reg A (BusWires, Ain, Clock, A);

// alu
always @(AddSub or A or BusWires)

if (!AddSub)
Sum = A + BusWires;

else
Sum = A BusWires;

regn reg G (Sum, Gin, Clock, G);
trin tri G (G, Gout, BusWires);

endmodule

Figure 7.77 Code for the processor (Part b).

outputs FuncReg. The instantiated modules decI, decX, and decY represent the decoders in
Figure 7.75. Following these statements the previously derived logic expressions for the
outputs of the control circuit are given. For R0in, . . . , R3in and R0out, . . . , R3out , a for loop
is used to produce the expressions.

At the end of the code, the adder/subtractor module is defined and the tri-state buffers
and registers in the processor are instantiated.

Using Multiplexers and Case Statements
We showed in Figure 7.65 that a bus can be implemented with multiplexers, rather than

tri-state buffers. Verilog code that describes the processor using this approach is shown
in Figure 7.78. The code illustrates a different way of describing the control circuit in the

June 18, 2002 15:56 vra23151_ch07 Sheet number 77 Page number 425 black

7.14 Design Examples 425

module proc (Data, Reset, w, Clock, F, Rx, Ry, Done, BusWires);
input [7:0] Data;
input Reset, w, Clock;
input [1:0] F, Rx, Ry;
output [7:0] BusWires;
output Done;
reg [7:0] BusWires, Sum;
reg [0:3] Rin, Rout;
reg Extern, Done, Ain, Gin, Gout, AddSub;
wire [1:0] Count, I;
wire [0:3] Xreg, Y;
wire [7:0] R0, R1, R2, R3, A, G;
wire [1:6] Func, FuncReg, Sel;

wire Clear = Reset | Done | (w & Count[1] & Count[0]);
upcount counter (Clear, Clock, Count);
assign Func = {F, Rx, Ry};
wire FRin = w & Count[1] & Count[0];
regn functionreg (Func, FRin, Clock, FuncReg);

defparam functionreg.n = 6;
assign I = FuncReg[1:2];
dec2to4 decX (FuncReg[3:4], 1, Xreg);
dec2to4 decY (FuncReg[5:6], 1, Y);

always @(Count or I or Xreg or Y)
begin

Extern = 1’b0; Done = 1’b0; Ain = 1’b0; Gin = 1’b0;
Gout = 1’b0; AddSub = 1’b0; Rin = 4’b0; Rout = 4’b0;
case (Count)

2’b00: ; //no signals asserted in time step T0
2’b01: //define signals in time step T1

case (I)
2’b00: begin //Load

Extern = 1’b1; Rin = Xreg; Done = 1’b1;
end

2’b01: begin //Move
Rout = Y; Rin = Xreg; Done = 1’b1;

end
default: begin //Add, Sub

Rout = Xreg; Ain = 1’b1;
end

endcase
. . . continued in Part b.

Figure 7.78 Alternative code for the processor (Part a).

June 18, 2002 15:56 vra23151_ch07 Sheet number 78 Page number 426 black

426 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

2’b10: //define signals in time step T2
case(I)

2’b10: begin //Add
Rout = Y; Gin = 1’b1;

end
2’b11: begin //Sub

Rout = Y; AddSub = 1’b1; Gin = 1’b1;
end

default: ; //Add, Sub
endcase

2’b11:
case (I)

2’b10, 2’b11: begin
Gout = 1’b1; Rin = Xreg; Done = 1’b1;

end
default: ; //Add, Sub

endcase
endcase

end

regn reg 0 (BusWires, Rin[0], Clock, R0);
regn reg 1 (BusWires, Rin[1], Clock, R1);
regn reg 2 (BusWires, Rin[2], Clock, R2);
regn reg 3 (BusWires, Rin[3], Clock, R3);
regn reg A (BusWires, Ain, Clock, A);

. . . continued in Part c.

Figure 7.78 Alternative code for the processor (Part b).

processor. It does not give logic expressions for the signals Extern, Done, and so on, as
in Figure 7.77. Instead, case statements are used to represent the information shown in
Table 7.3. Each control signal is first assigned the value 0 as a default. This is required
because the case statements specify the values of the control signals only when they should
be asserted, as we did in Table 7.3. As explained in section 7.12.2, when the value of a
signal is not specified, the signal retains its current value. This implied memory results in
a feedback connection in the synthesized circuit. We avoid this problem by providing the
default value of 0 for each of the control signals involved in the case statements.

In Figure 7.77 the decoders decT and decI are used to decode the Count signal and the
stored values of the F input, respectively. The decT decoder has the outputs T0, . . . , T3,
and decI produces I0, . . . , I3. In Figure 7.78 these two decoders are not used, because they
do not serve a useful purpose in this code. Instead, the signal I is defined as a two-bit
signal, and the two-bit signal Count is used instead of T . These signals are used in the case
statements. The code sets I to the value of the two left-most bits in the Function Register,
which correspond to the stored values of the input F .

June 18, 2002 15:56 vra23151_ch07 Sheet number 79 Page number 427 black

7.14 Design Examples 427

// alu
always @(AddSub or A or BusWires)
begin

if (!AddSub)
Sum = A + BusWires;

else
Sum = A BusWires;

end

regn reg G (Sum, Gin, Clock, G);
assign Sel = {Rout, Gout, Extern};

always @(Sel or R0 or R1 or R2 or R3 or G or Data)
begin

if (Sel == 6’b100000)
BusWires = R0;

else if (Sel == 6’b010000)
BusWires = R1;

else if (Sel == 6’b001000)
BusWires = R2;

else if (Sel == 6’b000100)
BusWires = R3;

else if (Sel == 6’b000010)
BusWires = G;

else BusWires = Data;
end

endmodule

Figure 7.78 Alternative code for the processor (Part c).

There are two nested levels of case statements. The first one enumerates the possible
values of Count. For each alternative in this case statement, which represents a column
in Table 7.3, there is a nested case statement that enumerates the four values of I . As
indicated by the comments in the code, the nested case statements correspond exactly to
the information given in Table 7.3.

At the end of Figure 7.78, the bus is described with an if-else statement which represents
multiplexers that place the appropriate data onto BusWires, depending on the values of Rout ,
Gout , and Extern.

The circuits synthesized from the code in Figures 7.77 and 7.78 are functionally equiv-
alent. The style of code in Figure 7.78 has the advantage that it does not require the manual
effort of analyzing Table 7.3 to generate the logic expressions for the control signals in
Figure 7.77. By using the style of code in Figure 7.78, these expressions are produced
automatically by the Verilog compiler as a result of analyzing the case statements. The
style of code in Figure 7.78 is less prone to careless errors. Also, using this style of code it

June 18, 2002 15:56 vra23151_ch07 Sheet number 80 Page number 428 black

428 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

would be straightforward to provide additional capabilities in the processor, such as adding
other operations.

We synthesized a circuit to implement the code in Figure 7.78 in a chip. Figure 7.79
gives an example of the results of a timing simulation. Each clock cycle in which w = 1
in this timing diagram indicates the start of an operation. In the first such operation, at 250
ns in the simulation time, the values of both inputs F and Rx are 00. Hence the operation
corresponds to “Load R0, Data.” The value of Data is 2A, which is loaded into R0 on the
next positive clock edge. The next operation loads 55 into register R1, and the subsequent
operation loads 22 into R2. At 850 ns the value of the input F is 10, while Rx = 01 and
Ry = 00. This operation is “Add R1, R0.” In the following clock cycle, the contents of
R1 (55) appear on the bus. This data is loaded into register A by the clock edge at 950 ns,
which also results in the contents of R0 (2A) being placed on the bus. The adder/subtractor
module generates the correct sum (7F), which is loaded into register G at 1050 ns. After
this clock edge the new contents of G (7F) are placed on the bus and loaded into register
R1 at 1150 ns. Two more operations are shown in the timing diagram. The one at 1250
ns (“Move R3, R1”) copies the contents of R1 (7F) into R3. Finally, the operation starting
at 1450 ns (“Sub R3, R2”) subtracts the contents of R2 (22) from the contents of R3 (7F),
producing the correct result, 7F − 22 = 5D.

Figure 7.79 Timing simulation for the Verilog code in Figure 7.78.

June 18, 2002 15:56 vra23151_ch07 Sheet number 81 Page number 429 black

7.14 Design Examples 429

7.14.3 Reaction Timer

We showed in Chapter 3 that electronic devices operate at remarkably fast speeds, with the
typical delay through a logic gate being less than 1 ns. In this example we use a logic circuit
to measure the speed of a much slower type of device—a person.

We will design a circuit that can be used to measure the reaction time of a person to
a specific event. The circuit turns on a small light, called a light-emitting diode (LED). In
response to the LED being turned on, the person attempts to press a switch as quickly as
possible. The circuit measures the elapsed time from when the LED is turned on until the
switch is pressed.

To measure the reaction time, a clock signal with an appropriate frequency is needed.
In this example we use a 100 Hz clock, which measures time at a resolution of 1/100 of a
second. The reaction time can then be displayed using two digits that represent fractions
of a second from 00/100 to 99/100.

Digital systems often include high-frequency clock signals to control various subsys-
tems. In this case assume the existence of an input clock signal with the frequency 102.4
kHz. From this signal we can derive the required 100 Hz signal by using a counter as a clock
divider. A timing diagram for a four-bit counter is given in Figure 7.22. It shows that the
least-significant bit output, Q0, of the counter is a periodic signal with half the frequency of
the clock input. Hence we can view Q0 as dividing the clock frequency by two. Similarly,
the Q1 output divides the clock frequency by four. In general, output Qi in an n-bit counter
divides the clock frequency by 2i+1. In the case of our 102.4 kHz clock signal, we can use
a 10-bit counter, as shown in Figure 7.80a. The counter output c9 has the required 100 Hz
frequency because 102400 Hz/1024 = 100 Hz.

The reaction timer circuit has to be able to turn an LED on and off. The graphical
symbol for an LED is shown in blue in Figure 7.80b. Small blue arrows in the symbol
represent the light that is emitted when the LED is turned on. The LED has two terminals:
the one on the left in the figure is the cathode, and the terminal on the right is the anode. To
turn the LED on, the cathode has to be set to a lower voltage than the anode, which causes
a current to flow through the LED. If the voltages on its two terminals are equal, the LED
is off.

Figure 7.80b shows one way to control the LED, using an inverter. If the input voltage
VLED = 0, then the voltage at the cathode is equal to VDD; hence the LED is off. But
if VLED = VDD, the cathode voltage is 0 V and the LED is on. The amount of current
that flows is limited by the value of the resistor RL. This current flows through the LED
and the NMOS transistor in the inverter. Since the current flows into the inverter, we
say that the inverter sinks the current. The maximum current that a logic gate can sink
without sustaining permanent damage is usually called IOL, which stands for the “maxi-
mum current when the output is low.” The value of RL is chosen such that the current
is less than IOL. As an example assume that the inverter is implemented inside a PLD
device. The typical value of IOL, which would be specified in the data sheet for the PLD,
is about 12 mA. For VDD = 5 V, this leads to RL ≈ 450 � because 5 V /450 � = 11
mA (there is actually a small voltage drop across the LED when it is turned on, but we
ignore this for simplicity). The amount of light emitted by the LED is proportional to
the current flow. If 11 mA is insufficient, then the inverter should be implemented in

June 18, 2002 15:56 vra23151_ch07 Sheet number 82 Page number 430 black

430 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

D Q

Q

(a) Clock divider

10-bit counter
Clock

c0c1c9

Two-digit BCD counter

w0

a

w1

b

w2 w3

g

w0

a

w1

b

w2 w3

g

BCD0BCD1
E

Converter Converter

c9

VDD

R

w

VDD

RL

(c) Push-button switch, LED, and 7-segment displays

Reset Clear

VDD

RL

VDD

V LED

1
0

1

(b) LED circuit

Figure 7.80 A reaction-timer circuit.

June 18, 2002 15:56 vra23151_ch07 Sheet number 83 Page number 431 black

7.14 Design Examples 431

a buffer chip, like those described in section 3.5, because buffers provide a higher value
of IOL.

The complete reaction-timer circuit is illustrated in Figure 7.80c, with the inverter
from part (b) shaded in grey. The graphical symbol for a push-button switch is shown in
the top left of the diagram. The switch normally makes contact with the top terminals, as
depicted in the figure. When depressed, the switch makes contact with the bottom terminals;
when released, it automatically springs back to the top position. In the figure the switch is
connected such that it normally produces a logic value of 1, and it produces a 0 pulse when
pressed.

The push-button switch is connected to the clear input on a D flip-flop. The output
of this flip-flop determines whether the LED is on or off, and it also provides the count
enable input to a two-digit BCD counter. As discussed in section 7.11, each digit in a BCD
counter has four bits that take the values 0000 to 1001. Thus the counting sequence can be
viewed as decimal numbers from 00 to 99. A circuit for the BCD counter is given in Figure
7.28. In Figure 7.80c both the flip-flop and the counter are clocked by the c9 output of the
clock divider in part (a) of the figure. The intended use of the reaction-timer circuit is to
first depress the switch to turn off the LED and disable the counter. Then the Reset input is
asserted to clear the contents of the counter to 00. The input w normally has the value 0,
which keeps the flip-flop cleared and prevents the count value from changing. The reaction
test is initiated by setting w = 1 for one c9 clock cycle. After the next positive edge of c9,
the flip-flop output becomes a 1, which turns on the LED. We assume that w returns to 0
after one clock cycle, but the flip-flop output remains at 1 because of the 2-to-1 multiplexer
connected to the D input. The counter is then incremented every 1/100 of a second. Each
digit in the counter is connected through a code converter to a 7-segment display, which
we described in the discussion for Figure 6.25. When the user depresses the switch, the
flip-flop is cleared, which turns off the LED and stops the counter. The two-digit display
shows the elapsed time to the nearest 1/100 of a second from when the LED was turned on
until the user was able to respond by depressing the switch.

Verilog Code
To describe the circuit in Figure 7.80c using Verilog code, we can make use of sub-

circuits for the BCD counter and the 7-segment code converter. The code for the latter
subcircuit is given in Figure 6.38 and is not repeated here. Code for the BCD counter,
which represents the circuit in Figure 7.28, is shown in Figure 7.81. The two-digit BCD
output is represented by the 2 four-bit signals BCD1 and BCD0. The Clear input provides
a synchronous reset for both digits in the counter. If E = 1, the count value is incremented
on the positive clock edge; and if E = 0, the count value is unchanged. Each digit can take
the values from 0000 to 1001.

Figure 7.82 gives the code for the reaction timer. The input signal Pushn represents the
value produced by the push-button switch. The output signal LEDn represents the output
of the inverter that is used to control the LED. The two 7-segment displays are controlled
by the seven-bit signals Digit1 and Digit 0.

In Figure 7.61 we showed how a register, R, can be designed with a control signal Rin.
If Rin = 1 data is loaded into the register on the active clock edge and if Rin = 0, the stored
contents of the register are not changed. The flip-flop in Figure 7.80 is used in the same

June 18, 2002 15:56 vra23151_ch07 Sheet number 84 Page number 432 black

432 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

module BCDcount (Clock, Clear, E, BCD1, BCD0);
input Clock, Clear, E;
output [3:0] BCD1, BCD0;
reg [3:0] BCD1, BCD0;

always @(posedge Clock)
begin

if (Clear)
begin

BCD1 <= 0;
BCD0 <= 0;

end
else if (E)

if (BCD0 == 4’b1001)
begin

BCD0 <= 0;
if (BCD1 == 4’b1001)

BCD1 <= 0;
else

BCD1 <= BCD1 + 1;
end
else

BCD0 <= BCD0 + 1;
end

endmodule

Figure 7.81 Code for the two-digit BCD counter in Figure 7.28.

way. If w = 1, the flip-flop is loaded with the value 1, but if w = 0 the stored value in
the flip-flop is not changed. This circuit is described by the always block in Figure 7.82,
which also includes a synchronous reset input. We have chosen to use a synchronous reset
because the flip-flop output is connected to the enable input E on the BCD counter. As
we know from the discussion in section 7.3, it is important that all signals connected to
flip-flops meet the required setup and hold times. The push-button switch can be pressed at
any time and is not synchronized to the c9 clock signal. By using a synchronous reset for
the flip-flop in Figure 7.80, we avoid possible timing problems in the counter.

The flip-flop output is named LED, which is inverted to produce the LEDn signal that
controls the LED. In the device used to implement the circuit, LEDn would be generated by
a buffer that is connected to an output pin on the chip package. If a PLD is used, this buffer
has the associated value of IOL = 12 mA that we mentioned earlier. At the end of Figure
7.82, the BCD counter and 7-segment code converters are instantiated as subcircuits.

A simulation of the reaction-timer circuit implemented in a chip is shown in Figure
7.83. Initially, Pushn is set to 0 to simulate depressing the switch to turn off the LED, and

June 18, 2002 15:56 vra23151_ch07 Sheet number 85 Page number 433 black

7.14 Design Examples 433

module reaction (c9, Reset, w, Pushn, LEDn, Digit1, Digit0);
input c9, Reset, w, Pushn;
output LEDn;
output [1:7] Digit1, Digit0;
wire LEDn;
wire [1:7] Digit1, Digit0;
reg LED;
wire [3:0] BCD1, BCD0;

always @(posedge c9)
begin

if (Pushn == 0)
LED <= 0;

else if (w)
LED <= 1;

end

assign LEDn = LED;
BCDcount counter (c9, Reset, LED, BCD1, BCD0);
seg7 seg1 (BCD1, Digit1);
seg7 seg0 (BCD0, Digit0);

endmodule

Figure 7.82 Code for the reaction timer.

then Pushn returns to 1. Also, Reset is asserted to clear the counter. When w changes to 1,
the circuit sets LEDn to 0, which represents the LED being turned on. After some amount
of time, the switch will be depressed. In the simulation we arbitrarily set Pushn to 0 after
18 c9 clock cycles. Thus this choice represents the case when the person’s reaction time is
about 0.18 seconds. In human terms this duration is a very short time; for electronic circuits
it is a very long time. An inexpensive personal computer can perform tens of millions of
operations in 0.18 seconds!

7.14.4 Register Transfer Level (RTL) Code

At this point, we have introduced most of the Verilog constructs that are needed for synthesis.
Most of our examples give behavioral code, utilizing if-else statements, case statements, for
loops, and other procedural statements. It is possible to write behavioral code in a style that
resembles a computer program, in which there is a complex flow of control with many loops
and branches. With such code, sometimes called high-level behavioral code, it is difficult to
relate the code to the final hardware implementation; it may even be difficult to predict what
circuit a high-level synthesis tool will produce. In this book we do not use the high-level

June 18, 2002 15:56 vra23151_ch07 Sheet number 86 Page number 434 black

434 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Figure 7.83 Simulation of the reaction timer circuit.

style of code. Instead, we present Verilog code in such a way that the code can be easily
related to the circuit that is being described. Most design modules presented are fairly small,
to facilitate simple descriptions. Larger designs are built by interconnecting the smaller
modules. This approach is usually referred to as the register-transfer level (RTL) style of
code. It is the most popular design method used in practice. RTL code is characterized by a
straightforward flow of control through the code; it comprises well-understood subcircuits
that are connected together in a simple way.

7.15 Concluding Remarks

In this chapter we have presented circuits that serve as basic storage elements in digital
systems. These elements are used to build larger units such as registers, shift registers,
and counters. Many other texts that deal with this material are available [3–11]. We
have illustrated how circuits with flip-flops can be described using Verilog code. More
information on Verilog can be found in [12–19]. In the next chapter a more formal method
for designing circuits with flip-flops will be presented.

Problems

7.1 Consider the timing diagram in Figure P7.1. Assuming that the D and Clock inputs shown
are applied to the circuit in Figure 7.12, draw waveforms for the Qa, Qb, and Qc signals.

7.2 Can the circuit in Figure 7.3 be modified to implement an SR latch? Explain your answer.

7.3 Figure 7.5 shows a latch built with NOR gates. Draw a similar latch using NAND gates.
Derive its truth table and show its timing diagram.

7.4 Show a circuit that implements the gated SR latch using NAND gates only.

June 18, 2002 15:56 vra23151_ch07 Sheet number 87 Page number 435 black

Problems 435

D

Clock

Figure P7.1 Timing diagram for problem 7.1.

7.5 Given a 100-MHz clock signal, derive a circuit using D flip-flops to generate 50-MHz
and 25-MHz clock signals. Draw a timing diagram for all three clock signals, assuming
reasonable delays.

7.6 An SR flip-flop is a flip-flop that has set and reset inputs like a gated SR latch. Show how
an SR flip-flop can be constructed using a D flip-flop and other logic gates.

7.7 The gated SR latch in Figure 7.6a has unpredictable behavior if the S and R inputs are
both equal to 1 when the Clk changes to 0. One way to solve this problem is to create a
set-dominant gated SR latch in which the condition S = R = 1 cause the latch to be set to
1. Design a set-dominant gated SR latch and show the circuit.

7.8 Show how a JK flip-flop can be constructed using a T flip-flop and other logic gates.

7.9 Consider the circuit in Figure P7.2. Assume that the two NAND gates have much longer
(about four times) propagation delay than the other gates in the circuit. How does this
circuit compare with the circuits that we discussed in this chapter?

A

B

C

D

E

Figure P7.2 Circuit for problem 7.9.

June 18, 2002 15:56 vra23151_ch07 Sheet number 88 Page number 436 black

436 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

7.10 Write Verilog code that represents a T flip-flop with an asynchronous clear input. Use
behavioral code, rather than structural code.

7.11 Write Verilog code that represents a JK flip-flop. Use behavioral code, rather than structural
code.

7.12 Synthesize a circuit for the code written for problem 7.11 by using your CAD tools. Simulate
the circuit and show a timing diagram that verifies the desired functionality.

7.13 A four-bit barrel shifter is a combinational circuit with four data inputs, two control inputs,
and two data outputs. It allows the data inputs to be shifted onto the outputs by 0, 1, 2, or
3 bit positions, with the rightmost bits wrapping around (rotating) to the leftmost bits. For
example, if the data inputs are 1100 and the control input specifies a two-bit shift, then the
output would be 0011. If the data input is 1110, a two-bit rotation produces 1011. Design a
four-bit shift register using a barrel shifter that can shift to the right by 0, 1, 2, or 3 positions.

7.14 Write Verilog code for the shift register described in problem 7.13.

7.15 Design a four-bit synchronous counter with parallel load. Use T flip-flops, instead of the D
flip-flops used in section 7.9.3.

7.16 Design a three-bit up/down counter using T flip-flops. It should include a control input
called Up/Down. If Up/Down = 0, then the circuit should behave as an up-counter. If
Up/Down = 1, then the circuit should behave as a down-counter.

7.17 Repeat problem 7.16 using D flip-flops.

7.18 The circuit in Figure P7.3 looks like a counter. What is the sequence that this circuit counts
in?

T Q

Q

1 T Q

Q

T Q

Q

Q0 Q1 Q2

Clock

Figure P7.3 The circuit for problem 7.18.

7.19 Consider the circuit in Figure P7.4. How does this circuit compare with the circuit in Figure
7.17? Can the circuits be used for the same purposes? If not, what is the key difference
between them?

7.20 Construct a NOR-gate circuit, similar to the one in Figure 7.11a, which implements a
negative-edge-triggered D flip-flop.

7.21 Write Verilog code that represents a modulo-12 up-counter with synchronous reset.

June 18, 2002 15:56 vra23151_ch07 Sheet number 89 Page number 437 black

Problems 437

Clock

S Q

Q

Clk

R

S Q

Q

Clk

R

Q

Q

J

K

Figure P7.4 Circuit for problem 7.19.

7.22 For the flip-flops in the counter in Figure 7.25, assume that tsu = 3 ns, th = 1 ns, and the
propagation delay through a flip-flop is 1 ns. Assume that each AND gate, XOR gate, and
2-to-1 multiplexer has the propagation delay equal to 1 ns. What is the maximum clock
frequency for which the circuit will operate correctly?

7.23 Write Verilog code that represents an eight-bit Johnson counter. Synthesize the code with
your CAD tools and give a timing simulation that shows the counting sequence.

7.24 Write Verilog code in the style shown in Figure 7.55 that represents a ring counter. Your
code should have a parameter n that sets the number of flip-flops in the counter.

7.25 Write Verilog code that describes the functionality of the circuit shown in Figure 7.48.

7.26 Write Verilog code that instantiates the lpm_counter module from the LPM library. Con-
figure the module as a 32-bit up-counter. For the counter circuit in Figure 7.24, we said that
the AND-gate chain can be thought of as the carry-chain. The FLEX 10K FPGA contains
special-purpose logic to implement this carry-chain such that it has minimal propagation
delay. Use the MAX+plusII synthesis options to implement the lpm_counter in two ways:
with the dedicated carry-chain used and with the dedicated carry-chain not used. Use the
Timing Analyzer in MAX+plusII to determine the maximum speed of operation of the
counter in both cases. See the tutorials in Appendices B, C, and D for instructions on using
the appropriate features of the CAD tools.

7.27 Figure 7.69 gives Verilog code for a digital system that swaps the contents of two registers,
R1 and R2, using register R3 for temporary storage. Create an equivalent schematic using
your CAD tools for this system. Synthesize a circuit for this schematic and perform a timing
simulation.

7.28 Repeat problem 7.27 using the control circuit in Figure 7.63.

7.29 Modify the code in Figure 7.71 to use the control circuit in Figure 7.63. Synthesize the
code for implementation in a chip and perform a timing simulation.

7.30 In section 7.14.2 we designed a processor that performs the operations listed in Table 7.3.
Design a modified circuit that performs an additional operation Swap Rx, Ry. This operation

June 18, 2002 15:56 vra23151_ch07 Sheet number 90 Page number 438 black

438 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

swaps the contents of registers Rx and Ry. Use three bits f2 f1 f0 to represent the input F
shown in Figure 7.75 because there are now five operations, rather than four. Add a new
register, named Tmp, into the system, to be used for temporary storage during the swap
operation. Show logic expressions for the outputs of the control circuit, as was done in
section 7.14.2.

7.31 A ring oscillator is a circuit that has an odd number, n, of inverters connected in a ringlike
structure, as shown in Figure P7.5. The output of each inverter is a periodic signal with a
certain period.
(a) Assume that all the inverters are identical; hence they all have the same delay, tp. Let
the output of one of the inverters be named f . Give an equation that expresses the period
of the signal f in terms of n and tp.
(b) For this part you are to design a circuit that can be used to experimentally measure the
delay tp through one of the inverters in the ring oscillator. Assume the existence of an input
called Reset and another called Interval. The timing of these two signals is shown in Figure
P7.6. The length of time for which Interval has the value 1 is known. Assume that this
length of time is 100 ns. Design a circuit that uses the Reset and Interval signals and the
signal f from part (a) to experimentally measure tp. In your design you may use logic gates
and subcircuits such as adders, flip-flops, counters, registers, and so on.

f

Figure P7.5 A ring oscillator.

Reset

Interval

100 ns

Figure P7.6 Timing of signals for problem 7.31.

7.32 A circuit for a gated D latch is shown in Figure P7.7. Assume that the propagation delay
through either a NAND gate or an inverter is 1 ns. Complete the timing diagram given in
the figure, which shows the signal values with 1 ns resolution.

7.33 A logic circuit has two inputs, Clock and Start, and two outputs, f and g. The behavior
of the circuit is described by the timing diagram in Figure P7.8. When a pulse is re-
ceived on the Start input, the circuit produces pulses on the f and g outputs as shown in the

June 18, 2002 15:56 vra23151_ch07 Sheet number 91 Page number 439 black

Problems 439

Q

Clock

D

Q

A

1
0

1
0

1
0

1
0

A

D

Clock

Q

Figure P7.7 Circuit and timing diagram for problem 7.32.

1
0

1
0

1
0

1
0

g

f

Start

Clock

Figure P7.8 Timing diagram for problem 7.33.

timing diagram. Design a suitable circuit using only the following components: a three-
bit resettable positive-edge-triggered synchronous counter and basic logic gates. For your
answer assume that the delays through all logic gates and the counter are negligible.

June 18, 2002 15:56 vra23151_ch07 Sheet number 92 Page number 440 black

440 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

7.34 The following code checks for adjacent ones in an n-bit vector.

always @(A)
begin

f = A[1] & A[0];
for (k = 2; k < n; k = k+1)

f = f | (A[k] & A[k−1]);
end

With blocking assignments this code produces the desired logic function, which is f =
a1a0 + · · · + an−1an−2. What logic function is produced if we change the code to use
non-blocking assignments?

7.35 The Verilog code in Figure P7.9 represents a 3-bit linear-feedback shift register (LFSR).
This type of circuit generates a counting sequence of pseudo-random numbers that repeats
after 2n − 1 clock cycles, where n is the number of flip-flops in the LFSR. Synthesize a
circuit to implement the LFSR in a chip. Draw a diagram of the circuit. Simulate the
circuit’s behavior by loading the pattern 001 into the LFSR and then enabling the register
to count. What is the counting sequence?

module lfsr (R, L, Clock, Q);
input [0:2] R;
input L, Clock;
output [0:2] Q;
reg [0:2] Q;

always @(posedge Clock)
if (L)

Q <= R;
else

Q <= {Q[2], Q[0] ∧ Q[2], Q[1]};

endmodule

Figure P7.9 Code for a linear-feedback shift register.

7.36 Repeat problem 7.35 for the Verilog code in Figure P7.10.

7.37 The Verilog code in Figure P7.11 is equivalent to the code in Figure P7.9, except that
blocking assignments are used. Draw the circuit represented by this code. What is its
counting sequence?

7.38 The Verilog code in Figure P7.12 is equivalent to the code in Figure P7.10, except that
blocking assignments are used. Draw the circuit represented by this code. What is its
counting sequence?

June 18, 2002 15:56 vra23151_ch07 Sheet number 93 Page number 441 black

Problems 441

module lfsr (R, L, Clock, Q);
input [0:2] R;
input L, Clock;
output [0:2] Q;
reg [0:2] Q;

always @(posedge Clock)
if (L)

Q <= R;
else

Q <= {Q[2], Q[0], Q[1] ∧ Q[2]};

endmodule

Figure P7.10 Code for a linear-feedback shift register.

module lfsr (R, L, Clock, Q);
input [0:2] R;
input L, Clock;
output [0:2] Q;
reg [0:2] Q;

always @(posedge Clock)
if (L)

Q <= R;
else
begin

Q[0] = Q[2];
Q[1] = Q[0] ∧ Q[2];
Q[2] = Q[1];

end

endmodule

Figure P7.11 Code for problem 7.37.

7.39 A universal shift register can shift in both the left-to-right and right-to-left directions, and
it has parallel-load capability. Draw a circuit for such a shift register.

7.40 Write Verilog code for a universal shift register with n bits.

June 18, 2002 15:56 vra23151_ch07 Sheet number 94 Page number 442 black

442 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

module lfsr (R, L, Clock, Q);
input [0:2] R;
input L, Clock;
output [0:2] Q;
reg [0:2] Q;

always @(posedge Clock)
if (L)

Q <= R;
else
begin

Q[0] = Q[2];
Q[1] = Q[0];
Q[2] = Q[1] ∧ Q[2];

end

endmodule

Figure P7.12 Code for problem 7.38.

References

1. V. C. Hamacher, Z. G. Vranesic, and S. G. Zaky, Computer Organization, 5th ed.,
(McGraw-Hill: New York, 2002).

2. D. A. Patterson and J. L. Hennessy, Computer Organization and Design—The
Hardware/Software Interface, 2nd ed., (Morgan Kaufmann: San Francisco, CA,
1998).

3. D. D. Gajski, Principles of Digital Design, (Prentice-Hall: Upper Saddle River, NJ,
1997).

4. M. M. Mano and C. R. Kime, Logic and Computer Design Fundamentals,
(Prentice-Hall: Upper Saddle River, NJ, 1997).

5. J. P. Daniels, Digital Design from Zero to One, (Wiley: New York, 1996).

6. V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit
Analysis and Design, (Prentice-Hall: Englewood Cliffs, NJ, 1995).

7. R. H. Katz, Contemporary Logic Design, (Benjamin/Cummings: Redwood City, CA,
1994).

8. J. P. Hayes, Introduction to Logic Design, (Addison-Wesley: Reading, MA, 1993).

9. C. H. Roth Jr., Fundamentals of Logic Design, 4th ed., (West: St. Paul, MN, 1993).

10. J. F. Wakerly, Digital Design Principles and Practices, (Prentice-Hall: Englewood
Cliffs, NJ, 1990).

June 18, 2002 15:56 vra23151_ch07 Sheet number 95 Page number 443 black

References 443

11. E. J. McCluskey, Logic Design Principles, (Prentice-Hall: Englewood Cliffs, NJ,
1986).

12. Institute of Electrical and Electronics Engineers, IEEE Standard Verilog Hardware
Description Language Reference Manual, (IEEE: Piscataway, NJ, 1995).

13. D. A. Thomas and P. R. Moorby, The Verilog Hardware Description Language, 4th
ed., (Kluwer: Norwell, MA, 1998).

14. S. Palnitkar, Verilog HDL—A Guide to Digital Design and Synthesis, (Prentice-Hall:
Upper Saddle River, NJ, 1996).

15. D. R. Smith and P. D. Franzon, Verilog Styles for Synthesis of Digital Systems,
(Prentice-Hall: Upper Saddle River, NJ, 2000).

16. Z. Navabi, Verilog Digital System Design, (McGraw-Hill: New York, 1999).

17. J. Bhasker, Verilog HDL Synthesis—A Practical Primer, (Star Galaxy Publishing:
Allentown, PA, 1998).

18. D. J. Smith, HDL Chip Design, (Doone Publications: Madison, AL, 1996).

19. S. Sutherland, Verilog 2001—A Guide to the New Features of the Verilog Hardware
Description Language, (Kluwer: Hingham, MA, 2001).

June 10, 2002 11:07 vra23151_ch08 Sheet number 1 Page number 445 black

445

c h a p t e r

8
Synchronous Sequential Circuits

a b c d e f g h

1

2

3

4

5

6

7

8

8. Ng5xe6, Qd8–e7

June 10, 2002 11:07 vra23151_ch08 Sheet number 2 Page number 446 black

446 C H A P T E R 8 • Synchronous Sequential Circuits

In preceding chapters we considered combinational logic circuits in which outputs are determined fully by
the present values of inputs. We also discussed how simple storage elements can be implemented in the form
of flip-flops. The output of a flip-flop depends on the state of the flip-flop rather than the value of its inputs
at any given time; the inputs cause changes in the state.

In this chapter we deal with a general class of circuits in which the outputs depend on the past behavior
of the circuit, as well as on the present values of inputs. They are called sequential circuits. In most cases
a clock signal is used to control the operation of a sequential circuit; such a circuit is called a synchronous
sequential circuit. The alternative, in which no clock signal is used, is called an asynchronous sequential
circuit. Synchronous circuits are easier to design and are used in a vast majority of practical applications;
they are the topic of this chapter. Asynchronous circuits will be discussed in Chapter 9.

Synchronous sequential circuits are realized using combinational logic and one or more flip-flops. The
general structure of such a circuit is shown in Figure 8.1. The circuit has a set of primary inputs, W , and
produces a set of outputs, Z . The values of the outputs of the flip-flops are referred to as the state, Q, of
the circuit. Under control of the clock signal, the flip-flop outputs change their state as determined by the
combinational logic that feeds the inputs of these flip-flops. Thus the circuit moves from one state to another.
To ensure that only one transition from one state to another takes place during one clock cycle, the flip-flops
have to be of the edge-triggered type. They can be triggered either by the positive (0 to 1 transition) or by
the negative (1 to 0 transition) edge of the clock. We will use the term active clock edge to refer to the clock
edge that causes the change in state.

The combinational logic that provides the input signals to the flip-flops derives its inputs from two
sources: the primary inputs, W , and the present (current) outputs of the flip-flops, Q. Thus changes in state
depend on both the present state and the values of the primary inputs.

Figure 8.1 indicates that the outputs of the sequential circuit are generated by another combinational
circuit, such that the outputs are a function of the present state of the flip-flops and of the primary inputs.
Although the outputs always depend on the present state, they do not necessarily have to depend directly on
the primary inputs. Thus the connection shown in blue in the figure may or may not exist. To distinguish
between these two possibilities, it is customary to say that sequential circuits whose outputs depend only on
the state of the circuit are of Moore type, while those whose outputs depend on both the state and the primary
inputs are of Mealy type. These names are in honor of Edward Moore and George Mealy, who investigated
the behavior of such circuits in the 1950s.

Sequential circuits are also called finite state machines (FSMs), which is a more formal name that is often
found in technical literature. The name derives from the fact that the functional behavior of these circuits can
be represented using a finite number of states. In this chapter we will often use the term finite state machine,
or simply machine, when referring to sequential circuits.

Combinational
circuit

Flip-flops

Clock

Q

W
Z

Combinational
circuit

Figure 8.1 The general form of a sequential circuit.

June 10, 2002 11:07 vra23151_ch08 Sheet number 3 Page number 447 black

8.1 Basic Design Steps 447

8.1 Basic Design Steps

We will introduce the techniques for designing sequential circuits by means of a simple
example. Suppose that we wish to design a circuit that meets the following specification:

1. The circuit has one input, w, and one output, z.

2. All changes in the circuit occur on the positive edge of a clock signal.

3. The output z is equal to 1 if during two immediately preceding clock cycles the input
w was equal to 1. Otherwise, the value of z is equal to 0.

From this specification it is apparent that the output z cannot depend solely on the present
value of w. To illustrate this, consider the sequence of values of the w and z signals during
11 clock cycles, as shown in Figure 8.2. The values of w are assumed arbitrarily; the values
of z correspond to our specification. These sequences of input and output values indicate
that for a given input value the output may be either 0 or 1. For example, w = 0 during
clock cycles t2 and t5, but z = 0 during t2 and z = 1 during t5. Similarly, w = 1 during t1
and t8, but z = 0 during t1 and z = 1 during t8. This means that z is not determined only by
the present value of w, so there must exist different states in the circuit that determine the
value of z.

8.1.1 State Diagram

The first step in designing a finite state machine is to determine how many states are needed
and which transitions are possible from one state to another. There is no set procedure for
this task. The designer must think carefully about what the machine has to accomplish. A
good way to begin is to select one particular state as a starting state; this is the state that the
circuit should enter when power is first turned on or when a reset signal is applied. For our
example let us assume that the starting state is called state A. As long as the input w is 0,
the circuit need not do anything, and so each active clock edge should result in the circuit
remaining in state A. When w becomes equal to 1, the machine should recognize this, and
move to a different state, which we will call state B. This transition takes place on the next
active clock edge after w has become equal to 1. In state B, as in state A, the circuit should
keep the value of output z at 0, because it has not yet seen w = 1 for two consecutive clock
cycles. When in state B, if w is 0 at the next active clock edge, the circuit should move back
to state A. However, if w = 1 when in state B, the circuit should change to a third state,
called C, and it should then generate an output z = 1. The circuit should remain in state C
as long as w = 1 and should continue to maintain z = 1. When w becomes 0, the machine
should move back to state A. Since the preceding description handles all possible values

Clock cycle: t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
w: 0 1 0 1 1 0 1 1 1 0 1
z: 0 0 0 0 0 1 0 0 1 1 0

Figure 8.2 Sequences of input and output signals.

June 10, 2002 11:07 vra23151_ch08 Sheet number 4 Page number 448 black

448 C H A P T E R 8 • Synchronous Sequential Circuits

of input w that the machine can encounter in its various states, we can conclude that three
states are needed to implement the desired machine.

Now that we have determined in an informal way the possible transitions between states,
we will describe a more formal procedure that can be used to design the corresponding
sequential circuit. Behavior of a sequential circuit can be described in several different
ways. The conceptually simplest method is to use a pictorial representation in the form
of a state diagram, which is a graph that depicts states of the circuit as nodes (circles)
and transitions between states as directed arcs. The state diagram in Figure 8.3 defines
the behavior that corresponds to our specification. States A, B, and C appear as nodes in
the diagram. Node A represents the starting state, and it is also the state that the circuit
will reach after an input w = 0 is applied. In this state the output z should be 0, which
is indicated as A/z=0 in the node. The circuit should remain in state A as long as w
= 0, which is indicated by an arc with a label w = 0 that originates and terminates at
this node. The first occurrence of w = 1 (following the condition w = 0) is recorded
by moving from state A to state B. This transition is indicated on the graph by an arc
originating at A and terminating at B. The label w = 1 on this arc denotes the input value
that causes the transition. In state B the output remains at 0, which is indicated as B/z=0 in
the node.

When the circuit is in state B, it will change to state C if w is still equal to 1 at the
next active clock edge. In state C the output z becomes equal to 1. If w stays at 1 during
subsequent clock cycles, the circuit will remain in state C maintaining z = 1. However, if
w becomes 0 when the circuit is either in state B or in state C, the next active clock edge
will cause a transition to state A to take place.

C z 1=⁄

Reset

B z 0=⁄A z 0=⁄w 0=

w 1=

w 1=

w 0=

w 0= w 1=

Figure 8.3 State diagram of a simple sequential circuit.

June 10, 2002 11:07 vra23151_ch08 Sheet number 5 Page number 449 black

8.1 Basic Design Steps 449

8.1.2 State Table

Although the state diagram provides a description of the behavior of a sequential circuit
that is easy to understand, to proceed with the implementation of the circuit, it is convenient
to translate the information contained in the state diagram into a tabular form. Figure 8.4
shows the state table for our sequential circuit. The table indicates all transitions from each
present state to the next state for different values of the input signal. Note that the output z
is specified with respect to the present state, namely, the state that the circuit is in at present
time.

We now show the design steps that will produce the final circuit. To explain the basic
design concepts, we first go through a traditional process of manually performing each
design step. This is followed by a discussion of automated design techniques that use
modern computer aided design (CAD) tools.

8.1.3 State Assignment

The state table in Figure 8.4 defines the three states in terms of letters A, B, and C. When
implemented in a logic circuit, each state is represented by a particular valuation (combi-
nation of values) of state variables. Each state variable may be implemented in the form of
a flip-flop. Since three states have to be realized, it is sufficient to use two state variables.
Let these variables be y1 and y2.

Now we can adapt the general block diagram in Figure 8.1 to our example as shown in
Figure 8.5, to indicate the structure of the circuit that implements the required finite state
machine. Two flip-flops represent the state variables. In the figure we have not specified
the type of flip-flops to be used; this issue is addressed in the next subsection. From the
specification in Figures 8.3 and 8.4, the output z is determined only by the present state of
the circuit. Thus the block diagram in Figure 8.5 shows that z is a function of only y1 and
y2; our design is of Moore type. We need to design a combinational circuit that uses y1 and
y2 as input signals and generates a correct output signal z for all possible valuations of these
inputs.

The signals y1 and y2 are also fed back to the combinational circuit that determines
the next state of the FSM. This circuit also uses the primary input signal w. Its outputs are
two signals, Y1 and Y2, which are used to set the state of the flip-flops. Each active edge
of the clock will cause the flip-flops to change their state to the values of Y1 and Y2 at that

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A C 1

Figure 8.4 State table for the sequential circuit in Figure 8.3.

June 10, 2002 11:07 vra23151_ch08 Sheet number 6 Page number 450 black

450 C H A P T E R 8 • Synchronous Sequential Circuits

Combinational
circuit

Combinational
circuit

Clock

y2

z

w
y1Y1

Y2

Figure 8.5 A general sequential circuit with input w, output z, and two state flip-flops.

time. Therefore, Y1 and Y2 are called the next-state variables, and y1 and y2 are called the
present-state variables. We need to design a combinational circuit with inputs w, y1, and
y2, such that for all valuations of these inputs the outputs Y1 and Y2 will cause the machine
to move to the next state that satisfies our specification. The next step in the design process
is to create a truth table that defines this circuit, as well as the circuit that generates z.

To produce the desired truth table, we assign a specific valuation of variables y1 and y2

to each state. One possible assignment is given in Figure 8.6, where the states A, B, and C
are represented by y2y1 = 00, 01, and 10, respectively. The fourth valuation, y2y1 = 11, is
not needed in this case.

The type of table given in Figure 8.6 is usually called a state-assigned table. This table
can serve directly as a truth table for the output z with the inputs y1 and y2. Although for
the next-state functions Y1 and Y2 the table does not have the appearance of a normal truth

Present
Next state

state w = 0 w = 1 Output

y2 y1 Y2Y1 Y2Y1
z

A 00 00 01 0
B 01 00 10 0
C 10 00 10 1

11 dd dd d

Figure 8.6 State-assigned table for the sequential circuit in
Figure 8.4.

June 10, 2002 11:07 vra23151_ch08 Sheet number 7 Page number 451 black

8.1 Basic Design Steps 451

table, because there are two separate columns in the table for each value of w, it is obvious
that the table includes all of the information that defines the next-state functions in terms
of valuations of inputs w, y1, and y2.

8.1.4 Choice of Flip-Flops and Derivation of Next-State
and Output Expressions

From the state-assigned table in Figure 8.6, we can derive the logic expressions for the
next-state and output functions. But first we have to decide on the type of flip-flops that
will be used in the circuit. The most straightforward choice is to use D-type flip-flops,
because in this case the values of Y1 and Y2 are simply clocked into the flip-flops to become
the new values of y1 and y2. In other words, if the inputs to the flip-flops are called D1

and D2, then these signals are the same as Y1 and Y2. Note that the diagram in Figure 8.5
corresponds exactly to this use of D-type flip-flops. For other types of flip-flops, such as
JK type, the relationship between the next-state variable and inputs to a flip-flop is not as
straightforward; we will consider this situation in section 8.7.

The required logic expressions can be derived as shown in Figure 8.7. We use Karnaugh
maps to make it easy for the reader to verify the validity of the expressions. Recall that

w
00 01 11 10

0

1

0

1 0

y2y1

Y 1 wy1y2=

w
00 01 11 10

0

1

0 d

1 d

y2y1

Y 2 wy1y2 wy1y2+=

d

d

0

0

0

0

0

0

1

0 1

0

1

0

d

y1

z y1y2=
0

1

y2

Y 1 wy1y2=

Y 2 wy1 wy2+=

z y2=

w y1 y2+()=

Ignoring don’t cares Using don’t cares

Figure 8.7 Derivation of logic expressions for the sequential circuit in Figure 8.6.

June 10, 2002 11:07 vra23151_ch08 Sheet number 8 Page number 452 black

452 C H A P T E R 8 • Synchronous Sequential Circuits

in Figure 8.6 we needed only three of the four possible binary valuations to represent the
states. The fourth valuation, y2y1 = 11, should never occur in the circuit because the circuit
is constrained to move only within states A, B, and C; therefore, we may choose to treat
this valuation as a don’t-care condition. The resulting don’t-care squares in the Karnaugh
maps are denoted by d’s. Using the don’t cares to simplify the expressions, we obtain

Y1 = wy1y2

Y2 = w(y1 + y2)

z = y2

If we do not use don’t cares, then the resulting expressions are slightly more complex; they
are shown in the gray-shaded area of Figure 8.7.

Since D1 = Y1 and D2 = Y2, the logic circuit that corresponds to the preceding expressions
is implemented as shown in Figure 8.8. Observe that a clock signal is included, and the
circuit is provided with an active-low reset capability. Connecting the clear input on the

D Q

Q

D Q

Q

Y2

Y1
w

Clock

z

y1

y2

Resetn

Figure 8.8 Final implementation of the sequential circuit in Figure 8.7.

June 10, 2002 11:07 vra23151_ch08 Sheet number 9 Page number 453 black

8.1 Basic Design Steps 453

flip-flops to an external Resetn signal, as shown in the figure, provides a simple means for
forcing the circuit into a known state. If we apply the signal Resetn = 0 to the circuit, then
both flip-flops will be cleared to 0, placing the FSM into the state y2y1 = 00.

8.1.5 Timing Diagram

To understand fully the operation of the circuit in Figure 8.8, let us consider its timing
diagram presented in Figure 8.9. The diagram depicts the signal waveforms that correspond
to the sequences of values in Figure 8.2.

Because we are using positive-edge-triggered flip-flops, all changes in the signals occur
shortly after the positive edge of the clock. The amount of delay from the clock edge depends
on the propagation delays through the flip-flops. Note that the input signal w is also shown
to change slightly after the active edge of the clock. This is a good assumption because in
a typical digital system an input such as w would be just an output of another circuit that is
synchronized by the same clock. We discuss the synchronization of input signals with the
clock signal in section 10.3.

A key point to observe is that even though w changes slightly after the active clock
edge, and thus the value of w is equal to 1 (or 0) for almost the entire clock cycle, no change
in the circuit will occur until the beginning of the next clock cycle when the positive edge
causes the flip-flops to change their state. Thus the value of w must be equal to 1 for two
clock cycles if the circuit is to reach state C and generate the output z = 1.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

1

0

1

0

1

0

1

0

Clock

w

y1

y2

1

0
z

Figure 8.9 Timing diagram for the circuit in Figure 8.8.

June 10, 2002 11:07 vra23151_ch08 Sheet number 10 Page number 454 black

454 C H A P T E R 8 • Synchronous Sequential Circuits

8.1.6 Summary of Design Steps

We can summarize the steps involved in designing a synchronous sequential circuit as
follows:

1. Obtain the specification of the desired circuit.

2. Derive the states for the machine by first selecting a starting state. Then, given the
specification of the circuit, consider all valuations of the inputs to the circuit and
create new states as needed for the machine to respond to these inputs. To keep track
of the states as they are visited, create a state diagram. When completed, the state
diagram shows all states in the machine and gives the conditions under which the
circuit moves from one state to another.

3. Create a state table from the state diagram. Alternatively, it may be convenient to
directly create the state table in step 2, rather than first creating a state diagram.

4. In our sequential circuit example, there were only three states; hence it was a simple
matter to create the state table that does not contain more states than necessary.
However, in practice it is common to deal with circuits that have a large number of
states. In such cases it is unlikely that the first attempt at deriving a state table will
produce optimal results. Almost certainly we will have more states than is really
necessary. This can be corrected by a procedure that minimizes the number of states.
We will discuss the process of state minimization in section 8.6.

5. Decide on the number of state variables needed to represent all states and perform the
state assignment. There are many different state assignments possible for a given
sequential circuit. Some assignments may be better than others. In the preceding
example we used what seemed to be a natural state assignment. We will return to this
example in section 8.2 and show that a different assignment may lead to a simpler
circuit.

6. Choose the type of flip-flops to be used in the circuit. Derive the next-state logic
expressions to control the inputs to all flip-flops and then derive logic expressions for
the outputs of the circuit. So far we have used only D-type flip-flops. We will
consider other types of flip-flops in section 8.7.

7. Implement the circuit as indicated by the logic expressions.

Example 8.1 We have illustrated the design steps using a very simple sequential circuit. From the reader’s
point of view, a circuit that detects that an input signal was high for two consecutive clock
pulses may not have much practical significance. We will now consider an example that is
closely tied to practical application.

Section 7.14 introduced the concept of a bus and showed the connections that have
to be made to allow the contents of a register to be transferred into another register. The
circuit in Figure 7.60 shows how tri-state buffers can be used to place the contents of a
selected register onto the bus and how the data on the bus can be loaded into a register.
Figure 7.62 shows how a control mechanism that swaps the contents of registers R1 and R2
can be realized using a shift register. We will now design the desired control mechanism,
using the finite state machine approach.

June 10, 2002 11:07 vra23151_ch08 Sheet number 11 Page number 455 black

8.1 Basic Design Steps 455

The contents of registers R1 and R2 can be swapped using register R3 as a temporary
storage location as follows: The contents of R2 are first loaded into R3, using the control
signals R2out = 1 and R3in = 1. Then the contents of R1 are transferred into R2, using
R1out = 1 and R2in = 1. Finally, the contents of R3 (which are the previous contents of
R2) are transferred into R1, using R3out = 1 and R1in = 1. Since this step completes the
required swap, we will indicate that the task is completed by setting the signal Done = 1.
Assume that the swapping is performed in response to a pulse on an input signal called w,
which has a duration of one clock cycle. Figure 8.10 indicates the external signals involved
in the desired control circuit. Figure 8.11 gives a state diagram for a sequential circuit that
generates the output control signals in the required sequence. Note that to keep the diagram
simple, we have indicated the output signals only when they are equal to 1. In all other
cases the output signals are equal to 0.

In the starting state, A, no transfer is indicated, and all output signals are 0. The circuit
remains in this state until a request to swap arrives in the form of w changing to 1. In state
B the signals required to transfer the contents of R2 into R3 are asserted. The next active
clock edge places these contents into R3. It also causes the circuit to change to state C,
regardless of whether w is equal to 0 or 1. In this state the signals for transferring R1 into R2
are asserted. The transfer takes place at the next active clock edge, and the circuit changes
to state D regardless of the value of w. The final transfer, from R3 to R1, is performed on
the clock edge that leaves state D, which also causes the circuit to return to state A.

Figure 8.12 presents the same information in a state table. Since there are four states, it
is necessary to use two state variables, y2 and y1. A straightforward state assignment where
the states A, B, C, and D are assigned the valuations y2y1 = 00, 01, 10, and 11, respectively,
leads to the state-assigned table in Figure 8.13. Using this assignment and D-type flip-flops,
the next-state expressions can be derived as shown in Figure 8.14. They are

Y1 = wy1 + y1y2

Y2 = y1y2 + y1y2

The output control signals are derived as

R1out = R2in = y1y2

R1in = R3out = Done = y1y2

R2out = R3in = y1y2

Control
circuit

w

Clock

Done

R1out

R2out

R1in

R2in

R3out

R3in

Figure 8.10 Signals needed in Example 8.1.

June 10, 2002 11:07 vra23151_ch08 Sheet number 12 Page number 456 black

456 C H A P T E R 8 • Synchronous Sequential Circuits

D R3out 1= R1in 1= Done 1=, ,⁄

w 0=
w 1=

C R1out 1= R2in 1=,⁄

B R2out 1= R3in 1=,⁄

w 1=

A No⁄

w 0=
w 1=

transfer

w 0=
w 1=

Reset

w 0=

Figure 8.11 State diagram for Example 8.1.

Present Next state Outputs

state w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done

A A B 0 0 0 0 0 0 0
B C C 0 0 1 0 0 1 0
C D D 1 0 0 1 0 0 0
D A A 0 1 0 0 1 0 1

Figure 8.12 State table for Example 8.1.

Present Next state

state w = 0 w = 1
Outputs

y2 y1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done

A 0 0 0 0 0 1 0 0 0 0 0 0 0
B 0 1 1 0 1 0 0 0 1 0 0 1 0
C 1 0 1 1 1 1 1 0 0 1 0 0 0
D 1 1 0 0 0 0 0 1 0 0 1 0 1

Figure 8.13 State-assigned table for the sequential circuit in Figure 8.12.

June 10, 2002 11:07 vra23151_ch08 Sheet number 13 Page number 457 black

8.1 Basic Design Steps 457

w
00 01 11 10

0

1

1

1 1

y2y1

Y 1 wy1 y1y2+=

w
00 01 11 10

0

1

1 1

1 1

y2y1

Y 2 y1y2 y1y2+=

Figure 8.14 Derivation of next-state expressions for the sequential
circuit in Figure 8.13.

D Q

Q

D Q

Q

Done

w

Clock

Y 2

Y 1

y2

y1

y2

y1

R1in

R3out

R1out

R2in

R2out

R3in

Figure 8.15 Final implementation of the sequential circuit in Figure 8.13.

June 10, 2002 11:07 vra23151_ch08 Sheet number 14 Page number 458 black

458 C H A P T E R 8 • Synchronous Sequential Circuits

These expressions lead to the circuit in Figure 8.15. This circuit appears more complex
than the shift register in Figure 7.62, but it has only two flip-flops, rather than three.

8.2 State-Assignment Problem

Having introduced the basic concepts involved in the design of sequential circuits, we should
revisit some details where alternative choices are possible. In section 8.1.6 we suggested
that some state assignments may be better than others. To illustrate this we can reconsider
the example in Figure 8.4. We already know that the state assignment in Figure 8.6 leads
to a simple-looking circuit in Figure 8.8. But can the FSM of Figure 8.4 be implemented
with an even simpler circuit by using a different state assignment?

Figure 8.16 gives one possible alternative. In this case we represent the states A, B,
and C with the valuations y2y1 = 00, 01, and 11, respectively. The remaining valuation,
y2y1 = 10, is not needed, and we will treat it as a don’t-care condition. If we again choose to
implement the circuit using D-type flip-flops, the next-state and output expressions derived
from the figure will be

Y1 = D1 = w

Y2 = D2 = wy1

z = y2

These expressions define the circuit shown in Figure 8.17. Comparing this circuit with the
one in Figure 8.8, we see that the cost of the new circuit is lower because it requires fewer
gates.

In general, circuits are much larger than our example, and different state assignments
can have a substantial effect on the cost of the final implementation. While highly desirable,
it is often impossible to find the best state assignment for a large circuit. The exhaustive
approach of trying all possible state assignments is not practical because the number of
available state assignments is huge. CAD tools usually perform the state assignment using
heuristic techniques. These techniques are usually proprietary, and their details are seldom
published.

Present
Next state

state w = 0 w = 1 Output

y2 y1 Y2Y1 Y2Y1
z

A 00 00 01 0
B 01 00 11 0
C 11 00 11 1

10 dd dd d

Figure 8.16 Improved state assignment for the sequential circuit
in Figure 8.4.

June 10, 2002 11:07 vra23151_ch08 Sheet number 15 Page number 459 black

8.2 State-Assignment Problem 459

D Q

Q

D Q

Q

Y2

Y1
w

Clock

z

y1

y2

Resetn

Figure 8.17 Final circuit for the improved state assignment in Figure 8.16.

Example 8.2In Figure 8.13 we used a straightforward state assignment for the sequential circuit in Figure
8.12. Consider now the effect of interchanging the valuations assigned to states C and D,
as shown in Figure 8.18. Then the next-state expressions are

Y1 = wy2 + y1y2

Y2 = y1

as derived in Figure 8.19. The output expressions are

R1out = R2in = y1y2

R1in = R3out = Done = y1y2

R2out = R3in = y1y2

These expressions lead to a slightly simpler circuit than the one given in Figure 8.15.

Present Next state

state w = 0 w = 1
Outputs

y2 y1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done

A 0 0 0 0 0 1 0 0 0 0 0 0 0
B 0 1 1 1 1 1 0 0 1 0 0 1 0
C 1 1 1 0 1 0 1 0 0 1 0 0 0
D 1 0 0 0 0 0 0 1 0 0 1 0 1

Figure 8.18 Improved state assignment for the sequential circuit in Figure 8.12.

June 10, 2002 11:07 vra23151_ch08 Sheet number 16 Page number 460 black

460 C H A P T E R 8 • Synchronous Sequential Circuits

w
00 01 11 10

0

1

1

1 1

y2y1

Y 1 wy2 y1y2+=

w
00 01 11 10

0

1

1 1

1 1

y2y1

Y 2 y1=

Figure 8.19 Derivation of next-state expressions for the sequential
circuit in Figure 8.18.

8.2.1 One-Hot Encoding

Another interesting possibility is to use as many state variables as there are states in a
sequential circuit. In this method, for each state all but one of the state variables are equal
to 0. The variable whose value is 1 is deemed to be “hot.” The approach is known as the
one-hot encoding method.

Figure 8.20 shows how one-hot state assignment can be applied to the sequential circuit
of Figure 8.4. Because there are three states, it is necessary to use three state variables. The
chosen assignment is to represent the states A, B, and C using the valuations y3y2y1 = 001,
010, and 100, respectively. The remaining five valuations of the state variables are not used.
They can be treated as don’t cares in the derivation of the next-state and output expressions.
Using this assignment, the resulting expressions are

Y1 = w

Y2 = wy1

Y3 = wy1

z = y3

These expressions are not simpler than those obtained using the state assignment in Figure
8.16. Although in this case the one-hot assignment is not advantageous, there are many
cases where this approach is attractive.

Example 8.3 The one-hot state assignment can be applied to the sequential circuit of Figure 8.12 as
indicated in Figure 8.21. Four state variables are needed, and the states A, B, C, and D are

June 10, 2002 11:07 vra23151_ch08 Sheet number 17 Page number 461 black

8.2 State-Assignment Problem 461

Present Next state

state w = 0 w = 1 Output

y3 y2 y1 Y3Y2Y1 Y3Y2Y1
z

A 0 0 1 0 0 1 0 1 0 0
B 0 1 0 0 0 1 1 0 0 0
C 1 0 0 0 0 1 1 0 0 1

Figure 8.20 One-hot state assignment for the sequential circuit
in Figure 8.4.

encoded as y4y3y2y1 = 0001, 0010, 0100, and 1000, respectively. Treating the remaining
12 valuations of the state variables as don’t cares, the next-state expressions are

Y1 = wy1 + y4

Y2 = wy1

Y3 = y2

Y4 = y3

It is instructive to note that we can derive these expressions simply by inspecting the state
diagram in Figure 8.11. Flip-flop y1 should be set to 1 if the FSM is in state A and w = 0, or
if the FSM is in state D; hence Y1 = wy1 + y4. Flip-flop y2 should be set to 1 if the present
state is A and w = 1; hence Y2 = wy1. Flip-flops y3 and y4 should be set to 1 if the FSM is
presently in state B or C, respectively; hence Y3 = y2 and Y4 = y3.

The output expressions are just the outputs of the flip-flops, such that

R1out = R2in = y3

R1in = R3out = Done = y4

R2out = R3in = y2

These expressions are simpler than those derived in Example 8.2, but four flip-flops are
needed, rather than two.

Present Next state

state w = 0 w = 1
Outputs

y4 y3 y2 y1 Y4Y3Y2Y1 Y4Y3Y2Y1 R1out R1in R2out R2in R3out R3in Done

A 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
B 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0
C 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0
D 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1

Figure 8.21 One-hot state assignment for the sequential circuit in Figure 8.12.

June 10, 2002 11:07 vra23151_ch08 Sheet number 18 Page number 462 black

462 C H A P T E R 8 • Synchronous Sequential Circuits

An important feature of the one-hot state assignment is that it often leads to simpler
output expressions than do assignments with the minimal number of state variables. Simpler
output expressions may lead to a faster circuit. For instance, if the outputs of the sequential
circuit are just the outputs of the flip-flops, as is the case in our example, then these output
signals are valid as soon as the flip-flops change their states. If more complex output
expressions are involved, then the propagation delay through the gates that implement
these expressions must be taken into account. We will consider this issue in section 8.8.2.

The examples considered to this point show that there are many ways to implement a
given finite state machine as a sequential circuit. Each implementation is likely to have a
different cost and different timing characteristics. In the next section we introduce another
way of modeling FSMs that leads to even more possibilities.

8.3 Mealy State Model

Our introductory examples were sequential circuits in which each state had specific values
of the output signals associated with it. As we explained at the beginning of the chapter,
such finite state machines are said to be of Moore type. We will now explore the concept
of Mealy-type machines in which the output values are generated based on both the state
of the circuit and the present values of its inputs. This provides additional flexibility in the
design of sequential circuits. We will introduce the Mealy-type machines, using a slightly
altered version of a previous example.

The essence of the first sequential circuit in section 8.1 is to generate an output z = 1
whenever a second occurrence of the input w = 1 is detected in consecutive clock cycles.
The specification requires that the output z be equal to 1 in the clock cycle that follows
the detection of the second occurrence of w = 1. Suppose now that we eliminate this latter
requirement and specify instead that the output z should be equal to 1 in the same clock cycle
when the second occurrence of w = 1 is detected. Then a suitable input-output sequence
may be as shown in Figure 8.22. To see how we can realize the behavior given in this table,
we begin by selecting a starting state, A. As long as w = 0, the machine should remain in
state A, producing an output z = 0. When w = 1, the machine has to move to a new state,
B, to record the fact that an input of 1 has occurred. If w remains equal to 1 when the
machine is in state B, which happens if w = 1 for at least two consecutive clock cycles, the
machine should remain in state B and produce an output z = 1. As soon as w becomes 0,
z should immediately become 0 and the machine should move back to state A at the next

Clock cycle: t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
w: 0 1 0 1 1 0 1 1 1 0 1
z: 0 0 0 0 1 0 0 1 1 0 0

Figure 8.22 Sequences of input and output signals.

June 10, 2002 11:07 vra23151_ch08 Sheet number 19 Page number 463 black

8.3 Mealy State Model 463

active edge of the clock. Thus the behavior specified in Figure 8.22 can be achieved with
a two-state machine, which has a state diagram shown in Figure 8.23. Only two states are
needed because we have allowed the output value to depend on the present value of the
input as well as the present state of the machine. The diagram indicates that if the machine
is in state A, it will remain in state A if w = 0 and the output will be 0. This is indicated
by an arc with the label w = 0/z = 0. When w becomes 1, the output stays at 0 until the
machine moves to state B at the next active clock edge. This is denoted by the arc from A
to B with the label w = 1/z = 0. In state B the output will be 1 if w = 1, and the machine will
remain in state B, as indicated by the label w=1/z=1 on the corresponding arc. However, if
w = 0 in state B, then the output will be 0 and a transition to state A will take place at the
next active clock edge. A key point to understand is that during the present clock cycle the
output value corresponds to the label on the arc emanating from the present-state node.

We can implement the FSM in Figure 8.23, using the same design steps as in section
8.1. The state table is shown in Figure 8.24. The table shows that the output z depends
on the present value of input w and not just on the present state. Figure 8.25 gives the
state-assigned table. Because there are only two states, it is sufficient to use a single state
variable, y. Assuming that y is realized as a D-type flip-flop, the required next-state and
output expressions are

Y = D = w

z = wy

The resulting circuit is presented in Figure 8.26 along with a timing diagram. The timing
diagram corresponds to the input-output sequences in Figure 8.22.

The greater flexibility of Mealy-type FSMs often leads to simpler circuit realizations.
This certainly seems to be the case in our examples that produced the circuits in Figures
8.8, 8.17, and 8.26, assuming that the design requirement is only to detect two consecutive
occurrences of input w being equal to 1. We should note, however, that the circuit in Figure
8.26 is not the same in terms of output behavior as the circuits in Figures 8.8 and 8.17. The
difference is a shift of one clock cycle in the output signal in Figure 8.26b. If we wanted to
produce exactly the same output behavior using the Mealy approach, we could modify the
circuit in Figure 8.26a by adding another flip-flop as shown in Figure 8.27. This flip-flop
merely delays the output signal, Z , by one clock cycle with respect to z, as indicated in the
timing diagram. By making this change, we effectively turn the Mealy-type circuit into

A

w 0= z 0=⁄

w 1= z 1=⁄Bw 0= z 0=⁄

Reset

w 1= z 0=⁄

Figure 8.23 State diagram of an FSM that realizes the task in Figure 8.22.

June 10, 2002 11:07 vra23151_ch08 Sheet number 20 Page number 464 black

464 C H A P T E R 8 • Synchronous Sequential Circuits

Present Next state Output z

state w = 0 w = 1 w = 0 w = 1

A A B 0 0
B A B 0 1

Figure 8.24 State table for the FSM in Figure 8.23.

Present Next state Output

state w = 0 w = 1 w = 0 w = 1

y Y Y z z

A 0 0 1 0 0
B 1 0 1 0 1

Figure 8.25 State-assigned table for the FSM in Figure 8.24.

Clock

Resetn

D Q

Q

w

z

(a) Circuit

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
1
0

1
0

1
0

1
0

Clock

y

w

z

y

(b) Timing diagram

Figure 8.26 Implementation of FSM in Figure 8.25.

June 10, 2002 11:07 vra23151_ch08 Sheet number 21 Page number 465 black

8.3 Mealy State Model 465

Clock

Resetn

D Q

Q

w

z

(a) Circuit

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
1
0

1
0

1
0

1
0

Clock

y

w

z

y

(b) Timing diagram

D Q

Q

Z

1
0

Z

Figure 8.27 Circuit that implements the specification in Figure 8.2.

a Moore-type circuit with output Z . Note that the circuit in Figure 8.27 is essentially the
same as the circuit in Figure 8.17.

Example 8.4In Example 8.1 we considered the control circuit needed to swap the contents of two registers,
implemented as a Moore-type finite state machine. The same task can be achieved using a
Mealy-type FSM, as indicated in Figure 8.28. State A still serves as the reset state. But as
soon as w changes from 0 to 1, the output control signals R2out and R3in are asserted. They
remain asserted until the beginning of the next clock cycle, when the circuit will leave state
A and change to B. In state B the outputs R1out and R2in are asserted for both w = 0 and
w = 1. Finally, in state C the swap is completed by asserting R3out and R1in.

The Mealy-type realization of the control circuit requires three states. This does not
necessarily imply a simpler circuit because two flip-flops are still needed to implement

June 10, 2002 11:07 vra23151_ch08 Sheet number 22 Page number 466 black

466 C H A P T E R 8 • Synchronous Sequential Circuits

R3out 1= R1in 1= Done 1=, ,w 0=
w 1=

R1out 1= R2in 1=,

w 1= R⁄ 2out 1= R3in 1=,

A

w 0=
w 1=

Reset

w 0=

B

C

Figure 8.28 State diagram for Example 8.4.

the state variables. The most important difference in comparison with the Moore-type
realization is the timing of output signals. A circuit that implements the FSM in Figure
8.28 generates the output control signals one clock cycle sooner than the circuits derived
in Examples 8.1 and 8.2.

Note also that using the FSM in Figure 8.28, the entire process of swapping the contents
of R1 and R2 takes three clock cycles, starting and finishing in state A. Using the Moore-type
FSM in Example 8.1, the swapping process involves four clock cycles before the circuit
returns to state A.

Suppose that we wish to implement this FSM using one-hot encoding. Then three
flip-flops are needed, and the states A, B, and C may be assigned the valuations y3y2y1 =
001, 010, and 100, respectively. Examining the state diagram in Figure 8.28, we can derive
the next-state equations by inspection. The input to flip-flop y1 should have the value 1 if
the FSM is in state A and w = 0 or if the FSM is in state C; hence Y1 = wy1+ y3. Flip-flop
y2 should be set to 1 if the FSM is in state A and w = 1; hence Y2 = wy1. Flip-flop y3

should be set to 1 if the present state is B; hence Y3 = y2. The derivation of the output
expressions, which we leave as an exercise for the reader, can also be done by inspection.
The corresponding circuit is shown in Figure 7.63, in section 7.14, where it was derived
using an ad hoc approach.

The preceding discussion deals with the basic principles involved in the design of
sequential circuits. Although it is essential to understand these principles, the manual
approach used in the examples is difficult and tedious when large circuits are involved. We
will now show how CAD tools are used to greatly simplify the design task.

June 10, 2002 11:07 vra23151_ch08 Sheet number 23 Page number 467 black

8.4 Design of Finite State Machines Using CAD Tools 467

8.4 DesignofFiniteStateMachinesUsingCADTools

Sophisticated CAD tools are available for finite state machine design, and we introduce
them in this section. A rudimentary way of using CAD tools for FSM design could be
as follows: The designer employs the manual techniques described previously to derive a
circuit that contains flip-flops and logic gates from a state diagram. This circuit is entered
into the CAD system by drawing a schematic diagram or by writing structural hardware
description language (HDL) code. The designer then uses the CAD system to simulate the
behavior of the circuit and uses the CAD tools to automatically implement the circuit in a
chip, such as a PLD.

It is tedious to manually synthesize a circuit from a state diagram. Since CAD tools
are meant to obviate this type of task, more attractive ways of utilizing CAD tools for FSM
design have been developed. A better approach is to directly enter the state diagram into the
CAD system and perform the entire synthesis process automatically. CAD tools support
this approach in two main ways. One method is to allow the designer to draw the state
diagram using a graphical tool similar to the schematic capture tool. The designer draws
circles to represent states and arcs to represent state transitions and indicates the outputs
that the machine should generate. Another and more popular approach is to use an HDL to
write code that represents the state diagram, as described below.

Many HDLs provide constructs that allow the designer to represent a state diagram.
To show how this is done, we will provide Verilog code that represents the simple machine
designed manually as the first example in section 8.1. Then we will use the CAD tools to
synthesize a circuit that implements the machine in a chip.

8.4.1 Verilog Code for Moore-Type FSMs

Verilog does not define a standard way of describing a finite state machine. Hence while
adhering to the required Verilog syntax, there is more than one way to describe a given
FSM. An example of Verilog code for the FSM of Figure 8.3 is given in Figure 8.29. The
code reflects directly the FSM structure in Figure 8.5. The module simple has inputs Clock,
Resetn, and w, and output z. Two-bit vectors y and Y represent the present and the next state
of the machine, respectively. The state values are assigned in the parameter statement to
match those in Figure 8.6.

The state transitions are specified by two separate always blocks. The first block
describes the required combinational circuit. The values of the next state vector Y change
in response to the changes in w and y signals, which are given in the sensitivity list. The
circuit is defined in a case statement to give the value of Y for each value of y and w. Each
case alternative corresponds to a present state of the machine, and the associated if-else
statement specifies the next state to be reached. Since there are only three states specified
as possible alternatives, we have included a default clause which indicates to the Verilog
compiler that the unassigned fourth state can be treated as a don’t care condition as depicted
in Figure 8.6. This portion of the code corresponds to the combinational circuit on the left
side of Figure 8.5.

June 10, 2002 11:07 vra23151_ch08 Sheet number 24 Page number 468 black

468 C H A P T E R 8 • Synchronous Sequential Circuits

module simple (Clock, Resetn, w, z);
input Clock, Resetn, w;
output z;
reg [2:1] y, Y;
parameter [2:1] A = 2’b00, B = 2’b01, C = 2’b10;

// Define the next state combinational circuit
always @(w or y)

case (y)
A: if (w) Y = B;

else Y = A;
B: if (w) Y = C;

else Y = A;
C: if (w) Y = C;

else Y = A;
default: Y = 2’bxx;

endcase

// Define the sequential block
always @(negedge Resetn or posedge Clock)

if (Resetn == 0) y <= A;
else y <= Y;

// Define output
assign z = (y == C);

endmodule

Figure 8.29 Verilog code for the FSM in Figure 8.3.

The second always block introduces flip-flops into the circuit. Its sensitivity list com-
prises the reset and clock signals. Asynchronous reset is performed when the Resetn input
goes to 0, placing the FSM into state A. The else clause stipulates that after each positive
clock edge the y signal should take the value of the Y signal, thus implementing the state
changes.

This is a Moore-type FSM in which the output z is equal to 1 only in state C. The output
is conveniently defined in a conditional assignment statement that sets z = 1 if y = C. This
realizes the combinational circuit on the right side of Figure 8.5.

8.4.2 Synthesis of Verilog Code

To give an example of the circuit produced by a synthesis tool, we synthesised the code
in Figure 8.29 for implementation in a CPLD. The synthesis resulted in two flip-flops,
with inputs Y1 and Y2, and outputs y1 and y2. The next-state expressions generated by the

June 10, 2002 11:07 vra23151_ch08 Sheet number 25 Page number 469 black

8.4 Design of Finite State Machines Using CAD Tools 469

synthesis tool are

Y1 = wy1y2

Y2 = wy1 + wy2

The output expression is

z = y2

These expressions correspond to the case in Figure 8.7 when the unused state pattern
y2y1 = 11 is treated as don’t-cares in the Karnaugh maps for Y1, Y2, and z.

Figure 8.30 depicts a part of the FSM circuit implemented in a CPLD. To keep the
figure simple, only the logic resources used for the two macrocells that implement y1, y2,
and z are shown. The parts of the macrocells used for the circuit are highlighted in blue.

y1D Q

D Q

Clock

1

11

PAL-like block

Interconnection wires

(Other macrocells are not shown)

1

0

0

z

w

Resetn

y2

Figure 8.30 Implementation of the FSM of Figure 8.3 in a CPLD.

June 10, 2002 11:07 vra23151_ch08 Sheet number 26 Page number 470 black

470 C H A P T E R 8 • Synchronous Sequential Circuits

The w input to the circuit is shown connected to one of the interconnection wires in
the CPLD. The source node in the chip that generates w is not shown. It could be either an
input pin, or else w might be the output of another macrocell, assuming that the CPLD may
contain other circuitry that is connected to our FSM. The Clock signal is assigned to a pin
on the chip that is dedicated for use by clock signals. From this dedicated pin a global wire
distributes the clock signal to all of the flip-flops in the chip. The global wire distributes
the clock signal to the flip-flops such that the difference in the arrival time, or clock skew,
of the clock signal at each flip-flop is minimized. The concept of clock skew is discussed
in section 10.3. A global wire is also used for the reset signal.

The top macrocell in Figure 8.30 produces the state variable y1. The other macrocell
generates y2. For signal y1 the top macrocell produces the required product term, as shown.
The other product-term wires in the macrocell are not shown in the figure, but each is set
to 0 so that it does not affect the OR gate. The output of the OR gate passes through the
XOR gate whose other input is 0. Although the XOR gate has no impact on this circuit’s
behavior, except to cause a small propagation delay, it is a part of the macrocell and cannot
be avoided when implementing our circuit. The output of the XOR gate drives the flip-flop
that represents y1. The multiplexer select input is set to 1 so that the signal y1 is passed
through to the tri-state buffer. Similar to the XOR gate, this buffer is not needed in our
circuit, but since it is present in the macrocell it must be used; hence its output enable control
signal is set to 1. The signal y1 is connected to the interconnection wires in the CPLD and
fed back to the macrocells. Observe that although y1 is not an output of the circuit, it uses
a signal path that is attached to one of the chip’s pins. Therefore, this pin cannot be used
for any other purpose. The implementation of y2 is similar to that for y1, except that two
product terms are involved. The signal y2 is connected to the pin labeled z, which realizes
the required output signal.

Figure 8.31 illustrates how the circuit might be assigned to the pins on a small CPLD
in a 44-pin PLCC package. The figure is drawn with a part of the top of the chip package
cut away, revealing a conceptual view of the two macrocells from Figure 8.30, which are
indicated in blue. Our simple circuit uses only a small portion of the device.

8.4.3 Simulating and Testing the Circuit

The behavior of the circuit implemented in the CPLD chip can be tested using timing
simulation, as depicted in Figure 8.32. The figure gives the waveforms that correspond to
the timing diagram in Figure 8.9, assuming that a 100 ns clock period is used. The Resetn
signal is set to 0 at the beginning of the simulation and then set to 1. The circuit produces
the output z = 1 for one clock cycle after w has been equal to 1 for two successive clock
cycles. When w is 1 for three clock cycles, z becomes 1 for two clock cycles, as it should
be. We show the changes in state by using the letters A, B, and C for readability purposes.
(The simulator included with the book actually shows the corresponding binary codes for
the states.)

Having examined the simulation output, we should consider the question of whether
we can conclude that the circuit functions correctly and satisfies all requirements. For our
simple example it is not difficult to answer this question because the circuit has only one
input and its behavior is straightforward. It is easy to see that the circuit works properly.
However, in general it is difficult to ascertain with a high degree of confidence whether a

June 10, 2002 11:07 vra23151_ch08 Sheet number 27 Page number 471 black

8.4 Design of Finite State Machines Using CAD Tools 471

z

R
es

et
n

w C
lo

ck

G
nd

V
D

D

147

10

13

16
19 22 25 28

44 39

36

EPM7032

Figure 8.31 The circuit from Figure 8.30 in a small CPLD.

Figure 8.32 Simulation results for the circuit in Figure 8.30.

sequential circuit will work properly for all possible input sequences, because a very large
number of input patterns may be possible. For large finite state machines, the designer must
think carefully about patterns of inputs that may be used in simulation for testing purposes.

8.4.4 Alternative Styles of Verilog Code

We mentioned earlier in this section that Verilog does not specify a standard way for writing
code that represents a finite state machine. The code given in Figure 8.29 is only one
possibility. A slightly different version of code for our simple machine is given in Figure
8.33. In this case, we specified the output z inside the always block that defines the required
combinational circuit. The effect is the same as in Figure 8.29.

June 10, 2002 11:07 vra23151_ch08 Sheet number 28 Page number 472 black

472 C H A P T E R 8 • Synchronous Sequential Circuits

module simple (Clock, Resetn, w, z);
input Clock, Resetn, w;
output z;
reg z;
reg [2:1] y, Y;
parameter [2:1] A = 2’b00, B = 2’b01, C = 2’b10;

// Define the next state and output combinational circuits
always @(w or y)
begin

case (y)
A: if (w) Y = B;

else Y = A;
B: if (w) Y = C;

else Y = A;
C: if (w) Y = C;

else Y = A;
default: Y = 2’bxx;

endcase
z = (y == C); //Define output

end

// Define the sequential block
always @(negedge Resetn or posedge Clock)

if (Resetn == 0) y <= A;
else y <= Y;

endmodule

Figure 8.33 Second version of code for the FSM in Figure 8.3.

A different approach is taken in Figure 8.34. A single always block is used. The states
are represented by a two-bit vector y. The required state transitions are given in the always
block with the sensitivity list that comprises the reset and clock signals. Asynchronous reset
is specified when Resetn goes to 0. Other transitions are defined in the case statement to
correspond directly to those in Figure 8.3. The default clause indicates that the valuation
y = y2y1 = 11 can be treated as a don’t-care condition.

The assignment statement that defines z is placed outside the always block. This
leads to the correct operation as follows. The always block implements all changes on the
positive edge of the clock. This infers flip-flops for the state variables y1 and y2. The assign
statement makes z equal to 1 as soon as the circuit reaches state C, which is when y2y1 = 10.
Using the don’t care condition, this statement is equivalent to saying that z = y2. Observe
that this assignment cannot be made inside the always block as done in Figure 8.33. Doing
so would infer a separate flip-flop for z, which would delay the changes in z with respect to
y2 by one clock cycle.

We have shown three styles of Verilog code for our FSM example. The circuit produced
by the Verilog compiler for each version of the code may be somewhat different because,

June 10, 2002 11:07 vra23151_ch08 Sheet number 29 Page number 473 black

8.4 Design of Finite State Machines Using CAD Tools 473

module simple (Clock, Resetn, w, z);
input Clock, Resetn, w;
output z;
reg [2:1] y;
parameter [2:1] A = 2’b00, B = 2’b01, C = 2’b10;

// Define the sequential block
always @(negedge Resetn or posedge Clock)

if (Resetn == 0) y <= A;
else

case (y)
A: if (w) y <= B;

else y <= A;
B: if (w) y <= C;

else y <= A;
C: if (w) y <= C;

else y <= A;
default: y <= 2’bxx;

endcase

// Define output
assign z = (y == C);

endmodule

Figure 8.34 Third version of code for the FSM in Figure 8.3.

as the reader is well aware by this point, there are many ways to implement a given logic
function. However, the circuits produced from the three versions of the code provide
identical functionality.

Example 8.5Figure 8.35 shows how the FSM in Figure 8.11 can be specified in Verilog using the style
illustrated in Figure 8.29. This FSM has four states, which are encoded using all four
possible valuations of the state variables, hence there is no need for a default clause in the
case statement.

8.4.5 Summary of Design StepsWhen Using CAD Tools

In section 8.1.6 we summarized the design steps needed to derive sequential circuits man-
ually. We have now seen that CAD tools can automatically perform much of the work.
However, it is important to realize that the CAD tools have not replaced all manual steps.
With reference to the list given in section 8.1.6, the first two steps, in which the machine
specification is obtained and a state diagram is derived, still have to be done manually.
Given the state diagram information as input, the CAD tools then automatically perform

June 10, 2002 11:07 vra23151_ch08 Sheet number 30 Page number 474 black

474 C H A P T E R 8 • Synchronous Sequential Circuits

module control (Clock, Resetn, w, R1in, R1out, R2in, R2out, R3in, R3out, Done);
input Clock, Resetn, w;
output R1in, R1out, R2in, R2out, R3in, R3out, Done;
reg [2:1] y, Y;
parameter [2:1] A = 2’b00, B = 2’b01, C = 2’b10, D = 2’b11;

// Define the next state combinational circuit
always @(w or y)

case (y)
A: if (w) Y = B;

else Y = A;
B: Y = C;
C: Y = D;
D: Y = A;

endcase

// Define the sequential block
always @(negedge Resetn or posedge Clock)

if (Resetn == 0) y <= A;
else y <= Y;

// Define outputs
assign R2out = (y == B);
assign R3in = (y == B);
assign R1out = (y == C);
assign R2in = (y == C);
assign R3out = (y == D);
assign R1in = (y == D);
assign Done = (y == D);

endmodule

Figure 8.35 Verilog code for the FSM in Figure 8.11.

the tasks needed to generate a circuit with logic gates and flip-flops. In addition to the
design steps given in section 8.1.6, we should add the testing and simulation stage. We will
defer detailed discussion of this issue until Chapter 11.

8.4.6 Specifying the State Assignment in Verilog Code

In section 8.2 we saw that the state assignment may have an impact on the complexity of
the designed circuit. An obvious objective of the state-assignment process is to minimize
the cost of implementation. The cost function that should be optimized may be simply the

June 10, 2002 11:07 vra23151_ch08 Sheet number 31 Page number 475 black

8.4 Design of Finite State Machines Using CAD Tools 475

number of gates and flip-flops. But it could also be based on other considerations that may
be representative of the structure of PLD chips used to implement the design. For example,
the CAD software may try to find state encodings that minimize the total number of AND
terms needed in the resulting circuit when the target chip is a CPLD.

A particular state assignment has to be specified in Verilog code by means of a param-
eter statement as done in Figures 8.29 through 8.35. However, Verilog compilers usually
have a capability to search for different assignments that may give better results. Most
compilers are able to recognize a finite state machine when they encounter its specification
in the code that conforms to typical styles, such as those used in this chapter. When the com-
piler detects an FSM, it can try to optimize its implementation by applying certain strategies
such as looking for a better state assignment, attempting to use the one-hot encoding, and
exploiting specific features of the target device. The user can either allow the compiler to
use its FSM-handling capability, or surpress it in which case the compiler simply deals with
the Verilog statements in the usual way.

8.4.7 Specification of Mealy FSMs Using Verilog

A Mealy-type FSM can be specified in a similar manner as a Moore-type FSM. Figure 8.36
gives Verilog code for the FSM in Figure 8.23. The state transitions are described in the
same way as in our first Verilog example in Figure 8.29. The variables y and Y represent
the present and next states, which can have values A and B. Compared to the code in Figure
8.29, the main difference is the way in which the code for the output is written. In Figure
8.36 the output z is defined within the case statement that also defines the state transitions.
When the FSM is in state A, z should be 0, but when in state B, z should take the value of w.
Since the sensitivity list for the always block includes w, a change in w will immediately
reflect itself in the value of z if the machine is in state B, which meets the requirements of
the Mealy-type FSM.

Implementing the FSM specified in Figure 8.36 in a CPLD chip yields the same equa-
tions as we derived manually in section 8.3. Simulation results for the synthesized circuit
appear in Figure 8.37. The input waveform for w is the same as the one we used for the
Moore-type machine in Figure 8.32. Our Mealy-type machine behaves correctly, with z
becoming 1 just after the start of the second consecutive clock cycle in which w is 1.

In the simulation results we have given in this section, all changes in the input w occur
immediately following a positive clock edge. This is based on the assumption, stated in
section 8.1.5, that in a real circuit w would be synchronized with respect to the clock that
controls the FSM. In Figure 8.38 we illustrate a problem that may arise if w does not meet
this specification. In this case we have assumed that the changes in w take place at the
negative edge of the clock, rather than at the positive edge when the FSM changes its state.
The first pulse on the w input is 100 ns long. This should not cause the output z to become
equal to 1. But the circuit does not behave in this manner. After the signal w becomes
equal to 1, the first positive edge of the clock causes the FSM to change from state A to
state B. As soon as the circuit reaches the state B, the w input is still equal to 1 for another
50 ns, which causes z to go to 1. When w returns to 0, the z signal does likewise. Thus an
erroneous 50-ns pulse is generated on the output z.

June 10, 2002 11:07 vra23151_ch08 Sheet number 32 Page number 476 black

476 C H A P T E R 8 • Synchronous Sequential Circuits

module mealy (Clock, Resetn, w, z);
input Clock, Resetn, w;
output z;
reg y, Y, z;
parameter A = 0, B = 1;

// Define the next state and output combinational circuits
always @(w or y)

case (y)
A: if (w)

begin
z = 0;
Y = B;

end
else
begin

z = 0;
Y = A;

end
B: if (w)

begin
z = 1;
Y = B;

end
else
begin

z = 0;
Y = A;

end
endcase

// Define the sequential block
always @(negedge Resetn or posedge Clock)

if (Resetn == 0) y <= A;
else y <= Y;

endmodule

Figure 8.36 Verilog code for the Mealy machine of Figure 8.23.

We should pursue the consequences of this problem a little further. If z is used to drive
another circuit that is not controlled by the same clock, then the extraneous pulse is likely
to cause big problems. But if z is used as an input to a circuit (perhaps another FSM) that
is controlled by the same clock, then the 50-ns pulse will be ignored by this circuit if z = 0
before the next positive edge of the clock (accounting for the setup time).

June 10, 2002 11:07 vra23151_ch08 Sheet number 33 Page number 477 black

8.5 Serial Adder Example 477

Figure 8.37 Simulation results for the Mealy machine.

Figure 8.38 Potential problem with asynchronous inputs to a Mealy FSM.

8.5 Serial Adder Example

We will now present another simple example that illustrates the complete design process.
In Chapter 5 we discussed the addition of binary numbers in detail. We explained several
schemes that can be used to add two n-bit numbers in parallel, ranging from carry-ripple
to carry-lookahead adders. In these schemes the speed of the adder unit is an important
design parameter. Fast adders are more complex and thus more expensive. If speed is not
of great importance, then a cost-effective option is to use a serial adder, in which bits are
added a pair at a time.

8.5.1 Mealy-Type FSM for Serial Adder

Let A = an−1an−2 · · · a0 and B = bn−1bn−2 · · · b0 be two unsigned numbers that have to be
added to produce Sum = sn−1sn−2 · · · s0. Our task is to design a circuit that will perform
serial addition, dealing with a pair of bits in one clock cycle. The process starts by adding
bits a0 and b0. In the next clock cycle, bits a1 and b1 are added, including a possible

June 10, 2002 11:07 vra23151_ch08 Sheet number 34 Page number 478 black

478 C H A P T E R 8 • Synchronous Sequential Circuits

carry from the bit-position 0, and so on. Figure 8.39 shows a block diagram of a possible
implementation. It includes three shift registers that are used to hold A, B, and Sum as the
computation proceeds. Assuming that the input shift registers have parallel-load capability,
as depicted in Figure 7.19, the addition task begins by loading the values of A and B into
these registers. Then in each clock cycle, a pair of bits is added by the adder FSM, and
at the end of the cycle the resulting sum bit is shifted into the Sum register. We will use
positive-edge-triggered flip-flops in which case all changes take place soon after the positive
edge of the clock, depending on the propagation delays within the various flip-flops. At this
time the contents of all three shift registers are shifted to the right; this shifts the existing
sum bit into Sum, and it presents the next pair of input bits ai and bi to the adder FSM.

Now we are ready to design the required FSM. This cannot be a combinational circuit
because different actions will have to be taken, depending on the value of the carry from the
previous bit position. Hence two states are needed: let G and H denote the states where the
carry-in values are 0 and 1, respectively. Figure 8.40 gives a suitable state diagram, defined
as a Mealy model. The output value, s, depends on both the state and the present value of
the inputs a and b. Each transition is labeled using the notation ab/s, which indicates the
value of s for a given valuation ab. In state G the input valuation 00 will produce s = 0,
and the FSM will remain in the same state. For input valuations 01 and 10, the output will

Sum A B+=

Shift register

Shift register

Adder
FSM Shift register

B

A

a

b

s

Clock

Figure 8.39 Block diagram for the serial adder.

G

00 1⁄

11 1⁄
10 0⁄
01 0⁄

H
10 1⁄
01 1⁄
00 0⁄

carry-in 0=
carry-in 1=

G:
H:

Reset

11 0⁄
ab s⁄()

Figure 8.40 State diagram for the serial adder FSM.

June 10, 2002 11:07 vra23151_ch08 Sheet number 35 Page number 479 black

8.5 Serial Adder Example 479

be s = 1, and the FSM will remain in G. But for 11, s = 0 is generated, and the machine
moves to state H . In state H valuations 01 and 10 cause s = 0, while 11 causes s = 1. In
all three of these cases, the machine remains in H . However, when the valuation 00 occurs,
the output of 1 is produced and a change into state G takes place.

The corresponding state table is presented in Figure 8.41. A single flip-flop is needed
to represent the two states. The state assignment can be done as indicated in Figure 8.42.
This assignment leads to the following next-state and output equations

Y = ab+ ay + by

s = a ⊕ b⊕ y

Comparing these expressions with those for the full-adder in section 5.2, it is obvious that
y is the carry-in, Y is the carry-out, and s is the sum of the full-adder. Therefore, the adder
FSM box in Figure 8.39 consists of the circuit shown in Figure 8.43. The flip-flop can be
cleared by the Reset signal at the start of the addition operation.

The serial adder is a simple circuit that can be used to add numbers of any length. The
structure in Figure 8.39 is limited in length only by the size of the shift registers.

8.5.2 Moore-Type FSM for Serial Adder

In the preceding example we saw that a Mealy-type FSM nicely meets the requirement
for implementing the serial adder. Now we will try to achieve the same objective using a
Moore-type FSM. A good starting point is the state diagram in Figure 8.40. In a Moore-type
FSM, the output must depend only on the state of the machine. Since in both states, G and
H , it is possible to produce two different outputs depending on the valuations of the inputs

Present Next state Output s

state ab = 00 01 10 11 00 01 10 11

G G G G H 0 1 1 0
H G H H H 1 0 0 1

Figure 8.41 State table for the serial adder FSM.

Present
Next state Output

state ab = 00 01 10 11 00 01 10 11

y Y s

0 0 0 0 1 0 1 1 0
1 0 1 1 1 1 0 0 1

Figure 8.42 State-assigned table for Figure 8.41.

June 10, 2002 11:07 vra23151_ch08 Sheet number 36 Page number 480 black

480 C H A P T E R 8 • Synchronous Sequential Circuits

Full
adder

a

b

s

D Q

Q

Carry-out

Clock

Reset

Y y

Figure 8.43 Circuit for the adder FSM in Figure 8.39.

a and b, a Moore-type FSM will need more than two states. We can derive a suitable state
diagram by splitting both G and H into two states. Instead of G, we will use G0 and G1 to
denote the fact that the carry is 0 and that the sum is either 0 or 1, respectively. Similarly,
instead of H , we will use H0 and H1. Then the information in Figure 8.40 can be mapped
into the Moore-type state diagram in Figure 8.44 in a straightforward manner.

The corresponding state table is given in Figure 8.45 and the state-assigned table in
Figure 8.46. The next-state and output expressions are

Y1 = a ⊕ b⊕ y2

Y2 = ab+ ay2 + by2

s = y1

The expressions for Y1 and Y2 correspond to the sum and carry-out expressions in the
full-adder circuit. The FSM is implemented as shown in Figure 8.47. It is interesting to
observe that this circuit is very similar to the circuit in Figure 8.43. The only difference is
that in the Moore-type circuit, the output signal, s, is passed through an extra flip-flop and
thus delayed by one clock cycle with respect to the Mealy-type sequential circuit. Recall
that we observed the same difference in our previous example, as depicted in Figures 8.26
and 8.27.

A key difference between the Mealy and Moore types of FSMs is that in the former a
change in inputs reflects itself immediately in the outputs, while in the latter the outputs do
not change until the change in inputs forces the machine into a new state, which takes place
one clock cycle later. We encourage the reader to draw the timing diagrams for the circuits
in Figures 8.43 and 8.47, which will exemplify further this key difference between the two
types of FSMs.

8.5.3 Verilog Code for the Serial Adder

The serial adder can be described in Verilog by writing code for the shift registers and the
adder FSM. We will first design the shift register and then use it as a subcircuit in the serial
adder.

June 10, 2002 11:07 vra23151_ch08 Sheet number 37 Page number 481 black

8.5 Serial Adder Example 481

H1 s 1=⁄

Reset

H0 s 0=⁄

01
1011

11

01
10

G1 s 1=⁄

G0 s 0=⁄

01
10 00

01

00

10

11

00

00

11

Figure 8.44 State diagram for the Moore-type serial adder FSM.

Present Next state Output
state ab = 00 01 10 11 s

G0 G0 G1 G1 H0 0
G1 G0 G1 G1 H0 1
H0 G1 H0 H0 H1 0
H1 G1 H0 H0 H1 1

Figure 8.45 State table for the Moore-type serial adder FSM.

Present
Next state

state ab = 00 01 10 11 Output

y2 y1 Y2Y1
s

0 0 0 0 0 1 0 1 1 0 0
0 1 0 0 0 1 0 1 1 0 1
1 0 0 1 1 0 1 0 1 1 0
1 1 0 1 1 0 1 0 1 1 1

Figure 8.46 State-assigned table for Figure 8.45.

June 10, 2002 11:07 vra23151_ch08 Sheet number 38 Page number 482 black

482 C H A P T E R 8 • Synchronous Sequential Circuits

Full
adder

a

b

D Q

Q
Carry-out

Clock

Reset

D Q

Q

s

Y 2

Y 1Sum bit

y2

y1

Figure 8.47 Circuit for the Moore-type serial adder FSM.

Shift Register Subcircuit
Figure 7.55 gives Verilog code for an n-bit shift register. In the serial adder it is

beneficial to have the ability to prevent the shift register contents from changing when an
active clock edge occurs. Figure 8.48 gives the code for a shift register named shiftrne,
which has an enable input, E. When E = 1, the shift register behaves in the same way
as the one in Figure 7.55. Setting E = 0 prevents the contents of the shift register from
changing. The E input is usually called the enable input. It is useful for many types of
circuits, as we will see in Chapter 10.

Complete Code
The code for the serial adder is shown in Figure 8.49. It instantiates three shift registers

for the inputs A and B and the output Sum. The shift registers are loaded with parallel data
when the circuit is reset. The state diagram for the adder FSM is described by two always
blocks, using the style of code in Figure 8.36. In addition to the components of the serial
adder shown in Figure 8.39, the Verilog code includes a down-counter to determine when
the adder should be halted because all n bits of the required sum are present in the output
shift register. When the circuit is reset, the counter is loaded with the number of bits in the
serial adder, n. The counter counts down to 0, and then stops and disables further changes
in the output shift register.

The code in Figure 8.49 implements a serial adder for eight-bit numbers. The wires
QA and QB correspond to the parallel outputs of the shift registers with inputs A and B in
Figure 8.39. The variable s represents the output of the adder FSM.

In Figure 8.39 the shift registers for inputs A and B do not use a serial input or an enable
input. However, the shiftrne component, which is used for all three shift registers, includes
these ports and so signals must be connected to them. The enable input for the two shift
registers can be connected to logic value 1. The value shifted into the serial input does not

June 10, 2002 11:07 vra23151_ch08 Sheet number 39 Page number 483 black

8.5 Serial Adder Example 483

module shiftrne (R, L, E, w, Clock, Q);
parameter n = 8;
input R;
input L, E, w, Clock;
output Q;
reg Q;
integer k;

always @(posedge Clock)
if (L)

Q <= R;
else if (E)
begin

for (k = n 1; k > 0; k = k 1)
Q[k 1] <= Q[k];

Q[n 1] <= w;
end

endmodule

[n 1:0]

[n 1:0]
[n 1:0]

Figure 8.48 Code for a left-to-right shift register with an
enable input.

matter, so it can be connected to either 1 or 0; we have chosen to connect it to 0. The shift
registers are loaded in parallel by the Reset signal. We have chosen to use an active-high
reset signal for the circuit. The output shift register does not need a parallel data input, so
all 0s are connected to this input.

The first always block describes the state transitions and the output of the adder FSM
in Figure 8.40. The output definition follows from observing in Figure 8.40 that when the
FSM is in state G, the sum is s = a ⊕ b, and when in state H , the sum is s = a ⊕ b.
The second always block implements the flip-flop y and provides synchronous reset when
Reset = 1.

The enable input for the output shift register is named Run. It is derived from the
outputs of the down-counter specified in the third always block. When Reset = 1, Count
is initialized to the value 8. Then as long as Run = 1, Count is decremented in each clock
cycle. Run is set to 0 when Count is equal to 0, which is detected by using the reduction
OR operator.

Synthesis and Simulation of the Verilog Code
The results of synthesizing a circuit from the code in Figure 8.49 are illustrated in

Figure 8.50a. The outputs of the counter are ORed to provide the Run signal, which en-
ables clocking of both the output shift register and the counter. A sample of a timing
simulation for the circuit is shown in Figure 8.50b. The circuit is first reset, resulting in
the values of A and B being loaded into the input shift registers, and the value 8 loaded into the

June 10, 2002 11:07 vra23151_ch08 Sheet number 40 Page number 484 black

484 C H A P T E R 8 • Synchronous Sequential Circuits

module serial adder (A, B, Reset, Clock, Sum);
input [7:0] A, B;
input Reset, Clock;
output [7:0] Sum;
reg [3:0] Count;
reg s, y, Y;
wire [7:0] QA, QB, Sum;
wire Run;
parameter G = 0, H = 1;

shiftrne shift A (A, Reset, 1, 0, Clock, QA);
shiftrne shift B (B, Reset, 1, 0, Clock, QB);
shiftrne shift Sum (0, Reset, Run, s, Clock, Sum);

// Adder FSM
// Output and next state combinational circuit
always @(QA or QB or y)

case (y)
G: begin

s = QA[0] ∧ QB[0];
if (QA[0] & QB[0]) Y = H;
else Y = G;

end
H: begin

s = QA[0] ∧ QB[0];
if (QA[0] & QB[0]) Y = G;
else Y = H;

end
default: Y = G;

endcase

// Sequential block
always @(posedge Clock)

if (Reset) y <= G;
else y <= Y;

// Control the shifting process
always @(posedge Clock)

if (Reset) Count = 8;
else if (Run) Count = Count 1;

assign Run = |Count;

endmodule

Figure 8.49 Verilog code for the serial adder.

June 10, 2002 11:07 vra23151_ch08 Sheet number 41 Page number 485 black

8.5 Serial Adder Example 485

Adder
FSM

Clock

E

w
L

E

w
L

b7 b0

a7 a0

E

w
L

E

L

Q3 Q2 Q1 Q0

D3 D2 D1 D0

1 0 0 0

Counter

0 0

Reset

Sum7 Sum0

0
1

0
1

(a) Circuit

(b) Simulation Results

Run

Figure 8.50 Synthesized serial adder.

June 10, 2002 11:07 vra23151_ch08 Sheet number 42 Page number 486 black

486 C H A P T E R 8 • Synchronous Sequential Circuits

down-counter. After each clock cycle one pair of bits of the input numbers is added by the
adder FSM, and the sum bit is shifted into the output shift register. After eight clock cycles
the output shift register contains the correct sum, and shifting is halted by the Run signal
becoming equal to 0.

8.6 State Minimization

Our introductory examples of finite state machines were so simple that it was easy to see
that the number of states that we used was the minimum possible to perform the required
function. When a designer has to design a more complex FSM, it is likely that the initial
attempt will result in a machine that has more states than is actually required. Minimizing
the number of states is of interest because fewer flips-flops may be needed to represent the
states and the complexity of the combinational circuit needed in the FSM may be reduced.

If the number of states in an FSM can be reduced, then some states in the original
design must be equivalent to other states in their contribution to the overall behavior of the
FSM. We can express this more formally in the following definition.

Definition 8.1 – Two states Si and Sj are said to be equivalent if and only if for every
possible input sequence, the same output sequence will be produced regardless of whether
Si or Sj is the initial state.

It is possible to define a minimization procedure that searches for any states that are equiv-
alent. Such a procedure is very tedious to perform manually, but it can be automated for
use in CAD tools. We will not pursue it here, because of its tediousness. However, to pro-
vide some appreciation of the impact of state minimization, we will present an alternative
approach, which is much more efficient but not quite as broad in scope.

Instead of trying to show that some states in a given FSM are equivalent, it is often
easier to show that some states are definitely not equivalent. This idea can be exploited to
define a simple minimization procedure.

8.6.1 Partitioning Minimization Procedure

Suppose that a state machine has a single input w. Then if the input signal w = 0 is applied
to this machine in state Si and the result is that the machine moves to state Su, we will say
that Su is a 0-successor of Si. Similarly, if w = 1 is applied in the state Si and it causes the
machine to move to state Sv, we will say that Sv is a 1-successor of Si. In general, we will
refer to the successors of Si as its k-successors. When the FSM has only one input, k can
be either 0 or 1. But if there are multiple inputs to the FSM, then k represents the set of all
possible combinations (valuations) of the inputs.

From Definition 8.1 it follows that if the states Si and Sj are equivalent, then their
corresponding k-successors (for all k) are also equivalent. Using this fact, we can formulate
a minimization procedure that involves considering the states of the machine as a set and
then breaking the set into partitions that comprise subsets that are definitely not equivalent.

June 10, 2002 11:07 vra23151_ch08 Sheet number 43 Page number 487 black

8.6 State Minimization 487

Definition 8.2 – A partition consists of one or more blocks, where each block comprises
a subset of states that may be equivalent, but the states in a given block are definitely not
equivalent to the states in other blocks.

Let us assume initially that all states are equivalent; this forms the initial partition, P1,
in which all states are in the same block. As the next step, we will form the partition
P2 in which the set of states is partitioned into blocks such that the states in each block
generate the same output values. Obviously, the states that generate different outputs cannot
possibly be equivalent. Then we will continue to form new partitions by testing whether
the k-successors of the states in each block are contained in one block. Those states whose
k-successors are in different blocks cannot be in one block. Thus new blocks are formed
in each new partition. The process ends when a new partition is the same as the previous
partition. Then all states in any one block are equivalent. To illustrate the procedure,
consider Example 8.6.

Example 8.6Figure 8.51 shows a state table for a particular FSM. In an attempt to minimize the number
of states, let us apply the partitioning procedure. The initial partition contains all states in
a single block

P1 = (ABCDEFG)

The next partition separates the states that have different outputs (note that this FSM is of
Moore type), which means that the states A, B, and D must be different from the states C,
E, F , and G. Thus the new partition has two blocks

P2 = (ABD)(CEFG)

Now we must consider all 0- and 1-successors of the states in each block. For the block
(ABD), the 0-successors are (BDB), respectively. Since all of these successor states are in
the same block in P2, we should still assume that the states A, B, and D may be equivalent.
The 1-successors for these states are (CFG). Since these successors are also in the same

Present Next state Output
state w = 0 w = 1 z

A B C 1
B D F 1
C F E 0
D B G 1
E F C 0
F E D 0
G F G 0

Figure 8.51 State table for Example 8.6.

June 10, 2002 11:07 vra23151_ch08 Sheet number 44 Page number 488 black

488 C H A P T E R 8 • Synchronous Sequential Circuits

block in P2, we conclude that (ABD) should remain in one block of P3. Next consider the
block (CEFG). Its 0-successors are (FFEF), respectively. They are in the same block in
P2. The 1-successors are (ECDG). Since these states are not in the same block in P2, it
means that at least one of the states in the block (CEFG) is not equivalent to the others. In
particular, the state F must be different from the states C, E, and G because its 1-successor
is D, which is in a different block than C, E, and G. Hence

P3 = (ABD)(CEG)(F)

Repeating the process yields the following. The 0-successors of (ABD) are (BDB), which
are in the same block of P3. The 1-successors are (CFG), which are not in the same block.
Since F is in a different block than C and G, it follows that the state B cannot be equivalent
to states A and D. The 0- and 1-successors of (CEG) are (FFF) and (ECG), respectively.
Both of these subsets are accommodated in the blocks of P3. Therefore

P4 = (AD)(B)(CEG)(F)

If we follow the same approach to check the 0- and 1-successors of the blocks (AD) and
(CEG), we find that

P5 = (AD)(B)(CEG)(F)

Since P5 = P4 and no new blocks are generated, it follows that states in each block are
equivalent. If the states in some block were not equivalent, then their k-successors would
have to be in different blocks. Therefore, states A and D are equivalent, and C, E, and G
are equivalent. Since each block can be represented by a single state, only four states are
needed to implement the FSM defined by the state table in Figure 8.51. If we let the symbol
A represent both the states A and D in the figure and the symbol C represent the states C,
E, and G, then the state table reduces to the state table in Figure 8.52.

The effect of the minimization is that we have found a solution that requires only two
flip-flops to realize the four states of the minimized state table, instead of needing three
flip-flops for the original design. The expectation is that the FSM with fewer states will be
simpler to implement, although this is not always the case.

The state minimization concept is based on the fact that two different FSMs may
exhibit identical behavior in terms of the outputs produced in response to all possible
inputs. Such machines are functionally equivalent, even though they are implemented with
circuits that may be vastly different. In general, it is not easy to determine whether or not

Present Next state Output
state w = 0 w = 1 z

A B C 1
B A F 1
C F C 0
F C A 0

Figure 8.52 Minimized state table for Example 8.6.

June 10, 2002 11:07 vra23151_ch08 Sheet number 45 Page number 489 black

8.6 State Minimization 489

two arbitrary FSMs are equivalent. Our minimization procedure ensures that a simplified
FSM is functionally equivalent to the original one. We encourage the reader to get an
intuitive feeling that the FSMs in Figures 8.51 and 8.52 are indeed functionally equivalent
by implementing both machines and simulating their behavior using the CAD tools.

Example 8.7As another example of minimization, we will consider the design of a practical sequential
circuit that could be used in a vending machine. Suppose that a coin-operated vending
machine dispenses candy under the following conditions:

• The machine accepts nickels and dimes.
• It takes 15 cents for a piece of candy to be released from the machine.
• If 20 cents is deposited, the machine will not return the change, but it will credit the

buyer with 5 cents and wait for the buyer to make a second purchase.

All electronic signals in the vending machine are synchronized to the positive edge of a
clock signal, named Clock. The exact frequency of the clock signal is not important for our
example, but we will assume a clock period of 100 ns. The vending machine’s coin-receptor
mechanism generates two signals, senseD and senseN , which are asserted when a dime or
a nickel is detected. Because the coin receptor is a mechanical device and thus very slow
compared to an electronic circuit, inserting a coin causes senseD or senseN to be set to 1 for a
large number of clock cycles. We will assume that the coin receptor also generates two other
signals, named D and N. The D signal is set to 1 for one clock cycle after senseD becomes
1, and N is set to 1 for one clock cycle after senseN becomes 1. The timing relationships
between Clock, senseD, senseN , D, and N are illustrated in Figure 8.53a. The hash marks
on the waveforms indicate that senseD or senseN may be 1 for many clock cycles. Also,
there may be an arbitrarily long time between the insertion of two consecutive coins. Note
that since the coin receptor can accept only one coin at a time, it is not possible to have both
D and N set to 1 at once. Figure 8.53b illustrates how the N signal may be generated from
the senseN signal.

Based on these assumptions, we can develop an initial state diagram in a fairly straight-
forward manner, as indicated in Figure 8.54. The inputs to the FSM are D and N, and the
starting state is S1. As long as D = N = 0, the machine remains in state S1, which is
indicated by the arc labeled D ·N = 1. Inserting a dime leads to state S2, while inserting a
nickel leads to state S3. In both cases the deposited amount is less than 15 cents, which is
not sufficient to release the candy. This is indicated by the output, z, being equal to 0, as in
S2/0 and S3/0. The machine will remain in state S2 or S3 until another coin is deposited
because D = N = 0. In state S2 a nickel will cause a transition to S4 and a dime to S5.
In both of these states, sufficient money is deposited to activate the output mechanism that
releases the candy; hence the state nodes have the labels S4/1 and S5/1. In S4 the deposited
amount is 15 cents, which means that on the next active clock edge the machine should
return to the reset state S1. The condition D · N on the arc leaving S4 is guaranteed to be
true because the machine remains in state S4 for only 100 ns, which is far too short a time
for a new coin to have been deposited.

The state S5 denotes that an amount of 20 cents has been deposited. The candy
is released, and on the next clock edge the FSM makes a transition to state S3, which

June 10, 2002 11:07 vra23151_ch08 Sheet number 46 Page number 490 black

490 C H A P T E R 8 • Synchronous Sequential Circuits

D Q

Q

senseN D Q

QClock

N

senseN

senseD

Clock

N

D

(a) Timing diagram

(b) Circuit that generates N

Figure 8.53 Signals for the vending machine.

represents a credit of 5 cents. A similar reasoning when the machine is in state S3 leads to
states S6 through S9. This completes the state diagram for the desired FSM. A state table
version of the same information is given in Figure 8.55.

Note that the condition D = N = 1 is denoted as don’t care in the table. Note also
other don’t cares in states S4, S5, S7, S8, and S9. They correspond to cases where there is
no need to check the D and N signals because the machine changes to another state in an
amount of time that is too short for a new coin to have been inserted.

Using the minimization procedure, we obtain the following partitions

P1 = (S1, S2, S3, S4, S5, S6, S7, S8, S9)

P2 = (S1, S2, S3, S6)(S4, S5, S7, S8, S9)

P3 = (S1)(S3)(S2, S6)(S4, S5, S7, S8, S9)

P4 = (S1)(S3)(S2, S6)(S4, S7, S8)(S5, S9)

P5 = (S1)(S3)(S2, S6)(S4, S7, S8)(S5, S9)

June 10, 2002 11:07 vra23151_ch08 Sheet number 47 Page number 491 black

8.6 State Minimization 491

S1 0⁄

S7 1⁄

DN

D N

S3 0⁄

S6 0⁄

S9 1⁄S8 1⁄

S2 0⁄

S5 1⁄

S4 1⁄

DNDN

DNDN

DN

DN

DN

D

D N

DN

DN

N

Reset

Figure 8.54 State diagram for Example 8.7.

Present Next state Output
state DN = 00 01 10 11 z

S1 S1 S3 S2 0
S2 S2 S4 S5 0
S3 S3 S6 S7 0
S4 S1 1
S5 S3 1
S6 S6 S8 S9 0
S7 S1 1
S8 S1 1
S9 S3 1

Figure 8.55 State table for Example 8.7.

The final partition has five blocks. Let S2 denote its equivalence to S6, let S4 denote the
same with respect to S7 and S8, and let S5 represent S9. This leads to the minimized
state table in Figure 8.56. The actual circuit that implements this table can be designed as
explained in the previous sections.

June 10, 2002 11:07 vra23151_ch08 Sheet number 48 Page number 492 black

492 C H A P T E R 8 • Synchronous Sequential Circuits

Present Next state Output
state DN = 00 01 10 11 z

S1 S1 S3 S2 0
S2 S2 S4 S5 0
S3 S3 S2 S4 0
S4 S1 1
S5 S3 1

Figure 8.56 Minimized state table for Example 8.7.

In this example we used a straightforward approach to derive the original state dia-
gram, which we then minimized using the partitioning procedure. Figure 8.57 presents
the information in the state table of Figure 8.56 in the form of a state diagram. Looking
at this diagram, the reader can probably see that it may have been quite feasible to derive
the optimized diagram directly, using the following reasoning. Suppose that the states cor-
respond to the various amounts of money deposited. In particular, the states, S1, S3, S2,
S4, and S5 correspond to the amounts of 0, 5, 10, 15, and 20 cents, respectively. With
this interpretation of the states, it is not difficult to derive the transition arcs that define the

S3 0⁄

S2 0⁄

S4 1⁄

S1 0⁄

S5 1⁄

DNDN

DN

DN

DN

D

D

D

N

N

N

Figure 8.57 Minimized state diagram for Example 8.7.

June 10, 2002 11:07 vra23151_ch08 Sheet number 49 Page number 493 black

8.6 State Minimization 493

S3

S2

D 0⁄

S1

D 1⁄

D 1⁄

N 1⁄

N 0⁄

N 0⁄

DN 0⁄

DN 0⁄

DN 0⁄

Figure 8.58 Mealy-type FSM for Example 8.7.

desired FSM. In practice, the designer can often produce initial designs that do not have a
large number of superfluous states.

We have found a solution that requires five states, which is the minimum number of
states for a Moore-type FSM that realizes the desired vending control task. From section
8.3 we know that Mealy-type FSMs may need fewer states than Moore-type machines,
although they do not necessarily lead to simpler overall implementations. If we use the
Mealy model, we can eliminate states S4 and S5 in Figure 8.57. The result is shown in
Figure 8.58. This version requires only three states, but the output functions become more
complicated. The reader is encouraged to compare the complexity of implementations by
completing the design steps for the FSMs in Figures 8.57 and 8.58.

8.6.2 Incompletely Specified FSMs

The partitioning scheme for minimization of states works well when all entries in the state
table are specified. Such is the case for the FSM defined in Figure 8.51. FSMs of this
type are said to be completely specified. If one or more entries in the state table are not
specified, corresponding to don’t-care conditions, then the FSM is said to be incompletely
specified. An example of such an FSM is given in Figure 8.55. As seen in Example 8.7,

June 10, 2002 11:07 vra23151_ch08 Sheet number 50 Page number 494 black

494 C H A P T E R 8 • Synchronous Sequential Circuits

the partitioning scheme works well for this FSM also. But in general, the partitioning
scheme is less useful when incompletely specified FSMs are involved, as illustrated by Ex-
ample 8.8.

Example 8.8 Consider the FSM in Figure 8.59 which has four unspecified entries, because we have as-
sumed that the input w = 1 will not occur when the machine is in states B or G. Accordingly,
neither a state transition nor an output value is specified for these two cases. An important
difference between this FSM and the one in Figure 8.55 is that some outputs in this FSM
are unspecified, whereas in the other FSM all outputs are specified.

The partitioning minimization procedure can be applied to Mealy-type FSMs in the
same way as for Moore-type FSMs illustrated in Examples 8.6 and 8.7. Two states are
considered equivalent, and are thus placed in the same block of a partition, if their outputs
are equal for all corresponding input valuations. To perform the partitioning process, we
can assume that the unspecified outputs have a specific value. Not knowing whether these
values should be 0 or 1, let us first assume that both unspecified outputs have a value of 0.
Then the first two partitions are

P1 = (ABCDEFG)

P2 = (ABDG)(CEF)

Note that the states A, B, D, and G are in the same block because their outputs are equal to 0
for both w = 0 and w = 1. Also, the states C, E, and F are in one block because they have
the same output behavior; they all generate z = 0 if w = 0, and z = 1 if w = 1. Continuing
the partitioning procedure gives the remaining partitions

P3 = (AB)(D)(G)(CE)(F)

P4 = (A)(B)(D)(G)(CE)(F)

P5 = P4

The result is an FSM that is specified by six states.
Next consider the alternative of assuming that both unspecified outputs in Figure 8.59

have a value of 1. This would lead to the partitions

Present Next state Output z

state w = 0 w = 1 w = 0 w = 1

A B C 0 0
B D 0
C F E 0 1
D B G 0 0
E F C 0 1
F E D 0 1
G F 0

Figure 8.59 Incompletely specified state table for Example 8.8.

June 10, 2002 11:07 vra23151_ch08 Sheet number 51 Page number 495 black

8.7 Design of a Counter Using the Sequential Circuit Approach 495

P1 = (ABCDEFG)

P2 = (AD)(BCEFG)

P3 = (AD)(B)(CEFG)

P4 = (AD)(B)(CEG)(F)

P5 = P4

This solution involves four states. Evidently, the choice of values assigned to unspecified
outputs is of considerable importance.

We will not pursue the issue of state minimization of incompletely specified FSMs any
further. As we already mentioned, it is possible to develop a minimization technique that
searches for equivalent states based directly on Definition 8.1. This approach is described
in many books on logic design [2, 5–8, 12–14].

Finally, it is important to mention that reducing the number of states in a given FSM
will not necessarily lead to a simpler implementation. Interestingly, the effect of state
assignment, discussed in section 8.2, may have a greater influence on the simplicity of
implementation than does the state minimization. In a modern design environment, the
designer relies on the CAD tools to implement state machines efficiently.

8.7 Design of a Counter Using the Sequential
Circuit Approach

In this section we discuss the design of a counter circuit using the general approach for
designing sequential circuits. From Chapter 7 we already know that counters can be realized
as cascaded stages of flip-flops and some gating logic, where each stage divides the number
of incoming pulses by two. To keep our example simple, we choose a counter of small
size but also show how the design can be extended to larger sizes. The specification for the
counter is

• The counting sequence is 0, 1, 2, …, 6, 7, 0, 1, ...
• There exists an input signal w. The value of this signal is considered during each clock

cycle. If w = 0, the present count remains the same; if w = 1, the count is incremented.

The counter can be designed as a synchronous sequential circuit using the design
techniques introduced in the previous sections. We show first the classical manual approach
to designing the counter, which illustrates the basic concepts involved in the design process.
After that we show how the design task is accomplished using CAD tools, which is much
easier to do and indicates how the task would be tackled in practice.

8.7.1 StateDiagramandStateTableforaModulo-8Counter

Figure 8.60 gives a state diagram for the desired counter. There is a state associated with
each count. In the diagram state A corresponds to count 0, state B to count 1, and so on. We
show the transitions between the states needed to implement the counting sequence. Note

June 10, 2002 11:07 vra23151_ch08 Sheet number 52 Page number 496 black

496 C H A P T E R 8 • Synchronous Sequential Circuits

w 0=

w 1=

w 0=

w 1=

w 0=

w 1=

w 0=

w 1=

w 0=

w 1=

w 0=

w 1=

w 0=

w 1=

w 0=

w 1=

A 0⁄ B 1⁄ C 2⁄ D 3⁄

E 4⁄F 5⁄G 6⁄H 7⁄

Figure 8.60 State diagram for the counter.

Present Next state
Output

state w = 0 w = 1

A A B 0
B B C 1
C C D 2
D D E 3
E E F 4
F F G 5
G G H 6
H H A 7

Figure 8.61 State table for the counter.

that the output signals are specified as depending only on the state of the counter at a given
time, which is the Moore model of sequential circuits.

The state diagram may be represented in the state-table form as shown in Figure 8.61.

8.7.2 State Assignment

Three state variables are needed to represent the eight states. Let these variables, denoting
the present state, be called y2, y1, and y0. Let Y2, Y1, and Y0 denote the corresponding
next-state functions. The most convenient (and simplest) state assignment is to encode
each state with the binary number that the counter should give as output in that state. Then
the required output signals will be the same as the signals that represent the state variables.
This leads to the state-assigned table in Figure 8.62.

June 10, 2002 11:07 vra23151_ch08 Sheet number 53 Page number 497 black

8.7 Design of a Counter Using the Sequential Circuit Approach 497

Present
Next state

state w = 0 w = 1
Count

y2 y1 y0
Y2Y1Y0 Y2Y1Y0

z2z1z0

A 000 000 001 000
B 001 001 010 001
C 010 010 011 010
D 011 011 100 011
E 100 100 101 100
F 101 101 110 101
G 110 110 111 110
H 111 111 000 111

Figure 8.62 State-assigned table for the counter.

The final step in the design is to choose the type of flip-flops and derive the expressions
that control the flip-flop inputs. The most straightforward choice is to use D-type flip-flops.
We pursue this approach first. Then we show the alternative of using JK-type flip-flops.
In either case the flip-flops must be edge triggered to ensure that only one transition takes
place during a single clock cycle.

8.7.3 Implementation Using D-Type Flip-Flops

When using D-type flip-flops to realize the finite state machine, each next-state function,
Yi, is connected to the D input of the flip-flop that implements the state variable yi. The
next-state functions are derived from the information in Figure 8.62. Using Karnaugh maps
in Figure 8.63, we obtain the following implementation

D0 = Y0 = wy0 + wy0

D1 = Y1 = wy1 + y1y0 + wy0y1

D2 = Y2 = wy2 + y0y2 + y1y2 + wy0y1y2

The resulting circuit is given in Figure 8.64. It is not obvious how to extend this circuit to
implement a larger counter, because no clear pattern is discernible in the expressions for
D0, D1, and D2. However, we can rewrite these expressions as follows

D0 = wy0 + wy0

= w ⊕ y0

D1 = wy1 + y1y0 + wy0y1

= (w + y0)y1 + wy0y1

= wy0y1 + wy0y1

= wy0 ⊕ y1

D2 = wy2 + y0y2 + y1y2 + wy0y1y2

June 10, 2002 11:07 vra23151_ch08 Sheet number 54 Page number 498 black

498 C H A P T E R 8 • Synchronous Sequential Circuits

00 01 11 10

00

01

1

0 1

1

1

0

0

0

0

1 0

0

0

1

1

111

10

y1y0

wy2 00 01 11 10

00

01

0

0 0

1

1

1

1

0

1

0 1

0

0

1

1

011

10

y1y0

wy2

00 01 11 10

00

01

0

1 1

0

1

0

1

0

1

0 0

0

1

1

0

111

10

y1y0

wy2

Y 2 wy2 y0y2 y1y2 w+ + + y0y1y2=

Y 0 wy0 wy0+= Y 1 wy1 y1y0 wy0y1+ +=

Figure 8.63 Karnaugh maps for D flip-flops for the counter.

= (w + y0 + y1)y2 + wy0y1y2

= wy0y1y2 + wy0y1y2

= wy0y1 ⊕ y2

Then an obvious pattern emerges, which leads to the circuit in Figure 7.24.

8.7.4 Implementation Using JK-Type Flip-Flops

JK-type flip-flops provide an attractive alternative. Using these flip-flops to implement the
sequential circuit specified in Figure 8.62 requires derivation of J and K inputs for each
flip-flop. The following control is needed:

• If a flip-flop in state 0 is to remain in state 0, then J = 0 and K = d (where d means
that K can be equal to either 0 or 1).

• If a flip-flop in state 0 is to change to state 1, then J = 1 and K = d .

June 10, 2002 11:07 vra23151_ch08 Sheet number 55 Page number 499 black

8.7 Design of a Counter Using the Sequential Circuit Approach 499

D Q

Q

D Q

Q

Clock

y0

w

y1

y2

Y0

Y1

Y2

Resetn

D Q

Q

Figure 8.64 Circuit diagram for the counter implemented with D flip-flops.

• If a flip-flop in state 1 is to remain in state 1, then J = d and K = 0.
• If a flip-flop in state 1 is to change to state 0, then J = d and K = 1.

Following these guidelines, we can create a truth table that specifies the required values
of the J and K inputs for the three flip-flops in our design. Figure 8.65 shows a modified

June 10, 2002 11:07 vra23151_ch08 Sheet number 56 Page number 500 black

500 C H A P T E R 8 • Synchronous Sequential Circuits

Present
Flip-flop inputs

state w = 0 w = 1
Count

y2 y1 y0
Y2Y1Y0 J2 K2 J1 K1 J0 K0 Y2Y1Y0 J2 K2 J1 K1 J0 K0

z2z1z0

A 000 000 0d 0d 0d 001 0d 0d 1d 000
B 001 001 0d 0d d0 010 0d 1d d1 001
C 010 010 0d d0 0d 011 0d d0 1d 010
D 011 011 0d d0 d0 100 1d d1 d1 011
E 100 100 d0 0d 0d 101 d0 0d 1d 100
F 101 101 d0 0d d0 110 d0 1d d1 101
G 110 110 d0 d0 0d 111 d0 d0 1d 110
H 111 111 d0 d0 d0 000 d1 d1 d1 111

Figure 8.65 Excitation table for the counter with JK flip-flops.

version of the state-assigned table in Figure 8.62, with the J and K input functions included.
To see how this table is derived, consider the first row in which the present state is y2y1y0

= 000. If w = 0, then the next state is also Y2Y1Y0 = 000. Thus the present value of each
flip-flop is 0, and it should remain 0. This implies the control J = 0 and K = d for all
three flip-flops. Continuing with the first row, if w = 1, the next state will be Y2Y1Y0 = 001.
Thus flip-flops y2 and y1 still remain at 0 and have the control J = 0 and K = d . However,
flip-flop y0 must change from 0 to 1, which is accomplished with J = 1 and K = d . The
rest of the table is derived in the same manner by considering each present state y2y1y0 and
providing the necessary control signals to reach the new state Y2Y1Y0.

A state-assigned table is essentially the state table in which each state is encoded using
the state variables. When D flip-flops are used to implement an FSM, the next-state entries
in the state-assigned table correspond directly to the signals that must be applied to the
D inputs. This is not the case if some other type of flip-flops is used. A table that gives
the state information in the form of the flip-flop inputs that must be “excited” to cause the
transitions to the next states is usually called an excitation table. The excitation table in
Figure 8.65 indicates how JK flip-flops can be used. In many books the term excitation
table is used even when D flip-flops are involved, in which case it is synonymous with the
state-assigned table.

Once the table in Figure 8.65 has been derived, it provides a truth table with inputs y2,
y1, y0, and w, and outputs J2, K2, J1, K1, J0, and K0. We can then derive expressions for
these outputs as shown in Figure 8.66. The resulting expressions are

J0 = K0 = w

J1 = K1 = wy0

J2 = K2 = wy0y1

This leads to the circuit shown in Figure 8.67. It is apparent that this design can be extended
easily to larger counters. The pattern Jn = Kn = wy0y1 · · · yn−1 defines the circuit for each
stage in the counter. Note that the size of the AND gate that implements the product term
y0y1 · · · yn−1 grows with successive stages. A circuit with a more regular structure can be

June 10, 2002 11:07 vra23151_ch08 Sheet number 57 Page number 501 black

8.7 Design of a Counter Using the Sequential Circuit Approach 501

00 01 11 10

00

01

d

0 d

d

d

0

0

0

d

1 d

d

d

1

1

111

10

y1y0

wy2 00 01 11 10

00

01

0

d 0

0

0

d

d

d

1

d 1

1

1

d

d

d11

10

y1y0

wy2

00 01 11 10

00

01

0

0 0

d

d

d

d

0

1

0 1

d

d

d

d

011

10

y1y0

wy2 00 01 11 10

00

01

d

d d

0

0

0

0

d

d

d d

1

1

0

0

d11

10

y1y0

wy2

00 01 11 10

00

01

0

d d

0

d

0

d

0

d

0 0

d

1

d

0

d11

10

y1y0

wy2 00 01 11 10

00

01

d

0 0

d

0

d

0

d

0

d d

1

d

0

d

011

10

y1y0

wy2

J1 wy0=

J0 w=

J2 wy0y1=

K1 wy0=

K0 w=

K2 wy0y1=

Figure 8.66 Karnaugh maps for JK flip-flops in the counter.

obtained by factoring out the previously needed terms as we progress through the stages of
the counter. This gives

J2 = K2 = (wy0)y1 = J1y1

Jn = Kn = (wy0 · · · yn−2)yn−1 = Jn−1yn−1

June 10, 2002 11:07 vra23151_ch08 Sheet number 58 Page number 502 black

502 C H A P T E R 8 • Synchronous Sequential Circuits

Clock

Resetn

w J Q

QK

y0

y1

y2

J Q

QK

J Q

QK

Figure 8.67 Circuit diagram using JK flip-flops.

Using the factored form, the counter circuit can be realized as indicated in Figure 8.68. In
this circuit all stages (except the first) look the same. Note that this circuit has the same
structure as the circuit in Figure 7.23 because connecting the J and K inputs of a flip-flop
together turns the flip-flop into a T flip-flop.

8.7.5 Example—A Different Counter

Having considered the design of an ordinary counter, we will now apply this knowl-
edge to design a slightly different counterlike circuit. Suppose that we wish to derive
a three-bit counter that counts the pulses on an input line, w. But instead of displaying the
count as 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, . . ., this counter must display the count in the sequence
0, 4, 2, 6, 1, 5, 3, 7, 0, 4, and so on. The count is to be represented directly by the flip-flop
values themselves, without using any extra gates. Namely, Count = Q2Q1Q0.

June 10, 2002 11:07 vra23151_ch08 Sheet number 59 Page number 503 black

8.7 Design of a Counter Using the Sequential Circuit Approach 503

Clock

Resetn

w y0

y1

y2

J Q

QK

J Q

QK

J Q

QK

Figure 8.68 Factored-form implementation of the counter.

Since we wish to count the pulses on the input line w, it makes sense to use w as the
clock input to the flip-flops. Thus the counter circuit should always be enabled, and it
should change its state whenever the next pulse on the w line appears. The desired counter
can be designed in a straightforward manner using the FSM approach. Figures 8.69 and
8.70 give the required state table and a suitable state assignment. Using D flip-flops, we
obtain the next-state equations

D2 = Y2 = y2

D1 = Y1 = y1 ⊕ y2

D0 = Y0 = y0y1 + y0y2 + y0y1y2

= y0(y1 + y2)+ y0y1y2

= y0 ⊕ y1y2

This leads to the circuit in Figure 8.71.

June 10, 2002 11:07 vra23151_ch08 Sheet number 60 Page number 504 black

504 C H A P T E R 8 • Synchronous Sequential Circuits

Present Next Output
state state z2z1z0

A B 0 0 0
B C 1 0 0
C D 0 1 0
D E 1 1 0
E F 0 0 1
F G 1 0 1
G H 0 1 1
H A 1 1 1

Figure 8.69 State table for counterlike example.

Present Next Output
state state

y2 y1 y0 Y2Y1Y0 z2z1z0

0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 1 0 0 1 0
1 1 0 0 0 1 1 1 0
0 0 1 1 0 1 0 0 1
1 0 1 0 1 1 1 0 1
0 1 1 1 1 1 0 1 1
1 1 1 0 0 0 1 1 1

Figure 8.70 State-assigned table for Figure 8.69.

The reader should compare this circuit with the normal up-counter in Figure 7.24. Take
the first three stages of that counter, set the Enable input to 1, and let Clock = w. Then
the two circuits are essentially the same with one small difference in the order of bits in
the count. In Figure 7.24 the top flip-flop corresponds to the least-significant bit of the
count, whereas in Figure 8.71 the top flip-flop corresponds to the most-significant bit of
the count. This is not just a coincidence. In Figure 8.70 the required count is defined
as Count = y2y1y0. However, if the bit patterns that define the states are viewed in the
reverse order and interpreted as binary numbers, such that Count = y0y1y2, then the states
A, B, C, . . . , H have the values 0, 1, 2, . . . , 7. These values are the same as the values that
are associated with the normal three-bit up-counter.

June 10, 2002 11:07 vra23151_ch08 Sheet number 61 Page number 505 black

8.8 FSM as an Arbiter Circuit 505

D Q

Q

z0

D Q

Q

D Q

Q

z1

z2

w

Figure 8.71 Circuit for Figure 8.70.

8.8 FSM as an Arbiter Circuit

In this section we present the design of an FSM that is slightly more complex than the
previous examples. The purpose of the machine is to control access by various devices
to a shared resource in a given system. Only one device can use the resource at a time.
Assume that all signals in the system can change values only on the positive edge of the
clock signal. Each device provides one input to the FSM, called a request, and the FSM
produces a separate output for each device, called a grant. A device indicates its need to use
the resource by asserting its request signal. Whenever the shared resource is not already in
use, the FSM considers all requests that are active. Based on a priority scheme, it selects
one of the requesting devices and asserts its grant signal. When the device is finished using
the resource, it deasserts its request signal.

We will assume that there are three devices in the system, called device 1, device 2,
and device 3. It is easy to see how the FSM can be extended to handle more devices. The
request signals are named r1, r2, and r3, and the grant signals are called g1, g2, and g3. The
devices are assigned a priority level such that device 1 has the highest priority, device 2 has
the next highest, and device 3 has the lowest priority. Thus if more than one request signal

June 10, 2002 11:07 vra23151_ch08 Sheet number 62 Page number 506 black

506 C H A P T E R 8 • Synchronous Sequential Circuits

Idle

000

1xx

Reset

gnt1 g1⁄ 1=

x1x

gnt2 g2⁄ 1=

xx1

gnt3 g3⁄ 1=

0xx 1xx

01xx0x

001xx0

Figure 8.72 State diagram for the arbiter.

is asserted when the FSM assigns a grant, the grant is given to the requesting device that
has the highest priority.

A state diagram for the desired FSM, designed as a Moore-type machine, is depicted
in Figure 8.72. Initially, on reset the machine is in the state called Idle. No grant signals
are asserted, and the shared resource is not in use. There are three other states, called gnt1,
gnt2, and gnt3. Each of these states asserts the grant signal for one of the devices.

The FSM remains in the Idle state as long as all of the request signals are 0. In the
state diagram the condition r1r2r3 = 000 is indicated by the arc labeled 000. When one
or more request signals become 1, the machine moves to one of the grant states, according
to the priority scheme. If r1 is asserted, then device 1 will receive the grant because it has
the highest priority. This is indicated by the arc labeled 1xx that leads to state gnt1, which
sets g1 = 1. The meaning of 1xx is that the request signal r1 is 1, and the values of signals
r2 and r3 are irrelevant because of the priority scheme. As before, we use the symbol x
to indicate that the value of the corresponding variable can be either 0 or 1. The machine
stays in state gnt1 as long as r1 is 1. When r1 = 0, the arc labeled 0xx causes a change on
the next positive clock edge back to state Idle, and g1 is deasserted. If other requests are
active at this time, then the FSM will change to a new grant state after the next clock edge.

The arc that causes a change to state gnt2 is labeled 01x. This label adheres to the
priority scheme because it represents the condition that r2 = 1, but r1 = 0. Similarly, the
condition for entering state gnt3 is given as 001, which indicates that the only request signal
asserted is r3.

June 10, 2002 11:07 vra23151_ch08 Sheet number 63 Page number 507 black

8.8 FSM as an Arbiter Circuit 507

The state diagram is repeated in Figure 8.73. The only difference between this diagram
and Figure 8.72 is the way in which the arcs are labeled. Figure 8.73 uses a simpler labeling
scheme that is more intuitive. For the condition that leads from state Idle to state gnt1, the
arc is labeled as r1, instead of 1xx. This label means that if r1 = 1, the FSM changes to
state gnt1, regardless of the other inputs. The arc with the label r1r2 that leads from state
Idle to gnt2 represents the condition r1r2 = 01, while the value of r3 is irrelevant. There is
no standardized scheme for labeling the arcs in state diagrams. Some designers prefer the
style of Figure 8.72, while others prefer a style more similar to Figure 8.73.

Figure 8.74 gives the Verilog code for the machine. The three request and grant signals
are specified as three-bit vectors r and g. The FSM transitions are described using a case
statement in the style used for Figure 8.29. As shown in the state Idle, it is easy to describe
the required priority scheme by using another nested case statement. If r1 = 1, then the next
state for the machine is gnt1. If r1 is not asserted, then the alternative is evaluated, which stip-
ulates that if r2 = 1, then the next state will be gnt2. Each successive alternative considers a
lower-priority request signal only if all of the higher-priority request signals are not asserted.

The transitions for each grant state are straightforward. The FSM stays in state gnt1
as long as r1 = 1; when r1 = 0, the next state is Idle. The other grant states have the same
structure.

The grant signals, g1, g2, and g3 are defined at the end. The value of g1 is set to 1 when
the machine is in state gnt1, and otherwise g1 is set to 0. Similarly, each of the other grant
signals is 1 only in the appropriate grant state.

r1r2

r1r2 r3

Idle

Reset

gnt1 g1⁄ 1=

gnt2 g2⁄ 1=

gnt3 g3⁄ 1=

r1r1

r1

r2

r3

r2

r3

r1r2 r3

Figure 8.73 Alternative style of state diagram for the arbiter.

June 10, 2002 11:07 vra23151_ch08 Sheet number 64 Page number 508 black

508 C H A P T E R 8 • Synchronous Sequential Circuits

module arbiter (r, Resetn, Clock, g);
input [1:3] r;
input Resetn, Clock;
output [1:3] g;
wire [1:3] g;
reg [2:1] y, Y;
parameter Idle = 2’b00, gnt1 = 2’b01, gnt2 = 2’b10, gnt3 = 2’b11;

// Next state combinational circuit
always @(r or y)

case (y)
Idle: case (r)

3’b000: Y = Idle;
3’b1xx: Y = gnt1;
3’b01x: Y = gnt2;
3’b001: Y = gnt3;
default: Y = Idle;

endcase
gnt1: if (r[1]) Y = gnt1;

else Y = Idle;
gnt2: if (r[2]) Y = gnt2;

else Y = Idle;
gnt3: if (r[3]) Y = gnt3;

else Y = Idle;
default: Y = Idle;

endcase

// Sequential block
always @(posedge Clock)

if (Resetn == 0) y <= Idle;
else y <= Y;

// Define output
assign g[1] = (y == gnt1);
assign g[2] = (y == gnt2);
assign g[3] = (y == gnt3);

endmodule

Figure 8.74 Verilog code for the arbiter.

8.8.1 Implementation of the Arbiter Circuit

We will now consider the effects of implementing the arbiter in both a CPLD and an FPGA.
Any differences between the two implementations are likely to be more pronounced if the
complexity of the FSM is greater. Hence instead of directly using the code in Figure 8.74,
we will implement a larger version of the arbiter that controls eight devices. The request

June 10, 2002 11:07 vra23151_ch08 Sheet number 65 Page number 509 black

8.8 FSM as an Arbiter Circuit 509

signals are called r1, r2, . . . , r8, and the grant signals are g1, g2, . . . , g8. It is easy to see
how the code in Figure 8.74 is extended to allow eight requesting devices, so we will not
show it here.

Implementation in a CPLD
We first consider implementation of the arbiter in a CPLD. To represent the nine states

in the FSM, the synthesis tool uses four flip-flops, called y4, y3, y2, and y1. The reset state,
Idle, is assigned the code y4y3y2y1 = 0000. The other states are encoded as gnt1 = 0001,
gnt2 = 0010, gnt3 = 0100, gnt4 = 1000, gnt5 = 0011, gnt6 = 0101, gnt7 = 0110, and
gnt8 = 1001. This state assignment was chosen by the synthesis tool.

It is not obvious why the tool made this choice. The tool considers many different
state assignments and selects one that minimizes the cost of the final circuit. For the CPLD
implementation the synthesis tool attempts to choose the state assignment that results in the
fewest product terms in the final circuit.

To see the complexity of the circuit, we need to examine the logic expressions generated
for both the grant signals and the inputs to the state flip-flops. The expression for each grant
signal is a direct result of the encoding used for the state that produces the grant. For
instance, state gnt8 is encoded as 1001, resulting in g8 = y4y3y2y1.

The logic feeding the state flip-flops is more complex. For example, the expression
derived by the tool for the input, Y4, to flip-flop y4 is

Y4 = r1r2r3r5r6r7r8y1y2y3y4 + r1r2r3r4y1y2y3 + r8y1y2y3y4 + r4y1y2y3y4

Figure 8.75 gives a timing simulation for the CPLD implementation. For simplicity
only the request signals r1, r2, and r8 are displayed, along with the grant signals g1, g2,
and g8. After the machine is reset at the beginning of the simulation, all three requests r1,
r2, and r8 are asserted. Although not shown in the timing diagram, all of the other request
signals are set to 0. The machine first changes to state gnt1 and asserts g1. After r1 becomes
0 the machine changes back to state Idle. On the next clock cycle a transition to state gnt2
takes place and g2 is asserted. After r2 becomes 0 the machine changes back to state Idle,

Figure 8.75 Simulation results for the arbiter circuit.

June 10, 2002 11:07 vra23151_ch08 Sheet number 66 Page number 510 black

510 C H A P T E R 8 • Synchronous Sequential Circuits

and then to state gnt8 to assert g8. The simulation results indicate that the required priority
scheme is properly implemented by our Verilog code.

A more detailed display of a part of the simulation results appears in Figure 8.76. The
waveforms are arranged such that only the signals Clock, g8, and y are visible during the
time period when g8 is asserted. The simulation results show that a propagation delay (about
7 ns) is needed for the g8 signal to be produced after the machine changes to the gnt8 state.
This delay corresponds to the time needed to generate the function g8 = y1y2y3y4. We will
show in section 8.8.2 that it is possible to optimize the timing of the implemented circuit
such that a grant signal is produced immediately when the machine enters the grant state.

Implementation in an FPGA
Next we consider implementing the arbiter FSM in an FPGA chip. Instead of using

four flip-flops to represent the nine states in the FSM, the FPGA implementation generated
by the synthesis tool has nine state flip-flops, called y9, y8, . . . , y1. The state assignment is
Idle = 000000000, gnt1 = 110000000, gnt2 = 101000000, gnt3 = 100100000, gnt4 =
100010000, gnt5 = 100001000, gnt6 = 100000100, gnt7 = 100000010, and gnt8 =
100000001. This assignment is very similar to the one-hot encoding. The only difference
is that the left-most flip-flop output, y9, is complemented. This is done to provide a simple
reset mechanism. When all flip-flops are reset, they define the state represented by all state
variables being 0, which is the Idle state.

In section 4.6 we discussed the issue of the limited fan-in of the logic gates provided
in certain types of chips. We said that in such chips logic functions with a large number of
inputs must be decomposed into smaller functions. For an FSM, this means that if the logic
circuit that feeds each state flip-flop has many inputs, then several levels of gates may be
needed. This increases the propagation delays in the circuit and results in a slower speed
of operation. For the preceding CPLD implementation of the arbiter FSM, we showed the
logic expression for the input to flip-flop y4. If that expression were implemented in an
FPGA that has four-input lookup tables (LUTs) it would require a total of eight LUTs in a
circuit that has three of the LUTs connected in series.

By contrast, the choice of nine state variables with the preceding state assignment
results in a much simpler circuit. As an example, for the input to flip-flop y8, the synthesis
tool produces Y8 = r1y8 + r1y9. Since it has only four inputs, this expression can be
realized in a single four-input lookup table. The other eight next-state expressions are also
relatively simple. To see the effect that the state assignment has on the speed of operation
of the FSM, we compared two versions of the circuit implemented in an FPGA chip: one

Figure 8.76 Output delays in the arbiter circuit.

June 10, 2002 11:07 vra23151_ch08 Sheet number 67 Page number 511 black

8.8 FSM as an Arbiter Circuit 511

that has nine state flip-flops as shown above and another that has four flip-flops with the
state assignment given earlier for the CPLD implementation. The results showed that when
nine state variables are used, the arbiter FSM works correctly up to a maximum clock rate
of 88.5 MHz, whereas when four state variables are used, the maximum clock rate is only
54.1 MHz. Note that the speed of operation of the circuit depends on the specific target
chip and can also vary based on the synthesis options selected in the CAD tools.

We should also consider the complexity of the logic needed for the grant signals. These
signals are trivial to generate when nine flip-flops are used. Each grant signal is the output
of one of the flip-flops. For example, g8 = y1.

8.8.2 Minimizing the Output Delays for an FSM

Figure 8.76 shows the propagation delay incurred to produce the grant signals when the
arbiter circuit is implemented in a CPLD. Once the circuit changes to a grant state, the
appropriate grant signal is asserted after a delay of about 7 ns. The delay is caused by
the circuitry that generates the grant signal depending on the values of the state flip-flops.
However, as we showed in the FPGA implementation, when one-hot encoding is used
each grant signal is provided as the output of one of the state flip-flops. Hence no extra
circuitry is needed to generate the output signals. Figure 8.77 shows a timing simulation
when the arbiter circuit is implemented in a CPLD using one-hot encoding. There is very
little delay from when the circuit enters a grant state until the grant signal is produced. A
small delay is incurred because of the time needed to propagate through the buffer that
exists between the flip-flop output and the pin on the CPLD chip package, but this delay
is only about 2 ns. This type of timing optimization is done in practice by designers of
sequential circuits, because design specifications often require that outputs be produced
after the shortest possible delays.

8.8.3 Summary

Our arbiter FSM is a practical circuit that is useful in many types of systems. An example
is a computer system in which various devices in the system are connected by a bus. One
aspect of the arbiter may have to be changed for use in such a system. Because of the
priority scheme, it is possible that devices with high priority could prevent a lower-priority
device from receiving a grant signal for an arbitrarily long time. This condition is often

Figure 8.77 Output delays when using one-hot encoding.

June 10, 2002 11:07 vra23151_ch08 Sheet number 68 Page number 512 black

512 C H A P T E R 8 • Synchronous Sequential Circuits

called starvation of the low-priority device. It is not difficult to modify the arbiter FSM to
account for this issue (see problem 8.37).

8.9 Analysis of Synchronous Sequential Circuits

In addition to knowing how to design a synchronous sequential circuit, the designer has to
be able to analyze the behavior of an existing circuit. The analysis task is much simpler
than the synthesis task. In this section we will show how analysis may be performed.

To analyze a circuit, we simply reverse the steps of the synthesis process. The outputs
of the flip-flops represent the present-state variables. Their inputs determine the next state
that the circuit will enter. From this information we can construct the state-assigned table
for the circuit. This table leads to a state table and the corresponding state diagram by
giving a name to each state. The type of flip-flops used in the circuit is a factor, as we will
see in the examples that follow.

Example 8.9 D-TYPE FLIP-FLOPS Figure 8.78 gives an FSM that has two D flip-flops. Let y1 and y2 be
the present-state variables and Y1 and Y2 the next-state variables. The next-state and output
expressions are

Y1 = wy1 + wy2

Y2 = wy1 + wy2

z = y1y2

D Q

Q

D Q

Q

Clock

Resetn

y2

y1

Y 2

Y 1

w

z

Figure 8.78 Circuit for Example 8.9.

June 10, 2002 11:07 vra23151_ch08 Sheet number 69 Page number 513 black

8.9 Analysis of Synchronous Sequential Circuits 513

Since there are two flip-flops, the FSM has four states. A good starting point in the analysis
is to assume an initial state of the flip-flops such as y1 = y2 = 0. From the expressions
for Y1 and Y2, we can derive the state-assigned table in Figure 8.79a. For example, in the
first row of the table y1 = y2 = 0. Then w = 0 causes Y1 = Y2 = 0, and w = 1 causes
Y1 = 1 and Y2 = 0. The output for this state is z = 0. The other rows are derived in the
same manner. Labeling the states as A, B, C, and D yields the state table in Figure 8.79b.
From this table it is apparent that following the reset condition the FSM produces the output
z = 1 whenever three consecutive 1s occur on the input w. Therefore, the FSM acts as a
sequence detector for this pattern.

Example 8.10JK-TYPE FLIP-FLOPS Now consider the circuit in Figure 8.80, which has two JK flip-flops.
The expressions for the inputs to the flip-flops are

Present
Next State

state w = 0 w = 1
Output

y2 y1 Y2Y1 Y2Y1
z

0 0 0 0 0 1 0
0 1 0 0 1 0 0
1 0 0 0 1 1 0
1 1 0 0 1 1 1

(a) State-assigned table

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A D 0
D A D 1

(b) State table

Figure 8.79 Tables for the circuit in Figure 8.78.

June 10, 2002 11:07 vra23151_ch08 Sheet number 70 Page number 514 black

514 C H A P T E R 8 • Synchronous Sequential Circuits

J Q

Q

Clock

Resetn

y2

y1

J2

J1
w

z

K

J Q

QK
K2

K1

Figure 8.80 Circuit for Example 8.10.

J1 = w

K1 = w + y2

J2 = wy1

K2 = w

The output is given by z = y1y2.
From these expressions we can derive the excitation table in Figure 8.81. Interpreting

the entries in this table, we can construct the state-assigned table. For example, consider
y2y1 = 00 and w = 0. Then, since J2 = J1 = 0 and K2 = K1 = 1, both flip-flops will
remain in the 0 state; hence Y2 = Y1 = 0. If y2y1 = 00 and w = 1, then J2 = K2 = 0 and
J1 = K1 = 1, which leaves the y2 flip-flop unchanged and sets the y1 flip-flop to 1; hence

Present Flip-flop inputs

state w = 0 w = 1 Output

y2 y1 J2 K2 J1 K1 J2 K2 J1 K1
z

0 0 0 1 0 1 0 0 1 1 0
0 1 0 1 0 1 1 0 1 1 0
1 0 0 1 0 1 0 0 1 0 0
1 1 0 1 0 1 1 0 1 0 1

Figure 8.81 The excitation table for the circuit in Figure 8.80.

June 10, 2002 11:07 vra23151_ch08 Sheet number 71 Page number 515 black

8.9 Analysis of Synchronous Sequential Circuits 515

Y2 = 0 and Y1 = 1. If y2y1 = 01 and w = 0, then J2 = J1 = 0 and K2 = K1 = 1, which
resets the y1 flip-flop and results in the state y2y1 = 00; hence Y2 = Y1 = 0. Similarly,
if y2y1 = 01 and w = 1, then J2 = 1 and K2 = 0 sets y2 to 1; hence Y2 = 1, while
J1 = K1 = 1 toggles y1; hence Y1 = 0. This leads to the state y2y1 = 10. Completing
this process, we find that the resulting state-assigned table is the same as the one in Figure
8.79a. The conclusion is that the circuits in Figures 8.78 and 8.80 implement the same
FSM.

Example 8.11MIXED FLIP-FLOPS There is no reason why one cannot use a mixture of flip-flop types
in one circuit. Figure 8.82 shows a circuit with one D and one T flip-flop. The expressions
for this circuit are

D1 = w(y1 + y2)

T2 = wy2 + wy1y2

z = y1y2

From these expressions we derive the excitation table in Figure 8.83. Since it is a T flip-
flop, y2 changes its state only when T2 = 1. Thus if y2y1 = 00 and w = 0, then because
T2 = D1 = 0 the state of the circuit will not change. An example of where T2 = 1 is when
y2y1 = 01 and w = 1, which causes y2 to change to 1; D1 = 0 makes y1 = 0, hence Y2 = 1
and Y1 = 0. The other cases where T2 = 1 occur when w = 0 and y2y1 = 10 or 11. In
both of these cases D1 = 0. Hence the T flip-flop changes its state from 1 to 0, while the D

Clock

Resetn

y2

y1w

z

T 2

D1
D Q

Q

T Q

Q

Figure 8.82 Circuit for Example 8.11.

June 10, 2002 11:07 vra23151_ch08 Sheet number 72 Page number 516 black

516 C H A P T E R 8 • Synchronous Sequential Circuits

Present Flip-flop inputs

state w = 0 w = 1
Output

y2 y1 T2 D1 T2 D1
z

0 0 0 0 0 1 0
0 1 0 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 1 1

Figure 8.83 The excitation table for the circuit in Figure 8.82.

flip-flop is cleared, which means that the next state is Y2Y1 = 00. Completing this analysis
we again obtain the state-assigned table in Figure 8.79a. Thus this circuit is yet another
implementation of the FSM represented by the state table in Figure 8.79b.

8.10 Algorithmic State Machine (ASM) Charts

The state diagrams and tables used in this chapter are convenient for describing the behavior
of FSMs that have only a few inputs and outputs. For larger machines the designers often
use a different form of representation, called the algorithmic state machine (ASM) chart.

An ASM chart is a type of flowchart that can be used to represent the state transitions
and generated outputs for an FSM. The three types of elements used in ASM charts are
depicted in Figure 8.84.

• State box – A rectangle represents a state of the FSM. It is equivalent to a node in the
state diagram or a row in the state table. The name of the state is indicated outside the
box in the top-left corner. The Moore-type outputs are listed inside the box. These are
the outputs that depend only on the values of the state variables that define the state;
we will refer to them simply as Moore outputs. It is customary to write only the name
of the signal that has to be asserted. Thus it is sufficient to write z, rather than z = 1, to
indicate that the output z must have the value 1. Also, it may be useful to indicate an
action that must be taken; for example, Count← Count+ 1 specifies that the contents
of a counter have to be incremented by 1. Of course, this is just a simple way of saying
that the control signal that causes the counter to be incremented must be asserted. We
will use this way of specifying actions in larger systems that are discussed in Chapter
10.

• Decision box – A diamond indicates that the stated condition expression is to be tested
and the exit path is to be chosen accordingly. The condition expression consists of one
or more inputs to the FSM. For example, w indicates that the decision is based on the
value of the input w, whereas w1 ·w2 indicates that the true path is taken if w1 = w2 = 1
and the false path is taken otherwise.

June 10, 2002 11:07 vra23151_ch08 Sheet number 73 Page number 517 black

8.10 Algorithmic State Machine (ASM) Charts 517

Output signals
or actions

(Moore type)

State name

Condition
expression

0 (False) 1 (True)

Conditional outputs
or actions (Mealy type)

(a) State box (b) Decision box

(c) Conditional output box

Figure 8.84 Elements used in ASM charts.

• Conditional output box – An oval denotes the output signals that are of Mealy type.
These outputs depend on the values of the state variables and the inputs of the FSM;
we will refer to these outputs simply as Mealy outputs. The condition that determines
whether such outputs are generated is specified in a decision box.

Figure 8.85 gives the ASM chart that represents the FSM in Figure 8.3. The transitions
between state boxes depend on the decisions made by testing the value of the input variable
w. In each case if w = 0, the exit path from a decision box leads to state A. If w = 1, then
a transition from A to B or from B to C takes place. If w = 1 in state C, then the FSM
stays in that state. The chart specifies a Moore output z, which is asserted only in state C,
as indicated in the state box. In states A and B, the value of z is 0 (not asserted), which is
implied by leaving the corresponding state boxes blank.

Figure 8.86 provides an example with Mealy outputs. This chart represents the FSM
in Figure 8.23. The output, z, is equal to 1 when the machine is in state B and w = 1. This
is indicated using the conditional output box. In all other cases the value of z is 0, which is
implied by not specifying z as an output of state B for w = 0 and state A for w equal to 0
or 1.

Figure 8.87 gives the ASM chart for the arbiter FSM in Figure 8.73. The decision box
drawn below the state box for Idle specifies that if r1 = 1, then the FSM changes to state
gnt1. In this state the FSM asserts the output signal g1. The decision box to the right of
the state box for gnt1 specifies that as long as r1 = 1, the machine stays in state gnt1, and

June 10, 2002 11:07 vra23151_ch08 Sheet number 74 Page number 518 black

518 C H A P T E R 8 • Synchronous Sequential Circuits

w

w

w
0 1

0

1

0

1

A

B

C

z

Reset

Figure 8.85 ASM chart for
the FSM in
Figure 8.3.

w

w
0 1

0

1

A

B

Reset

z

Figure 8.86 ASM chart for the FSM in
Figure 8.23.

when r1 = 0, it changes to state Idle. The decision box labeled r2 that is drawn below the
state box for Idle specifies that if r2 = 1, then the FSM changes to state gnt2. This decision
box can be reached only after first checking the value of r1 and following the arrow that
corresponds to r1 = 0. Similarly, the decision box labeled r3 can be reached only if both r1

and r2 have the value 0. Hence the ASM chart describes the required priority scheme for
the arbiter.

ASM charts are similar to traditional flowcharts. Unlike a traditional flowchart, the
ASM chart includes timing information because it implicitly specifies that the FSM changes
(flows) from one state to another only after each active clock edge. The examples of ASM
charts presented here are quite simple. We have used them to introduce the ASM chart

June 10, 2002 11:07 vra23151_ch08 Sheet number 75 Page number 519 black

8.11 Formal Model for Sequential Circuits 519

r1

r3
0 1

1

Idle

Reset

r2

r1

r3

r2

gnt1

gnt2

gnt3

1

1

1

0

0

0

g1

g2

g3

0

0

1

Figure 8.87 ASM chart for the arbiter FSM in Figure 8.73.

terminology by giving examples of state, decision, and conditional-output boxes. Another
term sometimes applied to ASM charts is ASM block, which refers to a single state box and
any decision and conditional-output boxes that the state box may be connected to. TheASM
charts can be used to describe complex circuits that include one or more finite state machines
and other circuitry such as registers, shift registers, counters, adders, and multipliers. We
will use ASM charts as an aid for designing more complex circuits in Chapter 10.

8.11 Formal Model for Sequential Circuits

This chapter has presented the synchronous sequential circuits using a rather informal
approach because this is the easiest way to grasp the concepts that are essential in designing
such circuits. The same topics can also be presented in a more formal manner, which has
been the style adopted in many books that emphasize the switching theory aspects rather

June 10, 2002 11:07 vra23151_ch08 Sheet number 76 Page number 520 black

520 C H A P T E R 8 • Synchronous Sequential Circuits

than the design using CAD tools. A formal model often gives a concise specification that
is difficult to match in a more descriptive presentation. In this section we will describe a
formal model that represents a general class of sequential circuits, including those of the
synchronous type.

Figure 8.88 represents a general sequential circuit. The circuit has W = {w1, w2, . . . ,

wn} inputs, Z = {z1, z2, . . . , zm} outputs, y = {y1, y2, . . . , yk} present-state variables, and
Y = {Y1, Y2, . . . , Yk} next-state variables. It can have up to 2k states, S = {S1, S2, . . . , S2k }.
There are delay elements in the feedback paths for the state-variables which ensure that y
will take the values of Y after a time delay �. In the case of synchronous sequential
circuits, the delay elements are flip-flops, which change their state on the active edge of a
clock signal. Thus the delay � is determined by the clock period. The clock period must
be long enough to allow for the propagation delay in the combinational circuit, in addition
to the setup and hold parameters of the flip-flops.

Using the model in Figure 8.88, a synchronous sequential circuit, M , can be defined
formally as a quintuple

M = (W , Z, S, ϕ, λ)

where

• W , Z , and S are finite, nonempty sets of inputs, outputs, and states, respectively.
• ϕ is the state transition function, such that S(t + 1) = ϕ[W (t), S(t)].
• λ is the output function, such that λ(t) = λ[S(t)] for the Moore model and λ(t) =

λ[W (t), S(t)] for the Mealy model.

This definition assumes that the time between t and t + 1 is one clock cycle.

Combinational
circuit

Yk

Y1

yk

y1

w1

wn

z1

zm

Outputs

Next-state
variables

Present-state
variables

Inputs

Figure 8.88 The general model for a sequential circuit.

June 10, 2002 11:07 vra23151_ch08 Sheet number 77 Page number 521 black

Problems 521

We will see in the next chapter that the delay � need not be controlled by a clock. In
asynchronous sequential circuits the delays are due solely to the propagation delays through
various gates.

8.12 Concluding Remarks

The existence of closed loops and delays in a sequential circuit leads to a behavior that is
characterized by the set of states that the circuit can reach. The present values of the inputs
are not the sole determining factor in this behavior, because a given valuation of inputs may
cause the circuit to behave differently in different states.

The propagation delays through a sequential circuit must be taken into account. The
design techniques presented in this chapter are based on the assumption that all changes in
the circuit are triggered by the active edge of a clock signal. Such circuits work correctly
only if all internal signals are stable when the clock signal arrives. Thus the clock period
must be longer than the longest propagation delay in the circuit.

Synchronous sequential circuits are used extensively in practical designs. They are
supported by the commonly used CAD tools. All textbooks on the design of logic circuits
devote considerable space to synchronous sequential circuits. Some of the more notable
references are [1–14].

In the next chapter we will present a different class of sequential circuits, which do
not use flip-flops to represent the states of the circuit and do not use clock pulses to trigger
changes in the states.

Problems

8.1 An FSM is defined by the state-assigned table in Figure P8.1. Derive a circuit that realizes
this FSM using D flip-flops.

Present Next state

state w = 0 w = 1 Output

y2 y1 Y2Y1 Y2Y1
z

0 0 1 0 1 1 0

0 1 0 1 0 0 0

1 0 1 1 0 0 0

1 1 1 0 0 1 1

Figure P8.1 State-assigned table for problems 8.1 and 8.2.

June 10, 2002 11:07 vra23151_ch08 Sheet number 78 Page number 522 black

522 C H A P T E R 8 • Synchronous Sequential Circuits

8.2 Derive a circuit that realizes the FSM defined by the state-assigned table in Figure P8.1
using JK flip-flops.

8.3 Derive the state diagram for an FSM that has an input w and an output z. The machine has
to generate z = 1 when the previous four values of w were 1001 or 1111; otherwise, z = 0.
Overlapping input patterns are allowed. An example of the desired behavior is

w : 010111100110011111

z : 000000100100010011

8.4 Write Verilog code for the FSM described in problem 8.3.

8.5 Derive a minimal state table for a single-input and single-output Moore-type FSM that
produces an output of 1 if in the input sequence it detects either 110 or 101 patterns.
Overlapping sequences should be detected.

8.6 Repeat problem 8.5 for a Mealy-type FSM.

8.7 Derive the circuits that implement the state tables in Figures 8.51 and 8.52. What is the
effect of state minimization on the cost of implementation?

8.8 Derive the circuits that implement the state tables in Figures 8.55 and 8.56. Compare the
costs of these circuits.

8.9 A sequential circuit has two inputs, w1 and w2, and an output, z. Its function is to compare
the input sequences on the two inputs. If w1 = w2 during any four consecutive clock cycles,
the circuit produces z = 1; otherwise, z = 0. For example

w1 : 0110111000110

w2 : 1110101000111

z : 0000100001110

Derive a suitable circuit.

8.10 Write Verilog code for the FSM described in problem 8.9.

8.11 A given FSM has an input, w, and an output, z. During four consecutive clock pulses, a
sequence of four values of the w signal is applied. Derive a state table for the FSM that
produces z = 1 when it detects that either the sequence w : 0010 or w : 1110 has been
applied; otherwise, z = 0. After the fourth clock pulse, the machine has to be again in the
reset state, ready for the next sequence. Minimize the number of states needed.

8.12 Derive a minimal state table for an FSM that acts as a three-bit parity generator. For every
three bits that are observed on the input w during three consecutive clock cycles, the FSM
generates the parity bit p = 1 if and only if the number of 1s in the three-bit sequence is
odd.

8.13 Write Verilog code for the FSM described in problem 8.12.

8.14 Draw timing diagrams for the circuits in Figures 8.43 and 8.47, assuming the same changes
in a and b signals for both circuits. Account for propagation delays.

June 10, 2002 11:07 vra23151_ch08 Sheet number 79 Page number 523 black

Problems 523

8.15 Show a state table for the state-assigned table in Figure P8.1, using A, B, C, D for the four
rows in the table. Give a new state-assigned table using a one-hot encoding. For A use the
code y4y3y2y1 = 0001. For states B, C, D use the codes 0010, 0100, and 1000, respectively.
Synthesize a circuit using D flip-flops.

8.16 Show how the circuit derived in problem 8.15 can be modified such that the code y4y3y2y1 =
0000 is used for the reset state, A, and the other codes for state B, C, D are changed as needed.
(Hint: you do not have to resynthesize the circuit!)

8.17 In Figure 8.59 assume that the unspecified outputs in states B and G are 0 and 1, respectively.
Derive the minimized state table for this FSM.

8.18 In Figure 8.59 assume that the unspecified outputs in states B and G are 1 and 0, respectively.
Derive the minimized state table for this FSM.

8.19 Derive circuits that implement the FSMs defined in Figures 8.57 and 8.58. Can you draw
any conclusions about the complexity of circuits that implement Moore and Mealy types
of machines?

8.20 Design a counter that counts pulses on line w and displays the count in the sequence
0, 2, 1, 3, 0, 2, Use D flip-flops in your circuit.

8.21 Repeat problem 8.20 using JK flip-flops.

8.22 Repeat problem 8.20 using T flip-flops.

8.23 Design a modulo-6 counter, which counts in the sequence 0, 1, 2, 3, 4, 5, 0, 1, The
counter counts the clock pulses if its enable input, w, is equal to 1. Use D flip-flops in your
circuit.

8.24 Repeat problem 8.23 using JK flip-flops.

8.25 Repeat problem 8.23 using T flip-flops.

8.26 Design a three-bit counterlike circuit controlled by the input w. If w = 1, then the counter
adds 2 to its contents, wrapping around if the count reaches 8 or 9. Thus if the present
state is 8 or 9, then the next state becomes 0 or 1, respectively. If w = 0, then the counter
subtracts 1 from its contents, acting as a normal down-counter. Use D flip-flops in your
circuit.

8.27 Repeat problem 8.26 using JK flip-flops.

8.28 Repeat problem 8.26 using T flip-flops.

8.29 Derive the state table for the circuit in Figure P8.2. What sequence of input values on wire
w is detected by this circuit?

8.30 Write Verilog code for the FSM shown in Figure 8.57, using the style of code in Figure
8.29.

8.31 Repeat problem 8.30, using the style of code in Figure 8.34.

8.32 Write Verilog code for the FSM shown in Figure 8.58, using the style of code in Figure
8.29.

June 10, 2002 11:07 vra23151_ch08 Sheet number 80 Page number 524 black

524 C H A P T E R 8 • Synchronous Sequential Circuits

D Q

Q

w
D Q

QClock

z

Figure P8.2 Circuit for problem 8.29.

8.33 Repeat problem 8.32, using the style of code in Figure 8.34.

8.34 Write Verilog code for the FSM shown in Figure P8.1.

8.35 Represent the FSM in Figure 8.57 in form of an ASM chart.

8.36 Represent the FSM in Figure 8.58 in form of an ASM chart.

8.37 The arbiter FSM defined in section 8.8 (Figure 8.72) may cause device 3 to never get
serviced if devices 1 and 2 continuously keep raising requests, so that in the Idle state it
always happens that either device 1 or device 2 has an outstanding request. Modify the
proposed FSM to ensure that device 3 will get serviced, such that if it raises a request, the
devices 1 and 2 will be serviced only once before the device 3 is granted its request.

8.38 Write Verilog code for the FSM designed in problem 8.37.

8.39 Consider a more general version of the task presented in Example 8.1. Assume that there
are four n-bit registers connected to a bus in a processor. The contents of register R are
placed on the bus by asserting the control signal Rout . The data on the bus are loaded into
register R on the active edge of the clock signal if the control signal Rin is asserted. Assume
that three of the registers, called R1, R2, and R3, are used as normal registers. The fourth
register, called TEMP, is used for temporary storage in special cases.

We want to realize an operation SWAP Ri,Rj, which swaps the contents of registers Ri
and Rj. This is accomplished by the following sequence of steps (each performed in one
clock cycle)

June 10, 2002 11:07 vra23151_ch08 Sheet number 81 Page number 525 black

References 525

TEMP ← [Rj]
Rj ← [Ri]
Ri ← [TEMP]

Two input signals, w1 and w2, are used to indicate that two registers have to be swapped as
follows

If w2w1 = 01, then swap R1 and R2.
If w2w1 = 10, then swap R1 and R3.
If w2w1 = 11, then swap R2 and R3.

An input valuation that specifies a swap is present for three clock cycles. Design a circuit
that generates the required control signals: R1out , R1in, R2out , R2in, R3out , R3in, TEMPout ,
and TEMPin. Derive the next-state and output expressions for this circuit, trying to minimize
the cost.

References

1. A. Dewey, Analysis and Design of Digital Systems with VHDL, (PWS Publishing Co.:
1997).

2. D. D. Gajski, Principles of Digital Design, (Prentice-Hall: Upper Saddle River, NJ,
1997).

3. M. M. Mano and C. R. Kime, Logic and Computer Design Fundamentals,
(Prentice-Hall: Upper Saddle River, NJ, 1997).

4. J. P. Daniels, Digital Design from Zero to One, (Wiley: New York, 1996).

5. V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit
Analysis and Design, (Prentice-Hall: Englewood Cliffs, NJ, 1995).

6. R. H. Katz, Contemporary Logic Design, (Benjamin/Cummings: Redwood City, CA,
1994).

7. F. J. Hill and G. R. Peterson, Computer Aided Logical Design with Emphasis on VLSI,
4th ed., (Wiley: New York, 1993).

8. J. P. Hayes, Introduction to Logic Design, (Addison-Wesley: Reading, MA, 1993).

9. C. H. Roth Jr., Fundamentals of Logic Design, 4th ed., (West: St. Paul, MN, 1993).

10. J. F. Wakerly, Digital Design Principles and Practices, (Prentice-Hall: Engelwood
Cliffs, NJ, 1990).

11. E. J. McCluskey, Logic Design Principles, (Prentice-Hall: Englewood Cliffs, NJ,
1986).

12. T. L. Booth, Digital Networks and Computer Systems, (Wiley: New York, 1971).

13. Z. Kohavi, Switching and Finite Automata Theory, (McGraw-Hill: New York, 1970).

14. J. Hartmanis and R. E. Stearns, Algebraic Structure Theory of Sequential Machines,
(Prentice-Hall: Englewood Cliffs, NJ, 1966).

June 10, 2002 11:09 vra23151_ch09 Sheet number 1 Page number 527 black

527

c h a p t e r

9
Asynchronous Sequential Circuits

a b c d e f g h

1

2

3

4

5

6

7

8

9. 0–0, f7xe6

June 10, 2002 11:09 vra23151_ch09 Sheet number 2 Page number 528 black

528 C H A P T E R 9 • Asynchronous Sequential Circuits

In the previous chapter we covered the design of synchronous sequential circuits in which the state variables
are represented by flip-flops that are controlled by a clock. The clock is a periodic signal that consists of pulses.
Changes in state can occur on the positive or negative edge of each clock pulse. Since they are controlled by
pulses, synchronous sequential circuits are said to operate in pulse mode. In this chapter we present sequential
circuits that do not operate in pulse mode and do not use flip-flops to represent state variables. These circuits
are called asynchronous sequential circuits.

In an asynchronous sequential circuit, changes in state are not triggered by clock pulses. Instead, changes
in state are dependent on whether each of the inputs to the circuit has the logic level 0 or 1 at any given time.
To achieve reliable operation, the inputs to the circuit must change one at a time. Moreover, there must
be sufficient time between the changes in input signals to allow the circuit to reach a stable state, which is
achieved when all internal signals stop changing. A circuit that adheres to these constraints is said to operate
in the fundamental mode.

9.1 Asynchronous Behavior

To introduce asynchronous sequential circuits, we will reconsider the basic latch circuit in
Figure 7.4. This Set-Reset (SR) latch is redrawn in Figure 9.1a. The feedback loop gives
rise to the sequential nature of the circuit. It is an asynchronous circuit because changes in
the value of the output, Q, occur without having to wait for a synchronizing clock pulse. In
response to a change in either the S (Set) or R (Reset) input, the value of Q will change after

R

S Q
Y y

(a) Circuit with modeled gate delay

Present Next state

state 01 10 11

0 0 0 1 0

1 1 0 1 0

(b) State-assigned table

Figure 9.1 Analysis of the SR latch.

June 10, 2002 11:09 vra23151_ch09 Sheet number 3 Page number 529 black

9.1 Asynchronous Behavior 529

a short propagation time through the NOR gates. In Figure 9.1a the combined propagation
delay through the two NOR gates is represented by the box labeled �. Then, the NOR
gate symbols represent ideal gates with zero delay. Using the notation in Chapter 8, Q
corresponds to the present state of the circuit, represented by the present-state variable, y.
The value of y is fed back through the circuit to generate the value of the next-state variable,
Y , which represents the next state of the circuit. After the � time delay, y takes the value
of Y . Observe that we have drawn the circuit in a style that conforms to the general model
for sequential circuits presented in Figure 8.88.

By analyzing the SR latch, we can derive a state-assigned table, as illustrated in Figure
9.1b. When the present state is y = 0 and the inputs are S = R = 0, the circuit produces
Y = 0. Since y = Y , the state of the circuit will not change. We say that the circuit is stable
under these input conditions. Now assume that R changes to 1 while S remains at 0. The
circuit still generates Y = 0 and remains stable. Assume next that S changes to 1 and R
remains at 1. The value of Y is unchanged, and the circuit is stable. Then let R change to 0
while S remains at 1. This input valuation, SR = 10, causes the circuit to generate Y = 1.
Since y �= Y , the circuit is not stable. After the � time delay, the circuit changes to the new
present state y = 1. Once this new state is reached, the value of Y remains equal to 1 as
long as SR = 10. Hence the circuit is again stable. The analysis for the present state y = 1
can be completed using similar reasoning.

The concept of stable states is very important in the context of asynchronous sequential
circuits. For a given valuation of inputs, if a circuit reaches a particular state and remains in
this state, then the state is said to be stable. To clearly indicate the conditions under which
the circuit is stable, it is customary to encircle the stable states in the table, as illustrated in
Figure 9.1b.

From the state-assigned table, we can derive the state table in Figure 9.2a. The state
names A and B represent the present states y = 0 and y = 1, respectively. Since the output
Q depends only on the present state, the circuit is a Moore-type FSM. The state diagram
that represents the behavior of this FSM is shown in Figure 9.2b.

The preceding analysis shows that the behavior of an asynchronous sequential circuit
can be represented as an FSM in a similar way as the synchronous sequential circuits in
Chapter 8. Consider now performing the opposite task. That is, given the state table in
Figure 9.2a, we can synthesize an asynchronous circuit as follows: After performing the
state assignment, we have the state-assigned table in Figure 9.1b. This table represents a
truth table for Y , with the inputs y, S, and R. Deriving a minimal product-of-sums expression
yields

Y = R · (S + y)

If we were deriving a synchronous sequential circuit using the methods in Chapter 8, then
Y would be connected to the D input of a flip-flop and a clock signal would be used to
control the time when the changes in state take place. But since we are synthesizing an
asynchronous circuit, we do not insert a flip-flop in the feedback path. Instead, we create a
circuit that realizes the preceding expression using the necessary logic gates, and we feed
back the output signal as the present-state input y. Implementation using NOR gates results
in the circuit in Figure 9.1a. This simple example suggests that asynchronous circuits and
synchronous circuits can be synthesized using similar techniques. However, we will see

June 10, 2002 11:09 vra23151_ch09 Sheet number 4 Page number 530 black

530 C H A P T E R 9 • Asynchronous Sequential Circuits

Present Next state Output
state 01 10 11 Q

A A A B A 0

B B A B A 1

(a) State table

10
00

11
01
00

10

A 0⁄ B 1⁄

11
01

SR

(b) State diagram

Figure 9.2 FSM model for the SR latch.

shortly that for more complex asynchronous circuits, the design task is considerably more
difficult.

To further explore the nature of asynchronous circuits, it is interesting to consider how
the behavior of the SR latch can be represented in the form of a Mealy model. As depicted
in Figure 9.3, the outputs produced when the circuit is in a stable state are the same as
in the Moore model, namely 0 in state A and 1 in state B. Consider now what happens
when the state of the circuit changes. Suppose that the present state is A and that the input
valuation SR changes from 00 to 10. As the state table specifies, the next state of the FSM
is B. When the circuit reaches state B, the output Q will be 1. But in the Mealy model, the
output is supposed to be affected immediately by a change in the input signals. Thus while
still in state A, the change in SR to 10 should result in Q = 1. We could have written a 1
in the corresponding entry in the top row of the state table, but we have chosen to leave
this entry unspecified instead. The reason is that since Q will change to 1 as soon as the
circuit reaches state B, there is little to be gained in trying to make Q go to 1 a little sooner.
Leaving the entry unspecified allows us to assign either 0 or 1 to it, which may make the
circuit that implements the state table somewhat simpler. A similar reasoning leads to the
conclusion that the two output entries where a change from B to A takes place can also be
left unspecified.

Using the state assignment y = 0 for A and y = 1 for B, the state-assigned table
represents a truth table for both Y and Q. The minimal expression for Y is the same as for
the Moore model. To derive an expression for Q, we need to set the unspecified entries to

June 10, 2002 11:09 vra23151_ch09 Sheet number 5 Page number 531 black

9.2 Analysis of Asynchronous Circuits 531

Present Next state Output, Q

state 01 10 11 00 01 10 11

A A A B A 0 0 0

B B A B A 1 1

(a) State table

10 1⁄
00 1⁄

11 0⁄
01 0⁄
00 0⁄

10 –⁄

A B

01 –⁄
11 –⁄

SR/Q

(b) State diagram

Figure 9.3 Mealy representation of the SR latch.

0 or 1. Assigning a 0 to the unspecified entry in the first row and 1 to the two unspecified
entries in the second row produces Q = y and results in the circuit in Figure 9.1a.

Terminology
In the preceding discussion we used the same terminology as in the previous chapter

on synchronous sequential circuits. However, when dealing with asynchronous sequential
circuits, it is customary to use two different terms. Instead of a “state table,” it is more
common to speak of a flow table, which indicates how the changes in state flow as a result
of the changes in the input signals. Instead of a “state-assigned table,” it is usual to refer
to a transition table or an excitation table. We will use the terms flow table and excitation
table in this chapter. A flow table will define the state changes and outputs that must be
generated. An excitation table will depict the transitions in terms of the state variables. The
term excitation table derives from the fact that a change from a stable state is performed by
“exciting” the next-state variables to start changing towards a new state.

9.2 Analysis of Asynchronous Circuits

To gain familiarity with asynchronous circuits, it is useful to analyze a few examples. We
will keep in mind the general model in Figure 8.88, assuming that the delays in the feedback

June 10, 2002 11:09 vra23151_ch09 Sheet number 6 Page number 532 black

532 C H A P T E R 9 • Asynchronous Sequential Circuits

paths are a representation of the propagation delays in the circuit. Then each gate symbol
will represent an ideal gate with zero delay.

Example 9.1 GATED D LATCH In Chapters 7 and 8, we used the gated D latch as a key component in
circuits that are controlled by a synchronizing clock. It is instructive to analyze this latch as
an asynchronous circuit, where the clock is just one of the inputs. It is reasonable to assume
that the signals on the D and clock inputs do not change at the same time, thus meeting the
basic requirement of asynchronous circuits.

Figure 9.4a shows the gated D latch drawn in the style of the model of Figure 8.88. This
circuit was introduced in Figure 7.8 and discussed in section 7.3. The next-state expression
for this circuit is

Y = (C ↑ D) ↑ ((C ↑ D) ↑ y)

= CD + Cy + Dy

The term Dy in this expression is redundant and could be deleted without changing the logic
function of Y . Hence the minimal expression is

Y = CD + Cy

The reason that the circuit implements the redundant term Dy is that this term solves a race
condition known as a hazard; we will discuss hazards in detail in section 9.6.

Evaluating the expression for Y for all valuations of C, D, and y leads to the excitation
table in Figure 9.4b. Note that the circuit changes its state only when C = 1 and D is
different from the present state, y. In all other cases the circuit is stable. Using the symbols
A and B to represent the states y = 0 and y = 1, we obtain the flow table and the state
diagram shown in parts (c) and (d).

Example 9.2 MASTER-SLAVE D FLIP-FLOP In Example 9.1 we analyzed the gated D latch as an asyn-
chronous circuit. Actually, all practical circuits are asynchronous. However, if the circuit’s
behavior is tightly controlled by a clock signal, then simpler operating assumptions can
be used, as we did in Chapter 8. Recall that in a synchronous sequential circuit all sig-
nals change values in synchronization with the clock signal. Now we will analyze another
synchronous circuit as if it were an asynchronous circuit.

Two gated D latches are used to implement the master-slave D flip-flop, as illustrated
in Figure 7.10. This circuit is reproduced in Figure 9.5. We can analyze the circuit by
treating it as a series connection of two gated D latches. Using the results from Example
9.1, the simplified next-state expressions can be written as

Ym = CD + Cym

Ys = Cym + Cys

June 10, 2002 11:09 vra23151_ch09 Sheet number 7 Page number 533 black

9.2 Analysis of Asynchronous Circuits 533

D

C

Q
Y y

(a) State diagram

Present Next state

state 01 10 11

Q

0 0 0 0 1 0

1 1 1 0 1 1

(b) Excitation table

Present Next state

state 01 10 11 Q

A A A A B 0

B B B A B 1

(c) Flow table

x1
0x

x0
0x

11

A 0⁄ B 1⁄

10

CD

(d) State diagram

Figure 9.4 The gated D latch.

June 10, 2002 11:09 vra23151_ch09 Sheet number 8 Page number 534 black

534 C H A P T E R 9 • Asynchronous Sequential Circuits

D

Clk

Q

Q

D

C

Q
ysym

Master Slave

Q

D

Clk

Q

Q

Figure 9.5 Circuit for the master-slave D flip-flop.

where the subscripts m and s refer to the master and slave stages of the flip-flop. These
expressions lead to the excitation table in Figure 9.6a. Labeling the four states as S1 through
S4, we derive the flow table in Figure 9.6b. A state-diagram form of this information is
given in Figure 9.7.

Let us consider the behavior of this FSM in more detail. The state S1, where ymys = 00,
is stable for all input valuations except CD = 11. When C = 1, the value of D is stored in
the master stage; hence CD = 11 causes the flip-flop to change to S3, where ym = 1 and
ys = 0. If the D input now changes back to 0, while the clock remains at 1, the flip-flop
moves back to the state S1. The transitions between S1 and S3 indicate that if C = 1,
the output of the master stage, Qm = ym, tracks the changes in the D input signal without
affecting the slave stage. From S3 the circuit changes to S4 when the clock goes to 0. In S4
both master and slave stages are set to 1 because the information from the master stage is
transferred to the slave stage on the negative edge of the clock. Now the flip-flop remains
in S4 until the clock goes to 1 and the D input changes to 0, which causes a change to S2.
In S2 the master stage is cleared to 0, but the slave stage remains at 1. Again the flip-flop
may change between S2 and S4 because the master stage will track the changes in the D
input signal while C = 1. From S2 the circuit changes to S1 when the clock goes low.

In Figures 9.6 and 9.7, we indicated that the flip-flop has only one output Q, which one
sees when the circuit is viewed as a negative-edge-triggered flip-flop. From the observer’s
point of view, the flip-flop has only two states, 0 and 1. But internally, the flip-flop consists
of the master and slave parts, which gives rise to the four states described above.

We should also examine the basic assumption that the inputs must change one at a time.
If the circuit is stable in state S2, for which CD = 10, it is impossible to go from this state
to S1 under the influence of the input valuation CD = 01 because this simultaneous change
in both inputs cannot occur. Thus in the second row of the flow table, instead of showing
S2 changing to S1 under CD = 01, this entry can be labeled as unspecified. The change
from S2 to S1 can be caused only by CD changing from 10 to 00. Similarly, if the circuit
is in state S3, where CD = 11, it cannot change to S4 by having CD = 00. This entry can
also be left unspecified in the table. The resulting flow table is shown in Figure 9.6c.

If we reverse the analysis procedure and, using the state assignment in Figure 9.6a,
synthesize logic expressions for Ym and Ys, we get

June 10, 2002 11:09 vra23151_ch09 Sheet number 9 Page number 535 black

9.2 Analysis of Asynchronous Circuits 535

Present Next state

state C D = 00 01 10 11 Output

ym ys YmYs
Q

00 0�0 0�0 0�0 10 0

01 00 00 0�1 11 1

10 11 11 00 1�0 0

11 1�1 1�1 01 1�1 1

(a) Excitation table

Present Next state Output
state C D = 00 01 10 11 Q

S1 S�1 S�1 S�1 S3 0

S2 S1 S1 S�2 S4 1

S3 S4 S4 S1 S�3 0

S4 S�4 S�4 S2 S�4 1

(b) Flow table

Present Next state Output
state C D = 00 01 10 11 Q

S1 S�1 S�1 S�1 S3 0

S2 S1 – S�2 S4 1

S3 – S4 S1 S�3 0

S4 S�4 S�4 S2 S�4 1

(c) Flow table with unspecified entries

Figure 9.6 Excitation and flow tables for Example 9.2.

Ym = CD + Cym + ymD

Ys = Cym + Cys + ymys

The terms ymD and ymys in these expressions are redundant. As mentioned earlier, they are
included in the circuit to avoid race conditions, which are discussed in section 9.6.

June 10, 2002 11:09 vra23151_ch09 Sheet number 10 Page number 536 black

536 C H A P T E R 9 • Asynchronous Sequential Circuits

x1
0x10

11

S2 1⁄ S4 1⁄
10

11x0
0x

11

S1 0⁄ S3 0⁄
10

0x0x

CD

Figure 9.7 State diagram for the master-slave D flip-flop.

Example 9.3 Consider the circuit in Figure 9.8. It is represented by the following expressions

Y1 = y1y2 + w1y2 + w1w2y1

Y2 = y1y2 + w1y2 + w2 + w1w2y1

z = y1y2

The corresponding excitation and flow tables are given in Figure 9.9.

zy1

y2

Y 1

Y 2

w1

w2

Figure 9.8 Circuit for Example 9.3.

June 10, 2002 11:09 vra23151_ch09 Sheet number 11 Page number 537 black

9.2 Analysis of Asynchronous Circuits 537

Present Next state

state w2w1 = 00 01 10 11 Output

y2 y1 Y2Y1 Y2Y1 Y2Y1 Y2Y1
z

00 0�0 01 10 11 0

01 11 0�1 11 11 0

10 00 1�0 1�0 1�0 1

11 1�1 10 10 10 0

(a) Excitation table

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C D 0

B D B� D D 0

C A C� C� C� 1

D D� C C C 0

(b) Flow table

Figure 9.9 Excitation and flow tables for the circuit in Figure 9.8

Some transitions in the flow table will not occur in practice because of the assumption
that both w1 and w2 cannot change simultaneously. In state A the circuit is stable under the
valuation w2w1 = 00. Its inputs cannot change to 11 without passing through the valuations
01 or 10, in which case the new state would be B or C, respectively. Thus the transition
from A under w2w1 = 11 can be left unspecified. Similarly, if the circuit is stable in state
B, in which case w2w1 = 01, it is impossible to force a change to state D by changing the
inputs to w2w1 = 10. This entry should also be unspecified. If the circuit is stable in state C
under w2w1 = 11, it is not possible to go to A by changing the inputs directly to w2w1 = 00.
However, the transition to A is possible by changing the inputs one at a time because the
circuit remains stable in C for both w2w1 = 01 and w2w1 = 10.

A different situation arises if the circuit is stable in state D under w2w1 = 00. It may
seem that the entry under w2w1 = 11 should be unspecified because this input change
cannot be made from the stable state D. But suppose that the circuit is stable in state B
under w2w1 = 01. Now let the inputs change to w2w1 = 11. This causes a change to state
D. The circuit indeed changes to D, but it is not stable in this state for this input condition.
As soon as it arrives into state D, the circuit proceeds to change to state C as required by
w2w1 = 11. It is then stable in state C as long as both inputs remain at 1. The conclusion
is that the entry that specifies the change from D to C under w2w1 = 11 is meaningful and

June 10, 2002 11:09 vra23151_ch09 Sheet number 12 Page number 538 black

538 C H A P T E R 9 • Asynchronous Sequential Circuits

should not be omitted. The transition from the stable state B to the stable state C, which
passes through state D, illustrates that it is not imperative that all transitions be directly from
one stable state to another. A state through which a circuit passes en route from one stable
state to another is called an unstable state. Transitions that involve passing through an
unstable state are not harmful as long as the unstable state does not generate an undesirable
output signal. For example, if a transition is between two stable states for which the output
signal should be 0, it would be unacceptable to pass through an unstable state that causes
the output to be 1. Even though the circuit changes through the unstable state very quickly,
the short glitch in the output signal is likely to be troublesome. This is not a problem in our
example. When the circuit is stable in B, the output is z = 0. When the inputs change to
w2w1 = 11, the transition to state D maintains the output at 0. It is only when the circuit
finally changes into state C that z will change to 1. Therefore, the change from z = 0 to
z = 1 occurs only once during the course of these transitions.

A modified flow table, showing the unspecified transitions, is presented in Figure 9.10.
The table indicates the behavior of the circuit in Figure 9.8 in terms of state transitions. If
we don’t know what the circuit is supposed to do, it may be difficult to discover the practical
application for a given circuit. Fortunately, in practice the purpose of the circuit is known,
and the analysis is done by the designer to ascertain that the circuit performs as desired. In
our example it is apparent that the circuit generates the output z = 1 in state C, which it
reaches as a result of some input patterns that are detected using the other three states. The
state diagram derived from Figure 9.10 is shown in Figure 9.11.

This diagram actually implements a control mechanism for a simple vending machine
that accepts two types of coins, say, dimes and nickels, and dispenses merchandise such as
candy. If w1 represents a nickel and w2 represents a dime, then a total of 10 cents must be
deposited to get the FSM into state C where the candy is released. The coin mechanism
accepts only one coin at a time, which means that w2w1 = 11 can never occur. Therefore,
the transition discussed above, from B to C, through the unstable state D would not occur.
Observe that both states B and D indicate that 5 cents has been deposited. State B indicates
that a nickel is presently being sensed by the coin receptor, while D indicates that 5 cents
has been deposited and the coin receptor is presently empty. In state D it is possible to
deposit either a nickel or a dime, both leading to state C. No distinction is made between
the two types of coins in state D; hence the machine would not give change if 15 cents
is deposited. From state A a dime leads directly to state C. Knowing that the condition

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C – 0

B D B� – D 0

C A C� C� C� 1

D D� C C C 0

Figure 9.10 Modified flow table for Example 9.3.

June 10, 2002 11:09 vra23151_ch09 Sheet number 13 Page number 539 black

9.2 Analysis of Asynchronous Circuits 539

01

x1
1x

10

w2w1

A 0⁄

C 1⁄

B 0⁄

D 0⁄ 00

00

00
00
11

x1
1x

01

Figure 9.11 State table for Example 9.3.

w2w1 = 11 will not occur allows the flow table to be specified as shown in Figure 9.12. If
we were to synthesize the sum-of-products logic expressions for Y1 and Y2, using the state
assignment in Figure 9.9a, we would end up with the circuit in Figure 9.8.

Steps in the Analysis Process
We have demonstrated the analysis process using illustrative examples. The required

steps can be stated as follows:

• A given circuit is interpreted in the form of the general model in Figure 8.88. That is,
each feedback path is cut, and a delay element is inserted at the point where the cut
is made. The input signal to the delay element represents a corresponding next-state
variable, Yi, while the output signal is the present-state variable, yi. A cut can be made
anywhere in a particular loop formed by the feedback connection, as long as there is

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C – 0

B D B� – – 0

C A C� C� – 1

D D� C C – 0

w2 ≡ dime w1 ≡ nickel

Figure 9.12 Flow table for a simple vending machine.

June 10, 2002 11:09 vra23151_ch09 Sheet number 14 Page number 540 black

540 C H A P T E R 9 • Asynchronous Sequential Circuits

only one cut per (state variable) loop. Thus the number of cuts that should be made
is the smallest number that results in there being no feedback anywhere in the circuit
except from the output of a delay element. This minimal number of cuts is sometimes
referred to as the cut set. Note that the analysis based on a cut made at one point in a
given loop may not produce the same flow table as an analysis on a cut made at some
other point in this loop. But both flow tables would reflect the same functional behavior
in terms of the applied inputs and generated outputs.

• Next-state and output expressions are derived from the circuit.
• The excitation table corresponding to the next-state and output expressions is derived.
• Aflow table is obtained, associating some (arbitrary) names with the particular encoded

states.
• A corresponding state diagram is derived from the flow table if desired.

9.3 Synthesis of Asynchronous Circuits

Synthesis of asynchronous sequential circuits follows the same basic steps used to synthesize
the synchronous circuits, which were discussed in Chapter 8. There are some differences
due to the asynchronous nature, which make the asynchronous circuits more difficult to
design. We will explain the differences by investigating a few design examples. The basic
steps are

• Devise a state diagram for an FSM that realizes the required functional behavior.
• Derive the flow table and reduce the number of states if possible.
• Perform the state assignment and derive the excitation table.
• Obtain the next-state and output expressions.
• Construct a circuit that implements these expressions.

When devising a state diagram, or perhaps the flow table directly, it is essential to ensure
that when the circuit is in a stable state, the correct output signals are generated. Should it
be necessary to pass through an unstable state, this state must not produce an undesirable
output signal.

Minimization of states is not straightforward. A minimization procedure is described
in section 9.4.

State assignment is not done with the sole purpose of reducing the cost of the final circuit.
In asynchronous circuits some state assignments may cause the circuit to be unreliable. We
will explain this problem using the examples that follow.

Example 9.4 SERIAL PARITY GENERATOR Suppose that we want to design a circuit that has an input
w and an output z, such that when pulses are applied to w, the output z is equal to 0 if the
number of previously applied pulses is even and z is equal to 1 if the number of pulses is
odd. Hence the circuit acts as a serial parity generator.

June 10, 2002 11:09 vra23151_ch09 Sheet number 15 Page number 541 black

9.3 Synthesis of Asynchronous Circuits 541

Let A be the state that indicates that an even number of pulses has been received. Using
the Moore model, the output z will be equal to 0 when the circuit is in state A. As long
as w = 0, the circuit should remain in A, which is specified by a transition arc that both
originates and terminates in state A. Thus A is stable when w = 0. When the next pulse
arrives, the input w = 1 should cause the FSM to move to a new state, say, B, which
produces the output z = 1. When the FSM reaches B, it must remain stable in this state as
long as w = 1. This is specified by a transition arc that originates and terminates in B. The
next input change occurs when w goes to 0. In response the FSM must change to a state
where z = 1 and which corresponds to the fact that a complete pulse has been observed,
namely, that w has changed from 1 to 0. Let this state be C; it must be stable under the input
condition w = 0. The arrival of the next pulse makes w = 1, and the FSM must change
to a state, D, that indicates that an even number of pulses has been observed and that the
last pulse is still present. The state D is stable under w = 1, and it causes the output to be
z = 0. Finally, when w returns to 0 at the end of the pulse, the FSM returns to state A, which
indicates an even number of pulses and w equal to 0 at the present time. The resulting state
diagram is shown in Figure 9.13a.

1

1

0

A 0⁄

D 0⁄

B 1⁄

C 1⁄ 0

0

0

1

1

(a) State diagram

Present Next state Output
State

A A B 0

B C B 1

C C D 1

D A D 0

(b) Flow table

Figure 9.13 Parity-generating asynchronous FSM.

June 10, 2002 11:09 vra23151_ch09 Sheet number 16 Page number 542 black

542 C H A P T E R 9 • Asynchronous Sequential Circuits

A key point to understand is why it is necessary to have four states rather than just two,
considering that we are merely trying to distinguish between the even and odd number of
input pulses. States B and C cannot be combined into a single state even though they both
indicate that an odd number of pulses has been observed. Suppose we had simply tried to
use state B alone for this purpose. Then it would have been necessary to add an arc with a
label 0 that originates and terminates in state B, which is fine. The problem is that without
state C, there would have to be a transition from state B directly to D if the input is w = 1 to
respond to the next change in the input when a new pulse arrives. It would be impossible to
have B both stable under w = 1 and have a change to D effected for the same input condition.
Similarly, we can show that the states A and D cannot be combined into a single state.

Figure 9.13b gives the flow table that corresponds directly to the state diagram. In
many cases the designer can derive a flow table directly. We are using the state diagram
mostly because it provides a simpler visual picture of the effect of the transitions in an FSM.

The next step is to assign values to the states in terms of the state variables. Since there
are four states in our FSM, there have to be at least two state variables. Let these variables
be y1 and y2. As a first attempt at the state assignment, let the states A, B, C, and D be
encoded as y2y1 = 00, 01, 10, and 11, respectively. This assignment leads to the excitation
table in Figure 9.14a. Unfortunately, it has a major flaw. The circuit that implements this
table is stable in state D = 11 under the input condition w = 1. But consider what happens
next if the input changes to w = 0. According to the excitation table, the circuit should
change to state A = 00 and remain stable in this state. The problem is that in going from
y2y1 = 11 to y2y1 = 00 both state variables must change their values. This is unlikely
to occur at exactly the same time. In an asynchronous circuit the values of the next-state
variables are determined by networks of logic gates with varying propagation delays. Thus
we should expect that one state variable will change slightly before the other, which could
put the circuit into a state where it may react to the input in an undesirable way. Suppose
that y1 changes first. Then the circuit goes from y2y1 = 11 to y2y1 = 10. As soon as it
reaches this state, C, it will attempt to remain there if w = 0, which is a wrong outcome. On
the other hand, suppose that y2 changes first. Then there will be a change from y2y1 = 11
to y2y1 = 01, which corresponds to state B. Since w = 0, the circuit will now try to change
to y2y1 = 10. This again requires that both y1 and y2 change; assuming that y1 changes first
in the transition from y2y1 = 01, the circuit will find itself in the state y2y1 = 00, which is
the correct destination state, A. This discussion indicates that the required transition from
D to A will be performed correctly if y2 changes before y1, but it will not work if y1 changes
before y2. The result depends on the outcome of the “race” to change between the signals
y1 and y2.

The uncertainty caused by multiple changes in the state variables in response to an
input that should lead to a predictable change from one stable state to another has to be
eliminated. The term race condition is used to refer to such unpredictable behavior. We
will discuss this issue in detail in section 9.5.

Race conditions can be eliminated by treating the present-state variables as if they were
inputs to the circuit, meaning that only one state variable is allowed to change at a time. For
our example the assignment A = 00, B = 01, C = 11, and D = 10 achieves this objective.
The resulting excitation table is presented in Figure 9.14b. The reader should verify that
all transitions involve changing a single state variable.

June 10, 2002 11:09 vra23151_ch09 Sheet number 17 Page number 543 black

9.3 Synthesis of Asynchronous Circuits 543

Present Next state

state w = 0 w = 1 Output

y2 y1 Y2Y1
z

00 0�0 01 0

01 10 0�1 1

10 1�0 11 1

11 00 1�1 0

(a) Poor state assignment

Present Next state

state w = 0 w = 1 Output

y2 y1 Y2Y1
z

00 0�0 01 0

01 11 0�1 1

11 1�1 10 1

10 00 1�0 0

(b) Good state assignment

Figure 9.14 State assignment for Figure 9.13b.

From Figure 9.14b the next-state and output expressions are

Y1 = wy2 + wy1 + y1y2

Y2 = wy2 + wy1 + y1y2

z = y1

The last product term in the expressions for Y1 and Y2 is included to deal with possible
hazards, which are discussed in section 9.6. The corresponding circuit is shown in Fig-
ure 9.15.

It is interesting to consider how the serial parity generator could be implemented using
a synchronous approach. All that is needed is a single flip-flop that changes its state with
the arrival of each input pulse. The positive-edge-triggered D flip-flop in Figure 9.16
accomplishes the task, assuming that the flip-flop is initially set to Q = 0. The logic
complexity of the flip-flop is exactly the same as the circuit in Figure 9.15. Indeed, if we
use the preceding expressions for Y1 and Y2 and substitute C for w, D for y2, ym for y1, and

June 10, 2002 11:09 vra23151_ch09 Sheet number 18 Page number 544 black

544 C H A P T E R 9 • Asynchronous Sequential Circuits

y1

y2

w

z

Figure 9.15 Circuit that implements the FSM in Figure 9.14b.

ys for y2, we end up with the excitation expressions shown for the master-slave D flip-flop in
Example 9.2. The circuit in Figure 9.15 is actually a negative-edge-triggered master-slave
flip-flop, with the complement of its Q output (y2) connected to its D input. The output z is
connected to the output of the master stage of the flip-flop.

Example 9.5 MODULO-4 COUNTER Chapters 7 and 8 described how counters can be implemented
using flip-flops. Now we will synthesize a counter as an asynchronous sequential circuit.
Figure 9.17 depicts a state diagram for a modulo-4 up-counter, which counts the number
of pulses on an input line, w. The circuit must be able to react to all changes in the input

w

zD Q

Q

Figure 9.16 Synchronous solution for Example 9.4.

June 10, 2002 11:09 vra23151_ch09 Sheet number 19 Page number 545 black

9.3 Synthesis of Asynchronous Circuits 545

1

1

0

A 0⁄

H 0⁄

B 1⁄

G 3⁄

0

0

1

1
C 1⁄

F 3⁄

D 2⁄

E 2⁄

1

0 1

0

0

1

1

0

0

Figure 9.17 State diagram for a modulo-4 counter.

signal; thus it must take specific actions at both the positive and negative edges of each
pulse. Therefore, eight states are needed to deal with the edges in four consecutive pulses.

The counter begins in state A and stays in this state as long as w = 0. When w changes
to 1, a transition to state B is made and the circuit remains stable in this state as long as
w = 1. When w goes back to 0, the circuit moves to state C and remains stable until w
becomes 1 again, which causes a transition to state D, and so on. Using the Moore model,
the states correspond to specific counts. There are two states for each particular count: the
state that the FSM enters when w changes from 0 to 1 at the start of a pulse and the state that
the FSM enters when w goes back to 0 at the end of the pulse. States B and C correspond
to the count of 1, states D and E to 2, and states F and G to 3. States A and H represent the
count of 0.

Figure 9.18 shows the flow and excitation tables for the counter. The state assignment
is chosen such that all transitions between states require changing the value of only one
state variable to eliminate the possibility of race conditions. The output is encoded as a
binary number, using variables z2 and z1. From the excitation table the next-state and output
expressions are

Y1 = wy1 + wy2y3 + wy2y3 + y1y2y3 + y1y2y3

= wy1 + (w + y1)(y2y3 + y2y3)

Y2 = wy2 + wy1y3 + y1y2 + y2y3

Y3 = wy3 + y1y3 + y1y2w + y2y3

z1 = y1

z2 = y1y3 + y1y2

These expressions define the circuit that implements the required modulo-4 pulse counter.

June 10, 2002 11:09 vra23151_ch09 Sheet number 20 Page number 546 black

546 C H A P T E R 9 • Asynchronous Sequential Circuits

Present Next state Output
state w = 0 w = 1 z

A A� B 0

B C B� 1

C C� D 1

D E D� 2

E E� F 2

F G F� 3

G G� H 3

H A H� 0

(a) Flow table

Present Next state

state w = 0 w = 1 Output Mod-8 output

y3 y2 y1 Y3Y2Y1
z2z1 z3z2z1

000 0✒✑
�✏

00 001 00 000

001 011 0✒✑
�✏

01 01 001

011 0✒✑
�✏

11 010 01 010

010 110 0✒✑
�✏

10 10 011

110 1✒✑
�✏

10 111 10 100

111 101 1✒✑
�✏

11 11 101

101 1✒✑
�✏

01 100 11 110

100 000 1✒✑
�✏

00 00 111

(b) Excitation table (c) Output for counting
the edges

Figure 9.18 Flow and excitation tables for a modulo-4 counter.

June 10, 2002 11:09 vra23151_ch09 Sheet number 21 Page number 547 black

9.3 Synthesis of Asynchronous Circuits 547

In the preceding derivation we designed a circuit that changes its state on every edge
of the input signal w, requiring a total of eight states. Since the circuit is supposed to count
the number of complete pulses, which contain a rising and a falling edge, the output count
z2z1 changes its value only in every second state. This FSM behaves like a synchronous
sequential circuit in which the output count changes only as a result of w changing from 0
to 1.

Suppose now that we want to count the number of times the signal w changes its value,
that is, the number of its edges. The state transitions specified in Figures 9.17 and 9.18
define an FSM that can operate as a modulo-8 counter for this purpose. We only need to
specify a distinct output in each state, which can be done as shown in Figure 9.18c. The
values of z3z2z1 indicate the counting sequence 0, 1, 2, . . . , 7, 0. Using this specification
of the output and the state assignment in Figure 9.18b, the resulting output expressions are

z1 = y1 ⊕ y2 ⊕ y3

z2 = y2 ⊕ y3

z3 = y3

Example 9.6A SIMPLE ARBITER In computer systems it is often useful to have some resource shared
by a number of different devices. Usually, the resource can be used by only one device at a
time. When various devices need to use the resource, they have to request to do so. These
requests are handled by an arbiter circuit. When there are two or more outstanding requests,
the arbiter may use some priority scheme to choose one of them, as already discussed in
section 8.8.

We will now consider an example of a simple arbiter implemented as an asynchronous
sequential circuit. To keep the example small, suppose that two devices are competing
for the shared resource, as indicated in Figure 9.19a. Each device communicates with the
arbiter by means of two signals—Request and Grant. When a device needs to use the shared
resource, it raises its Request signal to 1. Then it waits until the arbiter responds with the
Grant signal.

Figure 9.19b illustrates a commonly used scheme for communication between two
entities in the asynchronous environment, known as handshake signaling. Two signals are
used to provide the handshake. A device initiates the activity by raising a request, r = 1.
When the shared resource is available, the arbiter responds by issuing a grant, g = 1.
When the device receives the grant signal, it proceeds to use the requested shared resource.
When it completes its use of the resource, it drops its request by setting r = 0. When
the arbiter sees that r = 0, it deactivates the grant signal, making g = 0. The arrows in
the figure indicate the cause-effect relationships in this signaling scheme; a change in one
signal causes a change in the other signal. The time elapsed between the changes in the
cause-effect signals depends on the specific implementation of the circuit. A key point is
that there is no need for a synchronizing clock.

A state diagram for our simple arbiter is given in Figure 9.20. There are two inputs, the
request signals r1 and r2, and two outputs, the grant signals g1 and g2. The diagram depicts

June 10, 2002 11:09 vra23151_ch09 Sheet number 22 Page number 548 black

548 C H A P T E R 9 • Asynchronous Sequential Circuits

Arbiter

Request1

Grant1

Request2

Grant2

Device 1

Device 2

Shared
resource

(a) Arbitration structure

Request (r)

Grant (g)

(b) Handshake signaling

Figure 9.19 Arbitration example.

01
A 0⁄ 0 B 01⁄

C 10⁄

00
11

00

00

10

01

10

01

10
11

r2r1

Figure 9.20 State diagram for the arbiter.

June 10, 2002 11:09 vra23151_ch09 Sheet number 23 Page number 549 black

9.3 Synthesis of Asynchronous Circuits 549

the Moore model of the required FSM, where the arcs are labeled as r2r1 and the state
outputs as g2g1. The quiescent state is A, where there are no requests. State B represents the
situation in which Device 1 is given permission to use the resource, and state C denotes the
same for Device 2. Thus B is stable if r2r1 = 01, and C is stable if r2r1 = 10. To conform
to the rules of asynchronous circuit design, we will assume that the inputs r1 and r2 become
activated one at a time. Hence, in state A it is impossible to have a change from r2r1 = 00
to r2r1 = 11. The situation where r2r1 = 11 occurs only when a second request is raised
before the device that has the grant signal completes its use of the shared resource, which
can happen in states B and C. If the FSM is stable in either state B or C, it will remain in
this state if both r1 and r2 go to 1.

The flow table is given in Figure 9.21a, and the excitation table is presented in Fig-
ure 9.21b. It is impossible to choose a state assignment such that all changes between states
A, B, and C involve a change in a single state variable only. In the chosen assignment
the transitions to or from state A are handled properly, but the transitions between states
B and C involve changes in the values of both state variables y1 and y2. Suppose that the
circuit is stable in state B under input valuation r2r1 = 11. Now let the inputs change to
r2r1 = 10. This should cause a change to state C, which means that the state variables must
change from y2y1 = 01 to 10. If y1 changes faster than y2, then the circuit will find itself

Present Next state Output
state r2r1 = 00 01 10 11 g2g1

A A� B C − 00

B A B� C B� 01

C A B C� C� 10

(a) Flow table

Present Next state

state r2r1 = 00 01 10 11 Output

y2 y1 Y2Y1
g2g1

A 00 0�0 01 10 − 00

B 01 00 0�1 10 0�1 01

C 10 00 01 1�0 1�0 10

D 11 − 01 10 − dd

(b) Excitation table

Figure 9.21 Implementation of the arbiter.

June 10, 2002 11:09 vra23151_ch09 Sheet number 24 Page number 550 black

550 C H A P T E R 9 • Asynchronous Sequential Circuits

momentarily in state y2y1 = 00, which leads to the desired final state because from state
A there is a specified transition to C under the input valuation 10. But if y2 changes faster
than y1, the circuit will reach the state y2y1 = 11, which is not defined in the flow table. To
make sure that even in this case the circuit will proceed to the required destination C, we
can include the state y2y1 = 11, labeled D, in the excitation table and specify the required
transition as shown in the figure. A similar situation arises when the circuit is stable in C
under r2r1 = 11, and it has to change to B when r2 changes from 1 to 0.

The output values for the extra state D are indicated as don’t cares. Whenever a specific
output is changing from 0 to 1 or from 1 to 0, exactly when this change takes place is not
important if the correct value is produced when the circuit is in a stable state. The don’t-care
specification may lead to a simpler realization of the output functions. It is important to
ensure that unspecified outputs will not result in a value that may cause erroneous behavior.
From Figure 9.21b it is possible that during the short time when the circuit passes through
the unstable state D the outputs become g2g1 = 11. This is harmless in our example because
the device that has just finished using the shared resource will not try to use it again until its
grant signal has returned to 0 to indicate the end of the handshake with the arbiter. Observe
that if this condition occurs when changing from B to C, then g1 remains 1 slightly longer
and g2 becomes 1 slightly earlier. Similarly, if the transition is from C to B, then the change
in g1 from 0 to 1 happens slightly earlier and g2 changes to 0 slightly later. In both of these
cases there is no glitch on either g1 or g2.

From the excitation table the following next-state and output expressions are derived

Y1 = r2r1 + r1y2

Y2 = r2r1 + r2y2

g1 = y1

g2 = y2

Rewriting the first two expressions as

Y1 = r1(r2 + y2)

= r1r2y2

Y2 = r2(r1 + y2)

produces the circuit in Figure 9.22. Observe that this circuit responds very quickly to the
changes in the input signals. This behavior is in sharp contrast to the arbiter discussed in
section 8.8 in which the synchronizing clock determines the minimum response time.

The difficulty with the race condition that arises in state changes between B and C can
be resolved in another way. We can simply prevent the circuit from reaching an unspecified
state. Figure 9.23a shows a modified flow table in which transitions between states B and
C are made via state A. If the circuit is stable in B and the input valuation changes from
r2r1 = 11 to 10, a change to A will occur first. As soon as the circuit reaches A, which is not
stable for the input valuation 10, it will proceed to the stable state C. The detour through
the unstable state A is acceptable because in this state the output is g2g1 = 00, which is
consistent with the desired operation of the arbiter. The change from C to B is handled
using the same approach. From the modified excitation table in Figure 9.23b, the following

June 10, 2002 11:09 vra23151_ch09 Sheet number 25 Page number 551 black

9.3 Synthesis of Asynchronous Circuits 551

y2

g1

g2

r1

r2

Figure 9.22 The arbiter circuit.

Present Next state Output
state r2r1 = 00 01 10 11

g2g1

A A� B C − 00

B A B� A B� 01

C A A C� C� 10

(a) Modified flow table

Present Next state

state r2r1 = 00 01 10 11
Output

y2 y1 Y2Y1
g2g1

00 0�0 01 10 − 00

01 00 0�1 00 0�1 01

10 00 00 1�0 1�0 10

(b) Modified excitation table

Figure 9.23 An alternative for avoiding a critical race in
Figure 9.21a.

June 10, 2002 11:09 vra23151_ch09 Sheet number 26 Page number 552 black

552 C H A P T E R 9 • Asynchronous Sequential Circuits

next-state expressions are derived

Y1 = r1y2

Y2 = r1r2y1 + r2y2

These expressions give rise to a circuit different from the one in Figure 9.22. However,
both circuits implement the functionality required in the arbiter.

Next we will attempt to design the same arbiter using the Mealy model specification.
From Figure 9.20 it is apparent that the states B and C are fundamentally different because
for the input r2r1 = 11 they must produce two different outputs. But state A is unique only
to the extent that it generates the output g2g1 = 00 whenever r2r1 = 00. This condition
could be specified in both B and C if the Mealy model is used. Figure 9.24 gives a suitable
state diagram. The flow and excitation tables are presented in Figure 9.25, which lead to

1x 10⁄
00 00⁄

x1 01⁄
00 00⁄

10 0–⁄

B C

01 0 –⁄

Figure 9.24 Mealy model for the arbiter FSM.

Present Next state Output g2g1

state r2r1 = 00 01 10 11 00 01 10 11

B B� B� C B� 00 01 –0 01

C C� B C� C� 00 0– 10 10

(a) Flow diagram

Present Next state Output

state r2r1 = 00 01 10 11 00 01 10 11
y Y g2g1

0 0 0 1 0 00 01 d0 01

1 1 0 1 1 00 0d 10 10

(b) Excitation table

Figure 9.25 Mealy model implementation of the arbiter FSM.

June 10, 2002 11:09 vra23151_ch09 Sheet number 27 Page number 553 black

9.4 State Reduction 553

the following expressions

Y = r2r1 + r1y + r2y

g1 = r1y

g2 = r2y

Despite needing a single state variable, this circuit requires more gates for implementation
than does the Moore version in Figure 9.22.

An important notion in the above examples is that it is necessary to pay careful attention
to the state assignment, to avoid races in changing of the values of the state variables. Sec-
tion 9.5 deals with this issue in more detail.

We made the basic assumption that the request inputs to the arbiter FSM change their
values one at a time, which allows the circuit to reach a stable state before the next change
takes place. If the devices are totally independent, they can raise their requests at any time.
Suppose that each device raises a request every few seconds. Since the arbiter circuit needs
only a few nanoseconds to change from one stable state to another, it quite unlikely that both
devices will raise their requests so close to each other that the arbiter circuit will produce
erroneous outputs. However, while the probability of an error caused by the simultaneous
arrival of requests is extremely low, it is not zero. If this small possibility of an error cannot
be tolerated, then it is possible to feed the request signals through a special circuit called
the mutual exclusion (ME) element. This circuit has two inputs and two outputs. If both
inputs are 0, then both outputs are 0. If only one input is 1, then the corresponding output
is 1. If both inputs are 1, the circuit makes one output go to 1 and keeps the other at 0.
Using the ME element would change the design of the arbiter slightly; because the valuation
r2r1 = 11 would never occur, all entries in the corresponding column in Figure 9.21 would
be don’t cares. The ME element and the issue of simultaneous changes in input signals are
discussed in detail in reference [6]. Finally, we should note that a similar problem arises
in synchronous circuits in which one or more inputs are generated by a circuit that is not
controlled by a common clock. We will deal with this issue in section 10.3.3 in Chapter 10.

9.4 State Reduction

In Chapter 8 we saw that reducing the number of states needed to realize the functionality
of a given FSM usually leads to fewer state variables, which means that fewer flip-flops are
required in the corresponding synchronous sequential circuit. In asynchronous sequential
circuits it is also useful to try to reduce the number of states because this usually results in
simpler implementations.

When designing an asynchronous FSM, the initial flow table is likely to have many
unspecified (don’t-care) entries, because the designer has to obey the restriction that only
one input variable can change its value at a time. For example, suppose that we want to
design the FSM for the simple vending machine considered in Example 9.3. Recall that
the machine accepts nickels and dimes and dispenses candy when 10 cents is deposited;

June 10, 2002 11:09 vra23151_ch09 Sheet number 28 Page number 554 black

554 C H A P T E R 9 • Asynchronous Sequential Circuits

the machine does not give change if 15 cents is deposited. An initial state diagram for
this FSM can be derived in straightforward fashion by enumerating all possible sequences
of depositing the coins to give a sum of at least 10 cents. Figure 9.26a shows a possible
diagram, defined as a Moore model. Starting in a reset state, A, the FSM remains in this
state as long as no coin is deposited. This is denoted by an arc labeled 0 to indicate that

A 0⁄

B 0⁄ C 1⁄

D 0⁄

E 1⁄ F 1⁄

0
0

0

0 0

0

D

N

N

N

N

D

D

0

D

(a) Initial state diagram

Present Next state Output
State 01 10 11

A A B C 0

B D B 0

C A C 1

D D E F 0

E A E 1

F A F 1

(b) Initial flow table

Figure 9.26 Derivation of an FSM for the simple vending machine.

June 10, 2002 11:09 vra23151_ch09 Sheet number 29 Page number 555 black

9.4 State Reduction 555

N = D = 0. Now let an arc with the label N denote that the coin-sensing mechanism has
detected a nickel and has generated a signal N = 1. Similarly, let D denote that a dime has
been deposited. If N = 1, then the FSM has to move to a new state, say, B, and it must
remain stable in this state as long as N has the value of 1. Since B corresponds to 5 cents
being deposited, the output in this state has to be 0. If a dime is deposited in state A, then
the FSM must move to a different state, say, C. The machine should stay in C as long as
D = 1, and it should release the candy by generating the output of 1. These are the only
possible transitions from state A, because it is impossible to insert two coins at the same
time, which means that DN = 11 can be treated as a don’t-care condition. Next, in state
B there must be a return to the condition DN = 00 because the coin-sensing mechanism
will detect the second coin some time after the first coin has cleared the mechanism. This
behavior is consistent with the requirement that only one input variable can change at a
time; hence it is not allowed to go from DN = 01 to DN = 10. The input DN = 10
cannot occur in state B and should be treated as a don’t care. The input DN = 00 takes
the FSM to a new state, D, which indicates that 5 cents has been deposited and that there
is no coin in the sensing mechanism. In state D it is possible to deposit either a nickel or
a dime. If DN = 01, the machine moves to state E, which denotes that 10 cents has been
deposited and generates the output of 1. If DN = 10, the machine moves to state F , which
also generates the output of 1. Finally, when the FSM is in any of the states C, E, or F , the
only possible input is DN = 00, which returns the machine to state A.

The flow table for this FSM is given in Figure 9.26b. It shows explicitly all don’t-care
entries. Such unspecified entries provide a certain amount of flexibility that can be exploited
in reducing the number of states. Note that in each row of this table there is only one stable
state. Such tables, where there is only one stable state for each row, are often referred to as
primitive flow tables.

Several techniques have been developed for state reduction. In this section we will
describe a two-step process. In the first step we will apply the partitioning procedure from
section 8.6.1, assuming that the potentially equivalent rows in a flow table must produce
the same outputs. As an additional constraint, for two rows to be potentially equivalent any
unspecified entries must be in the same next-state columns. Thus combining the equivalent
states into a single state will not remove the don’t cares and the flexibility that they provide.
In the second step, the rows are merged exploiting the unspecified entries. Two rows can be
merged if they have no conflicting next-state entries. This means that their next-state entries
for any given valuation of inputs are either the same, or one of them is unspecified, or both
rows indicate a stable state. If the Moore model is used, then the two rows (states) must
produce the same outputs. If the Mealy model is used, then the two states must produce the
same outputs for any input valuations for which both states are stable.

Example 9.7We will now show how the flow diagram in Figure 9.26b can be reduced to the optimized
form in Figure 9.12. The first step in the state-reduction process is the partitioning procedure
from section 8.6.1. States A and D are stable under the input valuation DN = 00, producing
the output of 0; they also have the unspecified entries in the same position. States C and F
are stable under DN = 10, generating z = 1, and they have the same unspecified entries.
States B and E have the same unspecified entries, but when they are stable under DN = 01

June 10, 2002 11:09 vra23151_ch09 Sheet number 30 Page number 556 black

556 C H A P T E R 9 • Asynchronous Sequential Circuits

the state B produces z = 0 while E generates z = 1; they are not equivalent. Therefore, the
initial partition is

P1 = (AD)(B)(CF)(E)

The successors of A and D are (A, D) for DN = 00, (B, E) for 01, and (C, F) for 10. Since
the (B, E) pair is not in the same block of P1, it follows that A and D are not equivalent.
The successors of C and F are (A, A) for 00 and (C, F) for 10; each pair is in a single block.
Thus the second partition is

P2 = (A)(D)(B)(CF)(E)

The successors of C and F in P2 are in the same block of P2, which means that

P3 = P2

The conclusion is that rows C and F are equivalent. Combining them into a single row and
changing all Fs into Cs gives the flow table in Figure 9.27.

Next we can try to merge some rows in the flow table by exploiting the existence of
unspecified entries. The only row that can be merged with others is C. It can be merged
with either A or E, but not both. Merging C with A would mean that the new state has to
generate z = 0 when it is stable under the input valuation 00 and has to produce z = 1 when
stable under 10. This can be achieved only by using the Mealy model. The alternative is to
merge C and E, in which case the new state is stable under DN = 01 and 10, producing the
output of 1. This can be achieved with the Moore model. Merging C and E into a single
state C and changing all Es into Cs yields the reduced flow table in Figure 9.12. Observe
that when C and E are merged, the new row C must include all specifications in both rows
C and E. Both rows specify A as the next state if DN = 00. Row E specifies a stable state
for DN = 01; hence the new row (called C) must also specify a stable state for the same
valuation. Similarly, row C specifies a stable state for DN = 10, which must be reflected
in the new row. Therefore, the next-state entries in the new row are A, �C , and �C for the
input valuations 00, 01, and 10, respectively.

Present Next state Output
state DN = 00 01 10 11 z

A A� B C – 0

B D B� – 0

C A – C� – 1

D D� E C – 0

E A E� – – 1

Figure 9.27 First-step reduction of the FSM in Figure 9.26b.

June 10, 2002 11:09 vra23151_ch09 Sheet number 31 Page number 557 black

9.4 State Reduction 557

Merging Procedure
In Example 9.7 it was easy to decide which rows should be merged because the only

possibilities are to merge row C with either A or E. We chose to merge C and E because
this can be done preserving the Moore model, which is likely to lead to a simpler expression
that realizes the output z.

In general, there can be many possibilities for merging rows in larger flow tables. In
such cases it is necessary to have a more structured procedure for making the choice. A
useful procedure can be defined using the concept of compatibility of states.

Definition 9.1 – Two states (rows in a flow table), Si and Sj, are said to be compatible if
there are no state conflicts for any input valuation. Thus for each input valuation, one of
the following conditions must be true:

• both Si and Sj have the same successor, or
• both Si and Sj are stable, or
• the successor of Si or Sj, or both, is unspecified.

Moreover, both Si and Sj must have the same output whenever specified.
Consider the primitive flow table in Figure 9.28. Let us examine the compatibility be-

tween different states, assuming that we would like to retain the Moore-type specification
of outputs for this FSM. State A is compatible only with state H . State B is compatible
with states F and G. State C is not compatible with any other state. State D is compatible
with state E; so are state F with G and state G with H . In other words, the following com-
patible pairs exist: (A, H), (B, F), (B, G), (D, E), (F, G), and (G, H). The compatibility
relationship among various states can be represented conveniently in the form of a merger
diagram, as follows:

• Each row of the flow table is represented as a point, labeled by the name of the row.
• A line is drawn connecting any two points that correspond to compatible states (rows).

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� H B – 0

B F – B� C 0

C – H – C� 1

D A D� – E 1

E – D G E� 1

F F� D – – 0

G F – G� – 0

H – H� – E 0

Figure 9.28 A primitive flow table.

June 10, 2002 11:09 vra23151_ch09 Sheet number 32 Page number 558 black

558 C H A P T E R 9 • Asynchronous Sequential Circuits

From the merger diagram the best merging possibility can be chosen, and the reduced flow
table can be derived.

Figure 9.29 gives the merger diagram for the primitive flow table in Figure 9.28. The
diagram indicates that row A can be merged with H , but only if H is not merged with G,
because there is no line joining A and G. Row B can be merged with rows F and G. Since
it is also possible to merge F and G, it follows that B, F , and G are pairwise compatible.
Any set of rows that are pairwise compatible for all pairs in the set can be merged into a
single state. Thus states B, F , and G can be merged into a single state, but only if states G
and H are not merged. State C cannot be merged with any other state. States D and E can
be merged.

A prudent strategy is to merge the states so that the resulting flow table has as few states
as possible. In our example the best choice is to merge the compatibles (A, H), (B, F, G),
and (D, E), which leads to the reduced flow table in Figure 9.30. When a new row is created
by merging two or more rows, all entries in the new row have to be specified to cover the
individual requirements of the constituent rows. Replacing rows A and H with a new row
A requires making A stable for both w2w1 = 00 and 01, because the old A has to be stable

EG

B

F

C

H

A D

Figure 9.29 Merger diagram for the flow table in Figure 9.28, which
preserves the Moore model.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� A� B D 0

B B� D B� C 0

C – A – C� 1

D A D� B D� 1

Figure 9.30 Reduced Moore-type flow table for the FSM in
Figure 9.28.

June 10, 2002 11:09 vra23151_ch09 Sheet number 33 Page number 559 black

9.4 State Reduction 559

for 00 and H has to be stable for 01. It also requires specifying B as the next-state for
w2w1 = 10 and E as the next state for w2w1 = 11. Since the old state E becomes D, after
merging D and E, the new row A must have the next-state entries �A , �A , B, and D
for the input valuations 00, 01, 10, and 11, respectively. Replacing rows B, F, and G with
a new row B requires making B stable for w2w1 = 00 and 10. The next-state entry for
w2w1 = 01 has to be D to satisfy the requirement of the old state F . The next-state entry
for w2w1 = 11 has to be C, as dictated by the old state B. Observe that the old state G
imposes no requirements for transitions under w2w1 = 01 and 11, because its corresponding
next-state entries are unspecified. Row C remains the same as before except that the name
of the next-state entry for w2w1 = 01 has to be changed from H to A. Rows D and E are
replaced by a new row D, using similar reasoning. Note that the flow table in Figure 9.30
is still of Moore type.

So far we considered merging only those rows that would allow us to retain the Moore-
type specification of the FSM in Figure 9.28. If we are willing to change to the Mealy
model, then other possibilities exist for merging. Figure 9.31 shows the complete merger
diagram for the FSM of Figure 9.28. Black lines connect the compatible states that can
be merged into a new state that has a Moore-type output; this corresponds to the merger
diagram in Figure 9.29. Blue lines connect the states that can be merged only if Mealy-type
outputs are used.

In this case going to the Mealy model is unlikely to result in a simpler circuit. Although
several merger possibilities exist, they all require at least four states in the reduced flow
table, which is not any better than the solution obtained in Figure 9.30. For example,
one possibility is to perform the merge based on the partition (A, H), (B, C, G) (D, E)

(F). Another possibility is to use (A, C) (B, F) (D, E) (G, H). We will not pursue these
possibilities and will discuss the issues involved in specifying the Mealy-type outputs in
Example 9.9.

G

A

F

C

H

B

D

E

Figure 9.31 Complete merger diagram for Figure 9.28.

June 10, 2002 11:09 vra23151_ch09 Sheet number 34 Page number 560 black

560 C H A P T E R 9 • Asynchronous Sequential Circuits

State Reduction Procedure
We can summarize the steps needed to generate the reduced flow table from a primitive

flow table as follows:

1. Use the partitioning procedure from section 8.6.1 to eliminate the equivalent states in
a primitive flow table.

2. Construct a merger diagram for the resulting flow table.

3. Choose subsets of compatible states that can be merged, trying to minimize the
number of subsets needed to cover all states. Each state must be included in only one
of the chosen subsets.

4. Derive the reduced flow table by merging the rows in chosen subsets.

5. Repeat steps 2 to 4 to see whether further reductions are possible.

Choosing an optimal subset of compatible states for merging can be a very complicated
task because for large FSMs there may be many possibilities that should be investigated. A
trial-and-error approach is a reasonable way to tackle this problem.

Example 9.8 Consider the initial flow table in Figure 9.32. To apply the partitioning procedure, we
identify state pairs (A, G), (B, L), and (H , K) as being potentially equivalent rows, because
both rows in each pair have the same outputs and their don’t-care entries are in the same

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� F C – 0

B A B� – H 1

C G – C� D 0

D – F – D� 1

E G – E� D 1

F – F� – K 0

G G� B J – 0

H – L E H� 1

J G – J� – 0

K – B E K� 1

L A L� – K 1

Figure 9.32 Flow table for Example 9.8.

June 10, 2002 11:09 vra23151_ch09 Sheet number 35 Page number 561 black

9.4 State Reduction 561

column. The remaining rows are distinct in this respect. Therefore, the first partition is

P1 = (AG)(BL)(C)(D)(E)(F)(HK)(J)

Now the successors of (A, G) are (A, G) for w2w1 = 00, (F, B) for 01, and (C, J) for 10.
Since F and B, as well as C and J , are not in the same block, it follows that A and G are
not equivalent. The successors of (B, L) are (A, A), (B, L), and (H , K), respectively. All
are in single blocks. The successors of (H , K) are (L, B), (E, E), and (H , K), which are all
contained in single blocks. Therefore, the second partition is

P2 = (A)(G)(BL)(C)(D)(E)(F)(HK)(J)

Repeating the successor test shows that the successors of (B, L) and (H , K) are still in single
blocks; hence

P3 = P2

Combining rows B and L under the name B and rows H and K under the name H leads to
the flow table in Figure 9.33.

A merger diagram for this flow table is given in Figure 9.34. It indicates that rows B
and H should be merged into one row, which we will label as B. The merger diagram also
suggests that rows D and E should be merged; we will call the new row D. The remaining
rows present more than one choice for merging. Rows A and F can be merged, but in that
case F and J cannot be merged. Rows C and J can be merged, or G and J can be merged.
We will choose to merge the rows A and F into a new row called A and rows G and J into
a new row G. The merger choice is indicated in blue in the diagram. The resultant flow
table is shown in Figure 9.35. To see whether this table offers any further opportunities

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� F C – 0

B A B� – H 1

C G – C� D 0

D – F – D� 1

E G – E� D 1

F – F� – H 0

G G� B J – 0

H – B E H� 1

J G – J� – 0

Figure 9.33 Reduction obtained by using the partitioning
procedure.

June 10, 2002 11:09 vra23151_ch09 Sheet number 36 Page number 562 black

562 C H A P T E R 9 • Asynchronous Sequential Circuits

GF

A

J

C

E

D

H

B

Figure 9.34 Merger diagram for Figure 9.33.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� A� C B 0

B A B� D B� 1

C G – C� D 0

D G A D� D� 1

G G� B G� – 0

Figure 9.35 Reduction obtained from the merger diagram in
Figure 9.34.

for merging, we can construct the merger diagram in Figure 9.36. From this diagram it is
apparent that rows C and G can be merged; let the new row be called C. This leads to the
flow table in Figure 9.37, which cannot be reduced any more.

Example 9.9 Consider the flow table in Figure 9.38. Applying the partitioning procedure to this table
gives

P1 = (AFK)(BJ)(CG)(D)(E)(H)

P2 = (A)(FK)(BJ)(C)(G)(D)(E)(H)

P3 = P2

Combining B and J into a new state B, and F and K into F , gives the flow table in Figure
9.39.

June 10, 2002 11:09 vra23151_ch09 Sheet number 37 Page number 563 black

9.4 State Reduction 563

CB D GA

Figure 9.36 Merger diagram for Figure 9.35.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� A� C B 0

B A B� D B� 1

C C� B C� D 0

D C A D� D� 1

Figure 9.37 Reduced flow table for Example 9.8.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� G E – 0

B K – B� D 0

C F C� – H 1

D – C E D� 0

E A – E� D 1

F F� C J – 0

G K G� – D 1

H – – E H� 1

J F – J� D 0

K K� C B – 0

Figure 9.38 Flow table for Example 9.9.

June 10, 2002 11:09 vra23151_ch09 Sheet number 38 Page number 564 black

564 C H A P T E R 9 • Asynchronous Sequential Circuits

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� G E – 0

B F – B� D 0

C F C� – H 1

D – C E D� 0

E A – E� D 1

F F� C B – 0

G F G� – D 1

H – – E H� 1

Figure 9.39 Reduction resulting from the partitioning procedure.

Figure 9.40a gives a merger diagram for this flow table, indicating the possibilities for
merger if the Moore model of the FSM is to be preserved. In this case B and F can be
merged, as well as C and H , resulting in a six-row flow table.

Next we should consider the merging possibilities if we are willing to change to the
Mealy model. When going from the Moore model to the Mealy model, a stable state in
the Mealy model must generate the same output as it had in the Moore model. It is also
important to ensure that transitions in the Mealy model will not produce undesirable glitches
in the output signal.

Figure 9.41 indicates how the FSM of Figure 9.39 can be represented in the Mealy
form. The next-state entries are unchanged. In Figure 9.41, for each stable state the output
value must be the same as for the corresponding row of the Moore-type table. For example,
z = 0 when the state A is stable under w2w1 = 00. Also, z = 0 when the states B, D, and F
are stable under w2w1 = 10, 11, and 00, respectively. Similarly, z = 1 when C, E, G, and
H are stable under w2w1 = 01, 10, 01, and 11, respectively. If a transition from one stable
state to another requires the output to change from 0 to 1, or from 1 to 0, then the exact
time when the change takes place is not important, as we explained in section 9.1 when
discussing Figure 9.3. For instance, suppose that the FSM is stable in A under w2w1 = 00,
producing z = 0. If the inputs then change to w2w1 = 01, a transition to state G must be
made, where z = 1. Since it is not essential that z becomes 1 before the circuit reaches
the state G, the output entry in row A that corresponds to this transition can be treated as
a don’t care; therefore, it is left unspecified in the table. From the stable state A, it is also
possible to change to E, which allows specifying another don’t care because z changes from
0 to 1. A different situation arises in row B. Suppose that the circuit is stable in B under
w2w1 = 10 and that the inputs change to 11. This has to cause a change to stable state D,
and z must remain at 0 throughout the change in states. Hence the output in row B under
w2w1 = 11 is specified as 0. If it were left unspecified, to be used as a don’t care, then it is

June 10, 2002 11:09 vra23151_ch09 Sheet number 39 Page number 565 black

9.4 State Reduction 565

DB CA

EF HG

(a) Preserving the Moore model

GH CA

BD FE

(b) Complete merger diagram

Figure 9.40 Merger diagrams for Figure 9.39.

possible that in the implementation of the circuit this don’t care may be treated as a 1. This
would cause a glitch in z, which would change 0→ 1→ 0 as the circuit moves from B to
D when the inputs change from 10 to 11. The same situation occurs for the transition from
B to F when the inputs change from 10 to 00. We can use the same reasoning to determine
other output entries in Figure 9.41.

From Figure 9.41 we can derive the merger diagram in Figure 9.40b. The blue lines
connect the rows that can be merged only by specifying the output in the Mealy style. The
black lines connect the rows that can be merged even if the outputs are of Moore type;
they correspond to the diagram in Figure 9.40a. Choosing the subsets of compatible states
(A, H), (B, G), (C, F), and (D, E), the FSM can be represented using only four states.
Merging the states A and H into a new state A, states B and G into B, states C and F into
C, and D and E into D, we obtain the reduced flow table in Figure 9.42. Each entry in this
table meets the requirements specified in the corresponding rows that were merged.

June 10, 2002 11:09 vra23151_ch09 Sheet number 40 Page number 566 black

566 C H A P T E R 9 • Asynchronous Sequential Circuits

Present Next state Output z

state w2w1 = 00 01 10 11 00 01 10 11

A A� G E – 0 – – –

B F – B� D 0 – 0 0

C F C� – H – 1 – 1

D – C E D� – – – 0

E A – E� D – – 1 –

F F� C B – 0 – 0 –

G F G� – D – 1 – –

H – – E H� – – 1 1

Figure 9.41 The FSM of Figure 9.39 specified in the form of the
Mealy model.

Present Next state Output z

state w2w1 = 00 01 10 11 00 01 10 11

A A� B D A� 0 – 1 1

B C B� B� D 0 1 0 0

C C� C� B A 0 1 0 1

D A C D� D� – – 1 0

Figure 9.42 Reduced flow table for Example 9.9.

Example 9.10 As another example consider the flow table in Figure 9.43. The partitioning procedure gives

P1 = (AF)(BEG)(C)(D)(H)

P2 = (AF)(BE)(G)(C)(D)(H)

P3 = P2

Replacing state F with A, and state E with B, results in the flow table in Figure 9.44. The
corresponding merger diagram is presented in Figure 9.45. It is apparent that states A, B,

June 10, 2002 11:09 vra23151_ch09 Sheet number 41 Page number 567 black

9.4 State Reduction 567

and C can be merged and replaced with a new state A. Also D, G, and H can be merged
into a new state D. The result is the reduced flow table in Figure 9.46, which has only two
rows. Again we have used the Mealy model because the merged stable states D and H have
z = 1 while G has z = 0.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C – 0

B F B� – H 0

C F – C� H 0

D D� G C – 1

E A E� – H 0

F F� E C – 0

G D G� – H 0

H – G C H� 1

Figure 9.43 Flow table for Example 9.10.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C – 0

B A B� – H 0

C A – C� H 0

D D� G C – 1

G D G� – H 0

H – G C H� 1

Figure 9.44 Reduction after the partitioning procedure.

June 10, 2002 11:09 vra23151_ch09 Sheet number 42 Page number 568 black

568 C H A P T E R 9 • Asynchronous Sequential Circuits

H

B

C

G

D

A

Figure 9.45 Merger diagram for Figure 9.44.

Present Next state Output z

state w2w1 = 00 01 10 11 00 01 10 11

A A� A� A� D 0 0 0 –

D D� D� A D� 1 0 – 1

Figure 9.46 Reduced flow table for Example 9.10.

9.5 State Assignment

The examples in section 9.3 illustrate that the state assignment task for asynchronous FSMs
is complex. The time needed to change the value of a state variable depends on the propa-
gation delays in the circuit. Thus it is impossible to ensure that a change in the values of two
or more variables will take place at exactly the same time. To achieve reliable operation of
the circuit, the state variables should change their values one at a time in controlled fashion.
This is accomplished by designing the circuit such that a change from one state to another
entails a change in one state variable only.

States in FSMs are encoded as bit strings that represent different valuations of the state
variables. The number of bit positions in which two given bit strings differ is called the
Hamming distance between the strings. For example, for bit strings 0110 and 0100 the
Hamming distance is 1, while for 0110 and 1101 it is 3. Using this terminology, an ideal
state assignment has a Hamming distance of 1 for all transitions from one stable state to
another. When the ideal state assignment is not possible, an alternative that makes use of
unspecified states and/or transitions through unstable states must be sought. Sometimes it
is necessary to increase the number of state variables to provide the needed flexibility.

June 10, 2002 11:09 vra23151_ch09 Sheet number 43 Page number 569 black

9.5 State Assignment 569

Example 9.11Consider the parity-generating FSM in Figure 9.13. Two possible state assignments for this
FSM are given in Figure 9.14. The transitions between states, as specified in Figure 9.13b,
can be described in pictorial form as shown in Figure 9.47. Each row of the flow table is
represented by a point. The four points needed to represent the rows are placed as vertices
of a square. Each vertex has an associated code that represents a valuation of the state
variables, y2y1. The codes shown in the figure, with y2y1 = 00 in the lower-left corner and
so on, correspond to the coordinates of the two-dimensional cube presented in section 4.8.
Figure 9.47a shows what happens if the state assignment in Figure 9.14a is used; namely,
if A = 00, B = 01, C = 10, and D = 11. There is a transition from A to B if w = 1, which
requires a change in y1 only. A transition from C to D occurs if w = 1, which also requires
a change in y1 only. However, a transition from B to C caused by w = 0 involves a change
in the values of both y2 and y1. Similarly, both state variables must change in going from
D to A if w = 0. A change in both variables corresponds to a diagonal path in the diagram.

Figure 9.47b shows the effect of the state assignment in Figure 9.14b, which reverses
the valuations assigned to C and D. In this case all four transitions are along the edges
of the two-dimensional cube, and they involve a change in only one of the state variables.
This is the desirable state assignment.

(a) Corresponding to Figure 9.14a

(b) Corresponding to Figure 9.14b

C 10= D 11=

A 00= B 01=

w 0=w 0=

w 1=

w 1=

D 10= C 11=

A 00= B 01=

w 0= w 0=

w 1=

w 1=

Figure 9.47 Transitions in Figure 9.13.

June 10, 2002 11:09 vra23151_ch09 Sheet number 44 Page number 570 black

570 C H A P T E R 9 • Asynchronous Sequential Circuits

Example 9.12 The flow table for an arbiter FSM is given in Figure 9.21a. Transitions for this FSM are
shown in Figure 9.48a, using the state assignment A = 00, B = 01, and C = 10. In
this case multiple transitions are possible between the states. For example, there are two
transitions between A and B: from B to A if r2r1 = 00 and from A to B if r2r1 = 01. Again
there is a diagonal path, corresponding to transitions between B and C, which should be
avoided. A possible solution is to introduce a fourth state, D, as indicated in Figure 9.48b.
Now the transitions between B and C can take place via the unstable state D. Thus instead
of going directly from B to C when r2r1 = 10, the circuit will go first from B to D and then
from D to C.

Using the arrangement in Figure 9.48b requires modifying the flow table as shown
in Figure 9.49. The state D is not stable for any input valuation. It cannot be reached if
r2r1 = 00 or 11; hence these entries are left unspecified in the table. Also observe that we
have specified the output g2g1 = 10 for state D, rather than leaving it unspecified. When
a transition from one stable state to another takes place via an unstable state, the output of
the unstable state must be the same as the output of one of the two stable states involved

(a) Transitions in Figure 9.21 a

(b) Using the extra state D

C 10=

A 00= B 01=

00
10

01

01

C 10= D 11=

A 00= B 01=

00 10

10

01

01

0110

10

00

00

Figure 9.48 Transitions for the arbiter FSM in Figure 9.21.

June 10, 2002 11:09 vra23151_ch09 Sheet number 45 Page number 571 black

9.5 State Assignment 571

Present Next state Output
state r2r1 = 00 01 10 11 g2g1

A A� B C – 00

B A B� D B� 01

C A D C� C� 10

D – B C – 10

Figure 9.49 Modified flow table based on the transitions in
Figure 9.48b.

in the transition to ensure that a wrong output is not generated while passing through the
unstable state.

It is interesting to compare this flow table with the excitation table in Figure 9.21b,
which is also based on using the extra state D. In Figure 9.21b the state D specifies the
necessary transitions should the circuit accidentally find itself in this state as a result of a
race in changing the values of both state variables. In Figure 9.49 the state D is used in
orderly transitions, which are not susceptible to any race conditions.

9.5.1 Transition Diagram

A diagram that illustrates the transitions specified in a flow table is called a transition dia-
gram. In some books such diagrams are called state-adjacency diagrams. These diagrams
provide a convenient aid in searching for a suitable state assignment.

A good state assignment results if the transition diagram does not have any diagonal
paths. A general way of stating this requirement is to say that it must be possible to embed
the transition diagram onto a k-dimensional cube, because in a cube all transitions between
adjacent vertices involve the Hamming distance of 1. Ideally, a transition diagram for an
FSM with n state variables can be embedded onto an n-dimensional cube, as is the case in
the examples in Figures 9.47b and 9.48b. If this is not possible, then it becomes necessary
to introduce additional state variables, as we will see in later examples.

The diagrams in Figures 9.47 and 9.48 present all information pertinent to transitions
between the states in the given FSMs. For larger FSMs such diagrams take on a cluttered
appearance. A simpler form can be used instead, as described below.

A transition diagram has to show the state transitions for each valuation of the input
variables. The direction of a transition, for example from A to B or from B to A, is not
important, because it is only necessary to ensure that all transitions involve the Hamming
distance of 1. The transition diagram has to show the effect of individual transitions into
each stable state, which may involve passing through unstable states. For a given row of a

June 10, 2002 11:09 vra23151_ch09 Sheet number 46 Page number 572 black

572 C H A P T E R 9 • Asynchronous Sequential Circuits

flow table, it is possible to have two or more stable-state entries for different input valuations.
It is useful to identify the transitions leading into these stable states with distinct labels in a
transition diagram. To give each stable-state entry a distinct label, we will denote the stable-
state entries with numbers 1, 2, 3, · · · . Thus if state A is stable for two input valuations, we
will replace the label A with 1 for one input valuation and with 2 for the other valuation.

Figure 9.50 shows a relabeled version of the flow table in Figure 9.21a. We have
arbitrarily chosen to label �A as 1, the two appearances of �B as 2 and 3, and the two
appearances of �C as 4 and 5. All entries in each next-state column are labeled using this
scheme. The transitions identified by these labels are presented in Figure 9.51a. The same
information is given in Figure 9.48a. Actually, the diagram in Figure 9.48a contains more
information because arrowheads show the direction of each transition. Note also that the
edges in that diagram are labeled with input values r2r1, whereas the edges in Figure 9.51a
are labeled with numerical stable-state labels as explained above.

Figure 9.50 indicates that the stable state 2, which is one instance of the stable state
B, can be reached either from state A or from state C. There is a corresponding label 2 on
the paths connecting the vertices in the diagram in Figure 9.51a. The difficulty from the
state-assignment point of view is that the path from C to B is diagonal. In Example 9.12
this problem was resolved by introducing a new state D. By examining the flow table in
Figure 9.50 more closely, we can see that the functional behavior of the required arbiter
FSM can be achieved if the transition from C to B takes place via state A. Namely, if the
circuit is stable in C, then the input r2r1 = 01 can cause the change to A, from which the
circuit immediately proceeds to state B. We can indicate the possibility of using this path
by placing the label 2 on the edge that connects C and A in Figure 9.51a.

Asimilar situation exists for the transition from B to C, which is labeled 4. An alternative
path can be realized by causing the circuit to go from state B to state A if r2r1 = 10 and
then immediately proceed to C. This can be indicated by placing the label 4 on the edge
that connects B and A in Figure 9.51a.

A possibility of having an alternative path for a transition exists whenever two states
have the same uncircled label in the relabeled flow diagram. In Figure 9.50 there is a
third such possibility if r2r1 = 00, using the label 1. This possibility is not useful because
changing from either B or C to A involves a change in only one state variable using the
state assignment in Figure 9.51a. Hence there would be no benefit in having a transition
between B and C for this input valuation.

Present Next state Output
state r2r1 = 00 01 10 11 g2g1

A 1� 2 4 – 00

B 1 2� 4 3� 01

C 1 2 4� 5� 10

Figure 9.50 Relabeled flow table of Figure 9.21a.

June 10, 2002 11:09 vra23151_ch09 Sheet number 47 Page number 573 black

9.5 State Assignment 573

(a) Transitions in Figure 9.50

(b) Complete transition diagram

C 10=

A 00= B 01=1 2,

1 4, 2 4,

C 10=

A 00= B 01=1 2 4, ,

1 4 2, , 2 4 1, ,

(c) Selected transition diagram

C 10=

A 00= B 01=1 2 4, ,

1 4 2, ,

Figure 9.51 Transition diagrams for Figure 9.50.

To depict the possibility of having alternative paths, we will indicate in blue the cor-
responding transitions on the diagram. Thus a complete transition diagram will show all
direct transitions to stable states in black and possible indirect transitions through unstable
states in blue. Figure 9.51b shows the complete transition diagram for the flow table in
Figure 9.21a.

June 10, 2002 11:09 vra23151_ch09 Sheet number 48 Page number 574 black

574 C H A P T E R 9 • Asynchronous Sequential Circuits

The transition diagram in Figure 9.51b cannot be embedded on the two-dimensional
cube, because some transitions require a diagonal path. The blue label 1 on the path between
B and C is of no concern, because it represents only an alternative path that does not have
to be used. But the transitions between B and C labeled 2 and 4 are required. The diagram
shows an alternative path, through A, having the labels 2 and 4. Therefore, the alternative
path can be used, and the diagonal connection in the diagram can be eliminated. This leads
to the transition diagram in Figure 9.51c, which can be embedded on the two-dimensional
cube. The conclusion is that the state assignment A = 00, B = 01, and C = 10 is good,
but the flow table must be modified to specify the transitions through alternative paths.
The modified table is the same as the flow table designed earlier using an ad hoc approach,
shown in Figure 9.23a.

As a final comment on this example, note the impact of alternative paths on the outputs
produced by the FSM. If r2r1 = 01, then a change from a stable state C through unstable A
to stable B generates the outputs g2g1 = 10→ 00→ 01, rather than 10→ 01 as specified
in Figure 9.21a. For the arbiter FSM this presents no problem, as explained in Example
9.6.

Procedure for Deriving Transition Diagrams
The transition diagram is derived from a flow table as follows:

• Derive the relabeled flow table as explained above. For a given input valuation, all
transitions that lead to the same stable state are labeled with the same number. Tran-
sitions through unstable states that eventually lead to a stable state are given the same
number as the stable-state entry.

• Represent each row of the flow table by a vertex.
• Join two vertices, Vi and Vj, by an edge if they have the same number in any column

of the relabeled flow table.
• For each column in which Vi and Vj have the same number, label the edge between

Vi and Vj with that number. We will use black labels for direct transitions to circled
(stable) states and blue labels when the next-state entries for both Vi and Vj in the flow
table are uncircled.

Note that the first point says that in the relabeled flow table the transitions through unstable
states are given the label of the stable state to which they lead for a given input valuation.
For example, to derive a transition diagram starting from the flow table in Figure 9.23a,
the table would be relabeled to give the table in Figure 9.50. The transition from stable A
to stable B, when r2r1 = 01, has the label 2. The same label is given to the transition from
stable C to unstable A because this transition ultimately leads to stable B.

9.5.2 Exploiting Unspecified Next-State Entries

Unspecified entries in a flow table provide some flexibility in finding good state assignments.
The following example presents a possible approach. The example also illustrates all steps
in the derivation of a transition diagram.

June 10, 2002 11:09 vra23151_ch09 Sheet number 49 Page number 575 black

9.5 State Assignment 575

Example 9.13Consider the flow table in Figure 9.52a. This FSM has seven stable-state entries. Labeling
these entries in order, from 1 to 7, results in the table in part (b) of the figure. In this case
states 1 and 2 correspond to state A, 3 and 4 to state B, 5 and 6 to state C, and 7 to state
D. In the column w2w1 = 00 there is a transition from C to A, which is labeled 1, and a
transition from D to B, which is labeled 3, because 1 and 3 are the successor stable states
in these transitions. Similarly, in column 11 there are transitions from B to C and from D
to A, which are labeled 6 and 2, respectively. In column 01 there is a transition from A to
B, which is labeled 4. State C is stable for this input valuation; it is labeled 5. There is no
transition specified that leads to this stable state. The state can be reached only if C is stable
under w2w1 = 11, which is labeled 6, and then the inputs change to w2w1 = 01. Note that
the FSM remains stable in C if the inputs change from 11 to 01, or vice versa. Column
10 illustrates how unstable states are treated. From the stable state A, a transition to the
unstable state C is specified. As soon as the FSM reaches state C, it proceeds to change to
the stable state D, which is labeled 7. Thus 7 is used as the label for the entire transition
sequence from A to C to D.

Taking rows A, B, C, and D as the four vertices, a first attempt at drawing the transition
diagram is given in Figure 9.53a. The diagram shows transitions between all pairs of states,

Present Next state Output
state w2w1 = 00 01 10 11 z2z1

A A� B C A� 00

B B� B� D C 01

C A C� D C� 10

D B – D� A 11

(a) Flow table

Present Next state Output
state w2w1 = 00 01 10 11 z2z1

A 1� 4 7 2� 00

B 3� 4� 7 6 01

C 1 5� 7 6� 10

D 3 – 7� 2 11

(b) Relabeled flow table

Figure 9.52 Flow tables for Example 9.13.

June 10, 2002 11:09 vra23151_ch09 Sheet number 50 Page number 576 black

576 C H A P T E R 9 • Asynchronous Sequential Circuits

(a) First transition diagram

(b) Second transition diagram

D 10=

A 00= B 01=4 7,

2 7, 6 7,

(c) Augmented transition diagram

C 11=

1 7,

3 7,

7

D 10=

A 00= C 01=1 7,

2 7, 6 7,

B 11=

4 7,

7

3 7,

D 10=

A 00= C 01=1 7,

2 7 4, , 6 7,

B 11=3 7 4, ,

Figure 9.53 Transition diagrams for Figure 9.52.

which seems to suggest that it is impossible to have a state assignment where all transitions
are characterized by a Hamming distance of 1. If the state assignment A = 00, B = 01,
C = 11, and D = 10 is used, then the diagonal transition between A and C, or B and D,
requires both state variables to change their values. The diagonal path from B to D with
the label 7 is not needed, because an alternative path from B to D exists under label 7 that
passes either through state A or through state C. Unfortunately, the diagonal paths labeled
1 and 3 cannot be removed, because there are no alternative paths for these transitions.

June 10, 2002 11:09 vra23151_ch09 Sheet number 51 Page number 577 black

9.5 State Assignment 577

As the next attempt at finding a suitable state assignment, we will reverse the codes
given to B and C, which yields the transition diagram in Figure 9.53b. Now the same
argument about the alternative paths labeled 7 indicates that the diagonal from C to D can
be omitted. Also, the label 7 on the diagonal between A and B can be omitted. However, this
diagonal must remain because of the label 4 for which there is no alternative path between A
and B. Looking at the flow table in Figure 9.52b, we see an unspecified entry in the column
w2w1 = 01. This entry can be exploited by replacing it with the label 4, in which case the
transition graph would show the label 4 on the edges connecting A and D, as well as B and
D. Thus the diagonal between A and B could be removed, producing the transition diagram
in Figure 9.53c. This diagram can be embedded on a two-dimensional cube, which means
that the state assignment A = 00, B = 11, C = 01, and D = 10 can be used.

For the transition diagram in Figure 9.53c to be applicable, the flow table for the FSM
must be modified as shown in Figure 9.54a. The unspecified entry in Figure 9.52a now
specifies a transition to state B. According to Figure 9.53c, the change from state A to B
under input valuation w2w1 = 01 must pass through state D; hence the corresponding entry
in the first row is modified to ensure that this will take place. Also, when w2w1 = 10, the

Present Next state Output z2z1

state w2w1 = 00 01 10 11 00 01 10 11

A A� D D A� 00 00 11 00

B B� B� D C 01 01 11 01

C A C� B C� – 0 10 1– 10

D B B D� A – 1 0– 11 00

(a) Modified flow table

Present Next state Output

state w2w1 = 00 01 10 11 00 01 10 11
y2 y1 Y2Y1 z2z1

A 00 0�0 10 10 0�0 00 00 11 00

B 11 1�1 1�1 10 01 01 01 11 01

C 01 00 0�1 11 0�1 – 0 10 1– 10

D 10 11 11 1�0 00 – 1 0– 11 00

(b) Excitation table

Figure 9.54 Realization of the FSM in Figure 9.52a.

June 10, 2002 11:09 vra23151_ch09 Sheet number 52 Page number 578 black

578 C H A P T E R 9 • Asynchronous Sequential Circuits

FSM must go to state D. If it happens to be in state C, then this change has to occur either
via state A or state B. We have chosen the path via state B in Figure 9.54a.

The original flow table in Figure 9.52a is defined in the form of the Moore model.
The modified flow table in Figure 9.54a requires the use of the Mealy model because
the previously described transitions through unstable states must produce correct outputs.
Consider first the change from A if w2w1 = 01. While stable in state A, the circuit must
produce the output z2z1 = 00. Upon reaching the stable state B, the output must become
01. The problem is that this transition requires a short visit to state D, which in the Moore
model would produce z2z1 = 11. Thus a glitch would be generated on the output signal z2,
which would undergo the change 0→ 1→ 0. To avoid this undesirable glitch, the output
in state D must be z2 = 0 for this input valuation, which requires the use of the Mealy model
as shown in the Figure 9.54a. Observe that while z2 must be 0 in D for w2w1 = 01, z1 can
be either 0 or 1 because it is changing from 0 in state A to 1 in state B. Therefore, z1 can be
left unspecified so that this case can be treated as a don’t-care condition. A similar situation
arises when the circuit changes from C to D via B if w2w1 = 10. The output must change
from 10 to 11, which means that z2 must remain at 1 throughout this change, including the
short time in state B where the Moore model output would be 01.

The modified flow table and the chosen state assignment lead to the excitation table in
Figure 9.54b. From this table the next-state and output expressions are derived, as in the
examples in section 9.3.

9.5.3 State Assignment Using Additional State Variables

In Figure 9.52a there is an unspecified transition that can be exploited to find a suitable
state assignment, as shown in section 9.5.2. In general, such flexibility may not exist. It
may be impossible to find a race-free state assignment using log2n state variables for a flow
table that has n rows. The problem can be solved by adding extra state variables. This can
be done in three ways, as illustrated in the examples that follow.

Example 9.14 USING EXTRA UNSTABLE STATES Consider the FSM specified by the flow table in Figure
9.55a. The flow table is relabeled in part (b) of the figure. A corresponding transition
diagram is depicted in Figure 9.56a. It indicates that there are transitions between all pairs
of vertices (rows). No rearrangement of the existing vertices would allow mapping of the
transition diagram onto a two-dimensional cube.

Let us now introduce one more state variable so that we can look for a way to map the
transition diagram onto a three-dimensional cube. With three state variables the assignment
for state A can be a Hamming distance of 1 different from the assignments for B, C, and
D. For example, we could have A = 000, B = 001, C = 100, and D = 010. But it
would then be impossible to have the pairs (B, C), (B, D), and (C, D) within the Hamming
distance of 1. The solution here is to insert extra vertices in the transition paths, as shown in
Figure 9.56b. Vertex E separates B from D, while vertices F and G break the paths (B, C)

and (C, D). The labels associated with the transitions are attached to both segments of a

June 10, 2002 11:09 vra23151_ch09 Sheet number 53 Page number 579 black

9.5 State Assignment 579

Present Next state Output
state w2w1 = 00 01 10 11 z2z1

A A� A� C B 00

B A B� D B� 01

C C� B C� D 10

D C A D� D� 11

(a) Flow table

Present Next state Output
state w2w1 = 00 01 10 11 z2z1

A 1� 2� 6 4 00

B 1 3� 7 4� 01

C 5� 3 6� 8 10

D 5 2 7� 8� 11

(b) Relabeled flow table

Figure 9.55 FSM for Example 9.14.

broken path. The resulting transition diagram can be embedded onto a three-dimensional
cube as indicated in Figure 9.56c, where the black portion of the cube comprises the desired
paths. Now the transition from B to D takes place via vertex E if w2w1 = 10 (label 7). The
transition from C to B occurs via F if w2w1 = 01 (label 3). The transition from C to D goes
through G if w2w1 = 11 (label 8), and the transition from D to C goes via G if w2w1 = 00
(label 5). Therefore, the flow table has to be modified as shown in Figure 9.57a. The three
extra states are unstable because the circuit will not remain in these states for any valuation
of the inputs. The circuit will merely pass through these states in the process of changing
from one stable state to another. Observe that each of the states E, F , and G is needed
to facilitate the transitions caused by only one or two valuations of inputs. Thus it is not
necessary to specify the actions that might be caused by other input valuations, because
such situations will never occur in a properly functioning circuit.

The outputs in Figure 9.57a can be specified using the Mealy model. It is essential
that a proper output is generated when passing through unstable states, to avoid undesirable
glitches in the output signals.

If we assign the state variables as shown on the right of Figure 9.56c, the modified flow
table leads to the excitation table in Figure 9.57b. From this table, deriving the next-state
and output expressions is a straightforward task.

June 10, 2002 11:09 vra23151_ch09 Sheet number 54 Page number 580 black

580 C H A P T E R 9 • Asynchronous Sequential Circuits

(a) Transition diagram

(b) Augmented transition diagram

A

D C5 8,

2 3

(c) Embedded transition diagram

B

76

1 4,

A

D C5 8,

2

3

B

76

1 4,

5 8,

3

7

G

E

D

A B

E

FC

G

7

5 8,

1 4,
3

3
2

7

y2

y3

y1

F

6

5 8,

Figure 9.56 Transition diagrams for Figure 9.55.

Example 9.15 USING PAIRS OF EQUIVALENT STATES Another approach is to increase the flexibility in
state assignment by introducing an equivalent new state for each existing state. Thus state
A can be replaced with two states A1 and A2 such that the final circuit produces the same
outputs for A1 and A2 as it would for A. Similarly, other states can be replaced by equivalent
pairs of states. Figure 9.58 shows how a three-dimensional cube can be used to find a good

June 10, 2002 11:09 vra23151_ch09 Sheet number 55 Page number 581 black

9.5 State Assignment 581

Present Next state Output
state w2w1 = 00 01 10 11 z2z1

A A� A� C B 00

B A B� E B� 01

C C� F C� G 10

D G A D� D� 11

E – – D – – 1

F – B – – 01

G C – – D 1–

(a) Modified flow table

Present Next state

state w2w1 = 00 01 10 11 Output

y3 y2 y1 Y3Y2Y1
z2z1

A 000 000 000 100 001 00

B 001 000 001 011 001 01

C 100 100 101 100 110 10

D 010 110 000 010 010 11

E 011 – – 010 – – 1

F 101 – 001 – – 01

G 110 100 – – 010 1–

(b) Excitation table

� �
� �

�
� �

�

Figure 9.57 Modified tables for Example 9.14.

state assignment for a four-row flow table. The four equivalent pairs are arranged so that the
minimum Hamming distance of 1 exists between all pairs. For example, the pair (B1, B2)

has the Hamming distance of 1 with respect to A1 (or A2), C2, and D2.
The transition diagram in Figure 9.56a can be embedded onto the three-dimensional

cube as shown in Figure 9.58. Since there is a choice of two vertices on the cube for each

June 10, 2002 11:09 vra23151_ch09 Sheet number 56 Page number 582 black

582 C H A P T E R 9 • Asynchronous Sequential Circuits

B 1

A 1 A 2

B 2

D 1C 1

C 2

1 4,

5 8,

2

5 8,
1 4,

7

y2

y3

y1

D 2

6

3

Figure 9.58 Embedded transition diagram if two nodes per row
are used.

vertex in the transition diagram in Figure 9.56a, the embedded transition diagram does
not involve any diagonal paths. Using this assignment of states, the flow table in Figure
9.55a has to be modified as presented in Figure 9.59a. The entries in the table are made
to allow each transition in the original flow table to be realized using a transition between
the corresponding pairs of equivalent states. Both states in an equivalent pair are stable
for the input valuations for which the original state is stable. Thus A1 and A2 are stable if
w2w1 = 00 or 01, B1 and B2 are stable if w2w1 = 01 or 11, and so on. At any given time
the FSM may be in either of the two equivalent states that represent an original state. Then
a change to another state must be possible from either of these states. For example, Figure
9.55a specifies that the FSM must change from the stable state A to state B if the input is
w2w1 = 11. The equivalent transition in the modified flow table is the change from state
A1 to B1 or from state A2 to B2. If the FSM is stable in A and the input changes from 00
to 10, then a change to C is required. The equivalent transition in the modified flow table
is from state A1 to C1; if the FSM happens to be in state A2, it will first have to change to
A1. The remaining entries in Figure 9.59a are derived using the same reasoning.

The outputs are specified using the Moore model, because the only unstable states are
those involved in changing from one member of the equivalent pair to another, and both
members generate the same outputs. For instance, in the previously described transition
from A to C, if the starting point is A2, it is necessary to go first to A1 and then to C1. Even
though A1 is unstable for w2w1 = 10, there is no problem because its output is the same as
that of A2. Therefore, if the original flow table is defined using the Moore model, then the
modified flow table can also be done using the Moore model.

Using the assignment of the state variables in Figure 9.58 gives the excitation table in
Figure 9.59b.

9.5.4 One-Hot State Assignment

The previously described schemes based on embedding the flow table in a cube may lead
to an optimal state assignment, but they require a trial-and-error approach that becomes
awkward for large machines. A straightforward, but more expensive, alternative is to use

June 10, 2002 11:09 vra23151_ch09 Sheet number 57 Page number 583 black

9.5 State Assignment 583

Present Next state Output
state w2w1 = 00 01 10 11 z2z1

A1 A1 A1 C1 B1 00

A2 A2 A2 A1 B2 00

B1 A1 B1 B2 B1 01

B2 A2 B2 D2 B2 01

C1 C1 C2 C1 D1 10

C2 C2 B1 C2 D2 11

D1 C1 A2 D1 D1 11

D2 C2 D1 D2 D2 11

(a) Modified flow table

Present Next state

state w2w1 = 00 01 10 11 Output

y3 y2 y1 Y3Y2Y1
z2z1

A1 000 000 000 100 010 00

A2 001 001 001 000 011 00

B1 010 000 010 011 010 01

B2 011 001 011 111 011 01

C1 100 100 110 100 101 10

C2 110 110 010 110 111 10

D1 101 100 001 101 101 11

D2 111 110 101 111 111 11

(b) Excitation table

� �

� �
�
�
�

�
�

�

�

� �
�
�

� �

�

� �
�
�

�
�

�

� �
� �

�
��

Figure 9.59 Modified flow and excitation tables for Example 9.15.

June 10, 2002 11:09 vra23151_ch09 Sheet number 58 Page number 584 black

584 C H A P T E R 9 • Asynchronous Sequential Circuits

State Present Next state Output
assignment State w2w1 = 00 01 10 11 z2z1

0001 A A� A� E F 00

0010 B F B� G B� 01

0100 C C� H C� I 10

1000 D I J D� D� 11

0101 E – – C – – 0

0011 F A – – B 0–

1010 G – – D – −1

0110 H – B – – 01

1100 I C – – D 1–

1001 J – A – – 00

Figure 9.60 State assignment with one-hot encoding.

one-hot codes. If each row in the flow table of an FSM is assigned a one-hot code, then
race-free state transitions can be achieved by passing through unstable states that are at a
Hamming distance of 1 from the two stable states involved in the transition. For example,
suppose that state A is assigned the code 0001 and state B the code 0010. Then a race-free
transition from A to B can pass through an unstable state 0011. Similarly, if C is assigned
the code 0100, then a transition from A to C can be done via the unstable state 0101.

Using this approach, the flow table in Figure 9.55a can be modified as illustrated in
Figure 9.60. The four states, A, B, C, and D, are assigned one-hot codes. As seen in the
figure, it is necessary to introduce six unstable states, E through J , to handle the necessary
transitions. These unstable states have to be specified only for the specific transitions,
whereas for other input valuations they may be treated as don’t cares.

The outputs can be specified using the Moore model. In some cases it does not matter
when a particular output signal changes its value. For instance, state E is used to facilitate
the transition from state A to C. Since z2z1 = 00 in A and 10 in C, it is not important if z2

changes when passing through state E.
While straightforward to implement, the one-hot encoding is expensive because it

requires n state variables to implement an n-row flow table. Simplicity of design and the
cost of implementation often provide a challenging trade-off in designing logic circuits!

9.6 Hazards

In asynchronous sequential circuits it is important that undesirable glitches on signals should
not occur. The designer must be aware of the possible sources of glitches and ensure that
the transitions in a circuit will be glitch free. The glitches caused by the structure of a given

June 10, 2002 11:09 vra23151_ch09 Sheet number 59 Page number 585 black

9.6 Hazards 585

1 1→ 0 0→

1 0→ 0 1→

(a) Static hazard

(b) Dynamic hazard

1

0

1

0

Figure 9.61 Definition of hazards.

circuit and propagation delays in the circuit are referred to as hazards. Two types of hazards
are illustrated in Figure 9.61.

A static hazard exists if a signal is supposed to remain at a particular logic value when
an input variable changes its value, but instead the signal undergoes a momentary change
in its required value. As shown in Figure 9.61a, one type of static hazard is when the signal
at level 1 is supposed to remain at 1 but dips to 0 for a short time. Another type is when the
signal is supposed to remain at level 0 but rises momentarily to 1, thus producing a glitch.

A different type of hazard may occur when a signal is supposed to change from 1 to 0
or from 0 to 1. If such a change involves a short oscillation before the signal settles into its
new level, as illustrated in Figure 9.61b, then a dynamic hazard is said to exist.

9.6.1 Static Hazards

Figure 9.62a shows a circuit with a static hazard. Suppose that the circuit is in the state
where x1 = x2 = x3 = 1, in which case f = 1. Now let x1 change from 1 to 0. Then the
circuit is supposed to maintain f = 1. But consider what happens when the propagation
delays through the gates are taken into account. The change in x1 will probably be observed
at point p before it will be seen at point q because the path from x1 to q has an extra gate
(NOT) in it. Thus the signal at p will become 0 before the signal at q becomes equal to 1.
For a short time both p and q will be 0, causing f to drop to 0 before it recovers back to 1.
This gives rise to the signal depicted on the left side of Figure 9.61a.

The glitch on f can be prevented as follows. The circuit implements the function

f = x1x2 + x1x3

The corresponding Karnaugh map is given in Figure 9.62b. The two product terms realize
the prime implicants encircled in black. The hazard explained above occurs when there
is a transition from the prime implicant x1x2 to the prime implicant x1x3. The hazard can
be eliminated by including the third prime implicant, encircled in blue. Then the function
would be implemented as

f = x1x2 + x1x3 + x2x3

June 10, 2002 11:09 vra23151_ch09 Sheet number 60 Page number 586 black

586 C H A P T E R 9 • Asynchronous Sequential Circuits

x1x2x3 00 01 11 10

1

0

1

(b) Karnaugh map

1

f

x3

(a) Circuit with a hazard

1

1

x1

x2 p

q

x3

x1

x2

f

(c) Hazard-free circuit

Figure 9.62 An example of a static hazard.

Now the change in x1 from 1 to 0 would have no effect on the output f because the product
term x2x3 would be equal to 1 if x2 = x3, regardless of the value of x1. The resulting
hazard-free circuit is depicted in Figure 9.62c.

A potential hazard exists wherever two adjacent 1s in a Karnaugh map are not covered
by a single product term. Therefore, a technique for removing hazards is to find a cover

June 10, 2002 11:09 vra23151_ch09 Sheet number 61 Page number 587 black

9.6 Hazards 587

in which some product term includes each pair of adjacent 1s. Then, since a change in an
input variable causes a transition between two adjacent 1s, no glitch can occur because both
1s are included in a product term.

In asynchronous sequential circuits a hazard can cause the circuit to change to an
incorrect stable state. Example 9.16 illustrates this situation.

Example 9.16In Example 9.2 we analyzed the circuit that realizes a master-slave D flip-flop. From the
excitation table in Figure 9.6a, one could attempt to synthesize a minimum-cost circuit that
realizes the required functions, Ym and Ys. This would give

Ym = CD + Cym

= (C ↑ D) ↑ (C ↑ ym)

Ys = Cym + Cys

= (C ↑ ym) ↑ (C ↑ ys)

The corresponding circuit is presented in Figure 9.63a. At first glance this circuit may seem
more attractive than the flip-flops discussed in Chapter 7 because it is less expensive. The
problem is that the circuit contains a static hazard.

Figure 9.63b shows the Karnaugh maps for the functions Ym and Ys. The minimum-cost
implementation is based on the prime implicants encircled in black. To see how this circuit
is affected by static hazards, assume that presently Ys = 1 and C = D = 1. The circuit
generates Ym = 1. Now let C change from 1 to 0. For the flip-flop to behave properly,
Ys must remain equal to 1. In Figure 9.63a, when C changes to 0, both p and r become
1. Due to the delay through the NOT gate, q may still be 1, causing the circuit to generate
Ym = Ys = 0. The feedback from Ym will maintain q = 1. Hence the circuit remains in an
incorrect stable state with Ys = 0.

To avoid the hazards, it is necessary to also include the terms encircled in blue, which
gives rise to the expressions

Ym = CD + Cym + Dym

Ys = Cym + Cys + ymys

The resulting circuit, implemented with NAND gates, is shown in Figure 9.63c.
Note that we can obtain another NAND-gate implementation by rewriting the expres-

sions for Ym and Ys as

Ym = CD + (C + D)ym

= (C ↑ D) ↑ ((C + D) ↑ ym)

= (C ↑ D) ↑ ((C ↑ D) ↑ ym)

Ys = Cym + (C + ym)ys

= (C ↑ ym) ↑ ((C ↑ ym) ↑ ys)

These expressions correspond exactly to the circuit in Figure 7.13.

June 10, 2002 11:09 vra23151_ch09 Sheet number 62 Page number 588 black

588 C H A P T E R 9 • Asynchronous Sequential Circuits

00 01 11 10

1

1 1

00

01

11

10

(b) Karnaugh maps for Ym and Ys in Figure 9.6a

11

1

ymys

CD

1

1

00 01 11 10

1

1 1

00

01

11

10

11 1

ymys

CD

11

D

C

Y m

Y s

ym

ys

p

q

r

D

C

Y m

Y s

ym

ys

(a) Minimum-cost circuit

(c) Hazard-free circuit

Q

Q

Figure 9.63 Two-level implementation of master-slave D flip-flop.

June 10, 2002 11:09 vra23151_ch09 Sheet number 63 Page number 589 black

9.6 Hazards 589

x1x2x3x4 00 01 11 10

1

1 1

00

01

11

10

11

1 1

dd

d

Figure 9.64 Function for Example 9.17.

Example 9.17From the previous examples, it seems that static hazards can be avoided by including all
prime implicants in a sum-of-products circuit that realizes a given function. This is indeed
true. But it is not always necessary to include all prime implicants. It is only necessary
to include product terms that cover the adjacent pairs of 1s. There is no need to cover the
don’t-care vertices.

Consider the function in Figure 9.64. Ahazard-free circuit that implements this function
should include the encircled terms, which gives

f = x1x3 + x2x3 + x3x4

The prime implicant x1x2 is not needed to prevent hazards, because it would account only
for the two 1s in the left-most column. These 1s are already covered by x1x3.

Example 9.18Static hazards can also occur in other types of circuits. Figure 9.65a depicts a product-of-
sums circuit that contains a hazard. If x1 = x3 = 0 and x2 changes from 0 to 1, then f
should remain at 0. However, if the signal at p changes earlier than the signal at q, then p
and q will both be equal to 1 for a short time, causing a glitch 0→ 1→ 0 on f .

In a POS circuit, it is the transitions between adjacent 0s that may lead to hazards. Thus
to design a hazard-free circuit, it is necessary to include sum terms that cover all pairs of
adjacent 0s. In this example the term in blue in the Karnaugh map must be included, giving

f = (x1 + x2)(x2 + x3)(x1 + x3)

The circuit is shown in Figure 9.65c.

June 10, 2002 11:09 vra23151_ch09 Sheet number 64 Page number 590 black

590 C H A P T E R 9 • Asynchronous Sequential Circuits

x1x2x3 00 01 11 10

1

0

1

(b) Karnaugh map

1

f

x3

(a) Circuit with a hazard

0

0

x2

x1 p

q

x3

x2

x1

f

(c) Hazard-free circuit

00

1

1

Figure 9.65 Static hazard in a POS circuit.

9.6.2 Dynamic Hazards

A dynamic hazard causes glitches on 0 → 1 or 1 → 0 transitions of an output signal.
An example is given in Figure 9.66. Assuming that all NAND gates have equal delays, a
timing diagram can be constructed as shown. The time elapsed between two vertical lines
corresponds to a gate delay. The output f exhibits a glitch that should be avoided.

June 10, 2002 11:09 vra23151_ch09 Sheet number 65 Page number 591 black

9.6 Hazards 591

(a) Circuit

x2

x1

x3

x4

b

a

c
d

f

x2 x3 x4, ,

x1

b

a

c

d

f

One gate delay

(b) Timing diagram

Figure 9.66 Circuit with a dynamic hazard.

It is interesting to consider the function implemented by this circuit, which is

f = x1x2 + x3x4 + x1x4

This is the minimum-cost sum-of-products expression for the function. If implemented in
this form, the circuit would not have either a static or a dynamic hazard.

A dynamic hazard is caused by the structure of the circuit, where there exist multiple
paths for a given signal change to propagate along. If the output signal changes its value
three times, 0→ 1→ 0→ 1 in the example, then there must be at least three paths along
which a change from a primary input can propagate. A circuit that has a dynamic hazard
must also have a static hazard in some part of it. As seen in Figure 9.66b, there is a static
hazard involving the signal on wire b.

June 10, 2002 11:09 vra23151_ch09 Sheet number 66 Page number 592 black

592 C H A P T E R 9 • Asynchronous Sequential Circuits

Dynamic hazards are encountered in multilevel circuits obtained using factoring or
decomposition techniques, which were discussed in Chapter 4. Such hazards are neither
easy to detect nor easy to deal with. The designer can avoid dynamic hazards simply by
using two-level circuits and ensuring that there are no static hazards.

9.6.3 Significance of Hazards

A glitch in an asynchronous sequential circuit can cause the circuit to enter an incorrect
state and possibly become stable in that state. Therefore, the circuitry that generates the
next-state variables must be hazard free. It is sufficient to eliminate hazards due to changes
in the value of a single variable because the basic premise in an asynchronous sequential
circuit is that the values of both the primary inputs and the state variables must change one
at a time.

In combinational circuits, discussed in Chapters 4 through 6, we did not worry about
hazards, because the output of a circuit depends solely on the values of the inputs. In
synchronous sequential circuits the input signals must be stable within the setup and hold
times of flip-flops. It does not matter whether glitches occur outside the setup and hold
times with respect to the clock signal.

9.7 A Complete Design Example

In the previous sections we examined the various design aspects of asynchronous sequential
circuits. In this section we give a complete design example, which covers all necessary
steps.

9.7.1 The Vending-Machine Controller

The control mechanism of a vending machine is a good vehicle for illustrating a possible
application of a digital circuit. We used it in the synchronous environment in Chapter 8. A
small example of a vending machine served as an object of analysis in section 9.2. Now we
will consider a vending-machine controller similar to the one in Example 8.7 to see how
it can be implemented using an asynchronous sequential circuit. The specification for the
controller is:

• It accepts nickels and dimes.
• A total of 15 cents is needed to release the candy from the machine.
• No change is given if 20 cents is deposited.

Coins are deposited one at a time. The coin-sensing mechanism generates signals
N = 1 and D = 1 when it sees a nickel or a dime, respectively. It is impossible to have
N = D = 1 at the same time. Following the insertion of a coin for which the sum equals
or exceeds 15 cents, the machine releases the candy and resets to the initial state.

Figure 9.67 shows a state diagram for the required FSM. It is derived using a straight-
forward approach in which all possible sequences of depositing nickels and dimes are

June 10, 2002 11:09 vra23151_ch09 Sheet number 67 Page number 593 black

9.7 A Complete Design Example 593

A 0⁄

B 0⁄

0

D

N

N

N

D
D

C 0⁄

J 0⁄

K 1⁄ L 1⁄N

N

D

D 0⁄

E 0⁄ F 1⁄

G 0⁄

H 1⁄ 1⁄

0

N

N

N

0

0

000
D

D

0

D

D

0

0

0

0

0

I

Figure 9.67 Initial state diagram for the vending-machine controller.

enumerated in a treelike structure. To keep the diagram uncluttered, the labels D and N
denote the input conditions DN = 10 and DN = 01, respectively. The condition DN = 00
is labeled simply as 0. The candy is released in states F , H , and K , which are reached after
15 cents has been deposited, and in states I and L, upon a deposit of 20 cents.

The corresponding flow table is given in Figure 9.68. It can be reduced using the
partitioning procedure as follows

P1 = (ADGJ)(BE)(C)(FIL)(HK)

P2 = (A)(D)(GJ)(B)(E)(C)(FIL)(HK)

P3 = P2

Using G to represent the equivalent states G and J , F to represent F , I , and L, and H to
represent H and K yields a partially reduced flow table in Figure 9.69. The merger diagram

June 10, 2002 11:09 vra23151_ch09 Sheet number 68 Page number 594 black

594 C H A P T E R 9 • Asynchronous Sequential Circuits

Present Next state Output
state DN = 00 01 10 11 z

A A� B C – 0

B D B� – – 0

C J – C� – 0

D D� E F – 0

E G E� – – 0

F A – F� – 1

G G� H I� – 0

H A H� – – 1

I A – I – 1

J J� K L – 0

K A K� – – 1

L A A L� – 1

Figure 9.68 Initial flow table for the vending-machine controller.

Present Next state Output
state DN = 00 01 10 11 z

A A� B C – 0

B D B� – – 0

C G – C� – 0

D D� E F – 0

E G E� – – 0

F A – F� – 1

G G� H F – 0

H A H� – – 1

Figure 9.69 First step in state minimization.

for this table is presented in Figure 9.70. It indicates that states C and E can be merged, as
well as F and H . Thus the reduced flow table is obtained as shown in Figure 9.71a. The
same information is depicted in the form of a state diagram in Figure 9.72.

Next a suitable state assignment must be found. The flow table is relabeled in Figure
9.71b to associate a unique number with each stable state. Then the transition diagram

June 10, 2002 11:09 vra23151_ch09 Sheet number 69 Page number 595 black

9.7 A Complete Design Example 595

B

H

A

F

D

G

C

E

Figure 9.70 Merger diagram for Figure 9.69.

Present Next state Output
state DN = 00 01 10 11 z

A A� B C − 0

B D B� − − 0

C G C� C� − 0

D D� C F − 0

F A F� F� − 1

G G� F F − 0

(a) Minimized flow table

Present Next state Output
state DN = 00 01 10 11 z

A 1� 2 4 − 0

B 5 2� − − 0

C 8 3� 4� − 0

D 5� 3 7 − 0

F 1 6� 7� − 1

G 8� 6 7 − 0

(b) Relabeled flow table

Figure 9.71 Reduced flow tables.

June 10, 2002 11:09 vra23151_ch09 Sheet number 70 Page number 596 black

596 C H A P T E R 9 • Asynchronous Sequential Circuits

A 0⁄

F 1⁄

B 0⁄

G 0⁄

D 0⁄

C 0⁄

00 01 00

00 01

01 00

00

00 01
10

01
10

01
10

DN

10 10

Figure 9.72 State diagram for the vending-machine controller.

in Figure 9.73a is obtained. Since we wish to try to embed the diagram onto a three-
dimensional cube, eight vertices are shown in the figure. The diagram shows two diagonal
transitions. The transition between D and G (label 7) does not matter, because it is only an
alternative path. The transition from A to C (label 4) is required, and it can be realized via
unused states as indicated in blue in Figure 9.73b. Therefore, the transition diagram can be
embedded onto a three-dimensional cube as shown. Using the state assignment from this
figure, the excitation table in Figure 9.74 is derived.

The Karnaugh maps for the next-state functions are given in Figure 9.75. From these
maps the following hazard-free expressions are obtained

Y1 = Ny2 + Ny1 + Dy1 + y1y3 + y1y2

Y2 = Ny1 + Ny2 + y1y3 + Dy2y3 + Dy2y3

Y3 = Dy1 + y2y3 + Ny1y2 + Dy3N

All product terms in these expressions are needed for a minimum-cost POS implementation
except for y1y2, which is included to prevent hazards in the expression for Y1. The output
expression is

z = y1y2y3

June 10, 2002 11:09 vra23151_ch09 Sheet number 71 Page number 597 black

9.7 A Complete Design Example 597

B

A F

D

G100

110

7

4

1

6 7,

111

2

3
C

4

001000

101

5

011010 8

B

A F

D

G

C

7

1

2

5

4

6 7,

3

7
8

(a) Transition diagram (b) Embedded on the cube

4

Figure 9.73 Determination of the state assignment.

Present Next state

state DN = 00 01 10 11 Output

y3 y2 y1 Y3Y2Y1
z

A 000 000 010 100 – 0

B 010 011 010 – – 0

C 111 101 111 111 – 0

D 011 011 111 001 – 0

F 001 000 001 001 – 1

G 101 101 001 001 – 0

100 – – 110 – 0

110 – – 111 – 0

�

�

�

�
� �

� �

Figure 9.74 Excitation table based on the state assignment in
Figure 9.73b.

June 10, 2002 11:09 vra23151_ch09 Sheet number 72 Page number 598 black

598 C H A P T E R 9 • Asynchronous Sequential Circuits

00 01 11 10

d

11

00

01

11

10

11

d 1

1

y1y2

DN

d

d

1

d

00 01 11 10

d

1 1

00

01

11

10

11

d 1

d

d

y1y2

DN

d

d

d

d

1

1

00 01 11 10

d

00

01

11

10

11

d

1

y1y2

DN

d

1

1

d d

00 01 11 10

d

00

01

11

10

1

d

1d

d

y1y2

DN

d

d

d

d

1

1

00 01 11 10

d

00

01

11

10

1

d

1

y1y2

DN

d

d d

00 01 11 10

d

1

00

01

11

10

11

d

1d

d

y1y2

DN

d

d

d

d

1

1

y3 0= y3 1=

y3 1=y3 0=

y3 1=y3 0=

(a) Map for Y1

(b) Map for Y2

(c) Map for Y3

Figure 9.75 Karnaugh maps for the functions in Figure 9.74.

June 10, 2002 11:09 vra23151_ch09 Sheet number 73 Page number 599 black

9.8 Concluding Remarks 599

9.8 Concluding Remarks

Asynchronous sequential circuits are more difficult to design than the synchronous sequen-
tial circuits. The difficulties with race conditions present a problem that must be handled
carefully. At the present time there is little CAD support for designing asynchronous cir-
cuits. For these reasons, most designers resort to synchronous sequential circuits in practical
applications.

An important advantage of asynchronous circuits is their speed of operation. Since
there is no clock involved, the speed of operation depends only on the propagation delays
in the circuit. In an asynchronous system that comprises several circuits, some circuits may
operate faster than others, thus potentially improving the overall performance of the system.
In contrast, in synchronous systems the clock period has to be long enough to accommodate
the slowest circuit, and it has a large effect on the performance.

Asynchronous circuit techniques are also useful in designing systems that consist of
two or more synchronous circuits that operate under the control of different clocks. The
signals exchanged between such circuits often appear to be asynchronous in nature.

From the reader’s point of view, it is useful to view asynchronous circuits as an excellent
vehicle for gaining a deeper understanding of the operation of digital circuits in general.
These circuits illustrate the consequences of propagation delays and race conditions that
may be inherent in the structure of a circuit. They also illustrate the concept of stability,
demonstrated through the existence of stable and unstable states. For further discussion of
asynchronous sequential circuits, the reader may consult references [1–6].

Problems

9.1 Derive a flow table that describes the behavior of the circuit in Figure P9.1. Compare your
solution with the tables in Figure 9.21. Is there any similarity?

w1

w2

z1

z2

y1

y2

Figure P9.1 Circuit for problem 9.1.

June 10, 2002 11:09 vra23151_ch09 Sheet number 74 Page number 600 black

600 C H A P T E R 9 • Asynchronous Sequential Circuits

9.2 Consider the circuit in Figure P9.2. Draw the waveforms for the signals C, z1, and z2.
Assume that C is a square-wave clock signal and that each gate has a propagation delay
�. Express the behavior of the circuit in the form of a flow table that would produce the
desired signals. (Hint: use the Mealy model.)

z1

z2

C

Figure P9.2 Circuit for problem 9.2.

9.3 Derive the minimal flow table that specifies the same functional behavior as the flow table
in Figure P9.3.

9.4 Derive the minimal Moore-type flow table that specifies the same functional behavior as
the flow table in Figure P9.4.

9.5 Find a suitable state assignment using as few states as possible and derive the next-state
and output expressions for the flow table in Figure 9.42.

9.6 Find a suitable state assignment for the flow table in Figure 9.42, using pairs of equivalent
states, as explained in Example 9.15. Derive the next-state and output expressions.

9.7 Find a state assignment for the flow table in Figure 9.42, using one-hot encoding. Derive
the next-state and output expressions.

9.8 Implement the FSM specified in Figure 9.39, using the merger diagram in Figure 9.40a.

9.9 Find a suitable state assignment for the FSM defined by the flow table in Figure P9.5.
Derive the next-state and output expressions for the FSM using this state assignment.

9.10 Find a hazard-free minimum-cost implementation of the function

f (x1, · · · , x4) =
∑

m(0, 4, 11, 13, 15)+ D(2, 3, 5, 10)

9.11 Repeat problem 9.10 for the function

f (x1, · · · , x5) =
∑

m(0, 4, 5, 24, 25, 29)+ D(8, 13, 16, 21)

9.12 Find a hazard-free minimum-cost POS implementation of the function

f (x1, · · · , x4) = �M (0, 2, 3, 7, 10)+ D(5, 13, 15)

June 10, 2002 11:09 vra23151_ch09 Sheet number 75 Page number 601 black

Problems 601

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C – 0

B D B� – – 0

C P − C� – 0

D D� E F – 0

E G E� − – 0

F M − F� – 0

G G� H I – 0

H J H� − – 0

I A – I� – 1

J J� K L – 0

K A K� – – 1

L A – L� – 1

M M� N O – 0

N A N� – – 1

O A – O� – 1

P P� R S – 0

R T R� – – 0

S A – S� – 1

T T� U V – 0

U A U� – – 1

V A – V� – 1

Figure P9.3 Flow table for problem 9.3.

9.13 Repeat problem 9.12 for the function

f (x1, · · · , x5) = �M (2, 6, 7, 25, 28, 29)+D(0, 8, 9, 10, 11, 21, 24, 26, 27, 30)

9.14 Consider the circuit in Figure P9.6. Does this circuit exhibit any hazards?

9.15 Design an original circuit that exhibits a dynamic hazard.

9.16 A control mechanism for a vending machine accepts nickels and dimes. It dispenses mer-
chandise when 20 cents is deposited; it does not give change if 25 cents is deposited.

June 10, 2002 11:09 vra23151_ch09 Sheet number 76 Page number 602 black

602 C H A P T E R 9 • Asynchronous Sequential Circuits

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C – 0

B K B� – H 0

C F – C� M 0

D D� E J – 1

E A E� – M 0

F F� L J – 0

G D G� – H 0

H – G J H� 1

J F – J� H 0

K K� L C – 1

L A L� – H 0

M – G C M� 1

Figure P9.4 Flow table for problem 9.4.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C – 0

B D B� – G 0

C F – C� G 0

D D� E C – 1

E A E� – G 0

F F� E C – 0

G – B C G� 1

Figure P9.5 Flow table for problem 9.9.

Design the FSM that implements the required control, using as few states as possible. Find
a suitable state assignment and derive the next-state and output expressions.

9.17 Design an asychronous circuit that meets the following specifications. The circuit has two
inputs: a clock input c and a control input w. The output, z, replicates the clock pulses when

June 10, 2002 11:09 vra23151_ch09 Sheet number 77 Page number 603 black

Problems 603

A
B

C

D

E

f

g

Figure P9.6 Circuit for problem 9.14.

w = 1; otherwise, z = 0. The pulses appearing on z must be full pulses. Consequently, if
c = 1 when w changes from 0 to 1, then the circuit will not produce a partial pulse on z, but
will wait until the next clock pulse to generate z = 1. If c = 1 when w changes from 1 to 0,
then a full pulse must be generated; that is, z = 1 as long as c = 1. Figure P9.7 illustrates
the desired operation.

c

w

z

Figure P9.7 Waveforms for problem 9.17.

9.18 Repeat problem 9.17 but with the following change in the specification. While w = 1, the
output z should have only one pulse; if several pulses occur on c, only the first one should
be reproduced on z.

9.19 Example 9.6 describes a simple arbiter for two devices contending for a shared resource.
Design a similar arbiter for three devices that use a shared resource. In case of simultaneous
requests, namely, if one device has been granted access to the shared resource and before it
releases its request the other two devices make requests of their own, let the priority of the
devices be Device 1 > Device 2 > Device 3.

9.20 In the discussion of Example 9.6, we mentioned a possible use of the mutual exclusion
element (ME) to prevent both request inputs to the FSM being equal to 1 at the same time.
Design an arbiter circuit for this case.

June 10, 2002 11:09 vra23151_ch09 Sheet number 78 Page number 604 black

604 C H A P T E R 9 • Asynchronous Sequential Circuits

References

1. K. J. Breeding, Digital Design Fundamentals, (Prentice-Hall: Englewood Cliffs, NJ,
1989).

2. F. J. Hill and G. R. Peterson, Computer Aided Logical Design with Emphasis on VLSI,
4th ed., (Wiley: New York, 1993).

3. V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit
Analysis and Design, (Prentice-Hall: Englewood Cliffs, NJ, 1995).

4. N. L. Pappas, Digital Design, (West: St. Paul, MN, 1994).

5. C. H. Roth Jr., Fundamentals of Logic Design, 4th ed., (West: St. Paul, MN, 1993).

6. C. J. Myers, Asynchronous Circuit Design, (Wiley: New York, 2001).

July 10, 2002 09:55 vra23151_ch10 Sheet number 1 Page number 605 black

605

c h a p t e r

10
Digital System Design

a b c d e f g h

1

2

3

4

5

6

7

8

10. Bd3–g6+, Ke8–d8

July 10, 2002 09:55 vra23151_ch10 Sheet number 2 Page number 606 black

606 C H A P T E R 10 • Digital System Design

In the previous chapters we showed how to design many types of simple circuits, such as multiplexers,
decoders, flip-flops, registers, and counters, which can be used as building blocks. In this chapter we provide
examples of more complex circuits that can be constructed using the building blocks as subcircuits. Such
larger circuits form a digital system. For practical reasons our examples of digital systems will not be large,
but the design techniques presented are applicable to systems of any size. After presenting several examples,
we will discuss some practical issues, such as how to ensure reliable clocking of flip-flops in individual and
multiple chips, how to deal with input signals that are not synchronized to the clock signal, and the like.

A digital system consists of two main parts, called the datapath circuit and the control circuit. The
datapath circuit is used to store and manipulate data and to transfer data from one part of the system to
another. Datapath circuits comprise building blocks such as registers, shift registers, counters, multiplexers,
decoders, adders, and so on. The control circuit controls the operation of the datapath circuit. In Chapter 8
we referred to the control circuits as finite state machines.

10.1 Building Block Circuits

We will give several examples of digital systems and show how to design their datapath
and control circuits. The examples use a number of the building block circuits that were
presented in earlier chapters. Some building blocks used in this chapter are described below.

10.1.1 Flip-Flops and Registers with Enable Inputs

In many applications that use D flip-flops, it is useful to be able to prevent the data stored
in the flip-flop from changing when an active clock edge occurs. We showed in Figure 7.61
how this capability can be provided by adding a multiplexer to the flip-flop. Figure 10.1
depicts the circuit. When E = 0, the flip-flop output cannot change, because the multiplexer
connects Q to D. But if E = 1, then the multiplexer connects the R input to D. Instead of
using the multiplexer shown in the figure, another way to implement the enable feature is to
use a two-input AND gate that drives the flip-flop’s clock input. One input to the AND gate
is the clock signal, and the other input is E. Then setting E = 0 prevents the clock signal
from reaching the flip-flop’s clock input. This method seems simpler than the multiplexer
approach, but we will show in section 10.3 that it can cause problems in practical operation.

D Q

Q

Q
R

Clock

E

0

1

Figure 10.1 A flip-flop with an enable input.

July 10, 2002 09:55 vra23151_ch10 Sheet number 3 Page number 607 black

10.1 Building Block Circuits 607

We will prefer the multiplexer-based approach over gating the clock with an AND gate in
this chapter.

Verilog code for a D flip-flop with an asynchronous reset input and an enable input is
given in Figure 10.2. We can extend the enable capability to registers with n bits by using
n 2-to-1 multiplexers controlled by E. The multiplexer for each flip-flop, i, selects either
the external data bit, Ri, or the flip-flop’s output, Qi. Verilog code for an n-bit register with
an asynchronous reset input and an enable input is given in Figure 10.3.

10.1.2 Shift Registers with Enable Inputs

It is useful to be able to inhibit the shifting operation in a shift register by using an en-
able input, E. We showed in Figure 7.19 that shift registers can be constructed with a
parallel-load capability, which is implemented using a multiplexer. Figure 10.4 shows how

module rege (R, Clock, Resetn, E, Q);
input R, Clock, Resetn, E;
output Q;
reg Q;

always @(posedge Clock or negedge Resetn)
if (Resetn == 0)

Q <= 0;
else if (E)

Q <= R;

endmodule

Figure 10.2 Code for a D flip-flop with enable.

module regne (R, Clock, Resetn, E, Q);
parameter n = 8;
input [n 1:0] R;
input Clock, Resetn, E;
output [n 1:0] Q;
reg [n 1:0] Q;

always @(posedge Clock or negedge Resetn)
if (Resetn == 0)

Q <= 0;
else if (E)

Q <= R;

endmodule

Figure 10.3 An n-bit register with an enable input.

July 10, 2002 09:55 vra23151_ch10 Sheet number 4 Page number 608 black

608

D
Q Q

Q
0

R
0

C
lo

ck

L 0 1
w

E 0 1
D

Q Q

Q
1

R
1

0 1

0 1
D

Q Q

Q
n-

1

R
n-

1

0 1

0 1

Fi
g
u
re

1
0
.4

A
sh
ift
re
gi
ste
r
w
ith
pa
ra
lle
l-l
oa
d
an
d
en
ab
le
co
nt
ro
li
np
ut
s.

July 10, 2002 09:55 vra23151_ch10 Sheet number 5 Page number 609 black

10.1 Building Block Circuits 609

the enable feature can be added by using an additional multiplexer. If the parallel-load
control input, L, is 1, the flip-flops are loaded in parallel. But if L = 0, the additional
multiplexer selects new data to be loaded into the flip-flops only if the enable E is 1.

Verilog code that represents the circuit in Figure 10.4 is given in Figure 10.5. When
L = 1, the register is loaded in parallel from the R input. When L = 0 and E = 1, the data
in the shift register is shifted in a right-to-left direction.

10.1.3 Static RandomAccess Memory (SRAM)

We have introduced several types of circuits that can be used to store data. Assume that
we need to store a large number, m, of data items, each of which consists of n bits. One
possibility is to use an n-bit register for each data item. We would need to design circuit-
ry to control access to each register, both for loading (writing) data into it and for reading
data out.

When m is large, it is awkward to use individual registers to store the data. A better
approach is to make use of a static random access memory (SRAM) block. An SRAM block
is a two-dimensional array of SRAM cells, where each cell can store one bit of information.

module shiftlne (R, L, E, w, Clock, Q);
parameter n = 4;
input [n 1:0] R;
input L, E, w, Clock;
output [n 1:0] Q;
reg [n 1:0] Q;
integer k;

always @(posedge Clock)
begin

if (L)
Q <= R;

else if (E)
begin

Q[0] <= w;
for (k = 1; k < n; k = k+1)

Q[k] <= Q[k 1];
end

end

endmodule

Figure 10.5 A right-to-left shift register with an enable input.

July 10, 2002 09:55 vra23151_ch10 Sheet number 6 Page number 610 black

610 C H A P T E R 10 • Digital System Design

If we need to store m items with n bits each, we can use an array of m × n SRAM cells.
The dimensions of the SRAM array are called its aspect ratio.

An SRAM cell is similar to the storage cell that was shown in Figure 7.3. Since an
SRAM block may contain a large number of SRAM cells, each cell must take as little space
on an integrated circuit chip as possible. For this reason, the storage cell should use as
few transistors as possible. One popular storage cell used in practice is depicted in Figure
10.6. It operates as follows. To store data into the cell, the Sel input is set to 1, and the
data value to be stored is placed on the Data input. The SRAM cell may include a separate
input for the complement of the data, indicated by the transistor shown in blue in the figure.
For simplicity we assume that this transistor is not included in the cell. After waiting long
enough for the data to propagate through the feedback path formed by the two NOT gates,
Sel is changed to 0. The stored data then remains in the feedback loop indefinitely. A
possible problem is that when Sel = 1, the value of Data may not be the same as the value
being driven by the small NOT gate in the feedback path. Hence the transistor controlled by
Sel may attempt to drive the stored data to one logic value while the output of the small NOT
gate has the opposite logic value. To resolve this problem, the NOT gate in the feedback
path is built using small (weak) transistors, so that its output can be overridden with new
data.

To read data stored in the cell, we simply set Sel to 1. In this case the Data node would
not be driven to any value by external circuitry, so that the SRAM cell can place the stored
data on this node. The Data signal is passed through a buffer, not shown in the figure, and
provided as an output of the SRAM block.

An SRAM block contains an array of SRAM cells. Figure 10.7 shows an array with
two rows of two cells each. In each column of the array, the Data nodes of the cells are
connected together. Each row, i, has a separate select input, Seli, that is used to read or write
the contents of the cells in that row. Larger arrays are formed by connecting more cells to
Seli in each row and by adding more rows. The SRAM block must also contain circuitry
that controls access to each row in the array. Figure 10.8 depicts a 2m × n array of the type
in Figure 10.7, which has a decoder that drives the Sel inputs in each row of the array. The
inputs to the decoder are called Address inputs. This term derives from the notion that the

Sel

DataData

Figure 10.6 An SRAM cell.

July 10, 2002 09:55 vra23151_ch10 Sheet number 7 Page number 611 black

10.1 Building Block Circuits 611

Sel1

Sel0

Data0Data1

Figure 10.7 A 2× 2 array of SRAM cells.

location of a row in the array can be thought of as the “address” of the row. The decoder
has m Address inputs and produces 2m select outputs. If the Write control input is 1, then
the data bits on the inputs dn−1, . . ., d0 are stored in the cells of the row selected by the
Address inputs. If the Read control input is 1, then the data stored in the row selected by
the Address inputs appears on the outputs qn−1, . . ., q0. In many practical applications the
data inputs and data outputs are connected together. Thus the Write and Read inputs must
never have the value 1 at the same time.

The design of memory blocks has been the subject of intensive research and develop-
ment. We have described only the basic operation of one type of memory block. The reader
can refer to books on computer organization for more information [1, 2].

10.1.4 SRAM Blocks in PLDs

Some PLDs contain SRAM blocks that can be used as part of circuits implemented in the
chips. One popular chip has a number of SRAM blocks, each of which contains 2048 SRAM
cells. The SRAM blocks can be configured to provide different aspect ratios, depending on
the needs of the design being implemented. Aspect ratios from 256× 8 to 2048× 1 can be
realized using a single SRAM block, and multiple blocks can be combined to form larger
memory arrays. To include SRAM blocks in a circuit, designers use prebuilt modules that
are provided in a library as part of the CAD tools.

July 10, 2002 09:55 vra23151_ch10 Sheet number 8 Page number 612 black

612 C H A P T E R 10 • Digital System Design

Sel2

Sel1

Sel0

Sel2m 1–

Read

Write

d0dn 1– dn 2–

q0qn 1– qn 2–

m
-t

o-
2m

 d
ec

od
er

Address

a0

a1

am 1–

Data outputs

Data inputs

Figure 10.8 A 2m × n SRAM block.

10.2 Design Examples

We introduced algorithmic state machine (ASM) charts in section 8.10 and showed how
they can be used to describe finite state machines. ASM charts can also be used to describe
digital systems that include both datapath and control circuits. We will illustrate how the
ASM charts can be used as an aid in designing digital systems by giving several examples.

10.2.1 A Bit-Counting Circuit

Suppose that we wish to count the number of bits in a register, A, that have the value 1.
Figure 10.9 shows pseudo-code for a step-by-step procedure, or algorithm, that can be

July 10, 2002 09:55 vra23151_ch10 Sheet number 9 Page number 613 black

10.2 Design Examples 613

B = 0 ;
while A � 0 do

if a0 = 1 then
B = B + 1 ;

end if ;
Right-shift A ;

end while ;

Figure 10.9 Pseudo-code for the bit counter.

used to perform the required task. It assumes that A is stored in a register that can shift its
contents in the left-to-right direction. The answer produced by the algorithm is stored in
the variable named B. The algorithm terminates when A does not contain any more 1s, that
is when A = 0. In each iteration of the while loop, if the least-significant bit (LSB) of A is
1, then B is incremented by 1; otherwise, B is not changed. A is shifted one bit to the right
at the end of each loop iteration.

Figure 10.10 gives an ASM chart that represents the algorithm in Figure 10.9. The state
box for the starting state, S1, specifies that B is initialized to 0. We assume that an input
signal, s, exists, which is used to indicate when the data to be processed has been loaded
into A, so that the machine can start. The decision box labeled s stipulates that the machine
remains in state S1 as long as s = 0. The conditional output box with Load A written inside
it indicates that A is loaded from external data inputs if s = 0 in state S1.

When s becomes 1, the machine changes to state S2. The decision box below the state
box for S2 checks whether A = 0. If so, the bit-counting operation is complete; hence the
machine should change to state S3. If not, the FSM remains in state S2. The decision box
at the bottom of the chart checks the value of a0. If a0 = 1, B is incremented, which is
indicated in the chart as B ← B + 1. If a0 = 0, then B is not changed. In state S3, B
contains the result, which is the number of bits in A that were 1. An output signal, Done, is
set to 1 to indicate that the algorithm is finished; the FSM stays in S3 until s goes back to 0.

10.2.2 ASM Chart Implied Timing Information

In section 8.10 we said that ASM charts are similar to traditional flowcharts, except that the
ASM chart implies timing information. We can use the bit-counting example to illustrate
this concept. Consider the ASM block for state S2, which is shaded in blue in Figure 10.10.
In a traditional flowchart, when state S2 is entered, the value of A would first be shifted to
the right. Then we would examine the value of A and if A’s LSB is 1, we would immediately
add 1 to B. But, since the ASM chart represents a sequential circuit, changes in A and B,
which represent the outputs of flip-flops, take place after the active clock edge. The same
clock signal that controls changes in the state of the machine also controls changes in A
and B. Hence in state S2, the decision box that tests whether A = 0, as well as the box
that checks the value of a0, check the bits in A before they are shifted. If A = 0, then the
FSM will change to state S3 on the next clock edge (this clock edge also shifts A, which
has no effect because A is already 0 in this case.) On the other hand, if A �= 0, then the

July 10, 2002 09:55 vra23151_ch10 Sheet number 10 Page number 614 black

614 C H A P T E R 10 • Digital System Design

Shift right A Done

B B 1+← A 0= ?

B 0←

s

Load A

a0

Reset

S3

0

1

0

1

0

1
s

S1

S2

1

0

Figure 10.10 ASM chart for the pseudo-code in Figure 10.9.

FSM does not change to S3, but remains in S2. At the same time, A is still shifted, and B
is incremented if a0 has the value 1. These timing issues are illustrated in Figure 10.14,
which represents a simulation result for a circuit that implements the ASM chart. We show
how the circuit is designed in the following discussion.

Datapath Circuit
By examining theASM chart for the bit-counting circuit, we can infer the type of circuit

elements needed to implement its datapath. We need a shift register that shifts left-to-right
to implement A. It must have the parallel-load capability because of the conditional output
box in state S1 that loads data into the register. An enable input is also required because
shifting should occur only in state S2. A counter is needed for B, and it needs a parallel-load
capability to initialize the count to 0 in state S1. It is not wise to rely on the counter’s reset
input to clear B to 0 in state S1. In practice, the reset signal is used in a digital system for
only two purposes: to initialize the circuit when power is first applied, or to recover from

July 10, 2002 09:55 vra23151_ch10 Sheet number 11 Page number 615 black

10.2 Design Examples 615

L

E Counter

w

L

E
Shift

LB

EBLA

EA

0

Clock

0

Bz a0

Data

n

A

n

(log2 n) + 1

(log2 n) + 1

Figure 10.11 Datapath for the ASM chart in Figure 10.10.

an error. The machine changes from state S3 to S1 as a result of s = 0; hence we should
not assume that the reset signal is used to clear the counter.

The datapath circuit is depicted in Figure 10.11. The serial input to the shift register, w,
is connected to 0, because it is not needed. The load and enable inputs on the shift register
are driven by the signals LA and EA. The parallel input to the shift register is named Data,
and its parallel output is A. An n-input NOR gate is used to test whether A = 0. The output
of this gate, z, is 1 when A = 0. Note that the figure indicates the n-input NOR gate by
showing a single input connection to the gate, with the label n attached to it. The counter
has log2(n) bits, with parallel inputs connected to 0 and parallel outputs named B. It also
has a parallel load input LB and enable input EB control signals.

Control Circuit
For convenience we can draw a second ASM chart that represents only the FSM needed

for the control circuit, as shown in Figure 10.12. The FSM has the inputs s, a0, and z and
generates the outputs EA, LB, EB, and Done. In state S1, LB is asserted, so that 0 is loaded
in parallel into the counter. Note that for the control signals, like LB, instead of writing LB
= 1, we simply write LB to indicate that the signal is asserted. We assume that external
circuitry drives LA to 1 when valid data is present at the parallel inputs of the shift register,
so that the shift register contents are initialized before s changes to 1. In state S2, EA is
asserted to cause a shift operation, and the count enable for B is asserted only if a0 = 1.

July 10, 2002 09:55 vra23151_ch10 Sheet number 12 Page number 616 black

616 C H A P T E R 10 • Digital System Design

EA

EB z

LB

s

a0

Reset

S3

0

1

0

1

0

1
s

S2

S1

0

1

Done

Figure 10.12 ASM chart for the bit counter datapath circuit.

Verilog Code
The bit-counting circuit can be described in Verilog code as shown in Figure 10.13.

We have chosen to define A as an eight-bit vector and B as a 4-bit vector signal. The ASM
chart in Figure 10.12 can be directly translated into code that describes the required control
circuit. The signal y is used to represent the present state of the FSM, and Y represents the
next state. The FSM is described with three always blocks: the block labeled State_table
specifies the state transitions, the block labeled State_ flipflops represents the state flip-flops,
and the block labeled FSM_outputs specifies the generated outputs in each state. A default
value is specified at the beginning of the FSM_outputs block for each output signal, and
then individual output values are specified in the case statement.

The fourth always block defines the up-counter that implements B. The shift register
for A is instantiated at the end of the code, and the z signal is defined using the reduction
NOR operator. We implemented the code in Figure 10.13 in a chip and performed a timing
simulation. Figure 10.14 gives the results of the simulation for A = 00111011. After the
circuit is reset, the input signal LA is set to 1, and the desired data, (3B)16, is placed on the

July 10, 2002 09:55 vra23151_ch10 Sheet number 13 Page number 617 black

10.2 Design Examples 617

module bitcount (Clock, Resetn, LA, s, Data, B, Done);
input Clock, Resetn, LA, s;
input [7:0] Data;
output [3:0] B;
output Done;
wire [7:0] A;
wire z;
reg [1:0] Y, y;
reg [3:0] B;
reg Done, EA, EB, LB;

// control circuit

parameter S1 = 2’b00, S2 = 2’b01, S3 = 2’b10;

always @(s or y or z)
begin: State table

case (y)
S1: if (!s) Y = S1;

else Y = S2;
S2: if (z == 0) Y = S2;

else Y = S3;
S3: if (s) Y = S3;

else Y = S1;
default: Y = 2’bxx;

endcase
end

always @(posedge Clock or negedge Resetn)
begin: State flipflops

if (Resetn == 0)
y <= S1;

else
y <= Y;

end

. . . continued in Part b.

Figure 10.13 Verilog code for the bit-counting circuit (Part a).

Data input. When s changes to 1, the next active clock edge causes the FSM to change to
state S2. In this state, each active clock edge increments B if a0 is 1, and shifts A. When
A = 0, the next clock edge causes the FSM to change to state S3, where Done is set to 1
and B has the correct result, B = 5. To check more thoroughly that the circuit is designed
correctly, we should try different values of input data.

July 10, 2002 09:55 vra23151_ch10 Sheet number 14 Page number 618 black

618 C H A P T E R 10 • Digital System Design

always @(y or A[0])
begin: FSM outputs

// defaults
EA = 0; LB = 0; EB = 0; Done = 0;
case (y)

S1: LB = 1;
S2: begin

EA = 1;
if (A[0]) EB = 1;
else EB = 0;

end
S3: Done = 1;

endcase
end

// datapath circuit

// counter B
always @(negedge Resetn or posedge Clock)

if (!Resetn)
B <= 0;

else if (LB)
B <= 0;

else if (EB)
B <= B + 1;

shiftrne ShiftA (Data, LA, EA, 0, Clock, A);
assign z = A;

endmodule

Figure 10.13 Verilog code for the bit-counting circuit (Part b).

10.2.3 Shift-and-Add Multiplier

We presented a circuit that multiplies two unsigned n-bit binary numbers in Figure 5.36.
The circuit uses a two-dimensional array of identical subcircuits, each of which contains a
full-adder and an AND gate. For large values of n, this approach may not be appropriate
because of the large number of gates needed. Another approach is to use a shift register
in combination with an adder to implement the traditional method of multiplication that is
done by “hand.” Figure 10.15a illustrates the manual process of multiplying two binary
numbers. The product is formed by a series of addition operations. For each bit i in the
multiplier that is 1, we add to the product the value of the multiplicand shifted to the left i
times. This algorithm can be described in pseudo-code as shown in Figure 10.15b, where
A is the multiplicand, B is the multiplier, and P is the product.

July 10, 2002 09:55 vra23151_ch10 Sheet number 15 Page number 619 black

10.2 Design Examples 619

Figure 10.14 Simulation results for the bit-counting circuit.

Multiplicand1
1

Product

Multiplier1
0

0
1

1
1

1 1 0 1
1011

0000
1011

01 0 0 1 1 1 1

×

Binary

13
11×

13
13

143

Decimal

(a) Manual method

P = 0 ;
for i = 0 to n − 1 do

if bi = 1 then
P = P + A ;

end if ;
Left-shift A ;

end for ;

(b) Pseudo-code

Figure 10.15 An algorithm for multiplication.

July 10, 2002 09:55 vra23151_ch10 Sheet number 16 Page number 620 black

620 C H A P T E R 10 • Digital System Design

An ASM chart that represents the algorithm in Figure 10.15b is given in Figure 10.16.
We assume that an input s is used to control when the machine begins the multiplication
process. As long as s is 0, the machine stays in state S1 and the data for A and B can be
loaded from external inputs. In state S2 we test the value of the LSB of B, and if it is 1, we
add A to P. Otherwise, P is not changed. The machine moves to state S3 when B contains
0, because P has the final product in this case. For each clock cycle in which the machine
is in state S2, we shift the value of A to the left, as specified in the pseudo-code in Figure
10.15b. We shift the contents of B to the right so that in each clock cycle b0 can be used to
decide whether or not A should be added to P.

Datapath Circuit
We can now define the datapath circuit. To implement A we need a right-to-left shift

register that has 2n bits. A 2n-bit register is needed for P, and it must have an enable input
because the assignment P← P+ A in state S2 is inside a conditional output box. A 2n-bit
adder is needed to produce P+ A. Note that P is loaded with 0 in state S1, and P is loaded

Shift left A, Shift right B Done

P P A+← B 0= ?

P 0←

s

Load A

b0

Reset

S3

0

1

0

1

0

1
s

S1

S2

1

0

Load B

Figure 10.16 ASM chart for the multiplier.

July 10, 2002 09:55 vra23151_ch10 Sheet number 17 Page number 621 black

10.2 Design Examples 621

from the output of the adder in state S2. We cannot assume that the reset input is used to
clear P, because the machine changes from state S3 back to S1 based on the s input, not the
reset input. Hence a 2-to-1 multiplexer is needed for each input to P, to select either 0 or
the appropriate sum bit from the adder. An n-bit left-to-right shift register is needed for B,
and an n-input NOR gate can be used to test whether B = 0.

Figure 10.17 shows the datapath circuit and labels the control signals for the shift
registers. The input data for the shift register that holds A is named DataA. Since the
shift register has 2n bits, the most-significant n data inputs are connected to 0. A single

E

L

E

L

E

0 DataALA

EA

A

Clock

P

DataP

Register
EP

Sum
0

z

B

b0

DataBLB

EB

+

2n

n n

Shift-left
register

Shift-right
register

n

n

2n 2n

Psel 1 0

2n

2n

Figure 10.17 Datapath circuit for the multiplier.

July 10, 2002 09:55 vra23151_ch10 Sheet number 18 Page number 622 black

622 C H A P T E R 10 • Digital System Design

multiplexer symbol is shown connected to the register that holds P. This symbol represents
2n 2-to-1 multiplexers that are each controlled by the Psel signal.

Control Circuit
An ASM chart that represents only the control signals needed for the multiplier is given

in Figure 10.18. In state S1, Psel is set to 0 and EP is asserted, so that register P is cleared.
When s = 0, parallel data can be loaded into shift registers A and B by an external circuit
that controls their parallel load inputs LA and LB. When s = 1, the machine changes to state
S2, where Psel is set to 1 and shifting of A and B is enabled. If b0 = 1, the enable for P
is asserted. The machine changes to state S3 when z = 1, and then remains in S3 and sets
Done to the value 1 as long as s = 1.

EP z

b0

Reset

S3

0

1

0

1
s

0

1

Done

Psel 0= EP,

s
0

1

S1

S2

Psel 1= EA EB, ,

Figure 10.18 ASM chart for the multiplier control circuit.

July 10, 2002 09:55 vra23151_ch10 Sheet number 19 Page number 623 black

10.2 Design Examples 623

Verilog Code
Verilog code for the multiplier is given in Figure 10.19. The number of bits in A and

B is set by the parameter n. For registers that are 2n bits wide, the number of bits is set to
n + n. By changing the value of the parameters, the code can be used for numbers of any
size. The always blocks labeled State_table and State_ flipflops define the state transitions
and state flip-flops, respectively. The control circuit outputs are specified in the always
block labeled FSM_outputs. The parallel data input on the shift register A is 2n bits wide,
but DataA is only n bits wide. Hence the concatenate operation {{n{1’b0}}, DataA} is
used to prepend n zeros onto DataA for loading into the shift register. The multiplexer
needed for register P is defined using a for loop that defines 2n 2-to-1 multiplexers. Figure
10.20 gives a simulation result for the circuit generated from the code. After the circuit is
reset, LA and LB are set to 1, and the numbers to be multiplied are placed on the DataA and
DataB inputs. After s is set to 1, the FSM (y) changes to state S2, where it remains until
B = 0. For each clock cycle in state S2, A is shifted to the left, and B is shifted to the right.
In three of the clock cycles in state S2, the contents of A are added to P, corresponding to
the three bits in B that have the value 1. When B = 0, the FSM changes to state S3 and P
contains the correct product, which is (64)16 × (19)16 = (9C4)16. The decimal equivalent
of this result is 100× 25 = 2500.

The number of clock cycles that the circuit requires to generate the final product is
determined by the left-most digit in B that is 1. It is possible to reduce the number of clock
cycles needed by using more complex shift registers for A and B. If the two right-most bits
in B are both 0, then both A and B could be shifted by two bit positions in one clock cycle.
Similarly, if the three lowest digits in B are 0, then a three bit-position shift can be done,
and so on. A shift register that can shift by multiple bit positions at once can be built using
a barrel shifter. We leave it as an exercise for the reader to modify the multiplier to make
use of a barrel shifter.

10.2.4 Divider

The preceding example implements the traditional method of performing multiplication by
hand. In this example we will design a circuit that implements the traditional long-hand
division. Figure 10.21a gives an example of long-hand division. The first step is to try to
divide the divisor 9 into the first digit of the dividend 1, which does not work. Next, we try
to divide 9 into 14, and determine that 1 is the first digit in the quotient. We perform the
subtraction 14 − 9 = 5, bring down the last digit from the dividend to form 50, and then
determine that the next digit in the quotient is 5. The remainder is 50 − 45 = 5, and the
quotient is 15. Using binary numbers, as illustrated in Figure 10.21b, involves the same
process, with the simplification that each digit of the quotient can be only 0 or 1.

Given two unsigned n-bit numbers A and B, we wish to design a circuit that produces
two n-bit outputs Q and R, where Q is the quotient A/B and R is the remainder. The
procedure illustrated in Figure 10.21b can be implemented by shifting the digits in A to
the left, one digit at a time, into a shift register R. After each shift operation, we compare
R with B. If R ≥ B, a 1 is placed in the appropriate bit position in the quotient and B is
subtracted from R. Otherwise, a 0 bit is placed in the quotient. This algorithm is described

July 10, 2002 09:55 vra23151_ch10 Sheet number 20 Page number 624 black

624 C H A P T E R 10 • Digital System Design

module multiply (Clock, Resetn, LA, LB, s, DataA, DataB, P, Done);
parameter n = 8;
input Clock, Resetn, LA, LB, s;
input [n 1:0] DataA, DataB;
output [n+n 1:0] P;
output Done;
wire z;
reg [n+n 1:0] A, DataP;
wire [n+n 1:0] Sum;
reg [1:0] y, Y;
reg [n 1:0] B;
reg Done, EA, EB, EP, Psel;
integer k;

// control circuit

parameter S1 = 2’b00, S2 = 2’b01, S3 = 2’b10;

always @(s or y or z)
begin: State table

case (y)
S1: if (s == 0) Y = S1;

else Y = S2;
S2: if (z == 0) Y = S2;

else Y = S3;
S3: if (s == 1) Y = S3;

else Y = S1;
default: Y = 2’bxx;

endcase
end

always @(posedge Clock or negedge Resetn)
begin: State flipflops

if (Resetn == 0)
y <= S1;

else
y <= Y;

end

. . . continued in Part b.

Figure 10.19 Verilog code for the multiplier circuit (Part a).

July 10, 2002 09:55 vra23151_ch10 Sheet number 21 Page number 625 black

10.2 Design Examples 625

always @(s or y or B[0])
begin: FSM outputs

// defaults
EA = 0; EB = 0; EP = 0; Done = 0; Psel = 0;
case (y)

S1: EP = 1;
S2: begin

EA = 1; EB = 1; Psel = 1;
if (B[0]) EP = 1;
else EP = 0;

end
S3: Done = 1;

endcase
end

//datapath circuit

shiftrne ShiftB (DataB, LB, EB, 0, Clock, B);
defparam ShiftB.n = 8;

shiftlne ShiftA ({{n{1’b0}}, DataA}, LA, EA, 0, Clock, A);
defparam ShiftA.n = 16;

assign z = (B == 0);
assign Sum = A + P;

// define the 2n 2-to-1 multiplexers
always @(Psel or Sum)

for (k = 0; k < n+n; k = k+1)
DataP[k] = Psel ? Sum[k] : 0;

regne RegP (DataP, Clock, Resetn, EP, P);
defparam RegP.n = 16;

endmodule

Figure 10.19 Verilog code for the multiplier circuit (Part b).

using pseudo-code in Figure 10.21c. The notation R||A is used to represent a 2n-bit shift
register formed using R as the left-most n bits and A as the right-most n bits.

The pseudo-code for the multiplier in Figure 10.15b examines one digit, bi, in each
loop iteration. In the ASM chart in Figure 10.16, we shift B to the right so that b0 always
contains the digit needed. Similarly, in the long-division pseudo-code, each loop iteration
results in setting a digit qi to either 1 or 0. A straightforward way to accomplish this is
to shift 1 or 0 into the least-significant bit of Q in each loop iteration. An ASM chart that

July 10, 2002 09:55 vra23151_ch10 Sheet number 22 Page number 626 black

626 C H A P T E R 10 • Digital System Design

Figure 10.20 Simulation results for the multiplier circuit.

represents the divider circuit is shown in Figure 10.22. The signal C represents a counter
that is initialized to n− 1 in the starting state S1. In state S2, both R and A are shifted to the
left, and then in state S3, B is subtracted from R if R ≥ B. The machine changes to state
S4 when C = 0.

Datapath Circuit
We need n-bit shift registers that shift right to left for A, R, and Q. An n-bit register is

needed for B, and a subtractor is needed to produce R− B. We can use an adder module in
which the carry-in is set to 1 and B is complemented. The carry-out, cout , of this module
has the value 1 if the condition R ≥ B is true. Hence the carry-out can be connected to the
serial input of the shift register that holds Q, so that it is shifted into Q in state S3. Since R
is loaded with 0 in state S1 and from the outputs of the adder in state S3, a multiplexer is
needed for the parallel data inputs on R. The datapath circuit is depicted in Figure 10.23.
Note that the down-counter needed to implement C and the NOR gate that outputs a 1 when
C = 0 are not shown in the figure.

Control Circuit
An ASM chart that shows only the control signals needed for the divider is given in

Figure 10.24. In state S3 the value of cout determines whether or not the sum output of
the adder is loaded into R. The shift enable on Q is asserted in state S3. We do not have
to specify whether 1 or 0 is loaded into Q, because cout is connected to Q’s serial input in
the datapath circuit. We leave it as an exercise for the reader to write Verilog code that
represents the ASM chart in Figure 10.24 and the datapath circuit in Figure 10.23.

July 10, 2002 09:55 vra23151_ch10 Sheet number 23 Page number 627 black

10.2 Design Examples 627

9 1 4 0
9
5 0
4 5

5

1 5

1 0 0

1 0
1 0

0 1 1 0 01 0 0 1

0 0 0 0 1 1 1 1

1 0 0 1
0 0 1

0 1
1 0 0 0 0

1 0 0 1
1 1 1 0
1 0 0 1

1 0 1

Q

AB

R

(a) An example using decimal numbers (b) Using binary numbers

R = 0 ;
for i = 0 to n − 1 do

Left-shift R‖A ;
if R ≥ B then

qi = 1 ;
R = R − B ;

else
qi = 0 ;

end if ;
end for ;

(c) Pseudo-code

Figure 10.21 An algorithm for division.

Enhancements to the Divider Circuit
Using the ASM chart in Figure 10.24 causes the circuit to loop through states S2 and

S3 for 2n clock cycles. If these states can be merged into a single state, then the number of
clock cycles needed can be reduced to n. In state S3, if cout = 1, we load the sum output
(result of the subtraction) from the adder into R, and (assuming z = 0) change to state S2.
In state S2 we then shift R (and A) to the left. To combine S2 and S3 into a new state, called
S2, we need to be able to place the sum into the left-most bits of R while at the same time
shifting the MSB of A into the LSB of R. This step can be accomplished by using a separate
flip-flop for the LSB of R. Let the output of this flip-flop be called rr0. It is initialized to 0
when s = 0 in state S1. Otherwise, the flip-flop is loaded from the MSB of A. In state S2,
if cout = 0, R is shifted left and rr0 is shifted into R. But if cout = 1, R is loaded in parallel
from the sum outputs of the adder.

Figure 10.25 illustrates how the division example from Figure 10.21b can be performed
using n clock cycles. The table in the figure shows the values of R, rr0, A, and Q in each step

July 10, 2002 09:55 vra23151_ch10 Sheet number 24 Page number 628 black

628 C H A P T E R 10 • Digital System Design

R B≥ ?

R 0← C n 1–←,

s
0 1

S1

S2

0

Load A
Load B

Shift left R||A

C C 1–←

Shift 0 into Q Shift 1 into Q
R R B–←

C 0= ?

1

1 0

S3

Reset

Done

S4

0

1
s

Figure 10.22 ASM chart for the divider.

of the division. In the datapath circuit in Figure 10.23, we use a separate shift register for Q.
This register is not actually needed, because the digits in the quotient can be shifted into the
least-significant bit of the register used for A. In Figure 10.25 the digits of Q that are shifted
into A are shown in blue. The first row in the table represents loading of initial data into
registers A (and B) and clearing R and rr0 to 0. In the second row of the table, labeled clock
cycle 0, the diagonal blue arrow shows that the left-most bit of A (1) is shifted into rr0. The
number in R||rr0 is now 000000001, which is smaller than B (1001). In clock cycle 1, rr0 is

July 10, 2002 09:55 vra23151_ch10 Sheet number 25 Page number 629 black

10.2 Design Examples 629

E
L
E

L
E

DataB

LR
ER

EQ

Clock

Q

Register

EB

0

R

DataALA

EA

+
E cout cin 1

B

w

Rsel

n

Left-shift
register

n

Left-shift
register

n n

nn

nn

Left-shift
register

an 1– A

w

01

Figure 10.23 Datapath circuit for the divider.

shifted into R, and the MSB of A is shifted into rr0. Also, as shown in blue, a 0 is shifted into
the LSB of Q (A). The number in R||rr0 is now 000000010, which is still smaller than B.
Hence, in clock cycle 2 the same actions are performed as for clock cycle 1. These actions
are also performed in clock cycles 3 and 4, at which point R||rr0 = 000010001. Since this is
larger than B, in clock cycle 5 the result of the subtraction 000010001− 1001 = 00001000
is loaded into R. The MSB of A (1) is still shifted into rr0, and a 1 is shifted into Q. In clock
cycles 6, 7, and 8, the number in R||rr0 is larger than B; hence in each of these cycles the
result of the subtraction R||rr0 − B is loaded into R, and a 1 is loaded into Q. After clock
cycle 8 the correct result, Q= 00001111 and R = 00000101, is obtained. The bit rr0 is not
a part of the final result.

An ASM chart that shows the values of the required control signals for the enhanced
divider is depicted in Figure 10.26. The signal ER0 is used in conjunction with the flip-flop
that has the output rr0. When ER0 = 0, the value 0 is loaded into the flip-flop. When ER0
is set to 1, the MSB of shift register A is loaded into the flip-flop. In state S1, if s = 0, then
LR is asserted to initialize R to 0. Registers A and B can be loaded with data from external
inputs. When s changes to 1, the machine makes a transition to state S2 and at the same
time shifts R||R0||A to the left. In state S2, if cout = 1, then R is loaded in parallel from

July 10, 2002 09:55 vra23151_ch10 Sheet number 26 Page number 630 black

630 C H A P T E R 10 • Digital System Design

Rsel 0= LR LC, ,

s
0 1

S1

S2

Done

s

EQ Rsel 1= EC, ,

LR

1 0

S4

S3

Reset

ER EA,

cout

z

1

010

Figure 10.24 ASM chart for the divider control circuit.

the sum outputs of the adder. At the same time, R0||A is shifted left (rr0 is not shifted into
R in this case). If cout = 0, then R||R0||A is shifted left. The ASM chart shows how the
parallel-load and enable inputs on the registers have to be controlled to achieve the desired
operation.

The datapath circuit for the enhanced divider is illustrated in Figure 10.27. As discussed
for Figure 10.25, the digits of the quotient Q are shifted into register A. Note that one of
the n-bit data inputs on the adder module is composed of the n− 1 least-significant bits in
register R concatenated with bit rr0 on the right.

Verilog Code
Figure 10.28 shows Verilog code that represents the enhanced divider. The parameter n

sets the number of bits in the operands. The State_table, State_ flipflops, and FSM_outputs

July 10, 2002 09:55 vra23151_ch10 Sheet number 27 Page number 631 black

10.2 Design Examples 631

Load A, B 0
0
0
1

0
0
1
1

0
1
2
3 1

0
0

0
0
0

4
5
6 0 0
7

1
0
0
0
1
1
0
0

Clock cycle

0 0
8

0

A/Q

0
1
1
0

1
1
0
0

0
0
0

0
0
0

0 0

0 0

1
0
0
0

0
0
0
0

0
0
0

0
0
0

0 1

1 1

0
0
0
0
0
0
1
1

1

0 00 0 1 1 1 1

rr0R

0
0
0
0

0
0
0
0

0
0
0

0
0
0

0 0

0
0
0
0
0
0
0
0

0 00

0
0
0
0

0
0
0
0

0
1
1

1
0
0

1 0

0 1

0
0
0
1

0
0
1
0

0
0
0

0
0
0

0 0

1 1

0
1
0
0
0
1
1
0

0

0 00 0 1 0 1 0

0
0
0
0
0
0
0
0

0

0

1 0 0 0 1 1 0 01 0 0 1 AB

Shift left

Subtract, Q0 1←

Shift left, Q0 0←
Shift left, Q0 0←
Shift left, Q0 0←

Subtract, Q0 1←
Subtract, Q0 1←
Subtract, Q0 1←

Shift left, Q0 0←

Figure 10.25 An example of division using n = 8 clock cycles.

always blocks describe the control circuit, as in the previous examples. The shift registers
and counters in the datapath circuit are instantiated at the bottom of the code. The signal
rr0 in Figure 10.25 is represented in the code by the signal R0. This signal is implemented
as the output of the muxdff component; the code for this subcircuit is shown in Figure 7.52.
Note that the adder that produces the Sum signal has one input defined as the concatenation
of R with R0. The multiplexer needed for the input to R is represented by the DataR signal.
This multiplexer is defined in the last statement of the code.

A simulation result for the circuit produced from the code is given in Figure 10.29. The
data A = A6 and B = 8 is loaded, and then s is set to 1. The circuit changes to state S2
and concurrently shifts R, R0, and A to the left. The output of the shift register that holds A
is labeled Q in the simulation results because this shift register contains the quotient when
the division operation is complete. On the first three active clock edges in state S2, the
number represented by R||R0 is less than the number in B (8); hence R||R0||A is shifted
left on each clock edge, and 0 is shifted into Q. In the fourth consecutive clock cycle for
which the FSM has been in state S2, the contents of R are 00000101 = (5)10, and R0 is
0; hence R||R0 = 000001010 = (10)10. On the next active clock edge, the output of the
adder, which is 10− 8 = 2, is loaded into R, and 1 is shifted into Q. After n clock cycles in
state S2, the circuit changes to state S3, and the correct result, Q= 14 = (20)10 and R = 6,
is obtained.

10.2.5 Arithmetic Mean

Assume that k n-bit numbers are stored in a set of registers R0, . . . , Rk−1. We wish to design
a circuit that computes the mean M of the numbers in the registers. The pseudo-code for a
suitable algorithm is shown in Figure 10.30a. Each iteration of the loop adds the contents
of one of the registers, denoted Ri, to a Sum variable. After the sum is computed, M is
obtained as Sum/k. We assume that integer division is used, so a remainder R, not shown
in the code, is produced as well.

July 10, 2002 09:55 vra23151_ch10 Sheet number 28 Page number 632 black

632 C H A P T E R 10 • Digital System Design

Rsel 0= LC ER, ,

s
0 1

S1

S2

LR

1 0

Reset

EA, ER0

cout

z

1

0

ER ER0 EA Rsel 1=, , ,

LR ECDone

s

S3

10

Figure 10.26 ASM chart for the enhanced divider control circuit.

An ASM chart is given in Figure 10.30b. While the start input, s, is 0, the registers
can be loaded from external inputs. When s becomes 1, the machine changes to state S2,
where it remains while C �= 0, and computes the summation (C is a counter that represents
i in Figure 10.30a). When C = 0, the machine changes to state S3 and computes M =
Sum/k. From the previous example, we know that the division operation requires multiple
clock cycles, but we have chosen not to indicate this in the ASM chart. After computing
the division operation, state S4 is entered and Done is set to 1.

Datapath Circuit
The datapath circuit for this task is more complex than in our previous examples. It is

depicted in Figure 10.31. We need a register with an enable input to hold Sum. For simpli-

July 10, 2002 09:55 vra23151_ch10 Sheet number 29 Page number 633 black

10.2 Design Examples 633

E

L
E

L
E

DataB

LR
ER

Clock
Register

EB

0

R

DataALA

EA

+cout cin 1

B

w

Rsel

n

Left-shift
register

n

Left-shift
register

n n

nn

n

qn 1–

Q

01

DQ

Q

ER0

0

1

0

n 1–

n

rn 2– … r0

w

n n

rr0

Figure 10.27 Datapath circuit for the enhanced divider.

city, assume that the sum can be represented in n bits without overflowing. A multiplexer is
required on the data inputs on the Sum register, to select 0 in state S1 and the sum outputs
of an adder in state S2. The Sum register provides one of the data inputs to the adder. The
other input has to be selected from the data outputs of one of the k registers. One way
to select among the registers is to connect them to the data inputs of a k-to-1 multiplexer
that is connected to the adder. The select lines on the multiplexer can be controlled by the

July 10, 2002 09:55 vra23151_ch10 Sheet number 30 Page number 634 black

634 C H A P T E R 10 • Digital System Design

module divider (Clock, Resetn, s, LA, EB, DataA, DataB, R, Q, Done);
parameter n = 8, logn = 3;
input Clock, Resetn, s, LA, EB;
input [n 1:0] DataA, DataB;
output [n 1:0] R, Q;
output Done;
wire Cout, z;
wire [n 1:0] DataR;
wire [n:0] Sum;
reg [1:0] y, Y;
reg [n 1:0] A, B;
reg [logn 1:0] Count;
reg Done, EA, Rsel, LR, ER, ER0, LC, EC, R0;
integer k;

// control circuit

parameter S1 = 2’b00, S2 = 2’b01, S3 = 2’b10;

always @(s or y or z)
begin: State table

case (y)
S1: if (s == 0) Y = S1;

else Y = S2;
S2: if (z == 0) Y = S2;

else Y = S3;
S3: if (s == 1) Y = S3;

else Y = S1;
default: Y = 2’bxx;

endcase
end

always @(posedge Clock or negedge Resetn)
begin: State flipflops

if (Resetn == 0)
y <= S1;

else
y <= Y;

end

. . . continued in Part b.

Figure 10.28 Verilog code for the divider circuit (Part a).

July 10, 2002 09:55 vra23151_ch10 Sheet number 31 Page number 635 black

10.2 Design Examples 635

always @(y or s or Cout or z)
begin: FSM outputs

// defaults
LR = 0; ER = 0; ER0 = 0; LC = 0; EC = 0; EA = 0;
Rsel = 0; Done = 0;
case (y)

S1: begin
LC = 1; ER = 1;
if (s == 0)
begin

LR = 1; ER0 = 0;
end
else
begin

LR = 0; EA = 1; ER0 = 1;
end

end
S2: begin

Rsel = 1; ER = 1; ER0 = 1; EA = 1;
if (Cout) LR = 1;
else LR = 0;
if (z == 0) EC = 1;
else EC = 0;

end
S3: Done = 1;

endcase
end

. . . continued in Part c.

Figure 10.28 Verilog code for the divider circuit (Part b).

counter C. To compute the division operation, we can use the divider circuit designed in
section 10.2.4.

The circuit in Figure 10.31 is based on k = 4, but the same circuit structure can be
used for larger values of k. Note that the enable inputs on the registers R0 through R3 are
connected to the outputs of a 2-to-4 decoder that has the two-bit input RAdd, which stands
for “register address.” The decoder enable input is driven by the ER signal. All registers
are loaded from the same input lines, Data. Since k = 4, we could perform the division
operation simply by shifting Sum two bits to the right, which can be done in one clock cycle
with a shift register that shifts by two digits. To obtain a more general circuit that works
for any value of k, we use the divider circuit designed in section 10.2.4.

July 10, 2002 09:55 vra23151_ch10 Sheet number 32 Page number 636 black

636 C H A P T E R 10 • Digital System Design

// datapath circuit

regne RegB (DataB, Clock, Resetn, EB, B);
defparam RegB.n = n;

shiftlne ShiftR (DataR, LR, ER, R0, Clock, R);
defparam ShiftR.n = n;

muxdff FF R0 (0, A[n−1], ER0, Clock, R0);
shiftlne ShiftA (DataA, LA, EA, Cout, Clock, A);

defparam ShiftA.n = n;
assign Q = A;
downcount Counter (Clock, EC, LC, Count);

defparam Counter.n = logn;

assign z = (Count == 0);
assign Sum = {R, R0} + (B + 1);
assign Cout = Sum[n];

// define the n 2-to-1 multiplexers
assign DataR = Rsel ? Sum : 0;

endmodule

Figure 10.28 Verilog code for the divider circuit (Part c).

Control Circuit
Figure 10.32 gives an ASM chart for the FSM needed to control the circuit in Figure

10.31. While in state S1, data can be loaded into registers R0, . . . , Rk−1. But no control
signals have to be asserted for this purpose, because the registers are loaded under control
of the ER and RAdd inputs, as discussed above. When s = 1, the FSM changes to state
S2, where it asserts the enable ES on the Sum register and allows C to decrement. When
the counter reaches 0 (z = 1), the machine enters state S3, where it asserts the LA and EB
signals to load the Sum and k into the A and B inputs of the divider circuit, respectively. The
FSM then enters state S4 and asserts the Div signal to start the division operation. When
it is finished, the divider circuit sets zz = 1, and the FSM moves to state S5. The mean M
appears on the Q and R outputs of the divider circuit. The Div signal must still be asserted
in state S5 to prevent the divider circuit from reinitializing its registers. Note that in the
ASM chart in Figure 10.30b, only one state is shown for computing M = Sum/k, but in
Figure 10.32, states S3 and S4 are used for this purpose. It is possible to combine states S3
and S4, which we will leave as an exercise for the reader (problem 10.6).

Alternative Datapath Circuits
In Figure 10.31 registers R0, . . . , Rk−1 are connected to the adder using a multiplexer.

Another way to achieve the desired connection is to add tri-state buffers to the outputs of the
k registers and to connect all tri-state buffers for a given bit position to the corresponding

July 10, 2002 09:55 vra23151_ch10 Sheet number 33 Page number 637 black

10.2 Design Examples 637

Figure 10.29 Simulation results for the divider circuit.

input of the adder. The down-counter C can be used to enable each tri-state buffer at the
proper time (when the FSM is in state S2), by connecting a 2-to-4 decoder to the outputs
of the counter and using one output of the decoder to enable each tri-state buffer. We will
show an example of using tri-states buffers in this manner in Figure 10.42.

For large values of k, it is preferable to use an SRAM block with k rows and n columns,
instead of using k registers. Predefined modules that represent SRAM blocks are usually
provided by CAD tools. If the circuit being designed is to be implemented in a custom
chip, then the CAD tools ensure that the desired SRAM block is included on the chip.
Some PLDs include SRAM blocks that can be configured to implement various numbers of
rows and columns. The CAD system that accompanies the book provides the lpm_ram_dq
module, which is a part of the LPM standard library.

Figure 10.33 gives a schematic diagram for the arithmetic mean circuit, using the
parameters k = 16 and n = 8. This schematic was created using the CAD tools that
accompany the book. Four of the graphical symbols in the schematic represent subcircuits
described using Verilog code, namely downcnt, regne, divider, and meancntl. The code
for the divider subcircuit is shown in Figure 10.28. The meancntl subcircuit represents the
FSM in Figure 10.32. The Verilog code for this FSM is not shown. The schematic also
includes a multiplexer connected to the Sum register, an adder, and a NOR gate that detects
when the counter C reaches 0. The outputs of the counter provide the address inputs to the
SRAM block, called MReg.

The SRAM block has 16 rows and eight columns. In Figure 10.31 a decoder controls
the loading of data into each of the k registers. To read the data from the registers, the
counter C is used. To keep the schematic in Figure 10.33 simple, we have included the

July 10, 2002 09:55 vra23151_ch10 Sheet number 34 Page number 638 black

638 C H A P T E R 10 • Digital System Design

Sum = 0 ;
for i = k − 1 down to 0 do

Sum = Sum +Ri

end for ;
M = Sum ÷ k ;

(a) Pseudo-code

Sum 0← C k 1–←,

s
0

1

S1

S2

Done

s

Reset

1

0

Sum Sum Ri+←

S4

C 0= ?

M Sum k⁄←

C C 1–←

0

1
S3

Load registers

(b) ASM chart

Figure 10.30 An algorithm for finding the mean of k numbers.

July 10, 2002 09:55 vra23151_ch10 Sheet number 35 Page number 639 black

10.2 Design Examples 639

E
Register

+

E
Register

E
Register

E
Register

ERRAdd

E
L Down-counterE

Register

B EB A LA

R Q Done

s
Divider

ES

0

Ssel

EC
LC

Div

k EB

LA

zz

Sum

M

Data

Clock

z

k 1–

n

n

n

nn

n

n

w0 En

y0

w1

y1 y2 y3

2-to-4

Figure 10.31 Datapath circuit for the mean operation.

July 10, 2002 09:55 vra23151_ch10 Sheet number 36 Page number 640 black

640 C H A P T E R 10 • Digital System Design

LC Ssel 0= ES, ,

s
0

1

S1

S2

Div, Done

s

Reset

1

0

Ssel 1= ES,

S5

LA EB,

EC

0

1
S3

z

Div

zz

S4

0 1

Figure 10.32 ASM chart for the mean operation control circuit.

counter to read data from the SRAM block, but we have ignored the issue of writing data
into the SRAM block. It is possible to modify the meancntl code to allow the counter C to
address the SRAM block for loading the initial data, but we will not pursue this issue here.

For simulation purposes we can use a feature of the CAD system that allows initial
data to be stored in the SRAM block. We chose to store 0 in R0 (row 0 of the SRAM block);
1 in R1, . . . ; and 15 in R15. The results of a timing simulation for the circuit implemented
in an FPGA chip are shown in Figure 10.34. Only a part of the simulation, from the point

July 10, 2002 09:55 vra23151_ch10 Sheet number 37 Page number 641 black

10.2 Design Examples 641

Figure 10.33 Schematic of the mean circuit with an SRAM block.

where C = 5, is shown in the figure. At this point the meancntl FSM is in state S2, and
the Sum is being accumulated. When C reaches 0, Sum has the correct value, which is
0 + 1 + 2 + . . . + 15 = 120 = (78)16. The FSM changes to state S3 for one clock cycle
and then remains in state S4 until the division operation is complete. The correct result, Q
= 7 and R = 8, is obtained when the FSM changes to state S5.

10.2.6 Sort Operation

Given a list of k unsigned n-bit numbers stored in a set of registers R0, . . . , Rk−1, we
wish to design a circuit that can sort the list (contents of the registers) in ascending order.
Pseudo-code for a simple sorting algorithm is shown in Figure 10.35. It is based on finding
the smallest number in the sublist Ri, . . . , Rk−1 and moving that number into Ri, for i =
1, 2, . . . , k − 2. Each iteration of the outer loop places the number in Ri into A. Each
iteration of the inner loop compares this number to the contents of another register Rj. If

July 10, 2002 09:55 vra23151_ch10 Sheet number 38 Page number 642 black

642 C H A P T E R 10 • Digital System Design

Figure 10.34 Simulation results for the mean circuit using SRAM.

for i = 0 to k 2 do
A = Ri ;
for j = i + 1 to k 1 do

B = R j ;
if B < A then

Ri = B ;
R j = A ;
A = Ri ;

end if ;
end for ;

end for ;

Figure 10.35 Pseudo-code for the sort operation.

the number in Rj is smaller than A, the contents of Ri and Rj are swapped and A is changed
to hold the new contents of Ri.

An ASM chart that represents the sorting algorithm is shown in Figure 10.36. In the
initial state S1, while s = 0 the registers are loaded from external data inputs and a counter
Ci that represents i in the outer loop is cleared. When the machine changes to state S2, A is
loaded with the contents of Ri. Also, Cj, which represents j in the inner loop, is initialized
to the value of i. State S3 is used to initialize j to the value i + 1, and state S4 loads the
value of Rj into B. In state S5, A and B are compared, and if B < A, the machine moves to
state S6. States S6 and S7 swap the values of Ri and Rj. State S8 loads A from Ri. Although
this step is necessary only for the case where B < A, the flow of control is simpler if this
operation is performed in both cases. If Cj is not equal to k − 1, the machine changes from
S8 to S4, thus remaining in the inner loop. If Cj = k − 1 and Ci is not equal to k − 2, then
the machine stays in the outer loop by changing to state S2.

July 10, 2002 09:55 vra23151_ch10 Sheet number 39 Page number 643 black

10.2 Design Examples 643

B A< ?

Ci 0←

s
0

1

S1

S2

Done s

Reset

A Ri← C j Ci←,

Ci Ci 1+←

S4

S5

0

1

S3

C j C j 1+←

B R j←

R j A←

Ri B←

A Ri←

C j k 1–= ?

C j C j 1+←

Ci k 2–= ?
0 1

0

1

Load registers

0

1

S9

S7

S6

S8

Figure 10.36 ASM chart for the sort operation.

July 10, 2002 09:55 vra23151_ch10 Sheet number 40 Page number 644 black

644 C H A P T E R 10 • Digital System Design

Datapath Circuit
There are many ways to implement a datapath circuit that meets the requirements of

the ASM chart in Figure 10.36. One possibility is illustrated in Figures 10.37 and 10.38.
Figure 10.37 shows how the registers R0, . . . , Rk−1 can be connected to registers A and B
using 4-to-1 multiplexers. We assume the value k = 4 for simplicity. Registers A and B are
connected to a comparator subcircuit and, through multiplexers, back to the inputs of the
registers R0, . . . , Rk−1. The registers can be loaded with initial (unsorted) data using the
DataIn lines. The data is written (loaded) into each register by asserting the WrInit control
signal and placing the address of the register on the RAdd input. The tri-state buffer driven
by the Rd control signal is used to output the contents of the registers on the DataOut output.

E E E E

Clock

DataIn

WrInit

Rin3Rin2Rin1Rin0

E EBinAin

DataOut

Rd

ABData

Imux

<Bout

BltA

1 0
A B

0 1

RData

R0 R1 R2 R3

0 1 2 3

ABmux n

n

n

Figure 10.37 A part of the datapath circuit for the sort operation.

July 10, 2002 09:55 vra23151_ch10 Sheet number 41 Page number 645 black

10.2 Design Examples 645

L

E

L

E

10

10

k 2–=

k 1–=

LJ

EJ

LI

EI

2-to-4 decoder

WrInit

Wr

RAdd

Clock

Csel

Int

Imux

2

Ci C j

zi

z j
Cmux

Rin0

Rin1

Rin2

Rin3

0

2

2

2

2

2

Counter Counter

R

QQ

R

w0 w1,

En

y0

y1

y2

y3

2

Figure 10.38 A part of the datapath circuit for the sort operation.

The signals Rin0, . . . , Rink−1 are controlled by the 2-to-4 decoder shown in Figure
10.38. If Int = 1, the decoder is driven by one of the counters Ci or Cj. If Int = 0, then the
decoder is driven by the external input RAdd. The signals zi and zj are set to 1 if Ci = k− 2
and Cj = k − 1, respectively. An ASM chart that shows the control signals used in the
datapath circuit is given in Figure 10.39.

Verilog Code
Verilog code for the sorting operation is presented in Figure 10.40. The FSM that

controls the sort operation is described in the same way as in previous examples, using the
always blocks State_table, State_ flipflops, and FSM_outputs. Following these blocks, the
code instantiates the registers R0 to R3, as well as A and B. The counters Ci and Cj have the
instance names OuterLoop and InnerLoop, respectively. The multiplexers with the outputs
CMux and IMux are specified using the conditional operator. The 4-to-1 multiplexer in
Figure 10.37 is defined by the case statement that specifies the value of the ABData signal
for each value of IMux. The 2-to-4 decoder in Figure 10.38 with the outputs Rin0, . . . , Rin3

July 10, 2002 09:55 vra23151_ch10 Sheet number 42 Page number 646 black

646 C H A P T E R 10 • Digital System Design

Csel 0= Int 1= Ain, ,

Csel 0= Int 1= Wr Bout, , ,

Csel 1= Int 1= Wr Aout, , ,

Bin Csel 1= Int 1=, ,

s
0

1

S1

S2

Done s

Reset

S4

S5

0

1

S3

1

0

1

S9

S7

S6

S8

LI Int 0=,

Int 1= Csel 0= Ain LJ, , ,

EJ

BltAEJ

EI

0

1

0

z j

zi

Figure 10.39 ASM chart for the control circuit.

July 10, 2002 09:55 vra23151_ch10 Sheet number 43 Page number 647 black

10.2 Design Examples 647

module sort (Clock, Resetn, s, WrInit, Rd, DataIn, RAdd, DataOut, Done);
parameter n = 4;
input Clock, Resetn, s, WrInit, Rd;
input [n 1:0] DataIn;
input [1:0] RAdd;
output [n 1:0] DataOut;
output Done;
wire [1:0] Ci, Cj, CMux, IMux;
wire [n 1:0] R0, R1, R2, R3, A, B, RData, ABMux;
wire BltA, zi, zj;
reg Int, Csel, Wr, Ain, Bin, Aout, Bout;
reg LI, LJ, EI, EJ, Done, Rin0, Rin1, Rin2, Rin3;
reg [3:0] y, Y;
reg [n 1:0] ABData;

// control circuit
parameter S1 = 4’b0000, S2 = 4’b0001, S3 = 4’b0010, S4 = 4’b0011;
parameter S5 = 4’b0100, S6 = 4’b0101, S7 = 4’b0110, S8 = 4’b0111, S9 = 4’b1000;

always @(s or BltA or zj or zi)
begin: State table

case (y)
S1: if (s == 0) Y = S1;

else Y = S2;
S2: Y = S3;
S3: Y = S4;
S4: Y = S5;
S5: if (BltA) Y = S6;

else Y = S8;
S6: Y = S7;
S7: Y = S8;
S8: if (!zj) Y = S4;

else if (!zi) Y = S2;
else Y = S9;

S9: if (s) Y = S9;
else Y = S1;

default: Y = 4'bx;
endcase

end

. . . continued in Part b.

Figure 10.40 Verilog code for the sorting circuit (Part a).

July 10, 2002 09:55 vra23151_ch10 Sheet number 44 Page number 648 black

648 C H A P T E R 10 • Digital System Design

always @(posedge Clock or negedge Resetn)
begin: State flipflops

if (Resetn == 0)
y <= S1;

else
y <= Y;

end

always @(y or zj or zi)
begin: FSM outputs

// defaults
Int = 1; Done = 0; LI = 0; LJ = 0; EI = 0; EJ = 0; Csel = 0;
Wr = 0; Ain = 0; Bin = 0; Aout = 0; Bout = 0;
case (y)

S1: begin LI = 1; Int = 0; end
S2: begin Ain = 1; LJ = 1; end
S3: EJ = 1;
S4: begin Bin = 1; Csel = 1; end
S5:; // no ouputs asserted in this state
S6: begin Csel = 1; Wr = 1; Aout = 1; end
S7: begin Wr = 1; Bout = 1; end
S8: begin

Ain = 1;
if (!zj) EJ = 1;
else
begin

EJ = 0;
if (!zi) EI = 1;
else EI = 0;

end
end

S9: Done = 1;
endcase

end

. . . continued in Part c.

Figure 10.40 Verilog code for the sorting circuit (Part b).

is defined by the case statement that sets the value of the concatenated signals {Rin3, Rin2,
Rin1, Rin0}. Finally, the code specifies the values of the zi and zj signals, and defines the
tri-state buffers for the DataOut output.

We implemented the code in Figure 10.40 in an FPGA chip. Figure 10.41 gives an
example of a simulation result. Part (a) of the figure shows the first half of the simulation,

July 10, 2002 09:55 vra23151_ch10 Sheet number 45 Page number 649 black

10.2 Design Examples 649

//datapath circuit

regne Reg0 (RData, Clock, Resetn, Rin0, R0);
defparam Reg0.n = n;

regne Reg1 (RData, Clock, Resetn, Rin1, R1);
defparam Reg1.n = n;

regne Reg2 (RData, Clock, Resetn, Rin2, R2);
defparam Reg2.n = n;

regne Reg3 (RData, Clock, Resetn, Rin3, R3);
defparam Reg3.n = n;

regne RegA (ABData, Clock, Resetn, Ain, A);
defparam RegA.n = n;

regne RegB (ABData, Clock, Resetn, Bin, B);
defparam RegB.n = n;

assign BltA = (B < A) ? 1 : 0;
assign ABMux = (Bout == 0) ? A : B;
assign RData = (WrInit == 0) ? ABMux : DataIn;

upcount OuterLoop (0, Resetn, Clock, EI, LI, Ci);
upcount InnerLoop (Ci, Resetn, Clock, EJ, LJ, Cj);

assign CMux = (Csel == 0) ? Ci : Cj;
assign IMux = (Int == 1) ? CMux : RAdd;

. . . continued in Part d.

Figure 10.40 Verilog code for the sorting circuit (Part c).

from 0 to 1.25 µs, and part (b) shows the second half, from 1.25 µs to 2.5 µs. After resetting
the circuit, WrInit is set to 1 for four clock cycles, and unsorted data is written into the four
registers using the DataIn and RAdd inputs. After s is changed to 1, the FSM changes to
state S2. States S2 to S4 load A with the contents of R0 (3) and B with the contents of R1

(2). State S5 compares B with A, and since B < A, the FSM uses states S6 and S7 to swap
the contents of registers R0 and R1. In state S8, A is reloaded from R0, which now contains
2. Since zj is not asserted, the FSM increments the counter Cj and changes back to state
S4. Register B is now loaded with the contents of R2 (4), and the FSM changes to state
S5. Since B = 4 is not less than A = 2, the machine changes to S8 and then back to S4.
Register B is now loaded with the contents of R3 (1), which is then compared against A = 2
in state S5. The contents of R0 and R3 are swapped, and the machine changes to S8. At
this point, the register contents are R0 = 1, R1 = 3, R2 = 4, and R3 = 2. Since zj = 1
and zi = 0, the FSM performs the next iteration of the outer loop by changing to state S2.
Jumping forward in the simulation time, in Figure 10.41b the circuit reaches the state in
which Ci = 2, Cj = 3, and the FSM is in state S8. The FSM then changes to state S9 and

July 10, 2002 09:55 vra23151_ch10 Sheet number 46 Page number 650 black

650 C H A P T E R 10 • Digital System Design

always @(WrInit or Wr or IMux)
begin

case (IMux)
0: ABData = R0;
1: ABData = R1;
2: ABData = R2;
3: ABData = R3;

endcase

if (WrInit ||Wr)
case (IMux)

0: {Rin3, Rin2, Rin1, Rin0} = 4’b0001;
1: {Rin3, Rin2, Rin1, Rin0} = 4’b0010;
2: {Rin3, Rin2, Rin1, Rin0} = 4’b0100;
3: {Rin3, Rin2, Rin1, Rin0} = 4’b1000;

endcase
else {Rin3, Rin2, Rin1, Rin0} = 4’b0000;

end

assign zi = (Ci == 2);
assign zj = (Cj == 3);
assign DataOut = (Rd == 0) ? ’bz : ABData;

endmodule

Figure 10.40 Verilog code for the sorting circuit (Part d).

sets Done to the value 1. The correctly sorted data is read out of the registers by setting the
signal Rd = 1 and using the RAdd inputs to select each of the registers.

Alternative Datapath Circuits
In Figure 10.37 we use multiplexers to connect the various registers in the datapath

circuit. Another approach is to use tri-state buffers to interconnect the registers, as illustrated
in Figure 10.42. As we said in section 7.14, the set of n common wires that connect the
registers is called a bus. The circuit in Figure 10.42 has two buses, one that connects the
outputs of registers R0, . . . , R3 to the inputs of registers A and B and another that connects
the outputs of A and B back to the inputs of R0, . . . , Rk−1. When multiplexers provide the
connection between registers, as shown in Figure 10.37, the term bus can still be used to
refer to the connection between registers.

The circuit in Figure 10.42 uses the circuit in Figure 10.38 with one modification. In
Figure 10.38 the IMux signal is connected to a 2-to-4 decoder that generates Rin0, . . . , Rin3.
If the circuit in Figure 10.42 is used, then a second decoder connected to IMux is required

July 10, 2002 09:55 vra23151_ch10 Sheet number 47 Page number 651 black

10.2 Design Examples 651

(a) Loading the registers and starting the sort operation

(b) Completing the sort operation and reading the registers

Figure 10.41 Simulation results for the sort operation.

July 10, 2002 09:55 vra23151_ch10 Sheet number 48 Page number 652 black

652 C H A P T E R 10 • Digital System Design

E E E E

Clock

DataIn

WrInit

Rin3Rin2Rin1Rin0

E EBinAin

A B

BltABout

Aout

DataOut

Rd

Rout3Rout2Rout1Rout0

<

n

n

n n n n

n

nn

Figure 10.42 Using tri-state buffers in the datapath circuit.

to generate the control signals Rout0, . . . , Rout3. The control circuit described in the ASM
chart in Figure 10.39 can be used for the datapath circuit in Figure 10.42.

We said in section 10.2.5 that for large values of k, it is better to use an SRAM block
to store the data, instead of individual registers. The sorting circuit can be changed to make
use of an SRAM block with k rows and n columns. In this case the datapath circuit is similar
to the one in Figure 10.37, but does not require the 4-to-1 multiplexers, because the data
outputs from the SRAM block are connected directly to registers A and B. We still need
to use the circuit in Figure 10.38, except that the 2-to-4 decoder is not required, because
the IMux signal is connected to the address inputs on the SRAM block. The write input on
the SRAM block is driven by the OR gate with the inputs WrInit and Wr. Verilog code can
be written for the sorting circuit, in which a component that represents the SRAM block is
instantiated from a library of predefined modules. The code for the control circuit shown
in Figure 10.40 does not have to be changed (see problem 10.11).

July 10, 2002 09:55 vra23151_ch10 Sheet number 49 Page number 653 black

10.3 Clock Synchronization 653

10.3 Clock Synchronization

In the previous section we provided several examples of circuits that contain many flip-flops.
In Chapter 9 we showed that to ensure proper operation of sequential circuits it is essential
to give careful consideration to the timing aspects associated with the storage elements.
This section discusses some of the timing aspects of synchronous sequential circuits.

10.3.1 Clock Skew

Figure 10.1 shows how an enable input can be used to prevent a flip-flop from changing its
stored value when an active clock edge occurs. Another way to implement the clock enable
feature is shown in Figure 10.43. The circuit uses an AND gate to force the clock input to
have the value 0 when E = 0. This circuit is simpler than the one in Figure 10.1 but can
cause problems in practice. Consider a sequential circuit that has many flip-flops, some of
which have an enable input and others that do not. If the circuit in Figure 10.43 is used,
then the flip-flops without the enable input will observe changes in the clock signal slightly
earlier than the flip-flops that have the enable input. This situation, in which the clock signal
arrives at different times at different flip-flops, is known as clock skew. Figure 10.43 shows
only one possible source of clock skew. Similar problems arise in a chip in which the clock
signal is distributed to different flip-flops by wires whose lengths vary appreciably.

To understand the possible problems caused by clock skew, consider the datapath
circuit for the bit-counting example in Figure 10.11. The shift register’s LSB, a0, is used
as a control signal that determines whether or not a counter is incremented. Assume that
clock skew exists that causes the clock signal to arrive earlier at the shift-register flip-flops
than at the counter. The clock skew may cause the shift register to be shifted before the
value of a0 is used to cause the counter to increment. Therefore, the signal EB in Figure
10.11 may fail to cause the counter to be incremented even if the value of a0 was 1.

For proper operation of synchronous sequential circuits, it is essential to minimize the
clock skew as much as possible. Chips that contain many flip-flops, such as PLDs, use
carefully designed networks of wires to distribute the clock signal to the flip-flops. Figure
10.44 gives an example of a clock-distribution network. Each node labeled ff represents
the clock input of a flip-flop; for clarity, the flip-flops are not shown. The buffer on the
left of the figure produces the clock signal. This signal is distributed to the flip-flops such
that the length of the wire between each flip-flop and the clock source is the same. Due to

D Q

Q

Data

Clock

E

Figure 10.43 Clock enable circuit.

July 10, 2002 09:55 vra23151_ch10 Sheet number 50 Page number 654 black

654 C H A P T E R 10 • Digital System Design

Clock

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

Figure 10.44 An H tree clock distribution network.

the appearance of sections of the wires, which resemble the letter H, the clock distribution
network is known as an H tree. In PLDs the term global clock refers to the clock network. A
PLD chip usually provides one or more global clocks that can be connected to all flip-flops.
When designing a circuit to be implemented in such a chip, a good design practice is to
connect all the flip-flops in the circuit to a single global clock. Connecting logic gates to
the clock inputs of flip-flops, as discussed for the enable circuit in Figure 10.43, should be
avoided.

It is useful to be able to ensure that a sequential circuit is reset into a known state when
power is first applied to the circuit. A good design practice is to connect the asynchronous
reset (clear) inputs of all flip-flops to a wiring network that provides a low-skew reset signal.
PLDs usually provide a global reset wiring network for this purpose.

July 10, 2002 09:55 vra23151_ch10 Sheet number 51 Page number 655 black

10.3 Clock Synchronization 655

10.3.2 Flip-Flop Timing Parameters

We discussed the timing parameters for storage elements in section 7.3.1. Data to be clocked
into a flip-flop must be stable tsu before the active clock edge and must remain stable th
after the clock edge. A change in the value of the output Q appears after the register delay,
trd . An output delay time, tod , is required for the change in Q to propagate to an output pin
on the chip. These timing parameters account for the behavior of an individual flip-flop
without considering how the flip-flop is connected to other circuitry in an integrated circuit
chip.

Figure 10.45 depicts a flip-flop as part of an integrated circuit. Connections are shown
from the flip-flop’s clock, D, and Q terminals to pins on the chip package. There is an input
buffer associated with each pin on the chip. Other circuitry may also be connected to the
flip-flop; the shaded box represents a combinational circuit connected to D. The propagation
delays between the pins on the chip package and the flip-flop are labeled in the figure as
tData, tClock , and tod .

In digital systems the output signals from one chip are used as the input signals to
another chip. In most cases the flip-flops in all chips are driven by a common clock that
has low skew. The signals must propagate from the Q outputs of flip-flops in one chip to
the D inputs of flip-flops in another chip. To ensure that all timing specifications are met,
it is necessary to consider the output delays in one chip and the input delays in another.

The tco delay determines how long it takes from when an active clock edge occurs at
the clock pin on the chip package until a change in the output of a flip-flop appears at an
output pin on the chip. This delay consists of three main parts. The clock signal must first
propagate from its input pin on the chip to the flip-flop’s Clock input. This delay is labeled
tClock in Figure 10.45. After the register delay trd , the flip-flop produces a new output, which
takes tod to propagate to the output pin. An example of timing parameters taken from a
commercial CPLD chip is tClock = 1.5 ns, trd = 1 ns, and tod = 2 ns. These parameters
give the delay from the active clock edge to the change on the output pin as tco = 4.5 ns.

D Q

Data

Clock

Chip package pin

A

B

tClock

tData

Out

tod

Figure 10.45 A flip-flop in an integrated circuit chip.

July 10, 2002 09:55 vra23151_ch10 Sheet number 52 Page number 656 black

656 C H A P T E R 10 • Digital System Design

If chips are separated by a large distance, the propagation delays between them must
be taken into consideration. But in most cases the distance between chips is small, and the
propagation time of signals between the chips is negligible. Once a signal reaches the input
pin on a chip, the relative values of tData and tClock (see Figure 10.45) must be considered.
For example, in Figure 10.46 we assume that tData = 4.5 ns and tClock = 1.5 ns. The setup
time for the flip-flops in the chip is specified as tsu = 3 ns. In the figure the Data signal
changes from low to high 3 ns before the positive clock edge, which should meet the setup
requirements. The Data signal takes 4.5 ns to reach the flip-flop, whereas the Clock signal
takes only 1.5 ns. The signal labeled A and the clock signal labeled B reach the flip-flop
at the same time. The setup time requirement is violated, and the flip-flop may become
unstable. To avoid this condition, it is necessary to increase the setup time as seen from
outside the chip.

The hold time for flip-flops is also affected by chip-level delays. The result is usually a
reduction in the hold time, rather than an increase. For example, with the timing parameters
in Figure 10.46 assume that the hold time is th = 2 ns. Assume that the signal at the Data pin
on the chip changes value at exactly the same time that an active edge occurs at the Clock
pin. The change in the Clock signal will reach node B 4.5− 1.5 = 3 ns before the change
in Data reaches node A. Hence even though the external change in Data is coincident with
the clock edge, the required hold time of 2 ns is not violated.

For large circuits, ensuring that flip-flop timing parameters are properly adhered to is
a challenge. Both the timing parameters of the flip-flops themselves and the relative delays
incurred by the clock and data signals must be considered. CAD systems provide tools that
can check the setup and hold times at all flip-flops automatically. This task is done using
timing simulation, as well as special-purpose timing-analysis tools.

10.3.3 Asynchronous Inputs to Flip-Flops

In our examples of synchronous sequential circuits, we have assumed that changes in all
input signals occur shortly after an active clock edge. The rationale for this assumption is
that the inputs to one circuit are produced as the outputs of another circuit, and the same
clock signal is used for both circuits. In practice, some of the inputs to a circuit may be

Data

Clock

A

3ns

4.5ns

1.5ns

B

Figure 10.46 Flip-flop timing in a chip.

July 10, 2002 09:55 vra23151_ch10 Sheet number 53 Page number 657 black

10.3 Clock Synchronization 657

generated asynchronously with respect to the clock signal. If these signals are connected
to the D input of a flip-flop, then the setup or hold times may be violated.

When a flip-flop’s setup or hold times are violated, the flip-flop’s output may assume a
voltage level that does not correspond to either logic value 0 or 1. We say that the flip-flop is
in a metastable state. The flip-flop eventually settles in one of the stable states, 0 or 1, but the
time required to recover from the metastable state is not predictable. A common approach
for dealing with asynchronous inputs is illustrated in Figure 10.47. The asynchronous data
input is connected to a two-bit shift register. The output of the first flip-flop, labeled A in
the figure, will sometimes become metastable. But if the clock period is sufficiently long,
then A will recover to a stable logic value before the next clock pulse occurs. Hence the
output of the second flip-flop will not become metastable and can safely be connected to
other parts of the circuit. The synchronization circuit introduces a delay of one clock cycle
before the signal can be used by the rest of the circuit.

Commercial chips, such as PLDs, specify the minimum allowable clock period that has
to be used for the circuit in Figure 10.47 to solve the metastability problem. In practice, it is
not possible to guarantee that node A will always be stable before a clock edge occurs. The
data sheets specify a probability of node A being stable, as a function of the clock period.
We will not pursue this issue further; the interested reader can refer to references [10, 11]
for a more detailed discussion.

10.3.4 Switch Debouncing

Inputs to a logic circuit are sometimes generated by mechanical switches. A problem with
such switches is that they bounce away from their contact points when changed from one
position to the other. Figure 10.48a shows a single-pole single-throw switch that provides
an input to a logic circuit. If the switch is open, then the Data signal has the value 1. When
the switch is thrown to the closed position, Data becomes 0, but the switch bounces for
some time, causing Data to oscillate between 1 and 0. The bouncing typically persists for
about 10 ms.

There is no simple way of dealing with the bouncing problem using the single-pole
single-throw switch. If this type of switch must be used, then a possible solution is to use a
circuit, such as a counter, to measure an appropriately long delay to wait for the bouncing
to stop (see problem 10.23).

A better approach for dealing with switch bouncing is depicted in Figure 10.48b. It
uses a single-pole double-throw switch and a basic SR latch to generate an input to a logic

D Q

Q

Data

Clock

(asynchronous)
D Q

Q

Data
(synchronous)

Figure 10.47 Asynchronous inputs.

July 10, 2002 09:55 vra23151_ch10 Sheet number 54 Page number 658 black

658 C H A P T E R 10 • Digital System Design

Data

S

R

VDD

R

VDD

R

(a) Single-pole single-throw switch

Data

VDD

R

(b) Single-pole double-throw switch with a basic SR latch

Figure 10.48 Switch debouncing circuit.

circuit. When the switch is in the bottom position, the R input on the latch is 0 and Data
= 0. When the switch is thrown to the top position, the S input on the latch becomes 0,
which sets Data to 1. If the switch bounces away from the top position, the inputs to the

July 10, 2002 09:55 vra23151_ch10 Sheet number 55 Page number 659 black

10.4 Concluding Remarks 659

latch become R = S = 1 and the value Data = 1 is stored by the latch. When the switch
is thrown to the bottom position, Data changes to 0 and this value is stored in the latch if
the switch bounces. Note that when a switch bounces, it cannot bounce fully between the
S and R terminals; it only bounces slightly away from one of the terminals and then back
to it.

10.4 Concluding Remarks

This chapter has provided several examples of digital systems that include one or more
FSMs as well as building blocks like adders, registers, shift registers, and counters. We
have shown how ASM charts can be used as an aid for designing a digital system, and we
have shown how the circuits can be described using Verilog code. A number of practical
issues have been discussed, such as clock skew, synchronization of asynchronous inputs,
and switch debouncing. Some notable books that also cover the material presented in this
chapter include [3–10].

Problems

10.1 The circuit in Figure 10.4 gives a shift register in which the parallel-load control input
is independent of the enable input. Show a different shift register circuit in which the
parallel-load operation can be performed only when the enable input is also asserted.

10.2 The ASM chart in Figure 10.10, which describes the bit-counting circuit, includes Moore-
type outputs in states S1, S2, and S3, and it has a Mealy-type output in state S2.
(a) Show how the ASM chart can be modified such that it has only Moore-type outputs in
state S2.
(b) Give the ASM chart for the control circuit corresponding to part (a).
(c) Give Verilog code that represents the modified control circuit.

10.3 Figure 10.17 shows the datapath circuit for the shift-and-add multiplier. It uses a shift
register for B so that b0 can be used to decide whether or not A should be added to P. A
different approach is to use a normal register to hold operand B and to use a counter and
multiplexer to select bit bi in each stage of the multiplication operation.
(a) Show the ASM chart that uses a normal register for B, instead of a shift register.
(b) Show the datapath circuit corresponding to part (a).
(c) Give the ASM chart for the control circuit corresponding to part (b).
(d) Give Verilog code that represents the multiplier circuit.

10.4 Write Verilog code for the divider circuit that has the datapath in Figure 10.23 and the
control circuit represented by the ASM chart in Figure 10.24.

July 10, 2002 09:55 vra23151_ch10 Sheet number 56 Page number 660 black

660 C H A P T E R 10 • Digital System Design

10.5 Section 10.2.4 shows how to implement the traditional long division that is done by “hand.”
A different approach for implementing integer division is to perform repeated subtraction
as indicated in the pseudo-code in Figure P10.1.

Q = 0 ;
R = A ;
while ((R B) > 0) do

R = R B ;
Q = Q + 1 ;

end while ;

Figure P10.1 Pseudo-code for integer division.

(a) Give an ASM chart that represents the pseudo-code in Figure P10.1.
(b) Show the datapath circuit corresponding to part (a).
(c) Give the ASM chart for the control circuit corresponding to part (b).
(d) Give Verilog code that represents the divider circuit.
(e) Discuss the relative merits and drawbacks of your circuit in comparison with the circuit
designed in section 10.2.4.

10.6 In the ASM chart in Figure 10.32, the two states S3 and S4 are used to compute the mean
M = Sum/k. Show a modified ASM chart that combines states S3 and S4 into a single
state, called S3.

10.7 Write Verilog code for the FSM represented by your ASM chart defined in problem 10.6.

10.8 In the ASM chart in Figure 10.36, we specify the assignment Cj ← Ci in state S2, and
then in state S3 we increment Cj by 1. Is it possible to eliminate state S3 if the assignment
Cj ← Ci + 1 is performed in S2? Explain any implications that this change has on the
control and datapath circuits.

10.9 Figure 10.35 gives pseudo-code for the sorting operation in which the registers being sorted
are indexed using variables i and j. In the ASM chart in Figure 10.36, variables i and j are
implemented using the counters Ci and Cj. A different approach is to implement i and j
using two shift registers.
(a) Redesign the circuit for the sorting operation using the shift registers instead of the
counters to index registers R0, . . . , R3.
(b) Give Verilog code for the circuit designed in part (a).
(c) Discuss the relative merits and drawbacks of your circuit in comparison with the circuit
that uses the counters Ci and Cj.

10.10 Figure 10.42 shows a datapath circuit for the sorting operation that uses tri-state buffers to
access the registers. Using the MAX+plusII Graphic Editor, draw the schematic in Figure
10.42. For the tri-state buffers, use the module named tri from the Primitives library. Use the
lpm_compare module for the comparator subcircuit. Create the other necessary subcircuits
using Verilog code and create graphical symbols that represent them. Describe the control
circuit using Verilog code, create a graphical symbol for it, and connect this symbol to the

July 10, 2002 09:55 vra23151_ch10 Sheet number 57 Page number 661 black

Problems 661

datapath modules in the schematic. Give a simulation result for your circuit implemented
in a chip of your choosing. See Appendices B, C, and D for instructions on using the CAD
tools.

10.11 Figure 10.40 gives Verilog code for the sorting circuit. Show how to modify this code to
make use of a subcircuit that represents a k×n SRAM block. Use the lpm_ram_dq module
for the SRAM block. Choose the synchronous SRAM option so that all changes to the
SRAM contents are synchronized to the clock signal. (Hint: use the complement of the
clock signal to synchronize the SRAM operations because this approach allows the Verilog
code for the FSM shown in Figure 10.40 to be used without changes.)

10.12 Design a circuit that finds the log2 of an operand that is stored in an n-bit register. Show
all steps in the design process and state any assumptions made. Give Verilog code that
describes your circuit.

10.13 Figure 10.33 shows a schematic for the circuit that computes the mean operation. Write
Verilog code that represents this circuit. Use an array of registers instead of an SRAM
block. For the divider subcircuit, use a shift operation that divides by four, instead of using
the divider circuit designed in section 10.2.4.

10.14 The circuit designed in section 10.2.5 uses an adder to compute the sum of the contents of
the registers. The divider subcircuit used to compute M = Sum/k also includes an adder.
Show how the circuit can be redesigned so that it contains only a single adder subcircuit
that is used both for the summation operation and the division operation. Show only the
extra circuitry needed to connect to the adder; and explain its operation.

10.15 Give Verilog code for the circuit designed in problem 10.14, including both the datapath
and control circuits.

10.16 The pseudo-code for the sorting operation given in Figure 10.35 uses registers A and B to
hold the contents of the registers being sorted. Show pseudo-code for the sorting operation
that uses only register A to hold temporary data during the sorting operation. Give a
corresponding ASM chart that represents the datapath and control circuits needed. Use
multiplexers to interconnect the registers, in the style shown in Figure 10.37. Give a
separate ASM chart that represents the control circuit.

10.17 Give Verilog code for the sorting circuit designed in problem 10.16.

10.18 In section 7.14.1 we showed a digital system with three registers, R1 to R3, and we designed
a control circuit that can be used to swap the contents of registers R1 and R2. Give an ASM
chart that represents this digital system and the swap operation.

10.19 (a) For the ASM chart derived in problem 10.18, show another ASM chart that specifies the
required control signals to control the datapath circuit. Assume that multiplexers are used
to implement the bus that connects the registers, as shown in Figure 7.65.
(b) Write complete Verilog code for the system in problem 10.18, including the control
circuit described in part (a).
(c) Synthesize a circuit from the Verilog code written in part (b) and show a timing simulation
that illustrates correct functionality of the circuit.

10.20 In section 7.14.2 we gave the design for a circuit that works as a processor. Give an ASM
chart that describes the functionality of this processor.

July 10, 2002 09:55 vra23151_ch10 Sheet number 58 Page number 662 black

662 C H A P T E R 10 • Digital System Design

10.21 (a) For the ASM chart derived in problem 10.20, show another ASM chart that specifies
the required control signals to control the datapath circuit in the processor. Assume that
multiplexers are used to implement the bus that connects the registers, R0 to R3, in the
processor.
(b) Write complete Verilog code for the system in problem 10.20, including the control
circuit described in part (a).
(c) Synthesize a circuit from the Verilog code written in part (b) and show a timing simulation
that illustrates correct functionality of the circuit.

10.22 Consider the design of a circuit that controls the traffic lights at the intersection of two roads.
The circuit generates the outputs G1, Y 1, R1 and G2, Y 2, R2. These outputs represent the
states of the green, yellow, and red lights, respectively, on each road. A light is turned
on if the corresponding output signal has the value 1. The lights have to be controlled in
the following manner: when G1 is turned on it must remain on for a time period called t1
and then be turned off. Turning off G1 must result in Y 1 being immediately turned on; it
should remain on for a time period called t2 and then be turned off. When either G1 or Y 1
is on, R2 must be on and G2 and Y 2 must be off. Turning off Y 1 must result in G2 being
immediately turned on for the t1 time period. When G2 is turned off, Y 2 is turned on for
the t2 time period. Of course, when either G2 or Y 2 is turned on, R1 must be turned on and
G1 and Y 1 must be off.
(a) Give an ASM chart that describes the traffic-light controller. Assume that two down-
counters exist, one that is used to measure the t1 delay and another that is used to measure
t2. Each counter has parallel load and enable inputs. These inputs are used to load an
appropriate value representing either the t1 or t2 delay and then allow the counter to count
down to 0.
(b) Give an ASM chart for the control circuit for the traffic-light controller.
(c) Write complete Verilog code for the traffic-light controller, including the control circuit
from part (a) and counters to represent t1 and t2. Use any convenient clock frequency to
clock the circuit and assume convenient count values to represent t1 and t2. Give simulation
results that illustrate the operation of your circuit.

10.23 Assume that you need to use a single-pole single-throw switch as shown in Figure 10.48a.
Show how a counter can be used as a means of debouncing the Data signal produced by the
switch. (Hint: design an FSM that has Data as an input and produces the output z, which is
the debounced version of Data. Assume that you have access to a Clock input signal with
the frequency 102.4 kHz, which can be used as needed.)

10.24 Clock signals are usually generated using special purpose chips. One example of such
a chip is the 555 programmable timer, which is depicted in Figure P10.2. By choosing
particular values for the resistors Ra and Rb and the capacitor C1, the 555 timer can be used
to produce a desired clock signal. It is possible to choose both the period of the clock signal
and its duty cycle. The term duty cycle refers to the percentage of the clock period for which
the signal is high. The following equations define the clock signal produced by the chip

Clock period = 0.7(Ra + 2Rb)C1

Duty cycle = Ra + Rb

Ra + 2Rb

July 10, 2002 09:55 vra23151_ch10 Sheet number 59 Page number 663 black

References 663

5 V

Rb

Ra

555

Timer

8

7

6

51

2

3

4

C1

0.01µF

Clock
(output)

Figure P10.2 The 555 programmable timer chip.

(a) Determine the values of Ra, Rb, and C1 needed to produce a clock signal with a 50
percent duty cycle and a frequency of about 500 kHz.
(b) Repeat part (a) for a duty cycle of 75 percent.

References

1. V. C. Hamacher, Z. G. Vranesic, and S. G. Zaky, Computer Organization, 5th ed.
(McGraw-Hill: New York, 2001).

2. D. A. Patterson and J. L. Hennessy, Computer Organization and Design—The
Hardware/Software Interface, 2nd ed. (Morgan Kaufmann: San Francisco, CA,
1998).

3. D. D. Gajski, Principles of Digital Design (Prentice-Hall: Upper Saddle River, NJ,
1997).

4. M. M. Mano and C. R. Kime, Logic and Computer Design Fundamentals
(Prentice-Hall: Upper Saddle River, NJ, 1997).

5. J. P. Daniels, Digital Design from Zero to One (Wiley: New York, 1996).

6. V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit
Analysis and Design (Prentice-Hall: Englewood Cliffs, NJ, 1995).

July 10, 2002 09:55 vra23151_ch10 Sheet number 60 Page number 664 black

664 C H A P T E R 10 • Digital System Design

7. R. H. Katz, Contemporary Logic Design (Benjamin/Cummings: Redwood City, CA,
1994).

8. J. P. Hayes, Introduction to Logic Design (Addison-Wesley: Reading, MA, 1993).

9. C. H. Roth Jr., Fundamentals of Logic Design, 4th ed. (West: St. Paul, MN, 1993).

10. J. F. Wakerly, Digital Design Principles and Practices (Prentice-Hall: Englewood
Cliffs, NJ, 1990).

11. C. J. Myers, Asynchronous Circuit Design, (Wiley: New York, 2001).

May 22, 2002 13:30 vra23151_ch11 Sheet number 1 Page number 665 black

665

c h a p t e r

11
Testing of Logic Circuits

a b c d e f g h

1

2

3

4

5

6

7

8

11. Bc1–f4, b7–b5

May 22, 2002 13:30 vra23151_ch11 Sheet number 2 Page number 666 black

666 C H A P T E R 11 • Testing of Logic Circuits

In the previous chapters we have discussed the design of logic circuits. Following a sound design procedure,
we expect that the designed circuit will perform as required. But how does one verify that the final circuit
indeed achieves the design objectives? It is essential to ascertain that the circuit exhibits the required functional
behavior and that it meets any timing constraints that are imposed on the design. We have discussed the timing
issues in several places in the book. In this chapter we will discuss some testing techniques that can be used
to verify the functionality of a given circuit.

There are several reasons for testing a logic circuit. When the circuit is first developed, it is necessary
to verify that the designed circuit meets the required functional and timing specifications. When multiple
copies of a correctly designed circuit are being manufactured, it is essential to test each copy to ensure that
the manufacturing process has not introduced any flaws. It is also necessary to test circuits used in equipment
that is installed in the field when it is suspected that there may be something wrong.

The basis of all testing techniques is to apply predefined sets of inputs, called tests, to a circuit and
compare the outputs observed with the patterns that a correctly functioning circuit is supposed to produce.
The challenge is to derive a relatively small number of tests that provide an adequate indication that the circuit
is correct. The exhaustive approach of applying all possible tests is impractical for large circuits because
there are too many possible tests.

11.1 Fault Model

A circuit functions incorrectly when there is something wrong with it, such as a transistor
fault or an interconnection wiring fault. Many things can go wrong, leading to a variety of
faults. A transistor switch can break so that it is permanently either closed or open. A wire
in the circuit can be shorted to VDD or to ground, or it can be simply broken. There can be an
unwanted connection between two wires. A logic gate may generate a wrong output signal
because of a fault in the circuitry that implements the gate. Dealing with many different
types of faults is cumbersome. Fortunately, it is possible to restrict the testing process to
some simple faults, and obtain generally satisfactory results.

11.1.1 Stuck-at Model

Most circuits discussed in this text use logic gates as the basic building blocks. A good
model for representing faults in such circuits is to assume that all faults manifest themselves
as some wires (inputs or outputs of gates) being permanently stuck at logic value 0 or 1.
We indicate that a wire, w, has an undesirable signal that always corresponds to the logic
value 0 by saying that w is stuck-at-0, which is denoted as w/0. If w has an undesirable
signal that is always equal to logic 1, then w is stuck-at-1, which is denoted as w/1.

An obvious example of a stuck-at fault is when an input to a gate is incorrectly connected
to a power supply, either VDD or ground. But the stuck-at model is also useful for dealing
with faults of other types, which often cause the same problems as if a wire were stuck at
a particular logic value. The exact impact of a fault in the circuitry that implements a logic
gate depends on the particular technology used. We will restrict our attention to the stuck-at
faults and will examine the testing process assuming that these are the only faults that can
occur.

May 22, 2002 13:30 vra23151_ch11 Sheet number 3 Page number 667 black

11.2 Complexity of a Test Set 667

11.1.2 Single and Multiple Faults

A circuit can be faulty because it has either a single fault or possibly many faults. Dealing
with multiple faults is difficult because each fault can occur in many different ways. A
pragmatic approach is to consider single faults only. Practice has shown that a set of tests
that can detect all single faults in a given circuit can also detect the vast majority of multiple
faults.

A fault is detected if the output value produced by the faulty circuit is different from
the value produced by the good circuit when an appropriate test is applied as input. Each
test is supposed to be able to detect the occurrence of one or more faults. A complete set of
tests used for a given circuit is referred to as the test set.

11.1.3 CMOS Circuits

CMOS logic circuits present some special problems in terms of faulty behavior. The
transistors may fail in permanently open or shorted (closed) state. Many such failures
manifest themselves as stuck-at faults. But some produce entirely different behavior. For
example, transistors that fail in the shorted state may cause a continuous flow of current from
VDD to ground, which can create an intermediate output voltage that may not be determined
as either logic 0 or 1. Transistors failing in the open state may lead to conditions where the
output capacitor retains its charge level because the switch that is supposed to discharge it
is broken. The effect is that a combinational CMOS circuit starts behaving as a sequential
circuit.

Specific techniques for testing of CMOS circuits are beyond the scope of this book. An
introductory discussion of this topic can be found in references [1–3]. Testing of CMOS
circuits has been the subject of considerable research [4–6]. We will assume that a test
set developed using the stuck-at model will provide an adequate coverage of faults in all
circuits.

11.2 Complexity of a Test Set

There is large difference in testing combinational and sequential circuits. Combinational
circuits can be tested adequately regardless of their design. Sequential circuits present a
much greater challenge because the behavior of a circuit under test is influenced not only
by the tests that are applied to the external inputs but also by the states that the circuit is
in when the tests are applied. It is very difficult to test a sequential circuit designed by a
designer who does not take its testability into account. However, it is possible to design
such circuits to make them more easily testable, as we will discuss in section 11.6. We will
start by considering the testing of combinational circuits.

An obvious way to test a combinational circuit is to apply a test set that comprises all
possible input valuations. Then it is only necessary to check if the output values produced
by the circuit are the same as specified in a truth table that defines the circuit. This approach
works well for small circuits, where the test set is not large, but it becomes totally impractical

May 22, 2002 13:30 vra23151_ch11 Sheet number 4 Page number 668 black

668 C H A P T E R 11 • Testing of Logic Circuits

for large circuits with many input variables. Fortunately, it is not necessary to apply all 2n

valuations as tests for an n-input circuit. A complete test set, capable of detecting all single
faults, usually comprises a much smaller number of tests.

Figure 11.1a gives a simple three-input circuit for which we want to determine the
smallest test set. An exhaustive test set would include all eight input valuations. This
circuit involves five wires, labeled a, b, c, d , and f in the figure. Using our fault model,
each wire can be stuck either at 0 or 1.

Figure 11.1b enumerates the utility of the eight input valuations as possible tests for
the circuit. The valuation w1w2w3 = 000 can detect the occurrence of a stuck-at-1 fault on
wires a, d , and f . In a good circuit this test results in the output f = 0. However, if any
of the faults a/1, d/1, or f /1 occurs, then the circuit will produce f = 1 when the input
valuation 000 is applied. The test 001 causes f = 0 in the good circuit, and it results in

f

a

b

c
d

w1

w2

w3

(a) Circuit

Test Fault detected

000

001

010

011

100

101

110

111

(b) Faults detected by the various input valuations

Figure 11.1 Fault detection in a simple circuit.

May 22, 2002 13:30 vra23151_ch11 Sheet number 5 Page number 669 black

11.3 Path Sensitizing 669

f = 1 if any of the faults a/1, b/1, d/1, or f /1 occurs. This test can detect the occurrence
of four different faults. We say that it covers these faults. The last test, 111, can detect only
one fault, f /0.

A minimal test set that covers all faults in the circuit can be derived from the table by
inspection. Some faults are covered by only one test, which means that these tests must be
included in the test set. The fault b/1 is covered only by 001. The fault c/1 is covered only
by 010. The faults b/0, c/0, and d/0 are covered only by 011. Therefore, these three tests
are essential. For the remaining faults there is a choice of tests that can be used. Selecting
the tests 001, 010, and 011 covers all faults except a/0. This fault can be covered by three
different tests. Choosing 100 arbitrarily, a complete test set for the circuit is

Test set = {001, 010, 011, 100}
The conclusion is that all possible stuck-at faults in this circuit can be detected using four
tests, rather than the eight tests that would be used if we simply tried to test the circuit using
its complete truth table.

The size of the complete test set for a given n-input circuit is generally much smaller
than 2n. But this size may still be unacceptably large in practical terms. Moreover, deriving
the minimal test set is likely to be a daunting task for even moderately sized circuits.
Certainly, the simple approach of Figure 11.1 is not practical. In the next section we will
explore a more interesting approach.

11.3 Path Sensitizing

Deriving a test set by considering the individual faults on all wires in a circuit, as done in
section 11.2, is not attractive from the practical point of view. There are too many wires
and too many faults to consider. A better alternative is to deal with several wires that form
a path as an entity that can be tested for several faults using a single test. It is possible to
activate a path so that the changes in the signal that propagates along the path have a direct
impact on the output signal.

Figure 11.2 illustrates a path from input w1 to output f , through three gates, which
consists of wires a, b, c, and f . The path is activated by ensuring that other paths in the
circuit do not determine the value of the output f . Thus the input w2 must be set to 1 so
that the signal at b depends only on the value at a. The input w3 must be 0 so that it does

f

a
b

c

w1

w2 1=

w3 0=

w4 1=

Figure 11.2 A sensitized path.

May 22, 2002 13:30 vra23151_ch11 Sheet number 6 Page number 670 black

670 C H A P T E R 11 • Testing of Logic Circuits

not affect the NOR gate, and w4 must be 1 to not affect the AND gate. Then if w1 = 0 the
output will be f = 1, whereas w1 = 1 will cause f = 0. Instead of saying that the path
from w1 to f is activated, a more specific term is used in technical literature, which says
that the path is sensitized.

To sensitize a path through an input of an AND or NAND gate, all other inputs must
be set to 1. To sensitize a path through an input of an OR or NOR gate, all other inputs
must be 0.

Consider now the effect of faults along a sensitized path. The fault a/0 in Figure 11.2
will cause f = 1 even if w1 = 1. The same effect occurs if the faults b/0 or c/1 are
present. Thus the test w1w2w3w4 = 1101 detects the occurrence of faults a/0, b/0, and
c/1. Similarly, if w1 = 0, the output should be f = 1. But if any of the faults a/1, b/1,
or c/0 is present, the output will be f = 0. Hence these three faults are detectable using
the test 0101. The presence of any stuck-at fault along the sensitized path is detectable by
applying only two tests.

The number of paths in a given circuit is likely to be much smaller than the number
of individual wires. This suggests that it may be attractive to derive a test set based on the
sensitized paths. This possibility is illustrated in the next example.

Example 11.1 PATH-SENSITIZED TESTS Consider the circuit in Figure 11.3. This circuit has five paths.
The path w1 − c− f is sensitized by setting w2 = 1 and w4 = 0. It doesn’t matter whether
w3 is 0 or 1, because w2 = 1 causes the signal on wire b to be equal to 0, which forces
d = 0 regardless of the value of w3. Thus the path is sensitized by setting w2w3w4 = 1x0,
where the symbol x means that the value of w3 does not matter. Now the tests w1w2w3w4 =
01x0 and 11x0 detect all faults along this path. The second path, w2− c− f , is tested using
1000 and 1100. The path w2 − b− d − f is tested using 0010 and 0110. The tests for the
path w3 − d − f are x000 and x010. The fifth path, w4 − f , is tested with 0x00 and 0x01.
Instead of using all ten of these tests, we can observe that the test 0110 serves also as the
test 01x0, the test 1100 serves also as 11x0, the test 1000 serves also as x000, and the test
0010 serves also as x010. Therefore, the complete test set is

Test set = {0110, 1100, 1000, 0010, 0x00, 0x01}

f

b

c

d

w1

w2

w3

w4

Figure 11.3 Circuit for Example 11.1.

May 22, 2002 13:30 vra23151_ch11 Sheet number 7 Page number 671 black

11.3 Path Sensitizing 671

While this approach is simpler, it is still impractical for large circuits. But the concept of
path sensitizing is very useful, as we will see in the discussion that follows.

11.3.1 Detection of a Specific Fault

Suppose that we suspect that the circuit in Figure 11.3 has a fault where the wire b is stuck-
at-1. A test that determines the presence of this fault can be obtained by sensitizing a path
that propagates the effect of the fault to the output, f , where it can be observed. The path
goes from b to d to f . It is necessary to set w3 = 1, w4 = 0, and c = 0. The latter can be
accomplished by setting w1 = 0. If b is stuck-at-1, then it is necessary to apply an input
that would normally produce the value of 0 on the wire b, so that the output values in good
and faulty circuits would be different. Hence w2 must be set to 1. Therefore, the test that
detects the b/1 fault is w1w2w3w4 = 0110.

In general, the fault on a given wire can be detected by propagating the effect of the
fault to the output, sensitizing an appropriate path. This involves assigning values to other
inputs of the gates along the path. These values must be obtainable by assigning specific
values to the primary inputs, which may not always be possible. Example 11.2 illustrates
the process.

Example 11.2FAULT PROPAGATION As the effect of a fault propagates through the gates along a
sensitized path, the polarity of the signal will change when passing through an inverting
gate. Let the symbol D denote a stuck-at-0 fault in general. The effect of the stuck-at-0
fault will be unaltered when passed through an AND or OR gate. If D is on an input of an
AND (OR) gate and the other inputs are set to 1 (0), then the output of the gate will behave
as having D on it. But if D is on an input of a NOT, NAND, or NOR gate, then the output
will appear to be stuck-at-1, which is denoted as D.

Figure 11.4 shows how the effect of a fault can be propagated using the D and D
symbols. Suppose first that there is a stuck-at-0 fault on wire b; that is, b/0. We want to
propagate the effect of this fault along the path b − h − f . This can be done as indicated
in Figure 11.4b. Setting g = 1 propagates the fault to the wire h. Then h appears to be
stuck-at-1, denoted by D. Next the effect is propagated to f by setting k = 1. Since the last
NAND also inverts the signal, the output becomes equal to D, which is equivalent to f /0.
Thus in a good circuit the output should be 1, but in a faulty circuit it will be 0. Next we must
ascertain that it is possible to have g = 1 and k = 1 by assigning the appropriate values to
the primary input variables. This is called the consistency check. By setting c = 0, both g
and k will be forced to 1, which can be achieved with w3 = w4 = 1. Finally, to cause the
propagation of the fault D on wire b, it is necessary to apply a signal that causes b to have
the value 1, which means that either w1 or w2 has to be 0. Then the test w1w2w3w4 = 0011
detects the fault b/0.

Suppose next that the wire g is stuck-at-1, denoted by D. We can try to propagate the
effect of this fault through the path g − h− f by setting b = 1 and k = 1. To make b = 1,

May 22, 2002 13:30 vra23151_ch11 Sheet number 8 Page number 672 black

672 C H A P T E R 11 • Testing of Logic Circuits

b

c

g

k

h

f

w1

w2

w3

w4

(a) Circuit

D

0

1

1

D

f

w1

w2

w3

w4

(b) Detection of

f

w1

w2

w3

w4

D

D

0

0

1

1

1

1
D

D

0

0

0

0

D

b 0⁄ fault

(c) Detection of g 1⁄ fault

Figure 11.4 Detection of faults.

we set w1 = w2 = 0. To make k = 1, we have to make c = 0. But it is also necessary to
cause the propagation of the D fault on g by means of a signal that makes g = 0 in the good
circuit. This can be done only if b = c = 1. The problem is that at the same time we need
c = 0, to make k = 1. Therefore, the consistency check fails, and the fault g/1 cannot be
propagated in this way.

Another possibility is to propagate the effect of the fault along two paths simultaneously,
as shown in Figure 11.4c. In this case the fault is propagated along the paths g− h− f and

May 22, 2002 13:30 vra23151_ch11 Sheet number 9 Page number 673 black

11.4 Circuits with Tree Structure 673

g − k − f . This requires setting b = 1 and c = 1, which also happens to be the condition
needed to cause the propagation as explained above. The test 0000 achieves the desired
objective of detecting g/1. Observe that if D (or D) appears on both inputs of a NAND
gate, the output value will be D (or D).

The idea of propagating the effect of faults using path sensitizing has been exploited in
a number of methods for derivation of test sets for fault detection. The scheme illustrated
in Figure 11.4 indicates the essence of the D-algorithm, which was one of the first practical
schemes developed for fault detection purposes [7]. Other techniques have grown from this
basic approach [8].

11.4 Circuits with Tree Structure

Circuits with a treelike structure, where each gate has a fan-out of 1, are particularly easy
to test. The most common forms of such circuits are the sum-of-products or product-of-
sums. Since there is a unique path from each primary input to the output of the circuit, it is
sufficient to derive the tests for faults on the primary inputs. We will illustrate this concept
by means of the sum-of-products circuit in Figure 11.5.

If any input of an AND gate is stuck-at-0, this condition can be detected by setting all
inputs of the gate to 1 and ensuring that the other AND gates produce 0. This makes f = 1
in the good circuit, and f = 0 in the faulty circuit. Three such tests are needed because
there are three AND gates.

Testing for stuck-at-1 faults is slightly more involved. An input of an AND gate is
tested for the stuck-at-1 fault by driving it with the logic value 0, while the other inputs of
the gate have the logic value 1. Thus a good gate produces the output of 0, and a faulty

f

w1

w3

w4

w2

w3

w4

w1

w2

w3

Figure 11.5 Circuit with a tree structure.

May 22, 2002 13:30 vra23151_ch11 Sheet number 10 Page number 674 black

674 C H A P T E R 11 • Testing of Logic Circuits

Product term Test
No.

w1w3w4 w2w3w4 w1w2w3 w1w2w3w4

1 1 1 1 0 1 0 0 0 0 1 0 0 0
Stuck-at-0 2 0 1 0 1 1 1 1 1 0 0 1 0 1

tests
3 0 0 0 1 0 1 1 1 1 0 1 1 1

4 0 1 1 1 1 0 1 1 0 0 1 0 0

5 1 0 1 1 0 0 0 1 1 1 1 1 0
Stuck-at-1 6 1 1 0 0 1 1 0 0 0 1 0 0 1

tests
7 1 0 0 1 0 1 0 1 1 1 1 1 1

8 0 0 0 0 0 1 1 0 1 0 0 1 1

Figure 11.6 Derivation of tests for the circuit in Figure 11.5.

gate generates 1. At the same time, the other AND gates must have the output of 0, which
is accomplished by making at least one input of these gates equal to 0.

Figure 11.6 shows the derivation of the necessary tests. The first three tests are for
the stuck-at-0 faults. Test 4 detects a stuck-at-1 fault on either the first input of the top
AND gate or the third inputs of the other two gates. Observe that in each case the tested
input is driven by logic 0, while the other inputs are equal to 1. This yields the test vector
w1w2w3w4 = 0100. Clearly, it is useful to test inputs on as many gates as possible using a
single test vector. Test 5 detects a fault on either the second input of the top gate or the first
input of the bottom gate; it does not test any inputs of the middle gate. The required test
pattern is 1110. Three more tests are needed to detect stuck-at-1 faults on the remaining
inputs of the AND gates. Therefore, the complete test set is

Test set = {1000, 0101, 0111, 0100, 1110, 1001, 1111, 0011}

11.5 Random Tests

So far we have considered the task of deriving a deterministic test set for a given circuit,
primarily relying on the path-sensitizing concept. In general, it is difficult to generate such
test sets when circuits become larger. A useful alternative is to choose the tests at random,
which we will explore in this section.

Figure 11.7 gives all functions of two variables. For an n-variable function, there are
22n

possible functions; hence there are 222 = 16 two-variable functions. Consider the XOR
function, implemented as shown in Figure 11.8. Let us consider the possible stuck-at-0 and

May 22, 2002 13:30 vra23151_ch11 Sheet number 11 Page number 675 black

11.5 Random Tests 675

w1w2 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure 11.7 All two-variable functions.

stuck-at-1 faults on wires b, c, d , h, and k in this circuit. Each fault transforms the circuit
into a faulty circuit that implements a function other than XOR, as indicated in Figure 11.9.
To test the circuit, we can apply one or more input valuations to distinguish the good circuit
from the possible faulty circuits listed in Figure 11.9. Choose arbitrarily w1w2 = 01 as the
first test. This test will distinguish the good circuit, which must generate f = 1, from the
faulty circuits that realize f0, f2, f3, and f10, because each of these would generate f = 0.
Next, arbitrarily choose the test w1w2 = 11. This test distinguishes the good circuit from the
faulty circuits that realize f5, f7, and f15, in addition to f3, which we have already tested for
using w1w2 = 01. Let the third test be w1w2 = 10; it will distinguish the good circuit from
f4 and f12. These three tests, chosen in a seemingly random way, detect all faulty circuits
that involve the faults in Figure 11.9. Moreover, note that the first two tests distinguish
seven of the nine possible faulty circuits.

This example suggests that it may be possible to derive a suitable test set by selecting
the tests randomly. How effective can random testing be? Looking at Figure 11.7, we
see that any of the four possible tests distinguishes the correct function from eight faulty
functions, because they produce different output values for this input valuation. These
eight faulty functions detectable by a single test are one-half of the total number of possible
functions (222−1 for the two-variable case). The test cannot distinguish between the correct
function and the seven faulty functions that produce the same output value. The application
of the second test distinguishes four of the remaining seven functions because they produce

w1

w2

d
b

c

h

k

f

Figure 11.8 The XOR circuit.

May 22, 2002 13:30 vra23151_ch11 Sheet number 12 Page number 676 black

676 C H A P T E R 11 • Testing of Logic Circuits

Fault Circuit implements

b/0 f5 = w2

b/1 f10 = w2

c/0 f3 = w1

c/1 f12 = w1

d/0 f0 = 0

d/1 f7 = w1 + w2

h/0 f15 = 1

h/1 f4 = w1w2

k/0 f15 = 1

k/1 f2 = w1w2

Figure 11.9 The effect of various faults.

an output value that is different from the correct function. Thus each application of a
new test essentially cuts in half the number of faulty functions that have not been detected.
Consequently, the probability that the first few tests will detect a large portion of all possible
faults is high. More specifically, the probability that each faulty circuit can be detected by
the first test is

P1 = 1

222 − 1
· 222−1 = 8

15
= 0.53

This is the ratio of the number of faulty circuits that produce an output value different from
the good circuit, to the total number of faulty circuits.

This reasoning is readily extended to n-variable functions. In this case the first test
detects 22n−1 out of a total of 22n − 1 possible faulty functions. Therefore, if m tests are
applied, the probability that a faulty circuit will be detected is

Pm = 1

22n − 1
·

m
∑

i=1

22n−i

This expression is depicted in graphical form in Figure 11.10. The conclusion is that random
testing is very effective and that after a few tens of tests the existence of a fault is likely to
be detected even in very large circuits.

Random testing works particularly well for circuits that do not have high fan-in. If
fan-in is high, then it may be necessary to resort to other testing schemes. For example,
suppose that an AND gate has a large number of inputs. Then there is a problem with
detecting stuck-at-1 faults on its inputs, which may not be covered by random tests. But it
is possible to test for these faults using the approach described in section 11.4.

May 22, 2002 13:30 vra23151_ch11 Sheet number 13 Page number 677 black

11.6 Testing of Sequential Circuits 677

Percent
faults

detected

Number of tests

Figure 11.10 Effectiveness of random testing.

The simplicity of random testing is a very attractive feature. For this reason, coupled
with good effectiveness of tests, this technique is often used in practice.

11.6 Testing of Sequential Circuits

As seen in the previous sections, combinational circuits can be tested effectively, using
either deterministic or random test sets. It is much more difficult to test sequential circuits.
The presence of memory elements allows a sequential circuit to be in various states, and the
response of the circuit to externally applied test inputs depends on the state of the circuit.

A combinational circuit can be tested by comparing its behavior with the functionality
specified in the truth table. An equivalent attempt would be to test a sequential circuit
by comparing its behavior with the functionality specified in the state table. This entails
checking that the circuit performs correctly all transitions between states and that it produces
a correct output. This approach may seem easy, but in reality it is extremely difficult. A
big problem is that it is difficult to ascertain that the circuit is in a specific state if the state
variables are not observable on the external pins of the circuit, which is usually the case.
Yet for each transition to be tested, it is necessary to verify with complete certainty that the
correct destination state was reached. Such an approach may work for very small sequential
circuits, but it is not feasible for practical-size circuits. A much better approach is to design
the sequential circuits so that they are easily testable.

11.6.1 Design for Testability

A synchronous sequential circuit comprises the combinational circuit that implements the
output and next-state functions, as well as the flip-flops that hold the state information
during a clock cycle. A general model for the sequential circuits is shown in Figure 8.88.

May 22, 2002 13:30 vra23151_ch11 Sheet number 14 Page number 678 black

678 C H A P T E R 11 • Testing of Logic Circuits

The inputs to the combinational network are the primary inputs, w1 through wn, and the
present state variables, y1 through yk . The outputs of the network are the primary outputs,
z1 through zm, and the next-state variables, Y1 through Yk . The combinational network
could be tested using the techniques presented in the previous sections if it were possible
to apply tests on all of its inputs and observe the results on all of its outputs. Applying the
test vectors to the primary inputs poses no difficulty. Also, it is easy to observe the values
on the primary outputs. The question is how to apply the test vectors on the present-state
inputs and how to observe the values on the next-state outputs.

Apossible approach is to include a two-way multiplexer in the path of each present-state
variable so that the input to the combinational network can be either the value of the state
variable (obtained from the output of the corresponding flip-flop) or the value that is a part
of the test vector. A significant drawback of this approach is that the second input of each
multiplexer must be directly accessible through external pins, which requires many pins if
there are many state variables. An attractive alternative is to provide a connection that allows
shifting the test vector into the circuit one bit at a time, thus trading off pin requirements
for the time it takes to perform a test. Several such schemes have been proposed, one of
which is described below.

Scan-Path Technique
A popular technique, called the scan path, uses multiplexers on flip-flop inputs to allow

the flip-flops to be used either independently during normal operation of the sequential
circuit, or as a part of a shift register for testing purposes. Figure 11.11 presents the general
scan-path structure for a circuit with three flip-flops. A 2-to-1 multiplexer connects the D
input of each flip-flop either to the corresponding next-state variable or to the serial path
that connects all flip-flops into a shift register. The control signal Normal/Scan selects the
active input of the multiplexer. During the normal operation the flip-flop inputs are driven
by the next-state variables, Y1, Y2, and Y3.

For testing purposes the shift-register connection is used to scan in the portion of each
test vector that involves the present-state variables, y1, y2, and y3. This connection has Qi

connected to Di+1. The input to the first flip-flop is the externally accessible pin Scan-in.
The output comes from the last flip-flop, which is provided on the Scan-out pin.

The scan-path technique involves the following steps:

1. The operation of the flip-flops is tested by scanning into them a pattern of 0s and 1s,
for example, 01011001, in consecutive clock cycles, and observing whether the same
pattern is scanned out.

2. The combinational circuit is tested by applying test vectors on w1w2 · · ·wny1y2y3 and
observing the values generated on z1z2 · · · zmY1Y2Y3. This is done as follows:

• The y1y2y3 portion of the test vector is scanned into the flip-flops during three
clock cycles, using Normal/Scan = 1.

• The w1w2 · · ·wn portion of the test vector is applied as usual and the normal
operation of the sequential circuit is performed for one clock cycle, by setting
Normal/Scan = 0. The outputs z1z2 · · · zm are observed. The generated values of
Y1Y2Y3 are loaded into the flip-flops at this time.

• The select input is changed to Normal/Scan = 1, and the contents of the
flip-flops are scanned out during the next three clock cycles, which makes the

May 22, 2002 13:30 vra23151_ch11 Sheet number 15 Page number 679 black

11.6 Testing of Sequential Circuits 679

0

1

0

1

0

1

Combinational
circuit

z1

zk

w1

wn

y3

y2

y1

Y 3

Y 2

Y 1

Clock Scan-in Normal Scan⁄

Scan-out

DQ

DQ

DQ

Figure 11.11 Scan-path arrangement.

Y1Y2Y3 portion of the test result observable externally. At the same time, the next
test vector can be scanned in to reduce the total time needed to test the circuit.

The next example shows a specific circuit that is designed for scan-path testing.

Example 11.3Figure 8.78 shows a circuit that recognizes a specific input sequence, which was discussed
in section 8.9. The circuit can be made easily testable by modifying it for scan path as
shown in Figure 11.12. The combinational part, consisting of four AND and two OR gates,
is the same in both figures.

May 22, 2002 13:30 vra23151_ch11 Sheet number 16 Page number 680 black

680 C H A P T E R 11 • Testing of Logic Circuits

0

1

0

1

w

y1

y2

z

Y 1

Y 2

Resetn

Scan-out

Normal Scan⁄
Scan-in

Clock

DQ

Q

DQ

Q

Figure 11.12 Circuit for Example 11.3.

The flip-flops can be tested by scanning through them a sequence of 0s and 1s as
explained above. The combinational circuit can be tested by applying test vectors on w,
y1, and y2. Let us use the random-testing approach, choosing arbitrarily four test vectors
wy1y2 = 001, 110, 100, and 111. To apply the first test vector, the pattern y1y2 = 01 is
scanned into the flip-flops during two clock cycles. Then for one clock cycle, the circuit
is made to operate in the normal mode with w = 0. This essentially applies the vector
wy1y2 = 001 to the AND-OR circuit. The result of this test should be z = 0, Y1 = 0, and
Y2 = 0. The value of z can be observed directly. The values of Y1 and Y2 are loaded into the
respective flip-flops, and they are scanned out during the next two clock cycles. As these

May 22, 2002 13:30 vra23151_ch11 Sheet number 17 Page number 681 black

11.7 Built-in Self-Test 681

values are being scanned out, the next test pattern y1y2 = 10 can be scanned in. Thus it
takes five cycles to perform one test, but the last two cycles are overlapped with the second
test. The third and fourth tests are performed in the same way. The total time needed to
perform all four tests is 14 clock cycles.

The preceding approach is based on testing a sequential circuit by testing its combina-
tional part using the techniques developed in the previous sections. The scan-path facility
makes it also possible to test the sequential circuit by making it go through all transitions
specified in the state table. The circuit can be placed into a given state simply by scanning
into the flip-flops the valuation of the state variables that denotes this state. The result of
the transition can be checked by observing the primary outputs and by scanning out the
valuation that presents the destination state. We leave it to the reader to develop the details
of this approach (see problem 11.16).

One limitation of the scan-path technique is that it does not work well if the asyn-
chronous preset and reset features of the flip-flops are used during normal operation. We
have already suggested that it is better to use synchronous preset and reset. If the designer
wishes to use the asynchronous preset and reset capability, then a testable circuit can be
designed using techniques such as the level-sensitive scan design [1, 9]. The reader can
consult the references for a description of this technique.

11.7 Built-in Self-Test

Until now we have assumed that testing of logic circuits is done by externally applying the
test inputs and comparing the results with the expected behavior of the circuit. This requires
connecting external equipment to the circuit under test. An interesting question is whether
it is possible to incorporate the testing capability within the circuit itself so that no external
equipment is needed. Such built-in capability would allow the circuit to be self-testable.
This section presents a scheme that provides the built-in self-test (BIST) capability.

Figure 11.13 shows a possible BIST arrangement in which a test vector generator
produces the test vectors that must be applied to the circuit under test. In section 11.5
we explained that randomly chosen test vectors give good results, with the fault coverage
depending on the number of tests performed. For each test vector applied to the circuit, it is

x0

Test
vector

generator

Circuit
under
test

Test
result

compressor

Signature

xn 1–

p0

pm 1–

Figure 11.13 The testing arrangement.

May 22, 2002 13:30 vra23151_ch11 Sheet number 18 Page number 682 black

682 C H A P T E R 11 • Testing of Logic Circuits

necessary to determine the required response of the circuit. The response of a good circuit
may be determined using the simulator tool of a CAD system. The expected responses to
the applied tests must be stored on the chip so that a comparison can be made when the
circuit is being tested.

A practical approach for generating the test vectors on-chip is to use pseudorandom
tests, which have the same characteristics as random tests but are produced deterministically
and can be repeated at will. The generator for pseudorandom tests is easily constructed
using a feedback shift-register circuit. A small example of a possible generator is given in
Figure 11.14. A four-bit shift register, with the signals from the first and fourth stages fed
back through an XOR gate, generates 15 different patterns during successive clock cycles.
If the shift register is set at the beginning to x3x2x1x0 = 1000, then the generated patterns
are as shown in part (b) of the figure. Observe that the pattern 0000 cannot be used, because
the circuit would be locked in this pattern indefinitely.

The circuit in Figure 11.14 is representative of a class of circuits known as linear
feedback shift registers (LFSRs). Using feedback from the various stages of an n-bit shift

x3 x2 x1 x0

Clock

f

PRBS

D Q

Q

D Q

Q

D Q

Q

D Q

Q

(a) Circuit

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1

0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0

0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0

0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0

1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1

(b) Generated sequence

Figure 11.14 Pseudorandom binary sequence generator (PRBSG).

May 22, 2002 13:30 vra23151_ch11 Sheet number 19 Page number 683 black

11.7 Built-in Self-Test 683

register, connected to the first stage by means of XOR gates, it is possible to generate a
sequence of 2n − 1 patterns that have the characteristics of randomly generated numbers.
Such circuits are used extensively in error-correcting codes. The theory of operation of these
circuits is presented in a number of books [1–3, 10]. A table of the feedback connections for
various values of n, which generate a maximum-length pseudorandom sequence, is given
in Peterson and Weldon [11].

The pseudorandom binary sequence generator (PRBSG) gives a simple method of
generating tests. The required response of the circuit under test can be determined by using
the simulator tool of the CAD system. The remaining question is how to check whether
the circuit indeed produces the required response. It is not attractive to have to store a
large number of responses to the tests on a chip that also includes the main circuit. A
practical solution is to compress the results of the tests into a single pattern. This can
be done using an LFSR circuit. Instead of just providing the feedback signals as the
input, a compressor circuit includes the output signals produced by the circuit under test.
Figure 11.15 shows a single-input compressor circuit (SIC), which uses the same feedback
connections as the PRBSG of Figure 11.14. The input p is the output of a circuit under test.
After applying a number of test vectors, the resulting values of p drive the SIC and, coupled
with the LFSR functionality, produce a four-bit pattern. The pattern generated by the SIC
is called a signature of the tested circuit for the given sequence of tests. The signature
represents a single pattern that may be interpreted as a result of all the applied tests. It can
be compared against a predetermined pattern to see if the tested circuit is working properly.
Storing a single n-bit pattern for comparison purposes presents only a small overhead. The
randomizing nature of the compressor circuits based on LFSRs provides a good coverage
of patterns that may result from a faulty circuit [12].

If the circuit under test has more than one output, then an LSFR with multiple inputs
can be used. Figure 11.16 illustrates how four inputs, p0 through p3, can be added to the
basic circuit of Figure 11.14. Again the four-bit signature provides a good mechanism for
distinguishing among different sequences of four-bit patterns that may appear on the inputs
of this multiple-input compressor circuit (MIC).

p

Clock

Signature

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Figure 11.15 Single-input compressor circuit (SIC).

May 22, 2002 13:30 vra23151_ch11 Sheet number 20 Page number 684 black

684 C H A P T E R 11 • Testing of Logic Circuits

Clock

Signature

p3 p2 p1 p0

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Figure 11.16 Multiple-input compressor circuit (MIC).

A complete BIST scheme for a sequential circuit may be implemented as indicated in
Figure 11.17. The scan-path approach is used to provide a testable circuit. The test patterns
that would normally be applied on the primary inputs W = w1w2 · · ·wn are generated
internally as the patterns on X = x1x2 · · · xn. Multiplexers are needed to allow switching
from W to X , as inputs to the combinational circuit. A pseudorandom binary sequence

Combinational
circuit

W

Flip-flops
and

multiplexers

SIC

MIC

X

0

1

Normal Test⁄

y Y

Z-signature

Y-signature

Scan-out

Scan-in

Z

PRBSG-X

PRBSG-y

Figure 11.17 BIST in a sequential circuit.

May 22, 2002 13:30 vra23151_ch11 Sheet number 21 Page number 685 black

11.7 Built-in Self-Test 685

generator, PRBSG-X , generates the test patterns for X . The portion of the tests applied
via the next-state signals, y, is generated by the second PRBS generator, PRBSG-y. These
patterns are scanned into the flip-flops as explained in section 11.6.

The test outputs are compressed using the two compressor circuits. The patterns on
the primary outputs, Z = z1z2 · · · zm, are compressed using the MIC circuit, and those
on the next-state wires Y = Y1Y2 · · ·Yk , by the SIC circuit. These circuits produce the
Z-signature and Y -signature, respectively. The testing procedure is the same as given in
Example 11.3 except that the comparison with the test result that a good circuit is supposed
to give is done only once; at the end of the testing process the two signatures are com-
pared with the stored patterns. Figure 11.17 does not show the circuitry needed to store
these patterns and perform the comparison. Instead of storing the signature patterns of the
required results as a part of the designed circuit, it is possible to shift out the contents of
MIC and SIC shift registers onto two output pins and to perform the necessary compari-
son with the expected signatures externally. Note that using signature testing in this way
reduces the testing time significantly, compared to the time it would take to test the circuit
by scanning out the results of individual tests and comparing them with predetermined
patterns.

The effectiveness of the BIST approach depends on the length of the LFSR generator
and compressor circuits. Longer shift registers give better results [13]. One reason for
failing to detect that the circuit under test may be faulty is that the pseudorandomly generated
tests do not have perfect coverage of all possible faults. Another reason is that a signature
generated by compressing the outputs of a faulty circuit may coincidentally end up being
the same as the signature of the good circuit. This can occur because the compression
process results in a loss of some information, such that two distinct output patterns may be
compressed into the same signature. This is known as the aliasing problem.

11.7.1 Built-in Logic Block Observer

The essence of BIST is to have internal capability for generation of tests and for compression
of the results. Instead of using separate circuits for these two functions, it is possible to
design a single circuit that serves both purposes. Figure 11.18 shows the structure of a
possible circuit, known as the built-in logic block observer (BILBO) [14]. This four-bit
circuit has the same feedback connections as the circuit of Figure 11.14.

The BILBO circuit has four modes of operation, which are controlled by the mode bits,
M1 and M2. The modes are as follows:

• M1M2 = 11 — Normal system mode in which all flip-flops are independently controlled
by the signals on inputs p0 through p3. In this mode each flip-flop may be used to
implement a state variable of a finite state machine by using p0 to p3 as y0 to y3.

• M1M2 = 00 — Shift-register mode in which the flip-flops are connected into a shift
register. This mode allows test vectors to be scanned in, and the results of applied tests
to be scanned out, if the control input G/S is equal to 1. If G/S = 0, then the circuit
acts as the PRBS generator.

• M1M2 = 10 — Signature mode in which a series of patterns applied on inputs p0

through p3 are compressed into a signature available as a pattern on q0 through q3.
• M1M2 = 01 — Reset mode in which all flip-flops are reset to 0.

May 22, 2002 13:30 vra23151_ch11 Sheet number 22 Page number 686 black

686

D
Q Q

D
Q Q

D
Q Q

D
Q Q

01

M
2

M
1

S in

G
S⁄

C
lo

ck

p 2
p 3

p 0
p 1

q 2
q 3

q 0
q 1

S o
u

t

Fi
g

u
re

1
1

.1
8

A
fo
ur
-b
it
bu
ilt
-in

lo
gi
c
bl
oc
k
ob
se
rv
er
(B
ILB
O
).

May 22, 2002 13:30 vra23151_ch11 Sheet number 23 Page number 687 black

11.7 Built-in Self-Test 687

An efficient way of using BILBO circuits is presented in Figure 11.19. A combinational
circuit can be tested by partitioning it into two (or more) parts. A BILBO circuit is used to
provide inputs to one part and to accept outputs from the other part. The testing process
involves a two-phase approach. First, BILBO1 is used as a PRBS generator that provides
test patterns for combinational network 1 (CN1). During this time BILBO2 acts as a
compressor and produces a signature for the test. The signature is shifted out by placing
BILBO2 into the shift-register mode. Next, the roles of BILBO1 and BILBO2 are reversed,
and the process is repeated to test CN2.

The detailed steps in the testing process are

1. Scan the initial test pattern into BILBO1 and reset all flip-flops in BILBO2.

2. Use BILBO1 as the PRBS generator for a given number of clock cycles and use
BILBO2 to produce a signature.

3. Scan out the contents of BILBO2 and externally compare the signature; then scan
into it the initial test pattern for testing CN2. Reset the flip-flops in BILBO1.

4. Use BILBO2 as the PRBS generator for a given number of clock cycles and use
BILBO1 to produce a signature.

5. Scan out the signature in BILBO1 and externally compare it with the required pattern.

The BILBO circuits are used in this way for testing purposes. At other times the normal
system mode is used.

11.7.2 Signature Analysis

We have explained the use of signatures in the context of implementing an efficient built-
in testing mechanism. The main idea of compressing a long sequence of test results into
a single signature was originally developed as the basis for an instrument manufactured
by Hewlett-Packard in the 1970s, known as the Signature Analyzer [15]. Thus the name
signature analysis was coined to refer to the testing schemes that use signatures to represent
the results of applied tests.

Combinational
network

Scan-out

Scan-in

B
IL

B
O

1

CN1

B
IL

B
O

2

Combinational
network

CN2

Figure 11.19 Using BILBO circuits for testing.

May 22, 2002 13:30 vra23151_ch11 Sheet number 24 Page number 688 black

688 C H A P T E R 11 • Testing of Logic Circuits

Signature analysis is particularly suitable for digital systems that naturally include
an ability to generate the desired test patterns. Such is the case with computer systems in
which various parts of the system can be stimulated by test patterns produced under software
control.

11.7.3 Boundary Scan

The testing techniques discussed in the previous sections are equally applicable to circuits
that are implemented on single chips or on printed circuit boards that contain a number of
chips. A circuit can be tested only if it is possible to apply the tests to it and observe the
outputs produced. This involves having access to the primary inputs and outputs.

When chips are soldered onto a printed circuit board, it often becomes impossible to
attach test probes to pins. This hinders the testing process unless some indirect access to the
pins is provided. The scan-path concept can be extended to the board level to deal with the
problem. Suppose that each primary input or output pin on a chip is connected through a D
flip-flop and that a provision is made for a test mode in which all flip-flops can be connected
into a shift register. Then the test information can be scanned in and scanned out using the
shift-register path, via two pins that serve as serial input and output. Connecting the serial
output pin of one chip to the serial input pin of another chip results in the pins of all chips
being connected into a board-wide shift register for testing purposes. This approach has
become popular in practice and has been embodied into the IEEE Standard 1149.1 [16].

11.8 Printed Circuit Boards

Design and testing techniques presented in this book can be applied to any logic circuit,
whether the circuit is realized on a single chip or its implementation involves a number
of chips placed on a printed circuit board (PCB). In this section we discuss some practical
issues that arise when one or more circuits that form a larger digital system are implemented
on a PCB.

A typical PCB contains multiple layers of wiring. When the board is manufactured, the
wiring pattern on each layer is generated. The layers are separated by insulating material
and pressed together in sandwichlike fashion to form the board. Connections between
different wiring levels are made through holes that are provided for this purpose. Chips
and other components are then soldered to the top and possibly to the bottom layers.

In preceding chapters we have discussed in considerable detail the CAD tools used for
designing circuits that can be implemented on a single chip, such as a PLD. For a multiple-
chip implementation, we need a different set of CAD tools to design a PCB that incorporates
the chips and connections needed to realize the complete digital system. Such tools are
available from a number of companies, for example, Cadence Design Systems and Mentor
Graphics. These tools can automatically determine where each chip should be placed on
the PCB, but the designer can also specify the location of particular chips. This is called
the placement process. Given a specific placement of chips and other components (such
as connectors and capacitors), the tools generate a layout for each layer of wiring traces
that provide the required connections on the board. This process is referred to as routing.

May 22, 2002 13:30 vra23151_ch11 Sheet number 25 Page number 689 black

11.8 Printed Circuit Boards 689

Again the designer can intervene and manually route some connections. However, since
the number of connections can be in the tens of thousands, it is crucial to obtain a good
automated solution.

In addition to the design issues discussed in the previous chapters, a large circuit
implemented on a PCB is subject to some other constraints. Signals on the wiring traces
may be affected by noise problems caused by crosstalk, spikes in the power supply voltage,
and reflections from the end points of long traces.

Crosstalk
Two closely spaced wires that run parallel to each other are capacitively coupled, and

a pulse on one wire can induce a similar (but usually much smaller) pulse on the adjoining
wire. This is referred to as crosstalk. Its existence is undesirable because it contributes to
noise problems.

When drawing timing diagrams, we usually draw ideal waveforms with sharp edges,
which have well-defined voltage levels for the logic values 0 and 1. In an actual circuit the
corresponding signals may depart significantly from the desired behavior. As explained in
section 3.8.4, noise in a circuit can affect voltage levels, which can be troublesome. For
example, if at some point in time the noise diminishes the value of a signal that should be
at logic 1 to a level where this signal is interpreted by the next gate as being logic 0, then a
malfunction in the circuit is likely to occur. Since the noise effects tend to be random, they
are often difficult to detect.

To minimize crosstalk, it is prudent to avoid having long wires running parallel in close
proximity to each other. This may be difficult to achieve because of limited space on a PCB
and the need to provide a large number of wires. Using additional layers (planes) of wiring
helps in coping with crosstalk problems.

Power Supply Noise
When a CMOS circuit changes its state, there is a momentary flow of current in the

circuit, which is manifested as a current pulse on the power supply (VDD and Ground) wires.
Since a wiring trace on a PCB has a small “line inductance,” such a current pulse causes a
voltage spike (short pulse) on these lines. The cumulative effect of such voltage spikes can
cause a malfunction of the circuit.

The induced voltage spikes can be reduced significantly by connecting a small capacitor
between the VDD and Ground wires, in close proximity to the chip that causes the spikes
to occur. Since these spikes have the characteristic of a very high frequency signal, the
path through the capacitor is essentially a short circuit for them. Thus the voltage spikes
“bypass” the power supply lines and do not affect other chips connected to the same lines.
Such capacitors are called bypass capacitors. They do not affect the DC voltage on the
power supply lines.

Large chips, such as PLDs, often require more than one VDD and Ground connection.
In this case it is advisable to use one bypass capacitor for each pair of VDD and Ground
pins on the chip. For example, with PLDs the manufacturers recommend using a 0.2 µF
capacitor for each such pair of pins, placed as close as possible to the PLD chip.

Reflections and Terminations
Wiring traces on a PCB act as simple wires in circuits when the clock frequency is

low. However, at higher clock frequencies it becomes necessary to worry about so-called

May 22, 2002 13:30 vra23151_ch11 Sheet number 26 Page number 690 black

690 C H A P T E R 11 • Testing of Logic Circuits

transmission-line effects. When a signal propagates along a long wire, it is attenuated due
to the small resistance of the wire, it picks up crosstalk that manifests itself as noise, and it
may be reflected when it reaches the end of the wire. The reflection causes a problem if its
effect does not die down before the next active clock edge. The discussion of transmission-
line effects is beyond the scope of this book. We will only mention that the reflection of
signals can be prevented by placing a suitable “termination” component on the line. This
termination can be as simple as a resistor whose resistance matches the apparent resistance
of the line, known as the characteristic impedance of the line. Other forms of termination
are also possible. For details of such schemes, the reader may consult other references
[17–18].

11.8.1 Testing of PCBs

The manufactured PCB has to be tested thoroughly. Flaws in the manufacturing process
may cause some connections to be broken and others to be shorted by a solder blob that
touches two adjacent wires. There may be problems caused by design errors that were not
discovered during the design process. Finally, some chips and other components on the
PCB may be defective.

Power Up
The first step is to turn on the power supply. In the worst case this may cause some

chip to be destroyed because of a fatal short-circuit condition (in an extreme case a chip
package may actually blow apart). Assuming that this is not the case, it is essential to check
if any of the chips is becoming inordinately hot. Overheating is a symptom of a serious
problem that must be corrected.

It is also necessary to check that the power and ground connections are properly made
on each chip and that the voltage level is as specified.

Reset
The next step is to reset all circuitry on the PCB to reach a predetermined starting

point. This typically implies resetting the flip-flops, which is usually achieved by asserting
a common reset line. It is important to verify that the starting state is correctly established.

Low-Level Functional Testing
Since practical circuits can be extremely complex, it is prudent to test the basic func-

tionality first. A key test is to verify that the control signals are working correctly.
Using the divide-and-conquer approach, simple functions are tested first, followed by

the more complex ones.

Full Functional Testing
Having verified the operation of smaller subcircuits, it is necessary to test the func-

tionality of the entire system on the PCB. The number of errors often depends on the
thoroughness of the simulation done during the design process. In general, it is difficult
to simulate large digital systems fully, so some errors are likely to be found on the PCB.
Typical errors are due to

May 22, 2002 13:30 vra23151_ch11 Sheet number 27 Page number 691 black

11.8 Printed Circuit Boards 691

• Manufacturing errors, such as wrong wiring traces, blown components, or incorrect
power supply voltage.

• Incorrect specifications.
• Designer’s misinterpretation of information on the data sheets that describe some chips.
• Incorrect information on the data sheets provided by the chip manufacturer.

As mentioned earlier, PCBs contain multiple layers of wiring. Each layer may have several
thousands of wires in it. Finding and fixing errors can be a difficult and time-consuming
task, especially if errors involve wires in internal (as opposed to the top or bottom) wiring
layers.

Timing
It is next necessary to verify the timing of the circuit. A good strategy is to start with

a slow clock. If the circuit works properly, then the clock frequency is gradually increased
until the required operating frequency is reached.

Timing problems arise because of propagation delays through various paths in a circuit.
These delays are caused by the logic gates and the wiring that interconnects them. It is
essential to ensure that all data inputs to flip-flops in the circuit are stable before the active
edge of the clock signal arrives, as required by the setup time.

Reliability
A digital system is expected to operate reliably for a long time. Its reliability may be

affected by several factors, such as timing, noise, and crosstalk problems.
The timing of signals has to provide some safety margin to allow for small changes in

propagation delays. If the timing is too tight, then it is likely that the circuit will operate
correctly for some period of time, but will eventually fail because of a timing error. The
timing of chips may change with temperature, so failures can occur if thermal constraints
are not adhered to. Cooling is usually provided by means of fans.

11.8.2 Instrumentation

Testing of circuits implemented in PCBs requires some specialized instruments.

Oscilloscope
The details of individual signals can be examined using an oscilloscope. This instru-

ment displays the voltage waveform of a signal, showing the potential problems with respect
to propagation delay and noise. The waveform displayed on an oscilloscope shows the ac-
tual voltage levels of the signal; it does not depict the simplified view of ideal waveforms
that have perfectly square edges. If the user wants to see only the logic values of a signal
(0 or 1), then a different type of instrument called a logic analyzer can be used.

Logic Analyzer
While an oscilloscope allows simultaneous examination of a few signals, a logic an-

alyzer allows examination of tens or even hundreds of signals at the same time. It takes
inputs from a set of points in the circuit, by means of probes attached to these points, and

May 22, 2002 13:30 vra23151_ch11 Sheet number 28 Page number 692 black

692 C H A P T E R 11 • Testing of Logic Circuits

digitizes and displays the detected signals in the form of waveforms on a screen. A powerful
feature of the logic analyzer is that it has internal storage capable of recording a sequence
of changes in the signals over a substantial period of time. Then any segment of this infor-
mation can be displayed as desired by the operator. Typically, it is possible to record a few
milliseconds’ worth of events, which involves many cycles of a normal digital clock.

Looking at the waveforms taken when the circuit under test is working properly is not
helpful in the debugging process. It is essential to see the waveforms generated when a
malfunction takes place. The logic analyzer can be “triggered” to record a window of events
that occurred before and after the trigger event. The user must specify the trigger event.
For example, suppose that a malfunction is suspected to be caused by two control signals,
A and B, being asserted at the same time, even though the design specification requires that
these signals be mutually exclusive. A useful trigger point can then be established as the
time when the AND of A and B has the value 1. Finding suitable trigger events can be
difficult, and the user must rely on intuition and experience.

To use a logic analyzer effectively, it must be possible to connect the probes to some
useful (for testing purposes) points in the circuit. Thus it is important to provide such “test”
points when a PCB is being designed.

11.9 Concluding Remarks

Manufactured products must be tested to ensure that they perform as expected. All of the
techniques discussed in this chapter are relevant for this type of testing. The development
of tests and the required responses is based on the assumption that the circuits are designed
correctly. Thus it is the validity of the physical implementation that is being tested.

Another aspect of testing occurs during the design process. The designer has to ascertain
that the designed circuit meets the specifications. From the testing point of view, this poses
a significant problem because there exists no provably good circuit that can be used to
generate the desired tests. CAD tools are helpful in deriving tests for a designed circuit, but
they cannot determine whether the circuit is indeed what the designer intended to achieve
in terms of its functionality. A design error usually results in a circuit that has somewhat
different functionality than required by the specification.

Small circuits can be tested fully to verify their functionality. A combinational circuit
can be tested to see if it performs according to its truth table. A sequential circuit can be
tested by checking the transitions specified in the state table. This is much easier to do if the
circuit is designed for testability, as explained in section 11.6.1. Large circuits cannot be
tested exhaustively, because a vast number of tests would have to be applied. In this case
the designer’s ingenuity is needed to determine a manageable set of tests that will hopefully
demonstrate the correctness of the circuit.

Problems

11.1 Derive a table similar to Figure 11.1b for the circuit in Figure P11.1 to show the coverage
of the various stuck-at-0 and stuck-at-1 faults by the eight possible tests. Find a minimal
test set for this circuit.

May 22, 2002 13:30 vra23151_ch11 Sheet number 29 Page number 693 black

Problems 693

w1

w2

f
w3

Figure P11.1 Circuit for problem 11.1.

11.2 Repeat problem 11.1 for the circuit in Figure P11.2.

w1

w2

f
w3

w4

Figure P11.2 Circuit for problem 11.2.

11.3 Devise a test to distinguish between two circuits that implement the following expressions

f = x1x2x3 + x2x3x4 + x1x2x4 + x1x3x4

g = (x1 + x2)(x3 + x4)

11.4 Consider the circuit in Figure P11.3. Sensitize each path in this circuit to obtain a complete
test set that comprises a minimum number of tests.

w1

w2

f

w3

w4 w5

Figure P11.3 Circuit for problem 11.4.

11.5 For the circuit of Figure 11.4a, show the tests that can detect each of the faults: w1/0, w4/1,
g/0, and c/1.

May 22, 2002 13:30 vra23151_ch11 Sheet number 30 Page number 694 black

694 C H A P T E R 11 • Testing of Logic Circuits

11.6 Suppose that the tests w1w2w3w4 = 0100, 1010, 0011, 1111, and 0110 are chosen randomly
to test the circuit in Figure 11.3. What percentage of single faults are detected using these
tests?

11.7 Repeat problem 11.6 for the circuit in Figure 11.4a.

11.8 Repeat problem 11.6 for the circuit in Figure 11.5.

11.9 Consider the circuit in Figure P11.4. Are all single stuck-at-0 and stuck-at-1 faults in this
circuit detectable? If not, explain why.

w1

w2 f

w3

Figure P11.4 Circuit for problem 11.9.

11.10 Prove that in a circuit in which all gates have a fan-out of 1, any set of tests that detects all
single faults on the input wires detects all single faults in the entire circuit.

11.11 The circuit in Figure P11.5 determines the parity of a four-bit data unit. Derive a minimal
test set that can detect all single stuck-at-0 and stuck-at-1 faults in this circuit. Would your
test set work if the XOR gates are implemented using the circuit in Figure 4.26c? Can your
result be extended to a general case that involves n-bit data units?

w1

w2

p

w3

w4

Figure P11.5 Circuit for problem 11.11.

11.12 Derive a test set that can detect all single faults in the decoder circuit in Figure 6.16c.

11.13 List all single faults in the circuit in Figure 11.4a that can be detected using each of the tests
w1w2w3w4 = 1100, 0010, and 0110.

May 22, 2002 13:30 vra23151_ch11 Sheet number 31 Page number 695 black

References 695

11.14 Sensitize each path in the combinational part of the circuit in Figure 11.12 to obtain a
complete test set that comprises as few tests as possible. Show how your test set can be
applied to test this circuit. How many clock cycles are needed to perform the necessary
tests?

11.15 Derive an ASM chart that represents the flow of control needed to test the circuit in Figure
11.12.

11.16 The circuit in Figure 11.12 provides an easily testable implementation of the FSM in Figure
8.79. In Example 11.3 we showed how this circuit may be tested by testing the combinational
part using randomly chosen tests. A different approach to testing may be to attempt to
determine whether the circuit actually realizes the functionality specified in the state table
in Figure 8.79b. This can be done by making the circuit go through all transitions given
in the state table. For example, after applying the Resetn = 0 signal, the circuit begins in
state A. It must be verified that the circuit is indeed forced into state A by scanning out
the expected valuation y2y1 = 00. Next each transition must be checked. To verify the
transition A → A if w = 0, it is necessary to make the input w equal to 0 and allow the
normal operation to take place for one clock cycle by making Normal/Scan = 0. The value
of the output z must be observed. This is followed by scanning out the values of y2 and y1

to see if y2y1 = 00. At the same time, the valuation for the next test should be scanned in.
If this test involves verifying that B→ A if w = 0, then the valuation y2y1 = 01 is scanned
in. This process continues until all transitions have been verified.

Indicate in the form of a table the values of the signals Normal/Scan, Scan-in, Scan-out,
w, and z, as well as the transition tested, for each clock cycle necessary to perform the
complete test for this circuit.

11.17 Write Verilog code that represents the circuit in Figure 11.12.

11.18 Derive an ASM chart that describes the control needed to test a digital system that uses the
BILBO structure in Figures 11.18 and 11.19.

References

1. A. Miczo, Digital Logic Testing and Simulation (Wiley: New York, 1986).

2. P. K. Lala, Practical Digital Logic Design and Testing (Prentice-Hall: Englewood
Cliffs, NJ, 1996).

3. F. H. Hill and G. R. Peterson, Computer Aided Logical Design with Emphasis on
VLSI, 4th ed. (Wiley: New York, 1993).

4. Y. M. El Ziq, “Automatic Test Generation for Stuck-Open Faults in CMOS VLSI,”
Proc. 18th Design Automation Conf., 1981, pp. 347–54.

5. D. Baschiera and B. Courtois, “Testing CMOS: A Challenge,” VLSI Design, October
1984, pp. 58–62.

6. P. S. Moritz and L. M. Thorsen, “CMOS Circuit Testability,” IEEE Journal of Solid
State Circuits SC-21 (April 1986), pp. 306–9.

May 22, 2002 13:30 vra23151_ch11 Sheet number 32 Page number 696 black

696 C H A P T E R 11 • Testing of Logic Circuits

7. J. P. Roth et al., “Programmed Algorithms to Compute Tests to Detect and
Distinguish Between Failures in Logic Circuits,” IEEE Transactions on Computers
EC-16, no. 5, (October 1967), pp. 567–80.

8. J. Abraham and V. K. Agarwal, “Test Generation for Digital Systems,” in D. K.
Pradhan, Fault-Tolerant Computing, vol. 1, (Prentice-Hall: Englewood Cliffs, NJ,
1986).

9. T. W. Williams and K. P. Parker, “Design for Testability—a Survey,” IEEE
Transactions on Computers C-31 (January 1982), pp. 2–15.

10. V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit
Analysis and Design (Prentice-Hall: Englewood Cliffs, NJ, 1995).

11. W. W. Peterson and E. J. Weldon Jr., Error-Correcting Codes, 2nd ed. (MIT Press:
Boston, MA, 1972).

12. J. E. Smith, “Measures of Effectiveness of Fault Signature Analysis,” IEEE
Transactions on Computers C-29, no. 7 (June 1980), pp. 510–4.

13. R. David, “Testing by Feedback Shift Register,” IEEE Transactions on Computers
C-29, no. 7 (July 1980), pp. 668–73.

14. B. Koenemann, J. Mucha, and G. Zwiehoff, “Built-In Logic Block Observation
Techniques,” Proceedings 1977 Test Conference, IEEE Pub. 79CH1609-9C, October
1979, pp. 37–41.

15. A. Y. Chan, “Easy-to-Use Signature Analyzer Accurately Troubleshoots Complex
Logic Circuits,” Hewlett-Packard Journal, May 1997, pp. 9–14.

16. Test Access Port and Boundary-Scan Architecture, IEEE Standard 1149.1, May 1990.

17. High-Speed Board Designs, Application Note 75, Altera Corporation, January 1998.

18. L. Y. Levesque, “High-Speed Interconnection Techniques,” Technical Report, Texas
Instruments Inc., 1994.

July 10, 2002 09:27 vra23151_apa Sheet number 1 Page number 697 black

697

a p p e n d i x

A
Verilog Reference

a b c d e f g h

1

2

3

4

5

6

7

8

12. a2–a4, Bc8–b7

July 10, 2002 09:27 vra23151_apa Sheet number 2 Page number 698 black

698 A P P E N D I X A • Verilog Reference

This appendix describes the features of Verilog used in this book. It is meant to serve as
a convenient reference for the reader, hence only brief descriptions are provided, along
with examples. The vast majority of the examples presented are consistent with the orig-
inal Verilog 1995 standard, but we also introduce some of the most important features of
Verilog 2001 [8]. The reader is encouraged to first study the introduction to Verilog in
section 2.10.

This appendix is not meant to be a comprehensive Verilog manual. While we discuss
almost all the features of Verilog that are useful in the synthesis of logic circuits, we do not
discuss many of the features that are useful only for simulation of circuits. Although the
omitted features are not needed for any of the examples used in this book, a reader who
wishes to learn more about Verilog can refer to specialized texts [1–8].

How to Write Verilog Code
The tendency for the novice is to write Verilog code that resembles a computer program,

containing many variables and loops. It is difficult to determine what logic circuit the CAD
tools will produce when synthesizing such code. The task of a synthesis tool is to analyze
a piece of Verilog code and determine, according to the semantics of the language, what
circuit can be used to implement the code. Consider a code fragment such as

f = w0;
if (s == 1)

f = w1;

We can understand the semantics by considering each statement in sequence, in the way
that a simulation tool would. The code results in f being assigned the value of either w0 or
w1, depending on the value of s. A synthesis tool would usually implement this behavior
using a multiplexer circuit.

In general, synthesis tools have to recognize certain structures in code, like the above
multiplexer. From the practical point of view, this will work only if users write code that
conforms to a commonly used style. The beginning Verilog user should therefore adopt
the style of code recommended by experienced designers. This book contains more than
140 examples of Verilog code that represent a wide range of logic circuits. In all of these
examples the code is easily related to the described logic circuit. The reader is encouraged
to adopt the same style of code. A good approach is to “write Verilog code that obviously
represents the intended circuit.”

Although Verilog is a fairly straightforward language to learn and use, the novice
designer will tend to make some common errors in syntax and semantics. A list of typical
errors is given in section A.15, as well as a set of guidelines that expert Verilog coders
recommend as good style for writing clear and effective code.

Once complete Verilog code is written for a particular design, it is useful to analyze the
resulting circuit synthesized by the CAD tools. Much can be learned about Verilog, logic
circuits, and logic synthesis through this process.

July 10, 2002 09:27 vra23151_apa Sheet number 3 Page number 699 black

A.4 Identifier Names 699

A.1 Documentation in Verilog Code

Documentation can be included in Verilog code by writing a comment. A short comment
begins with the double slash, //, and continues to the end of the line. A long comment can
span multiple lines and is contained inside the delimiters /* and */. Examples of comments
are

// This is a short comment
/*This is a long Verilog comment

that spans two lines */

A.2 White Space

White space characters, such as SPACE and TAB, and blank lines are ignored by the Verilog
compiler. Multiple statements can be written on a single line, such as

f = w0; if (s == 1) f = w1;

Although legal, this code is hard to read and uses poor style. Placing each statement on a
separate line, and using indentation within blocks of code, such as an if-else statement, are
good ways to increase the readability of code.

A.3 Signals in Verilog Code

In Verilog, a signal in a circuit is represented as a net or a variable with a specific type. The
term net is derived from the electrical jargon, where it refers to the interconnection of two
or more points in a circuit. A net or variable declaration has the form

type [range] signal_name{, signal_name};

The square brackets indicate an optional field, and the curly brackets indicate that additional
entries are permitted. We will use this syntax throughout the appendix. The signal_name
is an identifier, as defined in the next section. Without the range field the declared net or
variable is scalar and represents a single-bit signal. The range is used to specify vectors
that correspond to multibit signals, as explained in section A.6.

A.4 Identifier Names

Identifiers are the names of variables and other elements in Verilog code. The rules for
specifying identifiers are simple: any letter or digit may be used, as well as the _ underscore
and $ characters. There are two caveats: an identifier must not begin with a digit and it
should not be a Verilog keyword. Examples of legal identifiers are f, x1, x_y, and Byte.

July 10, 2002 09:27 vra23151_apa Sheet number 4 Page number 700 black

700 A P P E N D I X A • Verilog Reference

Some examples of illegal names are 1x, +y, x*y, and 258. Verilog is case sensitive, hence
k is not the same as K, and BYTE is not the same as Byte.

For special purposes Verilog allows a second form of identifier, called an escaped iden-
tifier. Such identifiers begin with the (\) backslash character, which can then be followed
by any printable ASCII characters except white spaces. Examples of escaped identifiers
are \123, \sig-name, and \a+b. Escaped identifiers should not be used in normal Verilog
code; they are intended for use in code produced automatically when other languages are
translated into Verilog.

A.5 Signal Values, Numbers, and Parameters

Verilog supports scalar nets and variables that represent individual signals, and vectors that
correspond to multiple signals. Each individual signal can have four possible values:

0 = logic value 0
1 = logic value 1
z = tri-state (high impedance)
x = unknown value

The z and x values can also be denoted by the capital letters Z and X. The value x can be
used to denote a don’t-care condition in Verilog code; the symbol ? can also be used for
this purpose. The value of a vector variable is specified by giving a constant of the form

[size][’radix]constant

where size is the number of bits in the constant, and radix is the number base. Supported
radices are

d = decimal
b = binary
h = hexadecimal
o = octal

When no radix is specified, the default is decimal. If size specifies more bits than are needed
to represent the given constant, then in most cases the constant is padded with zeros. The
exceptions to this rule are when the first character of the constant is either x or z, in which
case the padding is done using that value. Some examples of constants include

0 the number 0
10 the decimal number 10
’b10 the binary number 10 = (2)10

’h10 the hex number 10 = (16)10

4’b100 the binary number 0100 = (4)10

4’bx an unknown 4-bit value xxxx
8’b1000_0011 _ can be inserted for readability
8’hfx equivalent to 8’b1111_xxxx

July 10, 2002 09:27 vra23151_apa Sheet number 5 Page number 701 black

A.6 Net and Variable Types 701

A.5.1 Parameters

A parameter associates an identifier name with a constant. Let the Verilog code include the
following declarations.

parameter n = 4;
parameter S0 = 2’b00, S1 = 2’b01, S2 = 2’b10, S3 = 2’b11;

Then the identifier n can be used in place of the number 4, the name S0 can be substituted
for the value 2’b00, and so on. An important use of parameters is in the specification of
parameterized subcircuits, which is described in section A.12.

A.6 Net and Variable Types

Verilog defines a number of types of nets and variables. These types are defined by the
language itself, and user-defined types are not permitted.

A.6.1 Nets

A net represents a node in a circuit. To distinguish between different types of circuit nodes
there exist several types of nets, called wire, tri, and a number of others that are not needed
for synthesis, and are not used in this book.

The wire type is employed to connect an output of one logic element in a circuit to an
input of another logic element. The following are examples of scalar wire declarations.

wire x;
wire Cin, AddSub;

A vector wire represents multiple nodes, such as

wire [3:0] S;
wire [1:2] Array;

The square brackets are the syntax for specifying a vector’s range. The range [Ra:Rb] can
be either increasing or decreasing, as shown. In either case, Ra is the index of the most-
significant (leftmost) bit in the vector, and Rb is the index of the least-significant (rightmost)
bit. The indices Ra and Rb can be either positive or negative integers.

The net S can be used as a four-bit quantity, or each bit can be referred to individually
as S[3], S[2], S[1], and S[0]. If a value is assigned to S such as S = 4’b0011, the result is
S[3] = 0, S[2] = 0, S[1] = 1, and S[0] = 1. The assignment of a single bit in a vector
to another net, such as f = S[0], is called a bit-select operation. A range of values from
one vector can be assigned to another vector, which is called a part-select operation. If we
assign Array = S[2:1], this produces Array[1] = S[2] and Array[2] = S[1]. The index used
in a bit-select operation can involve a variable, such as S[i], while the indices used with a
part-select operation have to be constant expressions, such as S[2:1].

July 10, 2002 09:27 vra23151_apa Sheet number 6 Page number 702 black

702 A P P E N D I X A • Verilog Reference

The tri type denotes circuit nodes that are connected in a tri-state fashion. Examples
of tri nets are

tri z;
tri [7:0] DataOut;

These nets are treated in the same manner as the wire type, and they are used only to enhance
the readability of code that includes tri-state gates.

A.6.2 Variables

Nets provide a means for interconnecting logic elements, but they do not allow a circuit
to be described in terms of its behavior. For this purpose, Verilog provides variables. A
variable can be assigned a value in one Verilog statement, and it retains this value until it
is overwritten in a subsequent assignment statement. There are two types of variables, reg
and integer. Consider the code fragment

Count = 0;
for (k = 0; k < 4; k = k + 1)

if (S[k])
Count = Count + 1;

The for and if statements are described in section A.11. This code stores in Count the
number of bits in S that have the value 1. Since it models the behavior of a circuit, Count
has to be declared as a variable, rather than a simple wire. If Count has three bits, then the
declaration is

reg [2:0] Count;

The keyword reg does not denote a storage element, or register. In Verilog code, reg
variables can be used to model either combinational or sequential parts of a circuit. In our
example, the variable k serves as a loop index. Such variables are declared as type integer
in the statement

integer k;

Integer variables are useful for describing the behavior of a module, but they do not directly
correspond to nodes in a circuit. In this book we use integers as loop control variables.

Verilog Terminology: Register versus Variable
The original Verilog standard used the term register to refer to the reg and integer types.

Since these types are used to model both combinational and sequential circuit elements,
this terminology is confusing and not intuitive. The Verilog 2001 standard omits the term
register and uses the word variable instead, as we have done in this book. We mention this
point here because the reader is likely to encounter the term register used in the style from
the original Verilog standard in many other books.

July 10, 2002 09:27 vra23151_apa Sheet number 7 Page number 703 black

A.7 Operators 703

A.6.3 Memories

A memory is a two-dimensional array of bits. Verilog allows such a structure to be declared
as a variable (reg or integer) that is an array of vectors, such as

reg [7:0] R [3:0];

This statement defines R as four eight-bit variables named R[3], R[2], R[1], and R[0]. In
Verilog 1995, the only way to access individual bits of R is to first transfer one of the
eight-bit vectors to another eight-bit variable. For example, to access the leftmost bit of
R[3] we can use the assignment Byte = R[3], and then refer to Byte[7]. Memories cannot
be net types, and they cannot be used as ports on a module.

Support for two-level indexing, such as R[3][7], is added in Verilog 2001. It also adds
support for higher dimension arrays. An example of a three-dimensional array declaration
in Verilog 2001 is reg [7:0] R [3:0] [1:0]. This statement declares a three-dimensional array
of bits.

A.7 Operators

Verilog has a large number of operators, as shown in Table A.1. The first column gives
the category, the second column indicates how each operator is used, and the third column
specifies the number of bits produced in the result. To aid in describing the table, we use
operands named A, B, and C, which may be either vectors or scalars. The syntax∼A means

Table A.1 Verilog operators and bit lengths.

Category Examples Bit Length

Bitwise ∼ A, +A, −A L(A)
A & B, A | B, A ∼∧ B, A ∧∼ B MAX (L(A), L(B))

Logical !A, A&&B, A ‖ B 1 bit

Reduction &A, ∼ &A, |A, ∼ |A, ∧∼ A, ∼∧ A 1 bit

Relational A == B, A! = B, A > B, A < B 1 bit
A >= B, A <= B
A === B, A! == B

Arithmetic A+ B, A− B, A ∗ B, A/B MAX (L(A), L(B))
A % B

Shift A << B, A >> B L(A)

Concatenate {A, . . . , B} L(A)+ · · · + L(B)

Replication {B{A}} B ∗ L(A)

Condition A ? B : C MAX (L(B), L(C))

July 10, 2002 09:27 vra23151_apa Sheet number 8 Page number 704 black

704 A P P E N D I X A • Verilog Reference

that the ∼ operator is applied to the variable A, and the syntax L(A) means that the result
has the same number of bits (length) as in A.

Most of the operators in Table A.1 are also listed in Table 6.2 and described in detail
in section 6.6.5. The bitwise operators are 1’s complement (∼), unary plus (+), 2’s com-
plement (−), AND (&), OR (|), XOR (∧), and XNOR (∼∧ or ∧∼). The bitwise operators
produce multibit results, usually with the same number of bits as the operands. For example,
if A = a1a0, B = b1b0, and C = c1c0, then the operation C = A & B results in c1 = a1 & b1

and c0 = a0 & b0. Note that unary plus just denotes a positive number; it has no effect.
The logical operators generate a one-bit result. They are NOT (!), AND (&&), and OR

(| |). If the operand of ! is a vector, then !A produces 1 (True) only if all bits in A are 0;
otherwise !A gives 0 (False). The result of A && B is 1 if both A and B are nonzero, while
A | | B produces 1 unless both A and B are zero. If an operand is ambiguous (contains an
x), the result is x. The logical operators are normally used in conditional statements such
as if ((A < B) && (B < C)).

The reduction operators use the same symbols as some of the bitwise operators, but have
only one operand. The reduction &A produces the AND of all of the bits in A, while ∼&A
produces the NAND. Similarly, the other reduction operators produce single-bit Boolean
results.

The relational operators give a 1 (True) or 0 (False) result based on the specified
comparison of A and B. For synthesis of logic circuits A and B are usually wire or reg
types, and Verilog treats them as unsigned numbers. If integer variables are supported,
they may be treated as signed numbers. The result of a relational operation is ambiguous
(x) if either operand has any unspecified digits. An exception is for the === and !==
operators, which check for equality and inequality, respectively. These operators compare
equality of x and z digits in addition to 0 and 1 digits.

Verilog includes the normal arithmetic operators +, −, *, and /. The modulus operator
(%) is also included, but it is usually not supported for synthesis, except for use in calculating
a compile-time constant. The operation A % B returns the remainder of the integer division
A ÷ B. Arithmetic operands of type wire and reg are treated as unsigned numbers. If the
two operands are of unequal size, zero digits are padded on the left, and bits are truncated
if the result has fewer digits than the largest operand. Integer variables are considered as
2’s complement numbers.

The << and >> operators perform logical shifts to the left and right, respectively. For
a left shift, zeros are shifted into the LSB, while for a right shift, zeros are shifted into the
MSB. For synthesis, the operand B should be a constant.

The {,} concatenate operator allows vectors to be combined to produce a larger resulting
vector. Any operand that is a constant must have a specified size, as in 4’b0011. Operands
can be repeated multiple times by using the replication operator. The operation {{3{A}},
{2{B}}} is equivalent to {A, A, A, B, B}. The replication operator can be used to form an
n-bit vector of digits: the operation n1’b1 represents n ones.

The last item in Table A.1 is the ? : conditional operator. The result of A ? B : C is
equal to B if operand A evaluates to 1 (True); otherwise, the result is C. In the case that A
evaluates to x, the conditional operator generates a bitwise output; each bit in the result is
1 if the corresponding bits in both B and C are 1, 0 if these bits are 0, and x otherwise.

The precedence of Verilog operators follows similar rules as in arithmetic and Boolean
algebra. For example, * has precedence over +, and & has precedence over |. A complete
listing of the precedence rules is given in Table 6.3.

July 10, 2002 09:27 vra23151_apa Sheet number 9 Page number 705 black

A.8 Verilog Module 705

A.8 Verilog Module

A circuit or subcircuit described with Verilog code is called a module. Figure A.1 gives the
general structure of a module declaration. The module has a name, module_name, which
can be any valid identifier, followed by a list of ports. The term port is adopted from the
electrical jargon, in which it refers to an input or output connection in an electrical circuit.
The ports can be of type input, output, or inout (bidirectional), and can be either scalar or
vector. Examples of ports are

input Cin, x, y;
input [3:0] X, Y;
output Cout, s;
inout [7:0] Bus;
output [3:0] S;

wire Cout, s;
wire [7:0] Bus;
reg [3:0] S;

As shown, output and inout ports have an associated type. We assume that Cout, s, and
Bus are nets in this example, while S is a variable. The wire declarations can actually be
omitted, because Verilog assumes that signals are nets by default. However, any port used
as a variable must be explicitly declared as such.

As Figure A.1 indicates, a module may contain any number of net (wire or tri) or
variable (reg or integer) declarations, and a variety of other types of statements that are
described later in this appendix.

Figure A.2 gives the Verilog code for a module fulladd, which represents a full-adder
circuit. (The full-adder is discussed in section 5.2.) The input port Cin is the carry-in,
and the bits to be added are the input ports x and y. The output ports are the sum, s, and

module module name [(port name{, port name})];
[parameter declarations]
[input declarations]
[output declarations]
[inout declarations]
[wire or tri declarations]
[reg or integer declarations]
[function or task declarations]
[assign continuous assignments]
[initial block]
[always blocks]
[gate instantiations]
[module instantiations]

endmodule

Figure A.1 The general form of a module.

July 10, 2002 09:27 vra23151_apa Sheet number 10 Page number 706 black

706 A P P E N D I X A • Verilog Reference

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

assign s = x ∧ y ∧ Cin;
assign Cout = (x & y) | (Cin & x) | (Cin & y);

endmodule

Figure A.2 A full-adder module.

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

endmodule

assign {Cout, s} = x + y + Cin;

Figure A.3 A full-adder module defined using the + operator.

the carry-out, Cout. The functionality of the full-adder is described with logic equations
preceded by the keyword assign, which is discussed in section A.10.

There is usually more than one way to describe a given circuit using Verilog. Figure
A.3 gives another version of the fulladd module, in which the functionality is specified by
using the concatenate and addition operators. The statement

assign {Cout, s} = x + y + Cin;

assigns the least-significant bit in the result x + y + Cin to the output s and the most-significant
bit to Cout. The circuits generated from the modules in Figures A.2 and A.3 are the same.

A.9 Gate Instantiations

Verilog includes predefined modules that implement basic logic gates. These gates allow a
circuit’s structure to be described using gate instantiation statements of the form

gate_name [instance_name] (output_port, input_port{, input_port});

The gate_name specifies the desired type of gate, and the instance_name is any unique
identifier. Each gate may have a different number of ports, with the output port listed first,
followed by a variable number of input ports. An example of using gates to realize a full-
adder is given in FigureA.4. The code defines four wire nets, z1 to z4, that connect the gates
together, and each gate has a specified instance name. Figure A.5 shows a simpler version,

July 10, 2002 09:27 vra23151_apa Sheet number 11 Page number 707 black

A.9 Gate Instantiations 707

// Structural specification of a full-adder
module fulladd (Cin, x, y, s, Cout);

input Cin, x, y;
output s, Cout;
wire z1, z2, z3, z4;

and And1 (z1, x, y);
and And2 (z2, x, Cin);
and And3 (z3, y, Cin);
or Or1 (Cout, z1, z2, z3);
xor Xor1 (z4, x, y);
xor Xor2 (s, z4, Cin);

endmodule

Figure A.4 A full-adder described using gate instantiation.

// Structural specification of a full-adder
module fulladd (Cin, x, y, s, Cout);

input Cin, x, y;
output s, Cout;

and (z1, x, y);
and (z2, x, Cin);
and (z3, y, Cin);
or (Cout, z1, z2, z3);
xor (z4, x, y);
xor (s, z4, Cin);

endmodule

Figure A.5 A simplified version of Figure A.4.

in which instance names are not included and the declarations of z1 to z4 are omitted. Since
the nets are not explicitly declared, they are implicitly assumed to be of type wire.

The logic gates supported in Verilog are summarized in Table A.2. The second col-
umn describes the function of each gate, and the rightmost column gives an example of
instantiating the gate. Verilog allows gates with any number of inputs to be specified, but
some CAD systems set practical limits. The notif and bufif gates represent tri-state buffers.
The gate notif0 is an inverting tri-state buffer with active-low enable, and notif1 provides
the same functionality with an active-high enable. The bufif0 and bufif1 gates are tri-state
buffers that do not invert the output.

July 10, 2002 09:27 vra23151_apa Sheet number 12 Page number 708 black

708 A P P E N D I X A • Verilog Reference

Table A.2 Verilog gates.

Name Description Usage

and f = (a · b · · · ·) and (f , a, b, . . .)

nand f = (a · b · · · ·) nand (f , a, b, . . .)

or f = (a + b+ · · ·) or (f , a, b, . . .)

nor f = (a + b+ · · ·) nor (f , a, b, . . .)

xor f = (a ⊕ b⊕ · · ·) xor (f , a, b, . . .)

xnor f = (a � b� · · ·) xnor (f , a, b, . . .)

not f = a not (f , a)

buf f = a buf (f , a)

notif0 f = (!e ? a : ’bz) notif0 (f , a, e)

notif1 f = (e ? a : ’bz) notif1 (f , a, e)

bufif0 f = (!e ? a : ’bz) bufif0 (f , a, e)

bufif1 f = (e ? a : ’bz) bufif1 (f , a, e)

For simulation purposes, it is possible to set a parameter of the gate that represents its
propagation delay. As an example, the following statement instantiates a three-input AND
gate with a delay of five time units (the units of time are determined by the simulator being
used).

and #(5) And3 (z, x1, x2, x3);

This type of delay parameter has no meaning when using Verilog for synthesis of logic
circuits.

A.10 Concurrent Statements

In any hardware description language, including Verilog, the concept of a concurrent state-
ment means that the code may include a number of such statements, and each represents
a part of the circuit. We use the word concurrent because the statements are considered
in parallel and the ordering of statements in the code does not matter. Gate instantiations
are one type of concurrent statements. This section introduces another type of concurrent
statement, called the continuous assignment.

July 10, 2002 09:27 vra23151_apa Sheet number 13 Page number 709 black

A.10 Concurrent Statements 709

A.10.1 Continuous Assignments

While gate instantiations allow the description of a circuit’s structure, continuous assign-
ments permit the description of a circuit’s function. The general form of this statement
is

assign net_assignment{, net_assignment};

The net_assignment can be any expression involving the operators listed in Table A.1.
Examples of continuous assignments are

assign Cout = (x & y) | (x & Cin) | (y & Cin);
assign s = x ∧ y ∧ z;

Although they are not needed in terms of operator precedence, the parentheses in the ex-
pression for Cout are included for clarity. Multiple assignments can be specified in one
assign statement, using commas to separate the assignments, as in

assign Cout = (x & y) | (x & Cin) | (y & Cin),
s = x ∧ y ∧ z;

An example of a multibit assignment is

wire [1:3] A, B, C;
...

assign C = A & B;

This results in c1 = a1b1, c2 = a2b2, and c3 = a3b3.
The arithmetic assignment

wire [3:0] X, Y, S;
...

assign S = X + Y;

represents a four-bit adder without carry-in and carry-out. If we declare a carry-in and
carry-out,

wire carryin, carryout;

then the statement

assign {carryout, S} = X + Y + carryin;

represents the four-bit adder with carry-in and carry-out. We mentioned in section A.7 that
Verilog treats the wire type as an unsigned number. Since a five-bit result is needed in
{carryout, S}, each operand is padded with a zero. When using Verilog for synthesis, it is
up to the compiler to determine, or infer, that a four-bit adder with carry-out is needed and
to recognize the carry-in.

A complete example of arithmetic assignments is given in Figure A.6. There are two
four-bit inputs, X and Y , and two eight-bit outputs, S and S2s. To produce the eight-bit

July 10, 2002 09:27 vra23151_apa Sheet number 14 Page number 710 black

710 A P P E N D I X A • Verilog Reference

module adder sign (X, Y, S, S2s);
input [3:0] X, Y;
output [7:0] S, S2s;

assign S = X + Y,
S2s = {{4{X[3]}}, X} + {{4{Y[3]}}, Y};

endmodule

Figure A.6 An example of arithmetic assignments and sign extension.

sum S = X + Y the Verilog compiler automatically pads X and Y with four zeros. The
assignment to S2s shows how a signed (2’s complement) result can be generated. Recall
from section 5.3 that the leftmost bit in a 2’s complement number is the sign bit. The
assignment to S2s uses the concatenate and replication operators to pad X and Y with four
copies of their most-significant bit, thereby performing sign extensions.

As an example, assume that X = 0011 and Y = 1101. The unsigned result is S =
0011+1101 = 00010000, or S = 3+13 = 16. The signed result is S2s = 0011+1101 =
00000000, or S2s = 3+ (−3) = 0.

A.10.2 Using Parameters

Figure A.6 specifies an adder for four-bit numbers. We can make this code more general
by introducing a parameter that sets the number of bits in the adder. Figure A.7 gives the
code for an n-bit adder module, addern. The number of bits to be added is defined with the
parameter keyword, introduced in section A.5. The value of n defines the bit widths of X ,
Y , S, and S2s.

It is possible to combine a continuous assignment with a wire declaration. For example,
the sum, s, and carry-out, c, of a half-adder could be defined as

wire s = x ∧ y,
c = x & y;

Verilog allows parameters, such as delays, to be associated with continuous assign-
ments. These parameters have no meaning for synthesis, but we mention them for com-
pleteness. Consider the statement

wire #8 s = x ∧ y,
#5 c = x & y;

These assignments specify that the operation x ∧ y has an associated propagation delay of
eight time units, and x & y has a delay of five units. Such delays, which are useful only for
simulation purposes, can also be associated with wires, as in

July 10, 2002 09:27 vra23151_apa Sheet number 15 Page number 711 black

A.11 Procedural Statements 711

module addern (X, Y, S, S2s);
parameter n = 4;
input X, Y;
output [2*n−1:0] S, S2s;

assign S = X + Y,
S2s = {{n{X[n 1]}}, X} + {{n{Y[n 1]}}, Y};

endmodule

[n 1:0]

Figure A.7 Using a parameter in an n-bit adder.

wire #2 c;
assign #5 c = x & y;

This code specifies that two time units of delay are incurred on the wire c in addition to the
five time units for the AND gate that produces x & y.

A.11 Procedural Statements

In addition to the concurrent statements described in the previous section, Verilog also
provides procedural statements (also called sequential statements). Whereas concurrent
statements are executed in parallel, procedural statements are evaluated in the order in which
they appear in the code. Verilog syntax requires that procedural statements be contained
inside an always block.

A.11.1 Always and Initial Blocks

An always block is a construct that contains one or more procedural statements. It has the
form

always @(sensitivity_list)
[begin]

[procedural assignment statements]
[if-else statements]
[case statements]
[while, repeat, and for loops]
[task and function calls]

[end]

July 10, 2002 09:27 vra23151_apa Sheet number 16 Page number 712 black

712 A P P E N D I X A • Verilog Reference

Verilog includes several types of procedural statements. These statements permit the de-
scription of a circuit in terms of its behavior in a much more powerful way than is possible
with continuous assignments or gate instantiations.

When multiple statements are included in an always block, the begin and end keywords
are needed; otherwise, these keywords can be omitted. The begin and end keywords are
also used with other Verilog constructs. We refer to the statements delimited by begin and
end as a begin-end block.

The sensitivity_list is a list of signals that directly affect the output results generated
by the always block. In some books the terms event_expression or event_control are used
in addition to sensitivity_list. A simple example of an always block is

always @(x or y)
begin

s = x ∧ y;
c = x & y;

end

Since the output variables s and c depend on x and y, these signals are included in the
sensitivity list, separated by the keyword or. (In Verilog 2001, a comma can be substituted
for or. Verilog 2001 also allows the special sensitivity list denoted @∗. This syntax
automatically adds all input signals used in the always block to the sensitivity list.) The
semantics of the always block are as follows: if the value of a signal in the sensitivity list
changes, then the statements inside the always block are evaluated in the order presented.

For simulation purposes, Verilog also provides the initial construct. The initial and
always constructs have the same form, but the statements inside the initial construct are
executed only once, at the start of a simulation. Initial constructs are not meaningful for
synthesis, hence we do not discuss them further.

A Verilog module may include several always blocks, each representing a part of the
circuit being modeled. While the statements inside each always block are evaluated in
order, there is no meaningful order among the different always blocks. In this sense, each
entire always block can be considered as a concurrent statement, because a Verilog compiler
evaluates all always blocks concurrently.

Procedural Assignment Statements
Any signal assigned a value inside an always block has to be a variable of type reg

or integer. A value is assigned to a variable with a procedural assignment statement.
There are two kinds of assignments: blocking assignments, denoted by the = symbol, and
non-blocking assignments, denoted by the <= symbol. The term blocking means that
the assignment statement completes and updates its left-hand side before the subsequent
statement is evaluated. This concept is best explained in the context of simulation. Consider
the blocking assignments

S = X + Y;
p = S[0];

At simulation time ti the statements are evaluated, in order. The first statement sets S
using the current values of X and Y , and then the second statement sets p according to this

July 10, 2002 09:27 vra23151_apa Sheet number 17 Page number 713 black

A.11 Procedural Statements 713

new value of S. Verilog also provides non-blocking assignments, specified as

S <= X + Y;
p <= S[0];

In this case, at simulation time ti the statements are still evaluated in order, but they both
use the values of variables that exist at the start of the simulation time ti. The first statement
determines a new value for S based on the current values of X and Y , but S is not actually
changed to this value until all statements in the associated always block have been evaluated.
Therefore, the value of p at time ti is based on the value of S at time ti−1. We can summarize
the difference between blocking and non-blocking assignments as follows. For blocking
assignments, the values of variables seen at time ti by each statement are the new values
set in ti by any preceding statements in the always block. For non-blocking assignments,
the values of variables seen at time ti are the values set in time ti−1.

Although we introduced the concepts of blocking and non-blocking assignments in
the context of simulation, the semantics are the same for synthesis. For combinational
circuits, only blocking assignments should be used, as we will explain in section A.11.7.
We give a number of examples of combinational circuits in the following sections and also
introduce the if-else, case, and loop statements. Section A.14 focuses on sequential circuits
and explains that they should be designed with non-blocking assignments.

A.11.2 The If-Else Statement

The general form of the if-else statement is given in Figure A.8. If expression1 is True,
then the first statement is evaluated. When multiple statements are involved, they have to
be included inside a begin-end block.

The else if and else clauses are optional. Verilog syntax specifies that when else if or
else are included, they are paired with the most recent unfinished if or else if.

An example of an if-else statement used for combinational logic is

if (expression1)
begin

statement;
end
else if (expression2)
begin

statement;
end
else
begin

statement;
end

Figure A.8 The form of the if-else statement.

July 10, 2002 09:27 vra23151_apa Sheet number 18 Page number 714 black

714 A P P E N D I X A • Verilog Reference

always @(w0 or w1 or s)
if (s == 0)

f = w0;
else

f = w1;

This code defines a 2-to-1 multiplexer with data inputs w0 and w1, select input s, and
output f .

A.11.3 Statement Ordering

Another way of describing the 2-to-1 multiplexer with an if-else statement is presented in
Figure A.9. Instead of using an else clause, this code first makes the default assignment
f = w0 and then changes this assignment to f = w1 if s has the value 1. The Verilog
semantics specify that a signal assigned multiple values in an always construct retains the
last assignment. This example highlights the importance of the ordering of statements in
an always block. If the statements are reversed, as in

always @(w0 or w1 or s)
begin

if (s == 1)
f = w1;

f = w0;
end

then the if statement would be evaluated first and the assignment f = w0 would be per-
formed last. Hence, the code would always result in f being set to the value of w0.

module mux (w0, w1, s, f);
input w0, w1, s;
output f;
reg f;

always @(w0 or w1 or s)
begin

f = w0;
if (s == 1)

f = w1;
end

endmodule

Figure A.9 Code for a 2-to-1 multiplexer.

July 10, 2002 09:27 vra23151_apa Sheet number 19 Page number 715 black

A.11 Procedural Statements 715

Implied Memory
Consider the always block

always @(w0 or w1 or s)
begin

if (s == 1)
f = w1;

end

This is the same as the code in Figure A.9, except that the default assignment f = w0; has
been removed. Since the code does not specify a value for the variable f when s is 0, the
Verilog semantics specify that f must retain its current value. A synthesized circuit has to
implement the functionality

f = s · w1 + s · f
Hence, when s = 0, the value of w1 is “remembered” by a latch at the output f. This effect
is called implied memory. We will show shortly that implied memory is the key concept
used to describe sequential circuits.

A.11.4 The Case Statement

The form of a case statement is illustrated in Figure A.10. The bits in expression, called the
controlling expression, are checked for a match with each alternative. The first successful
match causes the associated statements to be evaluated. Each digit in each alternative
is compared for an exact match of the four values 0, 1, x, and z. A special case is the
default clause, which takes effect if no other alternative matches. When using Verilog for
simulation, an alternative can be a general expression, but for synthesis these items are
restricted to a single constant, such as 1’b0:, or a list of constants separated by commas,
such as 1, 2, 3:.

An example of a case statement is

case (expression)
alternative1: begin

statement;
end

alternative2: begin
statement;

end
[default: begin

statement;
end]

endcase

Figure A.10 The general form of the case statement.

July 10, 2002 09:27 vra23151_apa Sheet number 20 Page number 716 black

716 A P P E N D I X A • Verilog Reference

always @(w0 or w1 or s)
case (s)

1’b0: f = w0;
1’b1: f = w1;

endcase

This code represents the same 2-to-1 multiplexer described in section A.11.2 using the if-
else statement. When using Verilog for simulation, it is necessary to give alternatives for
all possible valuations of the controlling expression. A default has to be included for any
valuations not explicitly covered by the listed alternatives. In this example, s can have the
four values 0, 1, x, or z; hence, we could include a default to handle the cases s = x and
s = z. We have not included the default clause here because we are concerned only with
synthesis, and the synthesis tools require only the bit values 0 and 1 to be considered.

Figure A.11 demonstrates the use of a case statement to specify truth tables. This code
represents the same full-adder that is described in Figures A.2 and A.3. The controlling
expression in the case statement is the concatenated bits {Cin, x, y}, and the alternatives
correspond to the rows of the truth table in Figure 5.4a.

The case statement is also important for representing some types of sequential circuits,
such as finite state machines, which are discussed in section A.14.

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;
reg s, Cout;

always @(Cin or x or y)
begin

case ({Cin, x, y})
3’b000: {Cout, s} = ’b00;
3’b001: {Cout, s} = ’b01;
3’b010: {Cout, s} = ’b01;
3’b011: {Cout, s} = ’b10;
3’b100: {Cout, s} = ’b01;
3’b101: {Cout, s} = ’b10;
3’b110: {Cout, s} = ’b10;
3’b111: {Cout, s} = ’b11;

endcase
end

endmodule

// Full adder
module

Figure A.11 Using a case statement to specify a truth table.

July 10, 2002 09:27 vra23151_apa Sheet number 21 Page number 717 black

A.11 Procedural Statements 717

module priority (W, Y, f);
input [3:0] W;
output [1:0] Y;
output f;
reg [1:0] Y;

assign f = (W != 0);
always @(W)
begin

casex (W)
’b1xxx: Y = 3;
’b01xx: Y = 2;
’b001x: Y = 1;
default: Y = 0;

endcase
end

endmodule

Figure A.12 A priority encoder described using a casex
statement.

A.11.5 Casez and Casex Statements

In the case statement, the values x or z in an alternative are checked for an exact match with
the same values in the controlling expression. The casez statement adds more flexibility,
by treating a z digit in an alternative as a don’t-care condition. The casex statement treats
both x and z as don’t cares. The alternatives do not have to be mutually exclusive. If they
are not, then the first matching item has priority. Figure A.12 shows how casex can be used
to describe a priority encoder with the 4-bit input W and the outputs Y and f . The priority
encoder is defined in Figure 6.24 (the output z in Figure 6.24 is named f in the Verilog code
in Figure A.12). The first alternative, 1xxx, specifies that if w3 has the value 1, then the
other inputs are treated as don’t cares, hence the output is set to Y = 3. Similarly, the other
alternatives describe the desired priority scheme.

A.11.6 Loop Statements

Verilog includes four types of loop statements: for, while, repeat, and forever. Synthesis
tools typically support the for loop, which has the general form

for (initial_index; terminal_index; increment)
begin

statement;
end

July 10, 2002 09:27 vra23151_apa Sheet number 22 Page number 718 black

718 A P P E N D I X A • Verilog Reference

module ripple (carryin, X, Y, S, carryout);
parameter n = 4;
input carryin;
input [n 1:0] X, Y;
output [n 1:0] S;
output carryout;
reg [n 1:0] S;
reg [n:0] C;
reg carryout;
integer k;

always @(X or Y or carryin)
begin

C[0] = carryin;
for (k = 0; k <= n 1; k = k+1)
begin

S[k] = X[k] ∧ Y[k] ∧ C[k];
C[k+1] = (X[k] & Y[k]) | (C[k] & X[k]) | (C[k] & Y[k]);

end
carryout = C[n];

end

endmodule

Figure A.13 An n-bit ripple-carry adder using a for loop.

This syntax is very similar to the for loop in the C programming language. The initial_index
is evaluated once, before the first loop iteration, and typically performs the initialization
of the integer loop control variable, such as k = 0. In each loop iteration, the begin-end
block is performed, and then the increment statement is evaluated. A typical increment
statement is k = k + 1. Finally, the terminal_index condition is checked, and if it is True
(1), then another loop iteration is done. For synthesis, the terminal_index condition has to
compare the loop index to a constant value, such as k < 8.

An example of using a for loop to describe an n-bit ripple-carry adder is presented in
Figure A.13. The effect of the loop is to repeat its begin-end block for the specified values
of k. In this example, each loop iteration, k, defines a full-adder with the inputs xk , yk , and
ck , and the outputs sk and ck+1. It is possible to define the integer k (parameters can also
be defined in this way) inside the always block if the begin-end block has a label. For
example,

July 10, 2002 09:27 vra23151_apa Sheet number 23 Page number 719 black

A.11 Procedural Statements 719

always @(X or Y or carryin)
begin: fulladders

integer k;
C[0] = carryin;
for (k = 0; k <= n−1; k = k+1)
begin

S[k] = X[k] ∧ Y[k] ∧ C[k];
C[k+1] = (X[k] & Y[k]) | (C[k] & X[k]) | (C[k] & Y[k]);

end
carryout = C[n];

end

A second for-loop example is given in Figure A.14. This code produces a count of the
number of bits in the n-bit input X that have the value 1. Unrolling the loop, the first two
iterations give

Count = Count + X[0];
Count = Count + X[1];

The first statement produces the value Count = 0 + X [0] = X [0]. The second assignment
then gives Count = X[0] + X[1], and so on for the other loop iterations. At the end of the
loop, we have

Count = X[0] + X[1] + . . . + X[n−1]

module bit count (X, Count);
parameter n = 4;
parameter logn = 2;
input [n−1:0] X;
output [logn:0] Count;
reg [logn:0] Count;
integer k;

always @(X)
begin

Count = 0;
for (k = 0; k < n; k = k+1)

Count = Count + X[k];
end

endmodule

Figure A.14 A bit-counting example.

July 10, 2002 09:27 vra23151_apa Sheet number 24 Page number 720 black

720 A P P E N D I X A • Verilog Reference

Asynthesis tool generates a circuit that has a cascade of adders to implement this expression.
For example, for n = 3 a possible circuit that employs two-bit adders is shown in Figure
A.15.

Figure A.16 shows the general forms of the while and repeat loops. The while loop
has the same structure as the corresponding statement in the C language, and the repeat
loop simply specifies a number of times to repeat its begin-end block. The forever loop,
not shown in the figure, loops endlessly.

x0x1 y0

0

y1

s0s1

2-bit adder

X[1] 0 X[0]

x0x1 y0y1

s0s1

2-bit adder

0 X[2]

Count [0]Count [1]

Figure A.15 A circuit that implements the code in
Figure A.14.

while (condition)
begin

statement;
end

...

repeat (constant value)
begin

statement;
end

Figure A.16 The general forms of the while and
repeat statements.

July 10, 2002 09:27 vra23151_apa Sheet number 25 Page number 721 black

A.12 Using Subcircuits 721

always @(X)
begin

Count = 0;
for (k = 0; k < n; k = k+1)

Count <= Count + X[k];
end

Figure A.17 Using non-blocking assignments for a
combinational circuit.

A.11.7 Blocking versus Non-blocking Assignments
for Combinational Circuits

All our previous examples of combinational circuits used blocking assignments, which is
a good way to design such circuits. A natural question is whether combinational circuits
can be described using non-blocking assignments. The answer is that this would work in
many cases, but if subsequent assignments depend on the results of preceding assignments,
non-blocking assignments can produce nonsensical combinational circuits. As an example,
consider changing the for loop in FigureA.14 to use non-blocking assignments, as indicated
in Figure A.17. For simplicity assume that n = 3, so that the unrolled loop is

Count <= Count + X[0];
Count <= Count + X[1];
Count <= Count + X[2];

Since non-blocking assignments are involved, each subsequent assignment statement sees
the starting value of Count = 0 rather than a new Count value produced by the previous
statements. The for loop thus degenerates to

Count <= 0 + X[0];
Count <= 0 + X[1];
Count <= 0 + X[2];

When there are multiple assignments to the same variable in an always block, Verilog
semantics specify that the variable retains its last assignment. Therefore, the code produces
the wrong result Count = X [2].

A.12 Using Subcircuits

A Verilog module can be included as a subcircuit in another module. For this to work,
both modules must be defined in the same file or else the Verilog compiler must be told
where each module is located (the mechanism for doing this varies from one compiler to the
next). The general form of a module instantiation statement is similar to a gate instantiation
statement

July 10, 2002 09:27 vra23151_apa Sheet number 26 Page number 722 black

722 A P P E N D I X A • Verilog Reference

module_name [#(parameter overrides)] instance_name (
.port_name ([expression]) {, .port_name ([expression])});

The instance_name can be any legal Verilog identifier and the port connections specify how
the module is connected to the rest of the circuit. The same module can be instantiated
multiple times in a given design provided that each instance name is unique. The #(param-
eter overrides) can be used to set the values of parameters defined inside the module_name
module. We discuss this feature in the next section. Each port_name is the name of a
port in the subcircuit, and each expression specifies a connection to that port. The syntax
.port_name is provided so that the order of signals listed in the instantiation statement does
not have to be the same as the order of the ports given in the module statement of the
subcircuit. In Verilog jargon, this is called named port connections. If the port connections
are given in the same order as in the subcircuit, then .port_name is not needed. This format
is called ordered port connections.

An example is presented in Figure A.18. It gives the code for a four-bit ripple-carry
adder built using four instances of the fulladd subcircuit in Figure A.2. The inputs to the
adder are carryin and two four-bit numbers X and Y . The output is the four-bit sum, S, and
carryout. A three-bit signal, C, represents the carries from stages 0, 1, and 2. This signal is
declared as a wire vector with four bits.

The adder4 module instantiates four copies of the full-adder subcircuit. In the first three
instantiation statements, we use ordered port connections because the signals are listed in
the same order as given in the declaration of the fulladd module in Figure A.2. The last
instantiation statement gives an example of named port connections. The port connections
used in the instantiation statements specify how the fulladd instances are interconnected by
nets to create the adder module.

Figure A.19 gives an example of a hierarchical Verilog file containing two modules.
The bottom module, seg7, presents the seven-segment converter from Figure 6.38. It has
the four-bit bcd input, which represents a binary-coded-decimal digit, and the seven-bit leds
output, which is intended to drive the seven segments a to g on a digit-oriented display.

module adder4 (carryin, X, Y, S, carryout);
input carryin;
input [3:0] X, Y;
output [3:0] S;
output carryout;
wire [3:1] C;

fulladd stage0 (carryin, X[0], Y[0], S[0], C[1]);
fulladd stage1 (C[1], X[1], Y[1], S[1], C[2]);
fulladd stage2 (C[2], X[2], Y[2], S[2], C[3]);
fulladd stage3 (.Cout(carryout), .s(S[3]), .y(Y[3]), .x(X[3]), .Cin(C[3]));

endmodule

Figure A.18 An example of module instantiation.

July 10, 2002 09:27 vra23151_apa Sheet number 27 Page number 723 black

A.12 Using Subcircuits 723

module group (Digits, Lights);
input [11:0] Digits;
output [1:21] Lights;

seg7 digit0 (Digits[3:0], Lights[1:7]);
seg7 digit1 (Digits[7:4], Lights[8:14]);
seg7 digit2 (Digits[11:8], Lights[15:21]);

endmodule

module seg7(bcd, leds);
input [3:0] bcd;
output [1:7] leds;
reg [1:7] leds;

always @(bcd)
case (bcd) //abcdefg

0: leds = 7’b1111110;
1: leds = 7’b0110000;
2: leds = 7’b1101101;
3: leds = 7’b1111001;
4: leds = 7’b0110011;
5: leds = 7’b1011011;
6: leds = 7’b1011111;
7: leds = 7’b1110000;
8: leds = 7’b1111111;
9: leds = 7’b1111011;
default: leds = 7’bx;

endcase

endmodule

Figure A.19 An example of a hierarchical design file.

Three copies of the seven-segment decoder are instantiated in the top module, group. It has
a 12-bit input, Digits, and a 21-bit output, Lights, that are connected to the three instantiated
subcircuits.

A.12.1 Subcircuit Parameters

When a subcircuit includes parameters, their default values can be changed in an instan-
tiation statement. Figure A.20 gives a module with two eight-bit inputs, X and Y , and a
four-bit output, C. The module determines the number of bits in X and Y that are identical.
The code first uses the bitwise XNOR operation to generate a signal T that has 1s in the bit

July 10, 2002 09:27 vra23151_apa Sheet number 28 Page number 724 black

724 A P P E N D I X A • Verilog Reference

module common (X, Y, C);
input [7:0] X, Y;
output [3:0] C;
wire [7:0] T;

// Make T[i] = 1 if X[i] == Y[i]
assign T = X ∧ Y;

bit count #(8,3) cbits (T, C);

endmodule

Figure A.20 Overriding module parameters using #.

module common (X, Y, C);
input [7:0] X, Y;
output [3:0] C;
wire [7:0] T;

// Make T[i] = 1 if X[i] == Y[i]
assign T = X ∧ Y;

bit count cbits (T, C);
defparam cbits.n = 8, cbits.logn = 3;

endmodule

Figure A.21 Overriding module parameters using the defparam
statement.

positions where X and Y have identical values. Then it instantiates the subcircuit specified
in Figure A.14 to count the number of 1s in T. The syntax #(8,3) overrides the default values
of the subcircuit parameters in the order given in the code. Since Figure A.14 first defines
the parameter n, followed by logn, then #(8,3) sets n = 8 and logn = 3. If only one
parameter is specified, such as #(8), it overrides the first parameter given in the subcircuit.

An alternative syntax for overriding parameter values is shown in Figure A.21. Here,
the subcircuit parameters are specified by the separate statement

defparam cbits.n = 8, cbits.logn = 3;

This statement is not a part of the instantiation statement; hence, it can appear anywhere
in the code. The intended subcircuit is identified uniquely by its instance name, cbits.
If the defparam statement is in a separate module from the corresponding instantiation
statement, the subcircuit module name should be specified in addition to the instance name.
An example is

July 10, 2002 09:27 vra23151_apa Sheet number 29 Page number 725 black

A.12 Using Subcircuits 725

defparam bit_count.cbits.n = 8, bit_count.cbits.logn = 3;

Another example using subcircuit parameters is shown in Figure A.22. It instantiates a
module from the Library of Parameterized Modules (LPM), which is a standardized library
of circuit building blocks that are generally useful for implementing logic circuits. We
provide information on these modules, which are supported in a number of CAD systems,
in Appendix D. The code in Figure A.22 instantiates the LPM module lpm_add_sub, which
is an adder/subtractor circuit introduced in section 5.5. The defparam keyword sets the
number of bits in the adder/subtractor to 8, and two additional defparam statements declare
the number being used as unsigned and specify that we wish to perform addition only.

A.12.2 Verilog 2001 Generate Capability

Figure A.18 instantiates four copies of the fulladd subcircuit to form a four-bit ripple-carry
adder. A natural extension of this code is to add a parameter that sets the number of bits
needed and then use a loop to instantiate the required subcircuits. Although Verilog 1995
does not allow subcircuits to be instantiated in a loop, this capability is added with the
Verilog 2001 generate construct.

The generate construct has the simplified form

generate
[for loops]
[if-else statements]
[case statements]
[instantiation statements]

endgenerate

This construct enhances the flexibility of Verilog modules, because it allows instantiation
statements to be included inside for loops and if-else statements. If a for loop is included

module adder inst (carryin, X, Y, S, carryout);
input [7:0] X, Y;
input carryin;
output [7:0] S;
output carryout;

lpm add sub adder8(.cin (carryin), .dataa (X), .datab (Y), .result (S), .cout (carryout));
defparam adder8.lpm width = 8;
defparam adder8.lpm representation = “UNSIGNED ”;
defparam adder8.lpm direction = “ADD”;

endmodule

Figure A.22 Instantiating a module from a standard library (LPM).

July 10, 2002 09:27 vra23151_apa Sheet number 30 Page number 726 black

726 A P P E N D I X A • Verilog Reference

module ripple g (carryin, X, Y, S, carryout);
parameter n = 4;
input carryin;
input [n−1:0] X, Y;
output [n−1:0] S;
output carryout;
wire [n:0] C;

genvar i;
assign C[0] = carryin;
assign carryout = C[n];

generate
for (i = 0; i <= n 1; i = i+1)
begin:addbit

fulladd stage (C[i], X[i], Y[i], S[i], C[i+1]);
end

endgenerate

endmodule

Figure A.23 An n-bit ripple-carry adder using Verilog 2001’s
generate statement.

in the generate block, the loop index variable has to be declared of type genvar. A genvar
variable is similar to an integer variable, but it can have only positive values and it can be
used only inside generate blocks.

Figure A.23 shows the ripple_g module, which instantiates n fulladd modules. Each
instance generated in the for loop will have a unique instance name produced by the compiler
based on the for loop label. The generated names are addbit[0].stage, . . . , addbit[n −
1].stage. This code produces the same result as the code in Figure A.13.

The generate construct can include concurrent statements and procedural statements,
but its main advantage is in the instantiation of gates and modules inside for loops and
if-else statements.

A.13 Functions and Tasks

Figure 6.4 shows how a 16-to-1 multiplexer module can be created by instantiating five
4-to-1 multiplexers. Another way of modeling this circuit is to use a Verilog function which
has the general form

July 10, 2002 09:27 vra23151_apa Sheet number 31 Page number 727 black

A.13 Functions and Tasks 727

function [range | integer] function_name;
[input declarations]
[parameter, reg, integer declarations]
begin

statement;
end

endfunction

The purpose of a function is to allow the code to be written in a modular fashion
without defining separate modules. A function is defined within a module, and it is called
either in a continuous assignment statement or in a procedural assignment statement inside
that module. A function can have more than one input, but it does not have an output,
because the function name itself serves as the output variable. Figure A.24 shows how the
16-to-1 multiplexer module can be written using a function. To see how this code works,
consider the assignment

module mux f (W, S16, f);
input [0:15] W;
input [3:0] S16;
output f;
reg f;
reg [0:3] M;

function mux4to1;
input [0:3] W;
input [1:0] S;

if (S == 0) mux4to1 = W[0];
else if (S == 1) mux4to1 = W[1];
else if (S == 2) mux4to1 = W[2];
else if (S == 3) mux4to1 = W[3];

endfunction

always @(W or S16)
begin

M[0] = mux4to1(W[0:3], S16[1:0]);
M[1] = mux4to1(W[4:7], S16[1:0]);
M[2] = mux4to1(W[8:11], S16[1:0]);
M[3] = mux4to1(W[12:15], S16[1:0]);
f = mux4to1(M[0:3], S16[3:2]);

end

endmodule

Figure A.24 An example of a function.

July 10, 2002 09:27 vra23151_apa Sheet number 32 Page number 728 black

728 A P P E N D I X A • Verilog Reference

f = mux4to1(M[0:3], S16[3:2]);

The effect of the function call is to have the Verilog compiler replace the assignment
statement with the function body. The in-line equivalent of the above function call is

if (S16[3:2] == 0) f = M[0];
else if (S16[3:2] == 1) f = M[1];
else if (S16[3:2] == 2) f = M[2];
else if (S16[3:2] == 3) f = M[3];

module group f (Digits, Lights);
input [11:0] Digits;
output [1:21] Lights;
reg [1:21] Lights;

function [1:7] leds;
input [3:0] bcd;
begin

case (bcd) // abcdef g
0: leds = 7’b1111110;
1: leds = 7’b0110000;
2: leds = 7’b1101101;
3: leds = 7’b1111001;
4: leds = 7’b0110011;
5: leds = 7’b1011011;
6: leds = 7’b1011111;
7: leds = 7’b1110000;
8: leds = 7’b1111111;
9: leds = 7’b1111011;
default: leds = 7’bx;

endcase
end

endfunction

always @(Digits)
begin

Lights[1:7] = leds(Digits[3:0]);
Lights[8:14] = leds(Digits[7:4]);
Lights[15:21] = leds(Digits[11:8]);

end

endmodule

Figure A.25 Using a function to implement the group module.

July 10, 2002 09:27 vra23151_apa Sheet number 33 Page number 729 black

A.13 Functions and Tasks 729

Similarly, each function call is inserted in-line, with the substitution of appropriate bits
from S16, W , and M.

A second example of a function is shown in Figure A.25. The group_ f module is
equivalent to the group module in Figure A.19. Where the group module instantiates three
copies of the seg7 subcircuit, group_f achieves the same effect by using a function. Since
it returns a seven-bit value, the function is defined with the syntax

function [1:7] leds;

Consider again the 16-to-1 multiplexer example in Figure A.24. Another method of
writing this code appears in Figure A.26. This code uses a Verilog task, which is similar
to a function. While a function returns a value, a task does not; it has input and output
variables, like a module. A task can be called only from inside an always (or initial) block.
In a similar way as described above for the Verilog function, the compiler essentially inserts
the code for the task body at the point in the code where it is called.

module mux t (W, S16, f);
input [0:15] W;
input [3:0] S16;
output f;
reg f;
reg [0:3] M;

task mux4to1;
input [0:3] W;
input [1:0] S;
output Result;
begin

if (S == 0) Result = W[0];
else if (S == 1) Result = W[1];
else if (S == 2) Result = W[2];
else if (S == 3) Result = W[3];

end
endtask

always @(W or S16)
begin

mux4to1(W[0:3], S16[1:0], M[0]);
mux4to1(W[4:7], S16[1:0], M[1]);
mux4to1(W[8:11], S16[1:0], M[2]);
mux4to1(W[12:15], S16[1:0], M[3]);
mux4to1(M[0:3], S16[3:2], f);

end

endmodule

Figure A.26 An example of a task.

July 10, 2002 09:27 vra23151_apa Sheet number 34 Page number 730 black

730 A P P E N D I X A • Verilog Reference

Functions and tasks are not crucial for designing Verilog code, but they facilitate the
writing of modular code without using separate modules. One advantage of functions
and tasks is that they can be called from an always block, whereas these blocks are not
allowed to contain instantiation statements. These features of Verilog become increasingly
important as the size of the code being developed increases.

A.14 Sequential Circuits

While combinational circuits can be modeled with either continuous assignment or pro-
cedural assignment statements, sequential circuits can be described only with procedural
statements. We now give some examples of sequential circuits.

A.14.1 A Gated D Latch

Figure A.27 gives the code for a gated D latch. The sensitivity list for the always block
includes both the data input, D, and clock, clk. The if statement specifies that Q should
be set to the value of D whenever clk is 1. There is no else clause in the if statement. As
we explained in section A.11.3, this situation implies that Q should retain its present value
when the if condition is not met.

A.14.2 D Flip-Flop

Figure A.28 shows how flip-flops are described in Verilog. The always construct uses the
special sensitivity list @(posedge Clock). This event expression tells the Verilog compiler
that any reg variable assigned a value in the always construct is the output of a D flip-flop.
The code in the figure generates a flip-flop with the input D and the output Q that is sensitive
to the positive clock edge. A negative-edge sensitive flip-flop is specified by @(negedge
Clock).

module latch (D, clk, Q);
input D, clk;
output Q;
reg Q;

always @(D or clk)
if (clk)

Q <= D;

endmodule

Figure A.27 A gated D latch.

July 10, 2002 09:27 vra23151_apa Sheet number 35 Page number 731 black

A.14 Sequential Circuits 731

module flipflop (D, Clock, Q);
input D, Clock;
output Q;
reg Q;

always @(posedge Clock)
Q <= D;

endmodule

Figure A.28 A D flip-flop.

We said in sectionA.11.1 that sequential circuits should be described with non-blocking
assignments, and we used this type of assignment in Figure A.28. The behavior of blocking
and non-blocking assignments for sequential circuits is discussed in section A.14.6.

A.14.3 Flip-Flops with Reset

Figure A.29 gives an always block that is similar to the one in Figure A.28. It describes a D
flip-flop with an asynchronous reset (clear) input, Resetn. When Resetn = 0, the flip-flop
output Q is set to 0. Appending the letter n to a signal name is a popular convention to
denote an active-low signal.

Verilog syntax requires that a sensitivity list contains either all edge-sensitive events
or all level-sensitive events but not a mixture; hence, the reset condition is checked using
negedge Resetn. An active-high reset would require the event posedge Reset and the if-else
statement would then check for the condition (Reset == 1).

module flipflop ar (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output Q;
reg Q;

always @(posedge Clock or negedge Resetn)
if (Resetn == 0)

Q <= 0;
else

Q <= D;

endmodule

Figure A.29 A D flip-flop with asynchronous reset.

July 10, 2002 09:27 vra23151_apa Sheet number 36 Page number 732 black

732 A P P E N D I X A • Verilog Reference

In general, Verilog offers a variety of ways to describe a given circuit. But, for speci-
fying flip-flops, the format of the code is quite strict. Only minor variations of the code in
Figures A.28 and A.29 can be made and still infer the desired flip-flops. For instance, the
if-else statement could alternatively specify if (!Resetn), but this has to be the first state-
ment in the always block. Note that nothing is special about the variable name Clock; the
keyword posedge and the format of the rest of the always block are what allow the Verilog
compiler to recognize the flip-flop clock signal.

Figure A.30 shows how a flip-flop with a synchronous reset input can be described.
Since only the posedge Clock event appears in the sensitivity list of the always block, the
reset operation has to be synchronized to the clock edge.

A.14.4 Instantiating a Flip-Flop from a Library

Since flip-flops are widely used in logic circuits, most CAD systems provide an assortment
of flip-flop components that can be instantiated in Verilog code. An example of this is
provided in Figure A.31, which instantiates the lpm_ff component from the Library of
Parameterized Modules.

module flipflop sr (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output Q;
reg Q;

always @(posedge Clock)
if (Resetn == 0)

Q <= 0;
else

Q <= D;

endmodule

Figure A.30 A D flip-flop with synchronous reset.

module dff inst (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output Q;

lpm ff flipflop (.data(D), .aclr(Resetn), .clock(Clock), .q(Q));
defparam flipflop.lpm width = 1;

endmodule

Figure A.31 Instantiating a D flip-flop from a library.

July 10, 2002 09:27 vra23151_apa Sheet number 37 Page number 733 black

A.14 Sequential Circuits 733

A.14.5 Registers

One possible approach for describing a multibit register is to create an entity that instantiates
multiple flip-flops. A more convenient method is illustrated in Figure A.32. It gives the
same code shown in Figure A.29 but using the four-bit input D and the four-bit output Q.
The code describes a four-bit register with asynchronous clear.

Figure A.33 shows how the code in Figure A.32 can be extended to represent an n-bit
register with an enable input, E. The number of flip-flops is set by the parameter n. When
the active clock edge occurs, the flip-flops in the register cannot change their stored values
if the enable E is 0. If E = 1, the register responds to the active clock edge in the normal
way.

module reg4 (D, Clock, Resetn, Q);
input [3:0] D;
input Clock, Resetn;
output [3:0] Q;
reg [3:0] Q;

always @(posedge Clock or negedge Resetn)
if (Resetn == 0)

Q <= 4’b0000;
else

Q <= D;

endmodule

Figure A.32 A four-bit register with asynchronous clear.

module regne (D, Clock, Resetn, E, Q);
parameter n = 4;
input [n 1:0] D;
input Clock, Resetn, E;
output [n 1:0] Q;
reg [n 1:0] Q;

always @(posedge Clock or negedge Resetn)
if (Resetn == 0)

Q <= 0;
else if (E)

Q <= D;

endmodule

Figure A.33 An n-bit register with asynchronous clear and enable.

July 10, 2002 09:27 vra23151_apa Sheet number 38 Page number 734 black

734 A P P E N D I X A • Verilog Reference

A.14.6 Shift Registers

An example of code that defines a three-bit shift register is provided in Figure A.34. The
lines of code are numbered for ease of reference. The shift register has a serial input, w, and
parallel outputs, Q. The right-most bit in the register is Q[3], and the left-most bit is Q[1].
Shifting is performed in the right-to-left direction. All assignments to Q are synchronized
to the clock edge by the (posedge Clock) event, hence Q represents the outputs of flip-flops.
The statement in line 7 specifies that Q[3] is assigned the value of w. The semantics of the
non-blocking assignments mean that the subsequent statements do not see the new value
of Q[3] until the next time the always block is evaluated (in the following clock cycle). In
line 8, the current value of Q[3], before it is shifted as a result of line 7, is assigned to Q[2].
Line 9 completes the shift operation by assigning the current value of Q[2] to Q[1], before
it is changed as a result of line 8.

The key point that has to be appreciated in the code in FigureA.34 is that the assignments
in lines 7 to 9 do not take effect until the end of the always block. Hence, all flip-flops
change their values at the same time, as required in the shift register. We could write the
statements in lines 7 to 9 in any order without changing the meaning of the code.

Blocking Assignments for Sequential Circuits
We said previously that blocking assignments should not be used for sequential circuits.

As an example of the semantics involved, Figure A.35 gives the always block from Figure
A.34 with blocking assignments. The first assignment sets Q[3] = w. Since blocking
assignments are involved, the next statement sees this new value of Q[3]; hence, it produces
Q[2] = Q[3] = w. Similarly, the final assignment gives Q[1] = Q[2] = w. The code does
not describe the desired shift register, but rather loads all flip-flops with the value on the
input w.

For the code in Figure A.35 to correctly describe a shift register, the ordering of the
three assignments has to be reversed. Then the first assignment sets Q[1] to the value of
Q[2], the second sets Q[2] to the value of Q[3], and so on. Each successive assignment is

1 module shift3 (w, Clock, Q);
2 input w, Clock;
3 output [1:3] Q;
4 reg [1:3] Q;

5 always @(posedge Clock)
6 begin
7 Q[3] <= w;
8 Q[2] <= Q[3];
9 Q[1] <= Q[2];
10 end

11 endmodule

Figure A.34 A three-bit shift register.

July 10, 2002 09:27 vra23151_apa Sheet number 39 Page number 735 black

A.14 Sequential Circuits 735

module shift3 (w, Clock, Q);
input w, Clock;
output [1:3] Q;
reg [1:3] Q;

always @(posedge Clock)
begin

Q[3] = w;
Q[2] = Q[3];
Q[1] = Q[2];

end

endmodule

Figure A.35 Wrong code for a three-bit shift register.

not affected by the one that precedes it; hence, the semantics of blocking assignments cause
no problem.

To avoid the confusing dependence on the ordering of statements, blocking assignments
should be avoided when modeling sequential circuits. Also, because they imply differing
semantics, blocking and non-blocking assignments should never be mixed in a single always
construct.

A.14.7 Counters

Figure A.36 presents the code for a four-bit counter with an asynchronous reset input. The
counter also has an enable input, E. On the positive clock edge, if E is 1, the count is
incremented. If E = 0, the counter holds its current value. Since counters are commonly

module count4 (Clock, Resetn, E, Q);
input Clock, Resetn, E;
output [3:0] Q;
reg [3:0] Q;

always @(posedge Clock or negedge Resetn)
if (Resetn == 0)

Q <= 0;
else if (E)

Q <= Q + 1;

endmodule

Figure A.36 Code for a four-bit counter.

July 10, 2002 09:27 vra23151_apa Sheet number 40 Page number 736 black

736 A P P E N D I X A • Verilog Reference

needed in logic circuits, most CAD systems provide (in a library) a selection of counters
that can be instantiated in a design.

A.14.8 An Example of a Sequential Circuit

An example of a sequential circuit is given in Figure A.37. It adds together the values of the
k-bit input X over successive clock cycles, and stores the sum of these values into a k-bit
register. Such a circuit is often called an accumulator. To store the result of each addition
operation, the circuit includes a k-bit register with an asynchronous reset input, Resetn. It
also has an enable input, E, which is controlled by a down-counter. The down-counter has
an asynchronous load input and a count enable input. The circuit is operated by first setting
Resetn to 0, which resets the contents of the k-bit register to 0 and loads the down-counter
with the k-bit number on the Y input.

Then, in each clock cycle, the counter is decremented, and the sum outputs from the
adder are loaded into the register. When the counter reaches 0, the enable inputs on both

E

L Down-Counter

k
Sum

X

k

Result

E

Resetn Register

ClockResetn Y

k

k

Figure A.37 The accumulator circuit.

July 10, 2002 09:27 vra23151_apa Sheet number 41 Page number 737 black

A.14 Sequential Circuits 737

the register and counter are set to 0 by the OR gate. The circuit remains in this state until
it is reset again. The final value stored in the register is the sum of the values of X in each
of the Y clock cycle.

We designed the accumulator circuit by using two subcircuits described in this ap-
pendix: ripple (Figure A.13) and regne (Figure A.33). The complete code is given in
Figure A.38. It uses the parameter k to set the number of bits in the input X . Using this
parameter in the code makes it easy to change the bit width at a later time if desired. The
code defines the signal Sum to represent the outputs of the adder; for simplicity, we ignore
the possibility of arithmetic overflow and assume that the sum will fit into k bits. The k-bit
signal C represents the outputs from the down-counter. The Go signal is connected to the
enable inputs on the register and counter.

A.14.9 Moore-Type Finite State Machines

Figure A.39 gives the state diagram of a simple Moore machine. Verilog code for this
machine is shown in Figure A.40. The two-bit vector y represents the present state of the

module accum (X, Y, Clock, Resetn, Result);
parameter k = 8;
input [k 1:0] X, Y;
input Clock, Resetn;
output [k 1:0] Result;
wire [k 1:0] Sum;
wire Cout, Go;
reg [k 1:0] C;

ripple u1 (.carryin(0), .X(X), .Y(Result), .S(Sum), .carryout(Cout));
defparam u1.n = k;

regne u2 (.D(Sum), .Clock(Clock), .Resetn(Resetn), .E(Go), .Q(Result));
defparam u2.n = 8;

always @(posedge Clock or negedge Resetn)
if (Resetn == 0)

C <= Y;
else if (Go)

C <= C − 1;

assign Go = | C;

endmodule

Figure A.38 Code for a k-bit accumulator circuit.

July 10, 2002 09:27 vra23151_apa Sheet number 42 Page number 738 black

738 A P P E N D I X A • Verilog Reference

C z 1=⁄

Reset

B z 0=⁄A z 0=⁄w 0=

w 1=

w 0=

w 1=

w 0= w 1=

Figure A.39 State diagram of a simple Moore-type FSM.

machine, and the state codes are defined as parameters. Some CAD synthesis systems
provide a means of requesting that the state assignment be chosen automatically, but we
have specified the assignment manually in this example.

The present state signal y corresponds to the outputs of the state flip-flops, and the
signal Y represents the inputs to the flip-flops, which define the next state. The code has two
always blocks. The top one describes a combinational circuit and uses a case statement to
specify the values that Y should have for each value of y. The other always block represents
a sequential circuit, which specifies that y is assigned the value of Y on the positive clock
edge. The always block also specifies that y should take the value A when Resetn is 0,
which provides the asynchronous reset.

Since the machine is of the Moore type, the output z can be defined using the assignment
statement z = (y == C) that depends only on the present state of the machine. This statement
is provided as a continuous assignment at the end of the code, but it could alternatively have
been given inside the top always block that represents the combinational part of the FSM.
This assignment statement cannot be placed inside the bottom always block. Doing so
would cause z to be the output of a separate flip-flip, rather than a combinational function
of y. This circuit would set z to 1 one clock cycle later than required when the machine
enters state C.

An alternative version of the code for the Moore machine is given in Figure A.41. This
code uses a single always block to define both the combinational and sequential parts of
the finite state machine. In practice, the code in Figure A.40 is used more commonly.

July 10, 2002 09:27 vra23151_apa Sheet number 43 Page number 739 black

A.14 Sequential Circuits 739

module moore (Clock, w, Resetn, z);
input Clock, w, Resetn;
output z;
reg [1:0] y, Y;
parameter A = 2’b00, B = 2’b01, C = 2’b10;

always @(w or y)
begin

case (y)
A: if (w == 0) Y = A;

else Y = B;
B: if (w == 0) Y = A;

else Y = C;
C: if (w == 0) Y = A;

else Y = C;
default: Y = 2’bxx;

endcase
end

always @(posedge Clock or negedge Resetn)
begin

if (Resetn == 0)
y <= A;

else
y <= Y;

end

assign z = (y == C);

endmodule

Figure A.40 Code for a Moore machine.

A.14.10 Mealy-Type Finite State Machines

A state diagram for a simple Mealy machine is shown in Figure A.42, and the corresponding
code is given in Figure A.43. The code has the same structure as in Figure A.40 except
that the output z is defined within the top always block. The case statement specifies that,
when the FSM is in state A, z should be 0, but when in state B, z should take the value of
w. Since the top always block represents a combinational circuit, the output z can change
value as soon as the input w changes, as required for the Mealy machine.

July 10, 2002 09:27 vra23151_apa Sheet number 44 Page number 740 black

740 A P P E N D I X A • Verilog Reference

module moore (Clock, w, Resetn, z);
input Clock, w, Resetn;
output z;
reg [1:0] y;
parameter A = 2’b00, B = 2’b01, C = 2’b10;

always @(posedge Clock or negedge Resetn)
begin

if (Resetn == 0)
y <= A;

else
case (y)

A: if (w == 0) y <= A;
else y <= B;

B: if (w == 0) y <= A;
else y <= C;

C: if (w == 0) y <= A;
else y <= C;

default: y <= 2’bxx;
endcase

end

assign z = (y == C);

endmodule

Figure A.41 Alternative version of the code for a Moore machine.

A

w 0= z 0=⁄

w 1= z 1=⁄Bw 0= z 0=⁄

Reset

w 1= z 0=⁄

Figure A.42 State diagram of a Mealy-type FSM.

July 10, 2002 09:27 vra23151_apa Sheet number 45 Page number 741 black

A.14 Sequential Circuits 741

module mealy (Clock, w, Resetn, z);
input Clock, w, Resetn ;
output z ;
reg z;
reg y, Y;
parameter A = 0, B = 1;

always @(w or y)
case (y)

A: if (w == 0)
begin

Y = A;
z = 0;

end
else
begin

Y = B;
z = 0;

end
B: if (w == 0)

begin
Y = A;
z = 0;

end
else
begin

Y = B;
z = 1;

end
endcase

always @(posedge Clock or negedge Resetn)
if (Resetn == 0)

y <= A;
else

y <= Y;

endmodule

Figure A.43 Code for a Mealy machine.

July 10, 2002 09:27 vra23151_apa Sheet number 46 Page number 742 black

742 A P P E N D I X A • Verilog Reference

A.15 Guidelines forWriting Verilog Code

Modern digital systems are large and complex. A good approach in designing such systems
is to decompose them into smaller, manageable parts. Each part can then be designed by
making use of the popular subcircuit building blocks that we describe in this book.

When using Verilog for synthesis, it is essential to write code such that the compiler
will generate the intended circuit. For example, code for combinational circuits like adders,
multiplexers, encoders, and decoders should be written as illustrated in Chapters 5 and 6.
Flip-flops, registers, and counters should be described with the style of code presented
in Chapter 7; and finite-state machine code should be expressed in the manner shown in
Chapter 8. Section 7.14 and Chapter 10 give some examples of how larger circuits can be
constructed by employing these common building blocks. This approach of writing HDL
code such that the system is built by interconnecting common, relatively simple subcircuits
is often referred to as the register-transfer level (RTL) style of code. It is the most popular
design method used in practice. The rest of this section lists some common errors found in
Verilog code and gives some useful guidelines.

Missing Begin-End
The always construct requires begin and end delimiters if there are multiple statements

in the block. The compiler does not take indentation into consideration! For example the
always block

always @(w0 or w1 or s)
if (s == 1)

f = w1;
f = w0;

has one statement in it, not two.

Missing Semicolon
Every Verilog statement must end with a semicolon.

Missing { }
The replication operator requires a lot of brackets. A common mistake is to write

{3{A}, 2{B}} instead of {{3{A}}, {2{B}}}.

Accidental Assignment
The statement

always @(w0 or w1 or s)
begin

if (s = 1)
f = w1;

f = w0;
end

does not test the value of s. It sets s to the value 1.

July 10, 2002 09:27 vra23151_apa Sheet number 47 Page number 743 black

A.15 Guidelines forWriting Verilog Code 743

Incomplete Sensitivity List
Consider the always block

always @(x)
begin

s = x ∧ y;
c = x & y;

end

When using Verilog for synthesis, this code produces the desired circuit, which is a half-
adder. However, if this code is used for simulation of circuits, the values of s and c are
updated only as a result of changes in the value of x. Changes in y will have no effect,
because y is not included in the sensitivity list. To avoid mismatches between simulation
results and synthesized circuits, always blocks for combinational circuits should include
all signals used on the right-hand side of assignments in the block.

Variables versus Nets
Only nets can serve as the targets of continuous assignment statements. Variables

assigned values inside an always block have to be of type reg or integer. It is not possible to
make an assignment to a signal both inside an always block and via a continuous assignment
statement.

Assignments in Multiple always Blocks
In a module that has multiple always blocks, all the always blocks are concurrent with

respect to one another. Therefore, a given variable should never be assigned a value in
more than one always block. Doing so would mean that there exist multiple concurrent
assignments to this variable, which makes no sense.

Blocking versus Non-blocking Assignments
When describing a combinational circuit in an always construct, it is best to use only

blocking assignments (see section A.11.7). For sequential circuits, non-blocking assign-
ments should be used (see section A.14.6). Blocking and non-blocking assignments should
not be mixed in a single always block.

It is not possible to model both a combinational output and a sequential output in a
single always block. The sequential output requires an edge-triggered event control, such
as @(posedge Clock), and this means that all variables assigned a value in the always block
will be implemented as the outputs of flip-flops.

Module Instantiation
A defparam statement must reference the instance name of a module, but not just the

subcircuit’s module name. The code

bit_count cbits (T, C);
defparam bit_count.n = 8, bit_count.logn = 3;

is illegal, while the code

July 10, 2002 09:27 vra23151_apa Sheet number 48 Page number 744 black

744 A P P E N D I X A • Verilog Reference

bit_count cbits (T, C);
defparam cbits.n = 8, cbits.logn = 3;

is syntactically correct.

Label, Net, and Variable Names
It is illegal to use any Verilog keyword as a label, net, or variable name. For example,

it is illegal to name a signal input or output.

Labeled Begin-End Blocks
It is legal to define a variable or parameter inside a begin-end block, but only if the

block has a label. The code

always @(X)
begin

integer k;
Count = 0;
for (k = 0; k < n; k = k+1)

Count = Count + X[k];
end

is illegal, while the code

always @(X)
begin: label

integer k;
Count = 0;
for (k = 0; k < n; k = k+1)

Count = Count + X[k];
end

is syntactically correct.

Implied Memory
As shown in section A.14.1, implied memory is used to describe storage elements.

Care must be taken to avoid unintentional implied memory. The code

always @(LA)
if (LA == 1)

EA = 1;

results in implied memory for the EA variable. If this is not desired, then the code can be
fixed by writing

always @(LA)
if (LA == 1)

EA = 1;
else

EA = 0;

Implied memory also applies to case statements. The code

July 10, 2002 09:27 vra23151_apa Sheet number 49 Page number 745 black

A.16 MAX+PlusII Verilog Support 745

always @(W)
case (W)

2’b01: EA = 1;
2’b10: EB = 1;

endcase

does not specify the value of the EA variable when W is not equal to 01, and it does not
specify the value of EB when W is not equal to 10. To avoid having implied memory for
both EA and EB, these variables should be assigned default values, as in the code

always @(W)
begin

EA = 0; EB = 0;
case (W)

2’b01: EA = 1;
2’b10: EB = 1;

endcase
end

A.16 MAX+PlusII Verilog Support

Auseful source of information on Verilog is the MAX+plusII CAD system that accompanies
the book. The on-line help included with the software describes how to use Verilog with
MAX+plusII, and the templates provided with the Text Editor tool are a convenient guide to
Verilog syntax. We describe how to access these features of the CAD tools in Appendix B.

A.16.1 Limitations in MAX+PlusII

Verilog support in MAX+PlusII has some limitations. The tool does not support memories
(two-dimensional arrays) and Verilog tasks. Some other limitations follow.

Verilog Gates
Each logic gate can have up to 12 inputs, with the exception of XOR and XNOR, which

can have only two inputs.

Module Instantiation
MAX+PlusII does not support the #(parameter_override) syntax for specifying the

value of a subcircuit parameter. The defparam feature is supported, but has the following
limitation: the defparam statement must appear immediately following the corresponding
module instantiation statement. Also, parameters can be referred to by instance name only.
For a subcircuit module bit_count with the instance name cbits, defparam bit_count.cbits.n
= 8 is not allowed, but defparam cbits.n = 8 is supported.

July 10, 2002 09:27 vra23151_apa Sheet number 50 Page number 746 black

746 A P P E N D I X A • Verilog Reference

Tri-state Logic
Although MAX+PlusII supports the tri net type, the software does not allow tri-state

buffers to be described by using assignment statements. Instead, tri-state buffers have to
be instantiated in the code with primitive tri-state buffer gates.

Verilog 2001 Support
MAX+PlusII does not support any of the new features in Verilog 2001.

A.17 Concluding Remarks

This appendix describes the important features of Verilog that are useful for the synthesis of
logic circuits. As mentioned earlier, we do not discuss many features of Verilog which are
useful only for simulation of circuits or for other purposes. A reader who wishes to learn
more about using Verilog can refer to specialized books [1–8].

References

1. Institute of Electrical and Electronics Engineers, IEEE Standard Verilog Hardware
Description Language Reference Manual, (IEEE: Piscataway, NJ, 1995).

2. D. A. Thomas and P. R. Moorby, The Verilog Hardware Description Language, 4th
ed., (Kluwer: Norwell, MA, 1998).

3. S. Palnitkar, Verilog HDL—A Guide to Digital Design and Synthesis, (Prentice-Hall:
Upper Saddle River, NJ, 1996).

4. D. R. Smith and P. D. Franzon, Verilog Styles for Synthesis of Digital Systems,
(Prentice-Hall: Upper Saddle River, NJ, 2000).

5. Z. Navabi, Verilog Digital System Design, (McGraw-Hill: New York, 1999).

6. J. Bhasker, Verilog HDL Synthesis—A Practical Primer, (Star Galaxy Publishing:
Allentown, PA, 1998).

7. D. J. Smith, HDL Chip Design, (Doone Publications: Madison, AL, 1996).

8. S. Sutherland, Verilog 2001. A Guide to the New Features of the Verilog Hardware
Description Language, (Kluwer: Hingham, MA, 2001).

June 13, 2002 09:04 vra23151_apb Sheet number 1 Page number 747 black

747

a p p e n d i x

B
Tutorial 1

a b c d e f g h

1

2

3

4

5

6

7

8

13. Rf1–e1, Nf6–d5

June 13, 2002 09:04 vra23151_apb Sheet number 2 Page number 748 black

748 A P P E N D I X B • Tutorial 1

MAX+plusII is a sophisticated and easy to use CAD system. In this tutorial we introduce
the design of logic circuits using MAX+plusII. Step-by-step instructions are presented for
performing design entry with three methods: using schematic capture, writing Verilog code,
and using a truth table. The tutorial also illustrates functional simulation.

B.1 Introduction

This tutorial assumes that the reader has access to a computer on which MAX+plusII is
installed. Instructions for installing the copy of MAX+plusII provided with the book are
included on the CD-ROM. The MAX+plusII software will run on several different types
of computer systems. For this tutorial a computer running a Microsoft Windows operating
systems is assumed. Although MAX+plusII operates similarly on all of the supported types
of computers, there are some minor differences. A reader who is not using a Microsoft
Windows operating system may experience some slight discrepancies from this tutorial.
Examples of potential differences are the locations of files in the computer’s file system
and the exact appearance of windows displayed by the software. All such discrepancies are
minor and will not affect the reader’s ability to follow the tutorial.

This tutorial does not describe how to use the operating system provided on the com-
puter. We assume that the reader already knows how to perform actions such as running
programs, operating a mouse, moving, resizing, minimizing and maximizing windows,
creating directories (folders) and files, and the like. A reader who is not familiar with these
procedures will need to learn how to use the computer’s operating system before proceeding.

B.1.1 Getting Started

Each logic circuit, or subcircuit, being designed in MAX+plusII is called a project. The
software works on one project at a time and keeps all information for that project in a single
directory in the file system (we use the traditional term directory for a location in the file
system, but in Microsoft Windows the term folder is used). To begin a new logic circuit
design, the first step is to create a directory to hold its files. As part of the installation of the
MAX+plusII software, a few sample projects are placed into a directory called \max2work.
To hold the design files for this tutorial, we created the subdirectory \max2work\tutorial1.
The location and name of the directory is not important; hence the reader may use any valid
directory.

To create a directory to work in, use the normal utilities provided by the computer’s
operating system. MAX+plusII is not involved in this step. After the directory has been
created, start the MAX+plusII software. You should see a window similar to the one in
Figure B.1. This window is called the MAX+plusII Manager. It provides access to all the
features of MAX+plusII, which the user selects with the computer mouse.

Most of the commands provided by MAX+plusII are accessed by using a set of menus
that are located in the Manager window below the title bar. For example, in Figure B.1

June 13, 2002 09:04 vra23151_apb Sheet number 3 Page number 749 black

B.1 Introduction 749

Figure B.1 The MAX+plusII Manager window.

clicking the left mouse button on the menu named File opens the menu shown in Figure B.2.
Clicking the left mouse button on the entryExit MAX+plusII Alt+F4 exits from MAX+plusII.
In general, whenever the mouse is used to select something, the left button is used. Hence
we will not normally specify which button to use. In the few cases when it is necessary to use
the right mouse button, it will be specified explicitly. We should note that the Alt+F4 part of

Figure B.2 The File menu in the Manager window.

June 13, 2002 09:04 vra23151_apb Sheet number 4 Page number 750 black

750 A P P E N D I X B • Tutorial 1

the menu item indicates a keyboard shortcut; instead of using the mouse, the command can
alternatively be invoked by the holding down the Alt key on the keyboard and pressing the
F4 function key. Keyboard shortcuts are available for a few of the MAX+plusII commands,
but commands are usually invoked using the mouse. For some commands it is necessary
to access two or more menus in sequence. We use the convention Menu1 | Menu2 | Item
to indicate that to select the desired command the user should first click the left mouse
button on Menu1, then within this menu click on Menu2, and then within Menu2 click on
Item. For example, File | Exit MAX+plusII describes how to use the mouse to exit from the
MAX+plusII system.

The MAX+plusII system includes 11 main software modules, called applications. They
can be accessed in two different ways. First, all the applications can be invoked via the
MAX+plusII menu in the Manager window, as illustrated in Figure B.3. Second, some of
the applications can be invoked using the small icons that appear below the Manager title
bar. (If no icons are visible under the Manager title bar, select Options | Preferences to
open the Preferences dialog box. Then use the mouse to place a check mark beside the
entry for Show Toolbar and click OK.) To see which applications in Figure B.3 a particular
icon is associated with, place the mouse pointer on top of the icon; the Manager displays a
message near the bottom of the window that gives the name of the application.

The applications introduced in this tutorial include the Graphic Editor, Text Editor,
Waveform Editor, Compiler, Simulator, Message Processor, and Hierarchy Display. The
others are introduced in Tutorial 2.

Figure B.3 The MAX+plus II menu in the Manager window.

June 13, 2002 09:04 vra23151_apb Sheet number 5 Page number 751 black

B.2 Design Entry Using Schematic Capture 751

MAX+plusII On-Line Help
MAX+plusII provides comprehensive on-line documentation that answers most of the

questions that may arise when using the software. The documentation is accessed from
the Help menu in the Manager window. To get some idea of the extent of documentation
provided, it is worthwhile for the reader to browse through the Help menu. For instance,
selecting Help | MAX+plusII Table of Contents shows all the categories of documentation
available.

The user can quickly search through the Help topics by selecting Help | Search for
Help on, which opens a dialog box into which keywords can be entered. The available
Help topics that match the keywords are automatically displayed. Two other methods
are provided for quickly finding documentation for specific topics. First, while using any
application, pressing the F1 function key on the keyboard opens a Help display that shows
the commands available for that application. Second, in some instances holding down the
Shift key and pressing the F1 key changes the mouse pointer into a help pointer. This feature
is available when using the schematic capture tool provided in MAX+plusII. Clicking the
help pointer on any circuit element in a schematic automatically displays any documentation
that is available for that circuit element.

B.2 Design Entry Using Schematic Capture

In Chapter 2 we introduced three types of design entry methods: truth tables, schematic
capture, and Verilog. This section illustrates the process of using the schematic capture tool
provided in MAX+plusII, which is called the Graphic Editor. As a simple example, we will
draw a schematic for the logic function f = x1x2+ x2x3. A circuit diagram for f was shown
in Figure 2.30 and is reproduced as Figure B.4a. The truth table for f is given in Figure B.4b.
Chapter 2 also introduced functional simulation. After creating the schematic, we show
how to use the functional simulator in MAX+plusII to verify the schematic’s functionality.

x3

(a) Circuit (b) Truth table

f

x3

x1

x2

0
0
1
1

0
1
0
1

0
1
0
0

x2 f

0
0
1

0
1
0

0
1
1

1 1 1

0
0
0
0

x1

1
1
1
1

Figure B.4 The logic function of Figure 2.30.

June 13, 2002 09:04 vra23151_apb Sheet number 6 Page number 752 black

752 A P P E N D I X B • Tutorial 1

B.2.1 Specifying the Project Name

As a first step we will specify the name of the design project. In the Manager window select
File | Project | Name to open the pop-up box illustrated in Figure B.5. It is necessary to
specify the location of the directory where MAX+plusII will store any files created for the
project. For this example the directory used is named d:\max2work\tutorial1. The disk
drive designation, d:, is selected using the Drives pull-down menu shown in Figure B.5.
The directory name is selected using the box labeled Directories. Use the mouse to double-
click on the directory names displayed in the box until the proper directory is selected; the
selected directory appears next to the words Directory is, as illustrated in the figure. In the
box labeled Project Name, type graphic1 as the name for this project and then click OK.
Observe that the name of the project is displayed in the title bar of the Manager window.

B.2.2 Using the Graphic Editor

The next step is to draw the schematic. In the Manager window select MAX+plusII |
Graphic Editor. The Graphic Editor window appears inside the Manager window. It may
be helpful to move or resize the Graphic Editor window and to increase the size of the
Manager window to provide more work space. In the screen capture in Figure B.6, the
Graphic Editor window is maximized so that it fills the entire Manager window.

The title bar in Figure B.6 includes some menu names and icons that did not appear in
Figure B.1. This is because the Manager window always indicates the features available
in whatever application is currently being used. A number of icons that are used to invoke
Graphic Editor features also appear along the left edge of the window. To see a description
of the Graphic Editor feature associated with each icon, position the mouse on top of the
icon; a message is displayed near the bottom of the window. Two of the most useful icons

Figure B.5 Specifying the name and working directory for a project.

June 13, 2002 09:04 vra23151_apb Sheet number 7 Page number 753 black

B.2 Design Entry Using Schematic Capture 753

Figure B.6 The Graphic Editor display.

are the ones that look like a magnifying glass. These icons are used to see a larger or smaller
view of the schematic.

Naming the Schematic
The schematic being created must be given a name. Select File | Save As to open the

pop-up box depicted in Figure B.7. The directory that we chose for the project is already
selected in the pop-up box. The Graphic Editor will create a separate file for the schematic
and store it in the project’s directory. In the box labeled File Name, type graphic1.gdf.

Figure B.7 Specifying the name of a schematic.

June 13, 2002 09:04 vra23151_apb Sheet number 8 Page number 754 black

754 A P P E N D I X B • Tutorial 1

You must use exactly this name. The name graphic1 must match the name of the project,
and the filename extension gdf, which stands for graphic design file, must be used for all
schematics. Click OK to return to the Graphic Editor.

Importing Logic-Gate Symbols
The Graphic Editor provides several libraries which contain circuit elements that can be

imported into a schematic. For our simple example we will use a library called Primitives,
which contains basic logic gates. To access the library, double-click on the blank space in
the middle of the Graphic Editor display to open the pop-up box in Figure B.8 (another way
to open this box is to select Symbol | Enter Symbol). The box labeled Symbol Libraries
lists several available libraries, including the Primitives library. To open it, double-click on
the line that ends with the word prim. A list of the logic gates in the library is automatically
displayed in the Symbol Files box. Double-click on the and2 symbol to import it into the
schematic (you can alternatively click on and2 and then click OK). A two-input AND-gate
symbol now appears in the Graphic Editor window.

Any symbol in a schematic can be selected using the mouse. Position the mouse pointer
on top of theAND-gate symbol in the schematic and click the mouse to select it. The symbol
is highlighted in red. To move a symbol, select it and, while continuing to press the mouse
button, drag the mouse to move the symbol. To make it easier to position the graphical
symbols, a grid of guidelines can be displayed in the Graphic Editor window by selecting
Options | Show Guidelines. Spacing between grid lines can be adjusted using Options |
Guideline Spacing.

The logic function f requires a second two-input AND gate, a two-input OR gate, and
a NOT gate. Use the following steps to import them into the schematic.

Figure B.8 Importing a logic gate from the Primitives library.

June 13, 2002 09:04 vra23151_apb Sheet number 9 Page number 755 black

B.2 Design Entry Using Schematic Capture 755

Position the mouse pointer over the AND-gate symbol that has already been imported.
Press and hold down the Ctrl keyboard key and click and drag the mouse away from the
AND-gate symbol. The Graphic Editor automatically imports a second instance of the
AND-gate symbol. This shortcut procedure for making a copy of a circuit element is
convenient when you need many instances of the same element in a schematic. Of course,
an alternative approach is to import each instance of the symbol by opening the Primitives
library as described above.

To import the OR-gate symbol, again double-click on a blank space in the Graphic
Editor and then double-click on the Primitives library. In the box labeled Symbol Files,
use the scroll bar to scroll down through the list of gates to find the symbol named or2.
Import this symbol into the schematic. Next import the NOT gate using the same procedure.
To orient the NOT gate so that it points downward, as depicted in Figure B.4a, select the
NOT-gate symbol and then use the command Edit | Rotate | 270 to rotate the symbol 270
degrees counterclockwise. The symbols in the schematic can be moved by selecting them
and dragging the mouse, as explained above. More than one symbol can be selected at the
same time by clicking the mouse and dragging an outline around the symbols. The selected
symbols are moved together by clicking on any one of them and moving it. Experiment
with this procedure. Arrange the symbols so that the schematic appears similar to the one
in Figure B.9.

Importing Input and Output Symbols
Now that the logic-gate symbols have been entered, it is necessary to import symbols

to represent the input and output ports of the circuit. Open the Primitives library again.
Click the mouse anywhere in the box labeled Symbol Files and then type the letter “i” to
jump ahead in the list of symbols to those whose names begin with i. This shortcut can be
used in addition to the scroll bars provided on the Symbol Files box. Import the symbol

Figure B.9 A partially completed schematic for the circuit in Figure B.4.

June 13, 2002 09:04 vra23151_apb Sheet number 10 Page number 756 black

756 A P P E N D I X B • Tutorial 1

named input into the schematic. Import two additional instances of the input symbol. To
represent the output of the circuit, open the Primitives library and import the symbol named
output. Arrange the symbols to appear as illustrated in Figure B.10.

Assigning Names to Input and Output Symbols
Point to the word PIN_NAME on the input pin symbol in the upper-left corner of the

schematic and double-click the mouse. The pin name is selected, allowing a new pin name
to be typed. Type x1 as the pin name. Hitting carriage return immediately after typing the
pin name causes the mouse focus to move to the pin directly below the one currently being
named. This method can be used to name any number of pins. Assign the names x2 and x3
to the middle and bottom input pins, respectively. Finally, assign the name f to the output
pin.

Connecting Nodes with Wires
The next step is to draw lines (wires) to connect the symbols in the schematic together.

Click on the icon that looks like an arrowhead along the left edge of the Manager win-
dow. This icon is called the Selection tool, and it allows the Graphic Editor to change
automatically between the modes of selecting a symbol on the screen or drawing wires to
interconnect symbols. The appropriate mode is chosen depending on where the mouse is
pointing.

Move the mouse pointer on top of the x1 input symbol. The mouse pointer appears
as an arrowhead when pointing anywhere on the symbol except at the right edge. The
arrowhead means that the symbol will be selected if the mouse button is pressed. Move the
mouse to point to the small line, called a pinstub, on the right edge of the x1 input symbol.
The mouse pointer changes to a crosshair, which allows a wire to be drawn to connect the

Figure B.10 Input and output symbols added to the schematic in Figure B.9.

June 13, 2002 09:04 vra23151_apb Sheet number 11 Page number 757 black

B.2 Design Entry Using Schematic Capture 757

pinstub to another location in the schematic. A connection between two or more pinstubs
in a schematic is called a node. The name derives from electrical terminology, where the
term node refers to any number of points in a circuit that are connected together by wires
and thus have the same voltage.

Connect the input symbol for x1 to the AND gate at the top of the schematic as follows.
While the mouse is pointing at the pinstub on the x1 symbol, click and hold the mouse
button. Drag the mouse to the right until the line (wire) that is drawn reaches the pinstub on
the top input of the AND gate; then release the button. The two pinstubs are now connected
and represent a single node in the circuit.

Use the same procedure to draw a wire from the pinstub on the x2 input symbol to
the other input on the AND gate. Then draw a wire from the pinstub on the input of the
NOT gate upward until it reaches the wire connecting x2 to the AND gate. Release the
mouse button and observe that a connecting dot is drawn automatically. The three pinstubs
corresponding to the x2 input symbol, the AND-gate input, and the NOT-gate input now
represent a single node in the circuit. Figure B.11 shows a magnified view of the part of the
schematic that contains the connections drawn so far. To increase or decrease the portion
of the schematic displayed on the screen, use the icons that look like magnifying glasses
on the left side of the Manager window.

To complete the schematic, connect the output of the NOT gate to the lower AND gate
and connect the input symbol for x3 to that AND gate as well. Connect the outputs of the
two AND gates to the OR gate and connect the OR gate to the f output symbol. If any
mistakes are made while connecting the symbols, erroneous wires can be selected with the
mouse and then removed by pressing the Delete key or by selecting Edit | Delete. The
finished schematic is depicted in Figure B.12. Save the schematic using File | Save.

Figure B.11 Connecting the symbols in the schematic from Figure B.10.

June 13, 2002 09:04 vra23151_apb Sheet number 12 Page number 758 black

758 A P P E N D I X B • Tutorial 1

Figure B.12 The completed schematic for the circuit in Figure B.4.

Since our example schematic is quite simple, it is easy to draw all the wires in the
circuit without producing a messy diagram. However, in larger schematics some nodes that
have to be connected may be far apart, in which case it is awkward to draw wires between
them. In such cases the nodes are connected by assigning labels to them, instead of drawing
wires. We will illustrate this method of connecting nodes in section D.3.1.

B.2.3 Synthesizing a Circuit from the Schematic

As we explained in section 2.9.2, after a schematic is entered into a CAD system, it is
processed by initial synthesis tools. These tools analyze the schematic and generate a
Boolean equation for each logic function in the circuit. In MAX+plusII the synthesis tools
are controlled by the application program called the Compiler.

Using the Compiler
To open the Compiler window, click the mouse on the Compiler icon (it looks like a

factory with a smoke stack) below the Manager window title bar or select MAX+plusII |
Compiler.

For this tutorial we will use only the tools that are needed to allow us to perform a
functional simulation of the schematic. To tell the Compiler to use these tools, select Pro-
cessing | Functional SNF Extractor. The Compiler window should appear as shown in
Figure B.13. The window shows three software modules that are invoked in sequence by
the Compiler. The Compiler Netlist Extractor and Database Builder represent the initial
synthesis tools. The module called Functional SNF Extractor creates a file, called a simu-
lator netlist file (SNF), which describes the functionality of the circuit and is used by the
functional simulator.

June 13, 2002 09:04 vra23151_apb Sheet number 13 Page number 759 black

B.2 Design Entry Using Schematic Capture 759

Figure B.13 The Compiler display.

Click the mouse on the Start button in the Compiler window. The Compiler indicates
its progress by displaying a red progress bar and by placing an icon under each of the three
software modules as they are executed. When the Compiler is finished, a window should be
displayed that indicates zero warnings and zero errors. Click OK in this window to return
to the Compiler window.

If the Compiler does not specify zero warnings and zero errors, then at least one mistake
has been made when entering the schematic. In this case the Compiler opens a window
called the Message Processor, which displays a message concerning each warning or error
generated. An example showing how the Message Processor can be used to quickly locate
and fix errors in a schematic is given in section B.2.5.

To close the Compiler window, use the Close button (it is an X) located in the top-right
corner of its window.

B.2.4 Performing Functional Simulation

Before the schematic can be simulated, it is necessary to create the desired waveforms, called
test vectors, to represent the input signals. For this tutorial we will use the MAX+plusII
Waveform Editor to draw test vectors, but it is also possible to use a text editor to create test
vectors in a plain text (ASCII) file. Documentation pertaining to ASCII test vectors can be
opened by selecting Help | MAX+plusII Table of Contents. Click on Simulator, then click
on Basic Tools, and finally click on Vector File (.vec).

Using the Waveform Editor
Open the Waveform Editor window by selecting MAX+plusII | Waveform Editor.

Because the Waveform Editor has many uses, it is necessary to indicate that we wish to
enter test vectors for simulation purposes. Select File | Save As and type (if not already

June 13, 2002 09:04 vra23151_apb Sheet number 14 Page number 760 black

760 A P P E N D I X B • Tutorial 1

there) graphic1.scf in the box labeled File Name. A file with scf extension stores the
waveforms that will be used as simulation test vectors.

Select Node | Enter Nodes from SNF to open the pop-up box shown in Figure B.14.
Click on the List button in the upper-right corner of this box to display the names of the nodes
in the current project in the box labeled Available Nodes & Groups. Click the mouse on
the name x3 to highlight it. Click on the button labeled => to copy x3 into the box labeled
Selected Nodes & Groups. Use the same procedure to select each of the other signals and
copy them into the Selected Nodes & Groups box. It is also possible to select multiple
nodes at the same time, by dragging the mouse upward or downward inside the Available
Nodes & Groups box. Click OK to return to the Waveform Editor. The nodes x1, x2, x3,
and f are now shown in the waveform display.

We will now specify the logic values to be used for the input signals during functional
simulation. The logic values at the output f will be generated automatically by the simulator.

Select File | End Time to specify the total amount of time for which the circuit will
be simulated. In the box labeled Time, type 160ns to set the total simulation time to 160
nanoseconds. This amount of time is rather arbitrary because functional simulation does
not include any timing delays, as discussed in section 2.9.3. The concept of simulation time
will become more significant in Tutorial 2 when timing simulation is introduced. Click OK
to return to the Waveform Editor. Select View | Fit in Window so that the entire time range
from 0 to 160 ns is visible in the Waveform Editor display. In the Options menu make
sure that Show Grid has a check mark next to it so that the Waveform Editor displays light
vertical guidelines in the waveform area of the display. The guidelines provide a visual aid
for positioning the mouse when drawing waveforms. Select Options | Grid Size and type
20ns in the box labeled Grid Size. Click the mouse when pointing to any of the guidelines
and observe that a vertical reference line is drawn at that point. We will use the reference
line in Tutorial 2. Figure B.15 shows how the Waveform Editor window should look at this

Figure B.14 Selecting nodes for simulation.

June 13, 2002 09:04 vra23151_apb Sheet number 15 Page number 761 black

B.2 Design Entry Using Schematic Capture 761

Figure B.15 The Waveform Editor display.

point. The input waveforms are set to logic value 0, and the output is shown as a hashed-line
pattern that indicates that the logic value has not yet been determined.

To thoroughly test the circuit during simulation, it is desirable to use as many different
values of the input signals as possible. For our small example, there are only eight different
valuations, and so it is easy to include all of them. To make all eight valuations fit in the
160 ns simulation time, the signal valuations have to change every 20 ns. To create the
waveforms for the input signals, do the following.

Activate the Waveform Editing tool by pressing its icon on the left edge of the window.
The icon is shown in the top-left corner of Figure B.16; it looks like two arrows pointing
left and right. Position the mouse pointer over the waveform for input x3 at the 20 ns grid
line. Press and drag the mouse to the right to highlight the section of the x3 waveform from
20 ns to 40 ns, as illustrated in Figure B.16. The Waveform Editing Tool automatically

Figure B.16 Editing the waveform for x3 from Figure B.15.

June 13, 2002 09:04 vra23151_apb Sheet number 16 Page number 762 black

762 A P P E N D I X B • Tutorial 1

changes the selected portion of the waveform from its present value 0 to the value 1. Next
select the section of the waveform for x3 between 60 ns and 80 ns to set it to 1. Continue
in this manner to set every second 20 ns section of x3 to 1.

An alternative way to draw waveforms is to use the Selection tool, which is activated
by selecting the icon that looks like an arrowhead along the left edge of the window. Using
the Selection tool, the procedure for drawing a waveform is to first select a section of the
waveform by dragging the mouse over it. The highlighted section can be set to 1 by selecting
Edit | Overwrite | High. The highlighted section can also be changed by using the buttons
labeled 0 or 1 along the left edge of the window.

Use the Waveform Editing tool to set the waveform for x2 to 1 in the range from 40 ns
to 80 ns, as well as from 120 ns to 160 ns. Also, set the waveform for x1 to 1 in the range
from 80 ns to 160 ns. The waveforms drawn, as illustrated in Figure B.17, now include all
eight input valuations. Select File | Save to save the waveforms in the graphic1.scf file.

Performing the Simulation
To open the Simulator window, shown in Figure B.18, click on its icon (it looks like a

computer with a waveform on the screen) or Select MAX+plusII | Simulator. MAX+plusII
provides both functional simulation and timing simulation. The type of simulation used by
the Simulator application is determined automatically by the settings used in the Compiler
application. The Simulator will perform a functional simulation in this case because we
instructed the Compiler to generate information for functional simulation, as discussed for
Figure B.13.

Observe in Figure B.18 that the Simulator specifies that it will use the file called
graphic1.scf as the simulator input and will perform the simulation for the time range from
0 to 160 ns. Click the Start button to perform the simulation. The Simulator displays a
message indicating that no errors were generated. Click OK to return to the Simulator
window. The simulator stores the results of the simulation in the graphic1.scf file. To
view the file, click on the Open SCF button in the simulator window, which automatically
opens the Waveform Editor window and displays the file. As illustrated in Figure B.19, the
Simulator creates a waveform for the output f. The reader should verify that the generated
waveform corresponds to the truth table for f given in Figure B.4b. The Waveform Editor
and Simulator windows can now be closed.

Figure B.17 The completed waveforms for x1, x2, and x3.

June 13, 2002 09:04 vra23151_apb Sheet number 17 Page number 763 black

B.2 Design Entry Using Schematic Capture 763

Figure B.18 The Simulator display.

B.2.5 Using the Message Processor to Locate and Fix Errors

In the description in section B.2.3 of how the Compiler is used to synthesize a circuit from
the schematic, we said that the Compiler should produce a message stating that no warnings
or errors were generated. In this section we illustrate what happens when there is an error
in the schematic. To insert an error in the schematic created for f , reopen the schematic by
selecting File |Open to open the pop-up box shown in Figure B.20. In the box labeled Show
in Files List, click on Graphic Editor Files. Then in the box labeled Files, click on the name

Figure B.19 Functional simulation results for the waveforms in Figure B.17.

June 13, 2002 09:04 vra23151_apb Sheet number 18 Page number 764 black

764 A P P E N D I X B • Tutorial 1

Figure B.20 The dialog box used to reopen the schematic.

graphic1.gdf to put this name in the box labeled File Name. Alternatively, graphic1.gdf
can be typed into the box rather than using the mouse to select it from the list of files. Click
OK to open the file inside the Graphic Editor.

Use the mouse to select the wire that connects the output of the OR gate to the f output
symbol. Delete the wire by pressing the Delete key; then save the schematic file. Open
the Compiler window and run the synthesis tools again. The Compiler should produce a
message stating that one warning and one error were found. Click OK. A window, called
the Message Processor, is automatically opened to display the messages generated by the
Compiler, as illustrated in Figure B.21. If the Message Processor window is obscured
by some other window, select MAX+plusII | Message Processor to bring the Message
Processor window to the foreground.

The warning message is produced because the OR-gate output is not connected to
any other node in the schematic. The error message states that the f output symbol is

Figure B.21 The Message Processor display.

June 13, 2002 09:04 vra23151_apb Sheet number 19 Page number 765 black

B.3 Design Entry Using Verilog 765

not connected to anything. Although it is clear how to fix the error, since we created it
purposely, in general some of the messages displayed by the Compiler when synthesizing
larger circuits may not be obvious. In such cases it is possible to select a message with the
mouse and then click on the Help on Message button in the Message Processor window;
documentation that explains the message is automatically opened. Experiment with this
feature for both the warning and error messages in Figure B.21.

Another convenient feature of the Message Processor is the Locate button in the lower-
left corner of the window. It can be used to automatically display the section of the schematic
where the error exists. Select the warning message and then click the Locatebutton. Observe
that the Graphic Editor is automatically displayed with the OR gate highlighted. Next select
the error message in the Message Processor window and then click the Locate button again.
The f output symbol becomes highlighted in the Graphic Editor.

Use the Graphic Editor to redraw the missing wire between the OR-gate output and
the f output symbol. Save the schematic and then use the Compiler to run the synthesis
tools to see that the error is fixed. We have now completed our introduction to design using
schematic capture. If any application windows are still open, close them to return to the
Manager window.

B.3 Design Entry Using Verilog

This section illustrates the process of using MAX+plusII to implement logic functions by
writing Verilog code. We will implement the function f from section B.2, where we used
schematic capture. After typing the Verilog code, it will be simulated with the Functional
Simulator.

B.3.1 Specifying the Project Name

We need a new project name for the Verilog design. In the Manager window select File |
Project | Name. We will store the design files for the project in the same directory that
we used for the schematic capture design created earlier. In the box labeled Project Name,
type example1 as the name for the project and then click OK. The name of the project is
displayed in the title bar of the Manager window.

B.3.2 Using the Text Editor

MAX+plusII provides a text editor that can be used for typing Verilog code. Open the Text
Editor window by selecting MAX+plusII | Text Editor. The first step is to specify a name for
the file that will be created. Select File | Save As to open the pop-up box depicted in Figure
B.22. Type example1.v in the box labeled File Name. You must use exactly this name. The
name example1 must match the name of the project, and the filename extension v must be
used for all files that contain Verilog code. When File | Save As is selected, the Text Editor
places the default name example1.tdf in the File Name box. The tdf extension stands for

June 13, 2002 09:04 vra23151_apb Sheet number 20 Page number 766 black

766 A P P E N D I X B • Tutorial 1

Figure B.22 Specifying a name for the Verilog design file.

text design file. It is used for files that contain source code written in the Altera Hardware
Description Language (AHDL), which is another language supported by the MAX+plusII
system. Make sure to change the filename extension from tdf to v. We should mention that
it is not necessary to use the Text Editor provided in MAX+plusII. Any text editor can be
used to create the file named example1.v, as long as the text editor can generate a plain text
(ASCII) file.

The Verilog code for this example is shown in Figure 2.34. (Note the slight difference
in the name of the example; in Figure 2.34 it is called example3, while here we are referring
to it as example1.) Type the code into the Text Editor to obtain the display in Figure B.23.
Most of the commands available in the Text Editor are self-explanatory. Text is entered
at the insertion point, which is indicated by a thin vertical line. The insertion point can
be moved either by using the keyboard arrow keys or by using the mouse. Two features
of the Text Editor are especially convenient for typing Verilog code. First, the editor can
optionally display different types of Verilog statements in different colors. To turn on this
option, open the Options menu and place a check mark next to the item named Syntax
Coloring. Second, the editor can automatically indent the text on a new line so that it
matches the previous line. To turn on this option, place a check mark beside Options |
Auto-indent. Save the file.

Using Verilog Templates
The syntax of Verilog code is sometimes difficult for a designer to remember. To help

with this issue, the Text Editor provides a collection of Verilog templates. The templates
provide examples of various types of Verilog statements, such as a module declaration, an
always block, and assignment statements. It is worthwhile to browse through the templates
by selecting Templates | Verilog Template to become familiar with this resource.

June 13, 2002 09:04 vra23151_apb Sheet number 21 Page number 767 black

B.3 Design Entry Using Verilog 767

Figure B.23 The Text Editor display showing the Verilog code for example1.

B.3.3 Synthesizing a Circuit from the Verilog Code

In section 2.9.2 we said that a Verilog compiler generates a logic circuit from Verilog code.
The Verilog compiler provided by MAX+plusII is controlled by the Compiler application.

Using the Compiler
Open the Compiler window. As described for the design created with schematic capture

earlier, select Processing | Functional SNF Extractor so that the Compiler will generate the
information needed to perform functional simulation. Press the Start button in the Compiler
window. If the Verilog code has been typed correctly, the Compiler will display a message
that says that no errors or warnings were generated.

If the Compiler does not report zero warnings and zero errors, then at least one mistake
was made when typing the Verilog code. In this case the Message Processor window
is opened, and it displays a message corresponding to each warning or error found. An
example showing how the Message Processor can be used to quickly locate and fix errors
in Verilog code is given in section B.3.5. The Compiler window can now be closed.

B.3.4 Performing Functional Simulation

Functional simulation of the Verilog code is done in exactly the same way as the simulation
described earlier for the design created with schematic capture. Open the Waveform Editor
and select File | Save As to save the file with the name example1.scf. Following the
procedure given in section B.2.4, select Node | Enter Nodes from SNF and import the
nodes in the project into the Waveform Editor. Draw the waveforms for inputs x1, x2, and
x3 shown in Figure B.17. It is also possible to open the previously drawn waveform file
graphic1.scf and then “copy and paste” the waveforms for x1, x2, and x3. The procedure
for copying waveforms is described in Help | MAX+plusII Table of Contents |Waveform
Editor | Procedures | Copying, Cutting & Pasting Nodes and Groups. Open the Simulator

June 13, 2002 09:04 vra23151_apb Sheet number 22 Page number 768 black

768 A P P E N D I X B • Tutorial 1

Figure B.24 The Message Processor window displaying an error in Verilog code.

and click on the Start button. The waveform generated by the Simulator for the output f
should be the same as the waveform in Figure B.19.

B.3.5 Using the Message Processor to Debug Verilog Code

In section B.2.5 we showed that the Message Processor application can be used to quickly
locate and fix errors in a schematic. A similar procedure is available for finding errors in
Verilog code. To illustrate this, open the example1.v file with the Text Editor. In the fifth
line, which is the assign statement, delete the semicolon at the end of the line. Save the
example1.v file and then run the Compiler again. The Compiler generates one error, and
the Message Processor window is opened, as illustrated in Figure B.24. The error message
specifies that the problem was identified when processing line 7 in the Verilog source code
file. Select the error message in the Message Processor window and then click the Locate
button. The Text Editor window is automatically displayed with the insertion point at line 7.

Fix the error by reinserting the missing semicolon; then save the file and run the
synthesis tools again, to confirm that the error is fixed. We have now completed the
introduction to design using Verilog code. Close any open application windows to return
to the Manager window.

B.4 Design Entry Using Truth Tables

This section describes the process of designing a logic circuit using a truth table. We will
implement the truth table shown in Figure B.25. It will be entered into the CAD system by
drawing a timing diagram with the Waveform Editor. We discuss the equivalence of truth
tables and timing diagrams in section 2.4.1.

We need to specify a new project name for the truth table design. Using File | Project
| Name, follow the procedure described in section B.3.1 to assign the name timing1 to the
project. Use the same directory as for the projects designed in the previous sections.

June 13, 2002 09:04 vra23151_apb Sheet number 23 Page number 769 black

B.4 Design Entry Using Truth Tables 769

x3

0
0
1
1

0
1
0
1

0
1
0
1

x2 f

0
0
1

0
1
0

0
1
1

1 1 1

0
0
0
0

x1

1
1
1
1

Figure B.25 A three-variable function.

B.4.1 Using theWaveform Editor

Open the Waveform Editor window by selectingMAX+plusII Waveform Editor. The Wave-
form Editor can be used for multiple purposes. In section B.2.4 the editor was used to create
input files for simulation. In this section the Waveform Editor will be used to create a differ-
ent type of file, called a waveform design file. To specify the type of file to be created, select
File | Save As. In the box labeled File Name, type the name timing1.wdf. You must use
exactly this name. The name timing1 must match the name of the project, and the filename
extension wdf indicates that the waveforms will be used to describe a logic function, instead
of being used as simulation input.

B.4.2 Creating the Timing Diagram

To create a timing diagram, it is first necessary to specify the input and output signals for
the circuit. Select Node | Insert Node to open the pop-up box shown in Figure B.26. In the
box labeled Node Name in Figure B.26, type x1. Since x1 is an input to the circuit, make
sure that Input Pin is selected in the box labeled I/O Type. Click OK. The input x1 appears
in the Waveform Editor display. Use the same procedure to insert inputs x2 and x3 into the
Waveform Editor display. Next, select Node | Insert Node again and type f in the Node
Name box. Since f is the output for the circuit, make sure that Output Pin is selected in
the box labeled I/O Type and then click OK. An alternative way to open the Insert Node
pop-up box used above is to double-click in the Waveform Editor display in a blank space
under the column labeled Name. The inserted node will be placed in the Waveform Editor
window at the location where the mouse was double-clicked.

Having inserted the waveforms into the Waveform Editor, we will now draw a timing
diagram to represent the truth table in Figure B.25. Since the truth table has eight rows, we
will need to draw eight valuations of the inputs x1, x2, and x3. In section B.2.4 we set the
size of the grid displayed in the Waveform Editor to 20 ns. If this same grid size is used,
then the total time range needed in the Waveform Display is 160 ns. Select File | End Time
and specify 160ns as the total simulation time. To make the entire time range visible in

June 13, 2002 09:04 vra23151_apb Sheet number 24 Page number 770 black

770 A P P E N D I X B • Tutorial 1

Figure B.26 Inserting a node into the Waveform Editor.

the waveform display, select View | Fit in Window or type the shortcut command Ctrl+w
(while holding down the Ctrl key, press the w key). The Waveform Editor window should
now appear as shown in Figure B.27.

Following the procedure described in section B.2.4, modify the waveform for signal
x3 so that it is 1 for every second 20 ns time range. Also, edit the waveform for x2 so that
it is 1 for the time ranges from 40 ns to 80 ns and from 120 ns to 160 ns. Finally, set the
waveform for x1 to 1 in the time range from 80 ns to 160 ns. Previously, when using the
Waveform Editor, we did not specify a waveform for the output of the circuit, because the
output waveform was generated by the simulator. However, in this case we need to specify
a waveform for output f that corresponds to its truth table. In Figure B.25 the function is
1 in the rows where x1, x2, and x3 have the valuations 001, 011, 101, 110, and 111. Use
the Graphic Editor to change the waveform for f to 1 for the appropriate time ranges. For
instance, f should be set to 1 in the time range from 20 ns to 40 ns because this represents
the input valuation 001. After completing the waveform for f , the waveform display should
appear as shown in Figure B.28. Notice that we have rearranged the waveforms, by moving
f to the bottom, in comparison to Figure B.27. Waveforms can be moved by pointing the
mouse at the small symbol, called the node handle, to the left of the signal name in the
waveform display and then dragging the waveform upward or downward. Select File |
Save to save the timing diagram in the timing1.wdf file.

B.4.3 Synthesizing a Circuit from theWaveforms

The next step is to use the MAX+plusII Compiler to perform the initial synthesis steps for
the circuit. The Compiler will generate a Boolean expression to represent f , according to
the truth table given by the timing diagram.

June 13, 2002 09:04 vra23151_apb Sheet number 25 Page number 771 black

B.4 Design Entry Using Truth Tables 771

Figure B.27 The Waveform Editor display for the truth-table design.

Figure B.28 The timing diagram representing the truth table in Figure B.25.

June 13, 2002 09:04 vra23151_apb Sheet number 26 Page number 772 black

772 A P P E N D I X B • Tutorial 1

Use the same procedure described for the designs created with schematic capture and
Verilog code. Open the Compiler window and selectProcessing | Functional SNF Extractor.
Press theStart button in the Compiler window and then clickOK in response to the Compiler
message that says that no warnings or errors were found.

For the circuits designed in the previous sections, after logic synthesis was completed,
the next step performed was functional simulation. It does not make sense to perform the
functional simulation for the circuit designed in this section, because the waveforms that
would be used as inputs to the simulator would be the same waveforms used to design the
circuit! In the next section we will use the circuit synthesized from the timing diagram in
this section as part of a larger circuit, and we will simulate the operation of the larger circuit.

The tutorial on design with truth tables is now complete, so close any open application
windows to return to the Manager window.

B.5 Mixing Design-Entry Methods

It is possible to design a logic circuit using a mixture of design-entry methods. As an
example, in this section we will create a schematic that includes the circuit designed using
the truth table in the previous section.

We need to specify a new project name for the mixed design. Select File | Project |
Name and assign the name mixed1 to the project. Use the same directory as for the projects
designed in the previous sections.

B.5.1 Creating a Schematic That Includes a Truth Table

Open the Graphic Editor by selecting MAX+plusII | Graphic Editor. Select File | Save As
and, if not already there, type the name mixed1.gdf in the File Name box. Make sure to use
exactly this name.

Double-click the blank space in the Graphic Editor to open the Enter Symbol pop-up
box, as shown in Figure B.29. In the box labeled Symbol Name, type the name timing1,
which is the name of the circuit designed using a truth table in the previous section. Click
OK to import a graphical symbol for the timing1 circuit into the Graphic Editor. Once
the timing1 symbol is imported into the Graphic Editor, double-clicking on the symbol
automatically opens the Waveform Editor and displays the waveforms that were used to
design the circuit. When the Waveform Editor is closed, the Graphic Editor is automatically
reopened. This ability to move quickly from one design-entry tool to another is convenient
when it is necessary to make changes to a schematic or the subcircuits in it.

Following the procedure described in section B.2.2, import a two-input AND-gate
symbol and a NOT gate from the Primitives library into the Graphic Editor. Also from the
Primitives library, import three input symbols and an output symbol. Arrange the symbols
in the schematic as illustrated in Figure B.30. As described in section B.2.2, assign the
names x1, x2, and x3 to the input symbols and assign the name f to the output symbol.
The reader will observe that the name x3 is used twice in this design project: as an input to

June 13, 2002 09:04 vra23151_apb Sheet number 27 Page number 773 black

B.5 Mixing Design-Entry Methods 773

Figure B.29 Importing the truth-table design into the Graphic Editor.

Figure B.30 A schematic including a truth table and logic gates.

June 13, 2002 09:04 vra23151_apb Sheet number 28 Page number 774 black

774 A P P E N D I X B • Tutorial 1

the timing1 subcircuit and as an input to the mixed schematic. The MAX+plusII compiler
treats these two nodes named x3 as separate nodes because they appear in different levels
of the design project hierarchy. Connect the symbols in the schematic together as shown in
Figure B.31. Because a wire drawn with the Graphic Editor can be either straight or have
a single bend, it is necessary to draw more than one wire for the connection shown in the
figure from the AND-gate output to the input labeled x3 on the timing1 subcircuit. Start
drawing each wire so that it touches the end of the previously drawn wire; wires that touch
are automatically connected by the Graphic Editor. Save the schematic.

B.5.2 Synthesizing and Simulating a Circuit
from the Schematic

Use the procedure described for the designs created in the previous sections to synthesize a
circuit from the schematic. The synthesis tools will create a single logic circuit by merging
the timing1 subcircuit with the other logic gates in the schematic. Open the Compiler
window, select Processing | Functional SNF Extractor, and then run the Compiler.

Simulation of the mixed1 project is done in exactly the same way as for the other
projects created in this tutorial. Open the Waveform Editor and select File | Save As to
create a new file named mixed1.scf. Following the procedure given in section B.2.2, import
the input and output nodes x1, x2, x3, and f into the Waveform Editor. Draw the waveforms
for inputs x1, x2, and x3 that are shown in Figure B.17. Open the Simulator and click on
the Start button; then select Open SCF to see the results of the simulation. The waveform
generated by the Simulator for the output f should be exactly the same as the waveform
shown in Figure B.19. The mixed1 schematic represents the logic function f = x1x2+x2x3

that was designed using both schematic capture and Verilog code in this tutorial. Techniques

Figure B.31 The completed schematic corresponding to Figure B.30.

June 13, 2002 09:04 vra23151_apb Sheet number 29 Page number 775 black

B.5 Mixing Design-Entry Methods 775

that can be used to synthesize the expression for f from the mixed1 schematic are covered
in Chapter 4.

In practice a designer would not use a mixture of design-entry methods for a circuit as
simple as our example. The reason that we have created the mixed1 schematic is simply to
illustrate that MAX+plusII allows design-entry methods to be combined in a hierarchical
manner. It is also possible, although not shown here, to create a schematic that includes a
subcircuit designed using Verilog code. MAX+plusII provides a convenient feature, called
the Hierarchy Display, for working with hierarchical design projects.

B.5.3 Using the Hierarchy Display

Select MAX+PlusII | Hierarchy Display to open the Hierarchy Display window shown in
Figure B.32. The display shows that the design project consists of two hierarchical levels,
with mixed1 at the higher level and timing1 at the lower level. The mixed1 design project has
an icon next to it, labeled gdf. It can be double-clicked to automatically open the mixed1.gdf
file in the Graphic Editor. Similarly, timing1 has an icon next to it, labeled wdf. If this icon
is double-clicked, the file timing1.wdf is opened in the Waveform Editor. Experiment with
this method of opening design files. Figure B.32 also shows a small icon labeled acf, which
represents the assignment & configuration file for the project. The file contains settings for
a large number of optional features of MAX+plusII that affect the way the design files are
processed. These settings are saved automatically in the assignment & configuration file,
and so we will not need to modify them manually. Although it is not necessary, the acf file
can be opened in the Text Editor by double-clicking on its icon in the Hierarchy Display.

B.5.4 Concluding Remarks

This tutorial has introduced the basic use of the MAX+plusII CAD system. We have shown
how to perform design entry by drawing a schematic, writing Verilog code, and drawing
a timing diagram that represents a truth table. Each design was processed by the initial
synthesis tools and then simulated with the functional simulator.

In the next tutorial we will show how the logic synthesis and physical design tools are
used to implement circuits in PLDs. The timing characteristics of the implemented circuits
will be examined using timing simulation.

Figure B.32 The Hierarchy Display window for the mixed1 design project.

June 10, 2002 12:00 vra23151_apc Sheet number 1 Page number 776 black

776

a b c d e f g h

1

2

3

4

5

6

7

8

14. Bf4–g3, Kd8–c8

June 10, 2002 12:00 vra23151_apc Sheet number 2 Page number 777 black

777

a p p e n d i x

C
Tutorial 2

a b c d e f g h

1

2

3

4

5

6

7

8

15. a4xb5, c6xb5

June 10, 2002 12:00 vra23151_apc Sheet number 3 Page number 778 black

778 A P P E N D I X C • Tutorial 2

In this tutorial we describe how to use the logic synthesis and physical design tools in
MAX+plusII. In addition to the modules used in Tutorial 1, the following modules are
introduced: Logic Synthesizer, Fitter, Floorplan Editor, and Assembler. To illustrate the
procedures involved, we will first implement the example1 project created in Tutorial 1 in
a MAX 7000 CPLD.

C.1 Implementing a Circuit in a MAX 7000 CPLD

Select File | Project Name, which opens the window shown in Figure C.1. The box
labeled Directories gives the contents of the d:\max2work\tutorial1 directory that was
used for Tutorial 1. To select the example1 project, in the box labeled Files double-click on
example1.v. We will not modify example1.v, but the reader should review its contents. A
convenient way to open the file is to select File | Hierarchy Project Top or type the shortcut
for this command, which is Ctrl+t. Of course, the example1.v file can also be opened using
File | Open.

As we showed in Tutorial 1, MAX+plusII always works in the context of one project at
a time. For the current tutorial we set the name of the project before opening its design file.
Alternatively, we could open the example1.v file before setting the project name. Then to
set example1 as the current project, we could use the command File | Project | Set Project
to Current File or the shortcut Ctrl+Shift+j. In any case it is important to ensure that the
project name is always set appropriately.

Another implication of MAX+plusII working in the context of one project at a time
has to be noted. The name of the project defines the filename of the top-level design file.
Hence for the example1 project, the top-level design file is named example1.v. Because

Figure C.1 Changing the project name to example1.

June 10, 2002 12:00 vra23151_apc Sheet number 4 Page number 779 black

C.1 Implementing a Circuit in a MAX 7000 CPLD 779

of the relationship between project names and filenames, the user should never create
two separate projects with the same base filename and different filename extensions. For
example, assume that two projects are created in the same directory: one project uses a
schematic diagram for its top-level design file, and one uses Verilog code. If the user
chooses the same base filename for both projects, such as circuit.gdf for the schematic and
circuit.v for the Verilog code, then two different top-level design files will have the same
project name. Such duplication creates confusion when trying to synthesize a circuit for
each design file. To avoid this problem, always follow the methodology used in Tutorial
1 in which different base filenames are used for all projects, such as graphic1.gdf and
example1.v.

C.1.1 Using the Compiler

To continue our discussion of how to implement example1.v in a MAX 7000 CPLD, open
the Compiler window. In Tutorial 1 we used the Compiler to perform the initial synthesis
that generated the information needed for functional simulation. In this tutorial we will
implement the design in a CPLD and then use timing simulation. To specify that the Com-
piler should not generate the information for functional simulation, select the Processing
menu. A check mark should appear beside Functional SNF Extractor because we turned
on this setting in Tutorial 1. The operation of the check mark is that the feature is tog-
gled on or off each time it is selected. Click on Functional SNF Extractor to turn it off.
The Compiler window should now display several software modules that are invoked in
sequence, as indicated in Figure C.2. (If the Timing SNF Extractor module does not ap-
pear in the Compiler window, select Processing | Timing SNF Extractor to activate it.)
As we said in Tutorial 1, the first two modules perform the initial synthesis. The Logic
Synthesizer performs logic synthesis and optimization. The Fitter performs the physical
mapping, and the Timing SNF Extractor generates the information that indicates the timing
delays in the circuit when implemented in the target chip. This information is stored in a
file called the simulator netlist file (SNF), which is used by the Timing Simulator. The last

Figure C.2 The Compiler display.

June 10, 2002 12:00 vra23151_apc Sheet number 5 Page number 780 black

780 A P P E N D I X C • Tutorial 2

module executed, the Assembler, produces the information that specifies how to configure
the selected chip to implement the circuit.

C.1.2 Selecting a Chip

Before starting the Compiler, it is necessary to specify which chip to use. Select Assign |
Device to open the window shown in Figure C.3. To select the MAX 7000 CPLD family,
click on the pull-down menu in the box labeled Device Family and select MAX7000S.
The S at the end of the name refers to the members of the MAX 7000 family that are
in-system programmable. Methods of CPLD programming are discussed in section 3.6.4.
The available chips in the MAX 7000S family are displayed in the box labeled Devices.
One available chip is the EPM7128SLC84-7. If this chip is not listed in the Device dialog
box, click on the option at the bottom of Figure C.3 that specifies Show Only Fastest Speed
Grades. Turning off this option by clicking on it results in all speed grades of the chips
available to the designer being shown in theDevices box (the copy of MAX+plusII included
with the book allows the user to select only a limited subset of the chips available from
Altera). The meaning of the chip name is as follows: The EPM7 means that the chip is a
member of the MAX 7000 family, and the 128 gives the number of macrocells in the chip.
The designator LC84 indicates an 84-pin PLCC package; this type of package is described
in section 3.6.3. The −7 gives the speed grade. We discuss speed grades in Appendix E.

In the Devices box it is possible to select the word AUTO instead of a specific chip.
Choosing this option means that the Fitter module will automatically select an appropriate
chip from the list of chips shown in the Devices box. The ability to have a chip chosen
automatically, based on the complexity of the circuit that has to be implemented, is some-
times convenient for the designer. In this case we wish to select a specific chip, so click on
EPM7128SLC84-7 as indicated in the figure. Click OK to return to the Compiler window.

Figure C.3 Selecting a device for implementation.

June 10, 2002 12:00 vra23151_apc Sheet number 6 Page number 781 black

C.1 Implementing a Circuit in a MAX 7000 CPLD 781

C.1.3 Viewing the Logic Synthesis Options

MAX+plusII provides a number of options that affect the results produced by logic synthesis.
These options can be accessed by selectingAssign |Global Project Logic Synthesis to open
the window that appears in Figure C.4. To see a description of the purpose of each area in
the displayed window, use the MAX+plusII context-sensitive help. Recall that this feature
is invoked by pressing the F1 key. For the example1 project we do not need to change any
of the logic synthesis options. Click Cancel to return to the Compiler window.

In our previous examples we selected the Compiler’s Start button to run the synthesis
tools. Another way to start the Compiler is to select File | Project | Save and Compile.
A shortcut for this sequence is to type Ctrl+l. This sequence causes MAX+plusII to save
open design files and then run the synthesis tools in the Compiler module. There is also an
icon for this command along the top of the Compiler window. It looks like a factory smoke
stack on top of a floppy disk. Starting the Compiler in this way has an important benefit. It
checks whether the name of the design file that the user is currently working with matches
the name of the current project. If not, the system provides a warning message. This avoids
the possibly confusing situation that arises if the user forgets to change the project name
before working on a design file. Use the Ctrl+l shortcut to start the Compiler. After all the
modules have been executed, click OK in response to the prompt from the Compiler.

Figure C.4 Logic synthesis options.

June 10, 2002 12:00 vra23151_apc Sheet number 7 Page number 782 black

782 A P P E N D I X C • Tutorial 2

C.1.4 Examining the Implemented Circuit

The Compiler produces a report file that documents the results of the implementation. To
open the report file in the Text Editor, double-click on the icon labeled rpt displayed under
the Fitter module in the Compiler window. Alternatively, the report file can be opened using
File | Open and specifying example1.rpt. A part of the report file is illustrated in Figure
C.5. It indicates that the project is successfully implemented in the selected device, and
lists some of the chip’s resources used for the circuit. Our small example uses three input
pins, one output pin, and one macrocell (LC). The percentage of the chip consumed by the
circuit is also shown. Since the chip has 128 macrocells, less than one percent is used for
this example.

Use the scroll bars on the right side and bottom of the Text Editor to examine more
of the report file. Observe that a diagram is included in the file that shows which pins
on the chip package the Fitter has chosen for the input and output signals in the circuit.
The file specifies that inputs x1, x2, and x3 are assigned to the pins numbered 12, 11, and
10, respectively. The output f is assigned to pin 73. Rather than having the pins selected
automatically by the Fitter module, it is also possible to choose the pins manually. The
manual selection procedure is described in section C.4.

Scroll through the report file to find the section labeled Equations, which shows the
logic equation generated by the Logic Synthesis module for each output in the circuit. (If
this section is not included in the report file, then in the Compiler window select Options
| Report File, click on Equations to select it, and then run the Compiler again.) Figure C.6
shows the equation generated for f in the example1 project. The equation has an unusual
syntax. It states that f is the output of a logic cell, or LCELL, whose inputs are the signals
_EQ001 and Gnd. The LCELL represents a macrocell in the MAX 7000 chip. The $ symbol
represents XOR. Hence the LCELL produces the XOR of the signal _EQ001 with Gnd.
This XOR is included in the circuit because the macrocell in the MAX 7000 device includes
an XOR gate in the output path, as indicated in Appendix E. Since one input to this gate is
0 (Gnd), then the output of the macrocell is defined by _EQ001. The expression shown for
_EQ001 corresponds to the Boolean equation that we specified for f in example1.v. Note
that in the report file, the symbol & indicates AND, # is OR, and ! is NOT. Close the
report file.

Figure C.5 Compiler messages generated for the example1 project.

June 10, 2002 12:00 vra23151_apc Sheet number 8 Page number 783 black

C.1 Implementing a Circuit in a MAX 7000 CPLD 783

Figure C.6 The Equations section of the report file for example1.

C.1.5 Running the Timing Simulator

The Timing Simulator is invoked using the same procedure that we described in Tutorial
1 for the Functional Simulator. Select MAX+plusII | Simulator. The input waveforms for
x1, x2, and x3 that were drawn in Tutorial 1 using the Waveform Editor can be used as
inputs for the Timing Simulator. Click the Start button in the Simulator window to run
the timing simulation. When the simulation is completed, click Open SCF. Select View |
Fit in Window to display the waveforms shown in Figure C.7. Compare these waveforms
to those shown in Figure B.19. The timing simulation produces the same results as the
functional simulation in Tutorial 1 except that the times at which changes in f occur are now
determined by the timing characteristics of the EPM7128SLC84-7 chip.

Align the mouse pointer over the 20 ns grid line and click on the waveform for f. This
is the time when the input x3 changes to 1, which causes f to become 1. The Waveform

Figure C.7 Timing simulation results for example1.

June 10, 2002 12:00 vra23151_apc Sheet number 9 Page number 784 black

784 A P P E N D I X C • Tutorial 2

Editor places the vertical reference line at 20 ns, and 20 ns is displayed in the box labeled
Ref. Next click on the right arrow icon in the Waveform Editor. (This icon is situated to the
right of the box labeled Ref.) The reference line moves to the time when f makes a transition
from 0 to 1. The Ref box now displays 27.5 ns, meaning that it takes 7.5 ns for the change
in x3 to cause a change in f. This result is a reflection of the −7 speed grade of the chip,
which is specified as having a delay from an input to an output pin of 7.5 ns.

C.1.6 Using the Floorplan Editor

In section C.1.4 we showed that the implementation results produced by the Compiler can
be examined by opening the report file. Another way to view the implementation results is to
use the Floorplan Editor. SelectMAX+plusII | Floorplan Editor to open the window shown
in Figure C.8. To make the window look like the one in the figure, it may be necessary to
change some of the settings in the Layout menu. Click on Layout and make the settings
indicated in Figure C.9. Figure C.8 shows some of the macrocells in the EPM7128SLC84-7
chip. As we describe in Appendix E, the macrocells are organized into logic array blocks
(LABs), where each LAB contains 16 macrocells. To see larger or smaller views of the
LABs, click on the magnify buttons on the left edge of the window. To display different
sections of the chip, use the window scroll bars.

Figure C.8 The Floorplan Editor display.

June 10, 2002 12:00 vra23151_apc Sheet number 10 Page number 785 black

C.1 Implementing a Circuit in a MAX 7000 CPLD 785

Figure C.9 The Layout menu in the Floorplan Editor.

The Floorplan Editor uses different colors to indicate macrocells that are used in a
circuit and macrocells that are unused. For our small example three macrocells are used
for the three inputs to the circuit, and one macrocell provides the circuit output. Orient the
display so that the macrocell that produces the output f is visible, as depicted in Figure C.10.
Click on this macrocell to select it. The Floorplan Editor can draw lines that indicate which
other macrocells the selected macrocell is connected to by selectingOptions | Show Node

Figure C.10 Viewing the implementation of a function in the Floorplan Editor.

June 10, 2002 12:00 vra23151_apc Sheet number 11 Page number 786 black

786 A P P E N D I X C • Tutorial 2

Fan-In. It is also possible to see what logic function is implemented in the selected node by
selecting Layout | Report File Equation Viewer. As illustrated in the figure, this displays
the logic equation from the Compiler report file in the bottom part of the Floorplan Editor
window.

Instead of displaying the macrocells, the Floorplan Editor can alternatively display a
picture of the package pins on the target chip. To change to this view, select Layout | Device
View. To close the report file equation viewer, select again Layout | Report File Equation
Viewer to toggle off this feature. To increase the available window area for viewing the
device pin-out, select Layout | Full Screen. It is possible to make visible the entire device
by clicking on the “negative” magnify button a few times. The “positive” magnify button
and scroll bars can be used to change the view until the signal names assigned to the pins
are large enough to read. Figure C.11 gives an example of the display oriented so that the
pins used for inputs x1, x2, and x3 are visible. When the window is oriented in this way,
scrolling to the right displays the pin assigned to the output f.

Figure C.11 Viewing the device pin-out in the Floorplan Editor.

June 10, 2002 12:00 vra23151_apc Sheet number 12 Page number 787 black

C.2 Implementing a Circuit in a Flex 10K FPGA 787

The Floorplan Editor is not essential in the CAD flow described above. It just provides
a graphical view of the information contained in the Compiler report file. We will describe
a different use of the Floorplan Editor in section C.4.1, in which it will be used to modify
the implementation results produced by the Compiler, instead of just displaying them.

We have now completed the implementation of the example1 project in a MAX 7000
chip. Close all open windows to return to the Manager window.

C.2 Implementing a Circuit in a Flex 10K FPGA

The CAD flow used to implement a circuit in a FLEX 10K FPGA is the same as that
used for the MAX 7000 CPLD. We showed in Chapter 4 that multilevel logic synthesis is
an effective optimization strategy when targeting designs to lookup table–based FPGAs.
Figure 4.54 gives Verilog code for a seven-variable logic function used to illustrate the
benefits of multilevel synthesis. In this section we will create a new design project, named
example2, which represents the Verilog code in that figure.

Select File | New to open the dialog box in Figure C.12. Click the circle beside the
entry Text Editor file to select it and then clickOK. The Text Editor module is automatically
opened, editing an empty file. Type the Verilog code in Figure 4.54 into the Text Editor
and then use File | Save As to save the file with the name example2.v. To make this file the
current project, use the shortcut command Ctrl+Shift+j. The Verilog code is displayed in
Figure C.13.

Open the Compiler window. Select Assign | Device to open the Device dialog box. In
the drop-down menu labeledDevice Family, select FLEX10K and then click onOK. Run the
Compiler. If there are no errors in the Verilog code, the Message Processor reports which
member of the FLEX 10K family the Fitter has chosen for implementation of the project.
To see the results produced by the Logic Synthesis and Fitter modules, open the Compiler
report file by double-clicking on the icon labeled rpt, which is displayed below the box that
represents the Fitter module. The report file gives the assignment of signals to pins on the
FLEX 10K device and reports the percentage of the chip’s various resources that are used

Figure C.12 Creating a new Text Editor file.

June 10, 2002 12:00 vra23151_apc Sheet number 13 Page number 788 black

788 A P P E N D I X C • Tutorial 2

module example2 (x1, x2, x3, x4, x5, x6, x7, f);
input x1, x2, x3, x4, x5, x6, x7;
output f;

assign f = (x1 & x3 & x6) | (x1 & x4 & x5 & x6) |
(x2 & x3 & x7) | (x2 & x4 & x5 & x7);

endmodule

Figure C.13 The Verilog code for example2.

for our sample circuit. Scroll down in the report file until the logic equations depicted in
Figure C.14 are visible.

The output of the circuit, f, is implemented as the output of the logic cell (lookup
table) designated as LC 1_A1. This logic cell is in the top row (row 1) and left-most column
(column 1) of the FPGA. The reader may wish to use the Floorplan Editor to see where the
logic cell is located in the chip, but we will not do so here. The bottom equation in Figure
C.14 specifies that the logic cell LC 1_A1 implements the function given by

LC1_A1 = LC2_A1 · x3 + LC2_A1 · x4x5

where LC2_A1, which is the logic cell in column 1 of row 2, implements the function

LC2_A1 = x2x7 + x1x6

Figure C.14 The logic equations produced for the code in Figure C.13.

June 10, 2002 12:00 vra23151_apc Sheet number 14 Page number 789 black

C.3 Downloading a Circuit into a Device 789

This is the same expression that we showed in Example 4.23, in section 4.12, except that
earlier we used the variable name S instead of the name LC 2_A1.

Having implemented the design in the FLEX 10K device, the next step is to perform a
timing simulation. Since the steps involved are the same as in our previous examples, we
will not show them here. The reader should perform the timing simulation to gain a feeling
for the timing characteristics of the FLEX 10K device.

C.3 Downloading a Circuit into a Device

Once a circuit has been synthesized for a design project, the circuit can be downloaded
into the selected device. Downloading involves programming the appropriate switches
in the device to implement the desired circuit. To illustrate the steps involved, we will
describe how a circuit can be downloaded into the laboratory development board that is
available from the Altera Corporation. The board is called the UP−1 Education Board
and includes both a MAX 7000 CPLD and a FLEX 10K FPGA. The UP−1 board can be
obtained by following the instructions in the University Program section of Altera’s Web
site at http://www.altera.com.

We will describe how the example1 project that we implemented in a MAX 7000 CPLD
can be downloaded into the UP−1 board, assuming that it is connected to the reader’s
computer. A reader who does not have access to the UP−1 board will not be able to
download the circuit, but the steps involved are still easy to follow. The UP−1 board is
connected to the computer using one of two types of cables that are available from Altera.
The ByteBlaster cable provides a connection to a parallel port on the computer, and the
BitBlaster cable provides a connection to a serial port. In the following instructions we
assume that the ByteBlaster cable is used.

The UP−1 board contains an EPM7128SLC84-7 chip. There is a socket that connects
this chip to the ByteBlaster cable. Plug the ByteBlaster cable into this socket and plug the
other end of the cable into the parallel port on the computer. Ensure that the UP−1 board
is plugged into a power supply and that the green “power LED” is lit.

Set the name of the current project in MAX+plusII to be example1. SelectMAX+plusII
| Programmer to open the Programmer module window shown in Figure C.15. Observe
that the programming file for the example1 project, which is called example1.pof, is au-
tomatically selected by the Programmer. To specify that the ByteBlaster is to be used as
the programming hardware, select Options | Hardware Setup. In the window shown in
Figure C.16, use the Hardware Type drop-down menu to select ByteBlaster. Also, use the
drop-down menu labeled Parallel Port to select the appropriate parallel port (usually either
LPT1 or LPT2).

To program the EPM7128SLC84-7 chip, click Program in the Programmer window.
The Programmer module automatically downloads the example1.pof file through the Byte-
Blaster cable into the device and then verifies that the programming has been performed
correctly. The Programmer module can now be closed. The designer can test the circuit
implemented in the chip by using appropriate test equipment.

June 10, 2002 12:00 vra23151_apc Sheet number 15 Page number 790 black

790 A P P E N D I X C • Tutorial 2

Figure C.15 The Programmer display.

Figure C.16 Selecting the programming hardware.

The UP−1 board also contains a FLEX 10K chip. The procedure used to download a
circuit into this chip is similar to the one described for the MAX 7000 device, but a few
extra steps are needed. The reader who tries using the FLEX 10K chip should refer to the
documentation that accompanies the UP−1 board for detailed instructions.

C.4 Making Pin Assignments

In the examples given in this tutorial, the assignment of signals to device pins is done
automatically. In some cases the designer needs to be able to manually specify which pins
to use for some of the signals in the circuit. For example, the circuit board that contains

June 10, 2002 12:00 vra23151_apc Sheet number 16 Page number 791 black

C.4 Making Pin Assignments 791

the chip(s) being used may have hardwired connections from some of the device pins to
other components, such as switches or LEDs. To make use of the hardwired connections,
the designer has to be able to specify which device pins signals should be assigned to. This
procedure is described below.

Selecting which pin a signal should be assigned to can be thought of as either part of
design entry or part of logic synthesis. MAX+plusII allows pin assignments to be made
using any of the design-entry tools or using the Compiler or Floorplan Editor. The same
procedure can be used in all modules. We will illustrate the steps involved using the Text
Editor. Set the name of the current project to be example1. Use the Ctrl+t shortcut to open
example1.v in the Text Editor. Before pins can be assigned manually, it is necessary to
first specify which chip to use. This was already done in section C.1.2, when we selected
the EPM7128SLC84-7 as shown in Figure C.3. To assign a signal to a pin, select Assign
| Pin/Location/Chip to open the window in Figure C.17. Click on Search to open the
window in Figure C.18 and then in this window click on List. In the box labeled Names
in Database, click on x1 to select it and then click on OK. Control now returns to the
window in Figure C.17, with x1 displayed in the box labeled Node Name. In the box
labeled Chip Resource, click on the pull-down menu called Pin. A list of all legal pins on
the EPM7128SLC84-7 chip that can be used for the x1 signal is displayed. Select a pin,
such as pin 4, by clicking on it and then click OK.

The pin assignment is saved in the project’s assignment & configuration file (acf),
which was introduced in section B.5.3. Open this file in the Text Editor, either by using the
Hierarchy Display and double-clicking on the icon labeled acf, or by using File | Open and

Figure C.17 Manual assignment of a signal to a device pin.

June 10, 2002 12:00 vra23151_apc Sheet number 17 Page number 792 black

792 A P P E N D I X C • Tutorial 2

Figure C.18 Selecting a signal name by searching for it.

specifying the file example1.acf. The line in the file that specifies the pin assignment is

|x1 : INPUT_PIN = 4;

An easy way to locate this line in the file is to select Utilities | Find Text and then type x1 in
the box labeled Search For. Close the acf file.

The same procedure can be used to assign pins for x2, x3, and f, but we will not do
so here. Run the Compiler. During the synthesis process the Fitter module uses the pin
assignments for the signals that have been specified manually and makes automatic pin
assignments for the other signals. Open the report file, or use the Floorplan Editor, to
confirm that the manual pin assignment is used in the implemented circuit.

Manual pin assignments can be removed by selecting Assign | Clear Project Assign-
ments in the Text Editor (or Compiler) window. Do this and then click onAll in the window
that appears; then click OK. Reopen the acf file and confirm that it no longer specifies any
pin assignments. Run the Compiler again to resynthesize the circuit without the manual
pin assignment.

C.4.1 Assigning Signals to Pins in the Floorplan Editor

The pin assignment procedure described above can be used in modules other than the Text
Editor. The Floorplan Editor provides an additional way of making the pin assignment,
which is described below.

The Floorplan Editor can display two main types of information. In section C.1.6 we
used it to show the implementation results produced by the Compiler. This mode of display

June 10, 2002 12:00 vra23151_apc Sheet number 18 Page number 793 black

C.4 Making Pin Assignments 793

is activated via the Layout menu by selecting the item called Last Compilation Floorplan.
The Last Compilation mode is provided to allow the user to view the implemented circuit,
but not to make changes to it. The other possible mode of display is activated by selecting
Layout | Current Assignments Floorplan. In this mode the user is able to make manual
assignments of signals to pins. Figure C.19 depicts the Floorplan Editor in the mode where
pin assignment can be done. The settings from the Layout menu used for the figure are
given in Figure C.20. Select Layout | Current Assignments Floorplan. If a message is
displayed indicating that a floorplan cannot be displayed because the AUTO chip setting is

Figure C.19 Using the Current Assignments mode of the Floorplan Editor.

Figure C.20 The Layout menu settings used for Figure C.19.

June 10, 2002 12:00 vra23151_apc Sheet number 19 Page number 794 black

794 A P P E N D I X C • Tutorial 2

in effect, then select Assign | Device and click on EPM7128SLC84-7 in the Devices box.
Use the scroll bars and magnify buttons to orient the screen as depicted in Figure C.19.

In the Current Assignments Floorplan mode, a signal can be assigned to a pin by
clicking on the signal name in the box labeled Unassigned Nodes and Pins and then
“dragging and dropping” it on a pin. To create the signal assignment for x1 shown in
Figure C.19, point the mouse to the x1 signal name in the Unassigned Nodes and Pins
box. Click and hold down the mouse button. Drag the mouse until the pointer is over pin
4 on the picture of the EPM7128SLC84-7 chip and then release the mouse button. This
technique can be used to assign the signals x2, x3, and f to pins as well. Any signals left
unassigned will be assigned to pins automatically by the Fitter. When finished making pin
assignments, type the Ctrl+l shortcut to run the Compiler to synthesize a new circuit with
the manual assignments. Then examine the report file or use the Floorplan Editor (in the
Last Compilation Floorplan mode) to confirm that the manually specified pin assignment
was used.

To remove all manually assigned pins, select Assign | Clear Project Assignments.
Click on All in the window that appears and then click OK. Run the Compiler again to
resynthesize the circuit without the manual pin assignment.

C.4.2 Making Pin Assignments Permanent

Most circuits designed in practice have considerably more pins than in our small example.
In a typical design flow, when a circuit is synthesized from a design file, MAX+plusII
performs all stages of the synthesis process automatically, including the assignment of
signals to pins. If the design file is subsequently modified and a new circuit is synthesized
from it, MAX+plusII may use either the same pin assignment that it chose previously or
may make a different pin assignment. Whether or not the design file modifications affect
the pin assignment depends on the extent of the modifications.

At some point in the design cycle, the circuit implemented in the selected chip will
be considered to be the final result. Then a printed circuit board (PCB) that includes
the designed chip is built. The PCB makes permanent connections from the chip to other
components on the board. Ideally, after the PCB is built, the chip designed with MAX+plusII
will not require changes. However, in practice it is often necessary to make modifications,
either because errors are discovered or because of updates to the design specifications. Since
the PCB has hardwired connections to the chip that implements the designed circuit, we
need to ensure that changes can be made to the design file(s) without changing the existing
pin assignment. One way to solve this problem is to assign pins manually, as described
in the previous sections, for all signals. Although this approach solves the problem, it is
tedious when there is a large number of pins. To simplify the task, MAX+plusII allows a
circuit to be back-annotated, which saves the existing pin assignment to the project’s acf
file.

Select Assign | Back-Annotate Project to open the window shown in Figure C.21.
It is possible to back-annotate not only the pin assignments but also the assignments of
logic functions to logic cells (macrocells). In this case we wish to back-annotate the pin
assignments, so click on Chips, Pins & Devices. The pin assignments are saved in the
project’s acf file, as we described in section C.4, as if the pins were assigned manually.
Open the acf file and find the section depicted in Figure C.22.

June 10, 2002 12:00 vra23151_apc Sheet number 20 Page number 795 black

C.5 Concluding Remarks 795

Figure C.21 The back-annotation window.

Figure C.22 Back-annotated pin assignments in the assignment & configuration file.

Close the acf file. Since for our purposes we do not actually need to back-annotate the
circuit, clear the assignments by selecting Assign | Clear Project Assignments. Reopen
the acf file and confirm that it no longer includes the lines shown in Figure C.22.

C.5 Concluding Remarks

Having completed this and the preceding tutorial, the reader is familiar with many of
the most important features of MAX+plusII. In the next tutorial we will introduce some
additional features that are useful for larger circuits, especially those that contain storage
elements.

June 18, 2002 09:43 vra23151_apd Sheet number 1 Page number 796 black

796

a b c d e f g h

1

2

3

4

5

6

7

8

16. Qd1–d3, Bb7–c6

June 18, 2002 09:43 vra23151_apd Sheet number 2 Page number 797 black

797

a p p e n d i x

D
Tutorial 3

a b c d e f g h

1

2

3

4

5

6

7

8

17. Bg6–f5, e6xf5

June 18, 2002 09:43 vra23151_apd Sheet number 3 Page number 798 black

798 A P P E N D I X D • Tutorial 3

This tutorial introduces more advanced capabilities of the MAX+plusII system. We show
how Verilog code is organized and compiled and illustrate how multibit signals are repre-
sented using the CAD tools. Examples using the building blocks in the library of parame-
terized modules (LPM) are presented, as well as examples of sequential circuits. In addition
to the CAD tool applications that are used in Tutorials 1 and 2, this tutorial introduces the
Timing Analyzer application.

D.1 Design Using Verilog Code

In section 5.5 we show how an n-bit ripple-carry adder can be specified in Verilog code. In
this section we show how the ripple-carry adder can be implemented using the MAX+plusII
system.

D.1.1 The Ripple-CarryAdder Code

For storing the files used in this tutorial, we created the directory d:\max2work\tutorial3.
To enter the Verilog code for the adder, in the Manager window select File | New and create
a new Text Editor file. Code for the n-bit adder is given in Figure D.1. It takes the carry-in

module addern (carryin, X, Y, S, carryout);
parameter n = 16;
input carryin;
input [n−1:0] X, Y;
output [n−1:0] S;
output carryout;
reg [n−1:0] S;
reg [n:0] C;
reg carryout;
integer k;

always @(X or Y or carryin)
begin

C[0] = carryin;
for (k = 0; k <= n−1; k = k+1)
begin

S[k] = X[k] ∧ Y[k] ∧ C[k];
C[k+1] = (X[k] & Y[k]) | (C[k] & X[k]) | (C[k] & Y[k]);

end
carryout = C[n];

end

endmodule

Figure D.1 Verilog code for a ripple-carry adder.

June 18, 2002 09:43 vra23151_apd Sheet number 4 Page number 799 black

D.1 Design Using Verilog Code 799

signal, carryin, plus two n-bit numbers, X and Y , as inputs and produces the n-bit output
sum, S, and carry-out signal, carryout. The code uses the parameter n, so that the adder
can be parameterized to work for any value of n. In this example, n is set to 16. In the code
the vector C is used to represent the intermediate carries between the stages in the adder. A
for loop is used to create n full-adders that comprise the ripple-carry adder.

Type the code in Figure D.1 into the Text Editor and save the file in the tutorial3
directory using the name addern.v. Use the Ctrl+Shift+j shortcut command to set addern
as the name of the current project. We will synthesize a circuit to implement this project
in a MAX 7000 CPLD. Select Assign | Device to open the Device dialog box. In the
drop-down menu labeled Device Family, select MAX7000S. For this project we selected
the EPM7128SLC84-7 chip because this chip is provided on the Altera development board,
which is discussed in section C.3. If the EPM7128SLC84-7 chip is not listed in the Device
dialog box, click on the option at the bottom of the dialog box that specifies Show only
fastest speed grades. Turning this option off by clicking on it results in all speed grades of
the chips available to the designer being shown in theDevices box (the copy of MAX+plusII
included with the book allows the user to select only a limited subset of the chips that are
available from Altera).

Click OK to return to the Text Editor and then open the Compiler module. Since we
will use timing simulation for this project, make sure that Timing SNF Extractor is turned
on in the Processing menu. Run the Compiler. When analyzing the code, if the Compiler
reports errors in your code, fix them.

We will perform a timing simulation to determine the speed of operation of the ripple-
carry adder in the chosen device. Open the Waveform Editor and then select Node | Enter
Nodes from SNF to open the window shown in Figure D.2. Click on the List button and
scroll down in the Available Nodes & Groups box until the node carryin is visible. Click
on the button marked => to copy carryin into the Selected Nodes & Groups box. Scroll

Figure D.2 Importing single-bit and multibit node names.

June 18, 2002 09:43 vra23151_apd Sheet number 5 Page number 800 black

800 A P P E N D I X D • Tutorial 3

further down in the Available Nodes & Groups box and select carryout. Finally, select
the nodes X , Y , and S, which are displayed at the bottom of the list of Available Nodes
& Groups. These nodes represent the 16-bit vectors in the Verilog code in Figure D.1.
MAX+plusII uses the term Group, or Bus, for multibit nodes. Click OK to return to the
Waveform Editor.

Select File | End Time and set the total simulation time to 250 ns. SelectOptions |Grid
Size to set the guideline spacing to be 25 ns. Save the file with the name addern.scf. Use
the Ctrl+w shortcut command so that the entire time range, from 0 to 250 ns, is displayed
in the Waveform Editor window, as depicted in Figure D.3.

Below the label Value the Waveform Editor displays the value of the signal waveforms
at the point where the reference line is currently situated (the value X for an output signal
means that the signal value is unknown, because the simulation has not yet been performed).
For multibit signals the displayed signal values have an associated number base, which is
indicated by a letter. In Figure D.3 the number base used for the multibit signals X, Y, and S
is hexadecimal, denoted by the letter H. It is possible to change the number base (to binary,
octal, or decimal) by double-clicking on the H, but we do not need to do so here. If not
already done, activate the Waveform Editing tool by selecting its icon on the left side of
the Manager window (the icon is labeled <−|−>). Click the mouse at the 100 ns point on
the X waveform, drag to 175 ns, and then release the mouse. The Overwrite Group Value
dialog box shown in Figure D.4 appears. Type 3FFF into this box and click OK. Next set
the value of X to 7FFF in the time range from 175 ns to 250 ns and set Y to the value 0001
in the time range from 50 ns to 250 ns. Save the addern.scf file.

Open the Simulator module and click Start to run the timing simulation. The results of
the simulation are shown in Figure D.5. Move the reference line in the Waveform Editor
to the point in the figure where S takes the value 4000. Since this sum is produced at 137.5
ns, and X changes to 3FFF at 100 ns, the adder requires 37.5 ns to generate the sum.

Figure D.3 The waveform display for the 16-bit adder.

June 18, 2002 09:43 vra23151_apd Sheet number 6 Page number 801 black

D.1 Design Using Verilog Code 801

Figure D.4 Specifying the value of a multibit signal.

Figure D.5 Timing simulation results for the ripple-carry adder.

D.1.2 Using the Timing Analyzer Module

The only MAX+plusII module that we have not yet used is the Timing Analyzer. It shows
detailed timing information for the circuit synthesized by the Compiler. Select MAX+plusII
| Timing Analyzer. Three types of analyses are available, which are listed in the Analysis
menu. The type currently selected should be the Delay Matrix. It reports the propagation
delays in the circuit from each primary input to each primary output. The other types
of analysis are applicable only to circuits that contain storage elements. In the Timing
Analyzer window, click the Start button. Figure D.6 shows part of the results produced. In
the figure we have sized the window so that four columns of data are visible, and the data
has been scrolled to the right to show the propagation delays for nodes S12 to S15. The
values in each square of the matrix indicate the minimum and maximum delays in the circuit
through all paths from each input node to each output node. For instance, the minimum
delay from node X0 to node S14 is 32.5 ns, and the maximum delay is 41.5 ns. Observe
that the propagation delays increase for more significant stages of the adder, as we expect
in the ripple-carry structure. The longest delay from any input to any output in the circuit
is 42.5 ns. The Timing Analyzer can be set to report only the longest delay by selecting
Options | Time Restrictions. Other features of the Timing Analyzer will be discussed in
section D.3.3.

June 18, 2002 09:43 vra23151_apd Sheet number 7 Page number 802 black

802 A P P E N D I X D • Tutorial 3

Figure D.6 Using the delay matrix in the Timing Analyzer.

We have finished working on the addern project, so close all open windows to return
to the Manager window.

D.2 Using an LPMModule

In section 5.5.1 we show how to create an adder circuit using the lpm_add_sub module in
the library of parameterized modules (LPM). In this section we compare the adder circuit
produced by the lpm_add_sub module to the ripple-carry adder implemented in section D.1.

Create a new Text Editor file and enter the code shown in Figure D.7. It instantiates a
16-bit version of the lpm_add_sub module with the same input and output signals used in
Figure D.1. Save the file with the name adderlpm.v and set this file as the current project.
Using the Assign menu, select the same device used in the previous example. Run the
Compiler to synthesize a circuit that implements the adder.

Open the Waveform Editor and create the same simulation vectors that we used in
section D.1.1, shown in Figure D.5. Save the waveform file, open the Simulator, and run
the timing simulation. The results of the simulation should be as illustrated in Figure D.8.
Position the reference line so that it shows the delay incurred by the adder to produce the

June 18, 2002 09:43 vra23151_apd Sheet number 8 Page number 803 black

D.2 Using an LPMModule 803

module adderlpm (carryin, X, Y, S, carryout);
input carryin;
input [15:0] X, Y;
output [15:0] S;
output carryout;

lpm add sub instance (.cin(carryin), .dataa(X), .datab(Y),
.result(S), .cout(carryout));
defparam instance.lpm width = 16;

endmodule

Figure D.7 A 16-bit adder built using the lpm_add_sub module.

Figure D.8 Timing simulation results for the code in Figure D.7.

sum 4000. This sum is produced 22.5 ns after X changes to 3FFF. Comparing this delay to
the one in Figure D.5, which is 37.5 ns, we see that the lpm_add_sub module generates a
faster adder circuit.

To view the source code file that defines the lpm_add_sub module, open the Hierarchy
Display module. A simplified picture of the window that appears is given in Figure D.9.
It shows that the lpm_add_sub module is instantiated using a building block named add-
core. Double-click on the small icon labeled tdf, which stands for text design file, next to
addcore:adder. The source code file named addcore.tdf is opened in the Text Editor. The
code is written using the Altera Hardware Description Language (AHDL), which is another
language supported by MAX+plusII. Although AHDL uses a different syntax than Verilog
uses, the two languages have enough similarity to enable the reader to understand some of
the code. The file includes comments that specify how the addcore module is implemented

June 18, 2002 09:43 vra23151_apd Sheet number 9 Page number 804 black

804 A P P E N D I X D • Tutorial 3

Figure D.9 The Hierarchy display for the code in Figure D.7.

in different types of devices. For devices designated as MAX, such as MAX 7000, addcore
is implemented as blocks of eight-bit carry-lookahead adders, with ripple-carry between
the adder blocks. Hence our 16-bit adder in Figure D.7 is implemented using two 8-bit
carry-lookahead adders, with the carry-out of one adder connected to the carry-in of the
other. A diagram of this type of adder circuit is shown in Figure 5.17.

Implementation in a FLEX 10K Chip
Close addcore.tdf and close the Hierarchy Display. We will now implement the code in

Figure D.7 in a FLEX 10K device. SelectAssign |Device and choose FLEX10K in theDevice
Family drop-down menu. For the results shown here, we selected the EPF10K20RC240-4
chip, which is included on the Altera development board described in section C.3.

Open the Compiler and synthesize a circuit that implements the project in the FLEX
10K chip. Run the Timing Simulator to generate the simulation results shown in Figure
D.10. Positioning the reference line in the Waveform Editor at the point where S changes
to 4000 shows that 56 ns are needed to generate the sum in the FLEX 10K device.

In Appendix E we show that FLEX 10K devices include special-purpose carry logic
for implementation of fast adders. The lpm_add_sub module can be implemented using
this resource by directing the logic synthesis algorithms to optimize the generated circuit

Figure D.10 Timing results when optimized for area in a FLEX 10K device.

June 18, 2002 09:43 vra23151_apd Sheet number 10 Page number 805 black

D.2 Using an LPMModule 805

Figure D.11 Setting logic synthesis options.

for speed. Select Assign | Global Project Logic Synthesis to open the window shown in
Figure D.11. In the Global Project Synthesis Style drop-down menu, select FAST. Run the
Compiler to synthesize a circuit optimized for speed and then run the Timing Simulator
again. The results, illustrated in Figure D.12, show that only 20.9 ns are needed to generate
S = 4000 when the dedicated carry-logic resources are used.

Figure D.12 Timing results when optimized for speed in a FLEX 10K device.

June 18, 2002 09:43 vra23151_apd Sheet number 11 Page number 806 black

806 A P P E N D I X D • Tutorial 3

We have finished working on the adderlpm project. Close all open windows to return
to the Manager window.

D.3 Design of a Sequential Circuit

This example shows how to implement a sequential circuit using MAX+plusII. The pre-
sentation assumes that the reader is familiar with the material in Chapter 7. Figure 7.48
depicts a circuit with a four-bit adder connected to a register that feeds back to the adder.
This section shows how to implement the circuit using modules from the LPM library. We
will first describe the circuit using a schematic and then give an equivalent design using
Verilog code.

D.3.1 Using the Graphic Editor

Select File | New and create a new Graphic Editor file. Save the file with the name
graphic2.gdf. Use the Ctrl+Shift+j shortcut command to set graphic2 as the current project.
Double-click on the blank space in the Graphic Editor window. Open the primitives library
by double-clicking on the line in the Symbol Libraries box that ends inprim. Import an input
symbol using the procedure described in section B.2.2. Import two more input symbols
and two output symbols.

Next we need to import two symbols, lpm_ ff and lpm_add_sub, from the LPM library.
The lpm_ ff module is an n-bit register, and the lpm_add_sub module is an adder/subtractor
subcircuit. One way to import the modules is to open the LPM library in the same way
as we opened the primitives library and then select the appropriate symbols to be imported
into the schematic. However, each LPM module has various parameters that have to be
set to configure the module. MAX+plusII provides a tool called the MegaWizard Plug-In
Manager to help configure the modules.

Double-click on a blank space in the Graphic Editor to open the Enter Symbol dialog
box. Click on the MegaWizard Plug-In Manager button to open the window shown in
Figure D.13. Another way to start this tool is to select File |MegaWizard Plug-In Manager.
Click onNext to create a new instance of an LPM module to be imported into the schematic.

In the next page of the MegaWizard Plug-In Manager, shown in Figure D.14, click on
the + symbol next to the LPM storage item in theAvailable Megafunctions box. Then click
on LPM_FF to select this module. In addition to creating a symbol for use in a schematic,
the MegaWizard tool creates a design file for use with a hardware description language. In
Figure D.14 we clicked on Verilog, but we will not use the resulting Verilog file here. It is
necessary to provide a name that will be used for the symbol file. We chose the name Reg4,
as shown in the figure.

Click Next to open the window in Figure D.15. Click on the drop-down menu and
set the number of flip-flops in the lpm_ ff module to 4. The default flip-flop type is now
set to D, and the MegaWizard displays the graphical symbol for the lpm_ ff that will be
created for use in the schematic. Click Next to open the window in Figure D.16. Under

June 18, 2002 09:43 vra23151_apd Sheet number 12 Page number 807 black

D.3 Design of a Sequential Circuit 807

Figure D.13 Using the MegaWizard Plug-In Manager.

Figure D.14 Selecting the lpm_ ff module.

June 18, 2002 09:43 vra23151_apd Sheet number 13 Page number 808 black

808 A P P E N D I X D • Tutorial 3

Figure D.15 Configuring the lpm_ ff module.

Figure D.16 Adding an clear input on the lpm_ ff module.

the item Asynchronous inputs, click to select Clear. Note that the graphical symbol shown
for the module now includes the asynchronous reset input. Click on Finish to return to the
Enter Symbol dialog box. The name of the Reg4 symbol is automatically entered in the
box labeled Symbol Name. Click OK to return to the Graphic Editor.

Start the MegaWizard tool again to import an instance of the lpm_add_sub module. In
the screen shown in Figure D.17, click on the + symbol beside LPM arithmetic and then

June 18, 2002 09:43 vra23151_apd Sheet number 14 Page number 809 black

D.3 Design of a Sequential Circuit 809

Figure D.17 Importing the lpm_add_sub module.

click on LPM_ADD_SUB. Select Verilog for the type of HDL source code file that should
be generated. Although we will not make use of the generated Verilog file, it specifies how
the lpm_add_sub module can be instantiated in Verilog code with our chosen parameter
values. As shown in the figure, use the name Adder4 for the symbol. Click Next to open
the window in Figure D.18. Use the drop-down menu to configure the module as a four-bit
adder. Click Finish to return to the Enter Symbol box and then click OK.

The symbols that have been imported into the schematic are given in Figure D.19. As
indicated in the figure, assign the name Reset to the input symbol in the lower-left corner
of the schematic and assign the name Clock to the input symbol above that. The third input
symbol is used for the circuit’s four-bit input, named Data. Use the syntax Data [3..0] for
the four-bit signal. Assign the name Sum [3..0] to the output symbol in the top-right corner
of the schematic; we use this symbol to show the sum produced by the adder in a timing
simulation. Assign the name RegSum [3..0] to the other output symbol.

Connecting Nodes with Wires and Names
If not already done, activate the Selection tool in the Graphic Editor by clicking on the

icon that looks like an arrowhead on the left edge of the window. As explained in section

June 18, 2002 09:43 vra23151_apd Sheet number 15 Page number 810 black

810 A P P E N D I X D • Tutorial 3

Figure D.18 Configuring the lpm_add_sub module.

Figure D.19 The symbols imported into the schematic.

B.2.2, the Selection tool allows the Graphic Editor to change automatically between the
modes of selecting a symbol or drawing wires to interconnect symbols.

Draw a wire from the Clock input symbol to the clock node on the Reg4 symbol and
another wire from Reset to the aclr node on Reg4. Next place the mouse on top of the
pinstub for the node dataa [3..0] on the Adder4 symbol. Draw a wire from this pinstub to

June 18, 2002 09:43 vra23151_apd Sheet number 16 Page number 811 black

D.3 Design of a Sequential Circuit 811

the left until it reaches the pinstub on the Data [3..0] input symbol. The wire is drawn as
a bold line to indicate that it represents a multibit signal. MAX+plusII uses the term bus
wire for multibit wires. The Graphic Editor automatically creates a bus wire when the wire
is drawn starting at a multibit node such as dataa [3..0]. It is possible to manually select
the style of line that should be drawn by clicking the right mouse button and selecting the
Line Style menu item.

Draw a bus wire from the output of Adder4 to the data [3..0] node on Reg4. Draw
another wire to connect this node to the Sum [3..0] output symbol. Finally, draw a bus
wire from the output of Reg4 back to the datab [3..0] node on Adder4. To complete the
schematic, we need to connect the output of Reg4 to the RegSum [3..0] output symbol.
Instead of drawing a wire to make this connection, we will illustrate a different way of
connecting the nodes in the schematic. The Graphic Editor allows the user to attach a label
to a wire. To attach a label to the bus wire between the output on Reg4 and the input on
Adder4, click the mouse somewhere on the wire. The wire is highlighted to show that it is
selected, and a small cursor appears on the wire. Type the label RegSum [3..0] and observe
that this label appears on the wire. In Figure D.20 we attached the label at a point below
the Adder4 symbol, but the label can be placed anywhere on the wire. The Graphic Editor
now considers the bus wire to be physically connected to the RegSum [3..0] output symbol,
just as if a wire were drawn between them. We say that the nodes are interconnected by
name, rather than by drawing a wire. Most schematic capture tools allow nodes to be
interconnected in this manner. In large schematics, connecting nodes by name allows the
schematic diagram to appear less cluttered because it means that fewer wires have to be
drawn.

For completeness we should also mention an alternative way to specify the name (label)
of a bus wire. It can be specified using individual signal names separated by commas. In this

Figure D.20 The completed schematic.

June 18, 2002 09:43 vra23151_apd Sheet number 17 Page number 812 black

812 A P P E N D I X D • Tutorial 3

example we could type the label as follows: RegSum3, RegSum2, RegSum1, RegSum0 .
This style of label allows a bus wire to be composed of any group of node names. For
instance, if nodes x, y, and z exist in a design, then a three-bit bus could have the label
x, y, z .

In some schematics it is necessary to connect the individual signals within a bus to
other nodes. For example, if a bus exists called C [3..0], an individual signal in this bus can
be accessed by assigning an appropriate label to a node. For instance, to connect a node
to the right-most bit in C [3..0], the node would be given the label C [0]. An example of a
schematic that uses labels in this manner appears in Figure 10.33 in section 10.2.5.

D.3.2 Synthesizing a Circuit and Using the Timing Simulator

Save the completed schematic. Use the Assign menu to choose a device from the MAX
7000S family. For the results shown here, we selected the EPM7128SLC84-7 device.
Compile the design. Open the Waveform Editor and use Node | Enter Nodes from SNF
to select the nodes shown in Figure D.21. Set the total simulation time to 500 ns and set
the grid size to 25 ns. Set Reset to 1 for the first 50 ns of the simulation time and then
leave Reset at 0 for the rest of the time. To enter the waveform for the clock signal, point
the mouse at the name of the Clock waveform in the Waveform Editor display and click
the right mouse button. In the pop-up menu, select Overwrite | Clock to open the dialog
box shown in Figure D.22. The box specifies that the Clock signal has the initial value 0
and its period is equal to twice the grid size (50 ns). Click OK, and the Waveform Editor
automatically draws the periodic clock signal.

The next step is to draw the waveform for the Data [3..0] input. In a typical digital
system, input signals change values shortly after the active clock edge because they are
the outputs of a register controlled by the same clock. In this example all changes in the

Figure D.21 The input waveforms.

June 18, 2002 09:43 vra23151_apd Sheet number 18 Page number 813 black

D.3 Design of a Sequential Circuit 813

Figure D.22 Creating a clock waveform.

Figure D.23 The results produced by timing simulation.

Data [3..0] input will occur 5 ns after a positive clock edge. Change the grid size to 5 ns.
Use the magnifying glass button to zoom in on the Waveform Editor display and draw the
waveform shown in Figure D.21 for Data [3..0]. In this waveform changes to the Data [3..0]
signal occur at 130 ns, 230 ns, 330 ns, and 430 ns. Save the waveform file and run the
Timing Simulator to generate the simulation results given in Figure D.23. Observe that 7.5
ns are needed to generate a sum from the adder, which is then clocked into the register at
the next active clock edge.

D.3.3 Using the Timing Analyzer

We introduced the Timing Analyzer in section D.1.2 and showed that it can display propa-
gation delays in a circuit. Another use of the Timing Analyzer is to calculate the minimum
clock period for which a sequential circuit will operate correctly. Open the Timing Ana-
lyzer and select Analysis | Registered Performance to open the window in Figure D.24.

June 18, 2002 09:43 vra23151_apd Sheet number 19 Page number 814 black

814 A P P E N D I X D • Tutorial 3

Figure D.24 Maximum clock frequency estimate.

Click the Start button. The Timing Analyzer reports that the circuit operates correctly with
a minimum clock period of 17 ns. This clock period accounts for all propagation delays
in the circuit and for the setup time at the data input on Reg4. The Timing Analyzer can
also be used to check for setup and hold time violations in a circuit by selecting Analysis |
Setup/Hold Matrix.

We have now finished working with the graphic2 project.

D.3.4 Using Verilog Code

Figure D.25 shows Verilog code that is equivalent to the graphic2 schematic. The register is
specified as a separate module, reg4. The adder in the circuit is defined using the + operator
in the assign statement.

The reader should type the code in Figure D.25 into a Text Editor file, compile it, and
simulate the resulting circuit. The results should be identical to those produced for the
graphic2 project.

June 18, 2002 09:43 vra23151_apd Sheet number 20 Page number 815 black

D.4 Design of a Finite State Machine 815

module example3 (Data, Clock, Reset, RegSum, Sum);
input Clock, Reset;
input [3:0] Data;
output [3:0] Sum, RegSum;
wire [3:0] Sum, RegSum;

reg4 R1 (Sum, Clock, Reset, RegSum);
assign Sum = Data + RegSum;

endmodule

module reg4 (D, Clock, Reset, Q);
input [3:0] D;
input Clock, Reset;
output [3:0] Q;
reg [3:0] Q;

always @(posedge Reset or posedge Clock)
if (Reset)

Q <= 0;
else

Q <= D;

endmodule

Figure D.25 Verilog code equivalent to the graphic2 project.

D.4 Design of a Finite State Machine

In section 8.1 we show a simple Moore-type finite state machine that has one input, w, and
one output, z. Whenever w is 1 for two successive clock cycles, z is set to 1. The state
diagram for the FSM is given in Figure 8.3; it is reproduced in Figure D.26. Verilog code
that describes the machine appears in Figure 8.29; it is reproduced in Figure D.27. Create
a new Text Editor file and enter the code shown in Figure D.27. Save the file with the name
simple.v and set this as the name of the current project.

D.4.1 Implementation in a CPLD

Use the Assign menu to select a MAX 7000S device. We chose the EPM7128SLC84-7
chip for the results presented here. Run the Compiler to synthesize a circuit for the FSM.
Open the Compiler report file and scroll down in the file to see the logic expressions shown
in Figure D.28. These expressions can be derived by hand by considering the state diagram

June 18, 2002 09:43 vra23151_apd Sheet number 21 Page number 816 black

816 A P P E N D I X D • Tutorial 3

C z 1=⁄

Reset

B z 0=⁄A z 0=⁄w 0=

w 1=

w 1=

w 0=

w 0= w 1=

Figure D.26 State diagram of a Moore-type FSM.

and state assignment. For example, state variable y1 has the value 1 only in state B, and the
state diagram specifies that the machine changes to state B only if it is currently in state A
and w = 1. Since A has the code y2y1 = 00, then y1 should be set to 1 if y2 = y1 = 0 and
w = 1. Hence the expression for y1 in Figure D.28 is

y1 = wy1y2

The expressions for y2 and z are derived similarly.
Open the Waveform Editor and import the nodes Resetn, Clock, w, z, and y, as shown

in Figure D.29. Set the total simulation time to 650 ns and set the grid size to 25 ns. Set
Resetn= 0 during the first 50 ns, and then set Resetn= 1. Create the periodic Clock signal
as described in section D.3.2. Draw the waveform for w shown in the figure. Each change
in w occurs 5 ns after a positive clock edge; use a grid size of 5 ns to draw this waveform.
Save the file and run the Timing Simulator to generate the results shown. The FSM behaves
correctly, setting z = 1 in each clock cycle for which w = 1 in the preceding two clock
cycles. Examine the timing delays in the circuit, using the reference line in the Waveform
Editor. It shows that changes in the FSM’s state occur 2.5 ns after an active clock edge and
that an additional 7 ns are needed to change the value of the z output.

Open the Timing Analyzer. Select Analysis | Registered Performance and click the
Start button. The analysis reports that the FSM operates correctly with a maximum clock
frequency of 125 MHz.

D.4.2 Implementation in an FPGA

To see how the FSM is implemented in an FPGA, use the Assign menu to select a device
in the FLEX 10K family, such as the EPF10K20RC240-4.

June 18, 2002 09:43 vra23151_apd Sheet number 22 Page number 817 black

D.4 Design of a Finite State Machine 817

module simple (Clock, Resetn, w, z);
input Clock, Resetn, w;
output z;
reg [2:1] y, Y;
parameter [2:1] A = 2’b00, B = 2’b01, C = 2’b10;

// Define the next state combinational circuit
always @(w or y)

case (y)
A: if (w) Y = B;

else Y = A;
B: if (w) Y = C;

else Y = A;
C: if (w) Y = C;

else Y = A;
default: Y = 2’bxx;

endcase

// Define the sequential block
always @(negedge Resetn or posedge Clock)

if (Resetn == 0) y <= A;
else y <= Y;

// Define output
assign z = (y == C);

endmodule

Figure D.27 Verilog code for the FSM in Figure D.26.

In section 8.8 we said that when implementing an FSM in an FPGA, a good strategy
is to use one-hot encoding, with one state variable assigned to each state. Although our
simple FSM has only three states we can use it to illustrate the general idea. Using a one-hot
code would give A = 100, B = 010, and C = 001. In PLDs, flip-flops usually have clear
inputs but they do not have preset inputs. It is convenient to invert the left-most bit in the
state codes so that the reset state is A = 000, while the other two states are B = 110, and
C = 101. The reader is encouraged to modify the Verilog code in Figure D.27 to extend
the signals y and Y to have three bits and to change the state codes as described above.
Compile the code, examine the equations generated in the report file, and perform a timing
simulation for the implementation in the FPGA chip.

June 18, 2002 09:43 vra23151_apd Sheet number 23 Page number 818 black

818 A P P E N D I X D • Tutorial 3

Figure D.28 Logic expressions for the code in Figure D.27.

Figure D.29 Timing simulation for the code in Figure D.27.

June 18, 2002 09:43 vra23151_apd Sheet number 24 Page number 819 black

D.5 Concluding Remarks 819

D.5 Concluding Remarks

In Tutorials 1, 2, and 3, we have introduced many of the most important features of
MAX+plusII. However, many other features are available. The reader is encouraged to
learn about the more advanced capabilities of the CAD system by exploring the various
commands and on-line help provided in each application.

June 12, 2002 13:00 vra23151_ape Sheet number 1 Page number 820 black

820

a b c d e f g h

1

2

3

4

5

6

7

8

18. Re1xe7, Bf8xe7

June 12, 2002 13:00 vra23151_ape Sheet number 2 Page number 821 black

821

a p p e n d i x

E
Commercial Devices

a b c d e f g h

1

2

3

4

5

6

7

8

19. c2–c4, Black resigns

June 12, 2002 13:00 vra23151_ape Sheet number 3 Page number 822 black

822 A P P E N D I X E • Commercial Devices

In Chapter 3 we described the three main types of programmable logic devices (PLDs):
simple PLDs, complex PLDs, and field-programmable gate arrays (FPGAs). This appendix
describes some examples of commercial PLD products.

E.1 Simple PLDs

Simple PLDs (SPLDs) include PLAs, PALs, and other similar types of devices. The major
manufacturers of SPLD products are listed in Table E.1. The first and second columns show
the company name and some of the SPLD products it offers. Data sheets that describe each
product can be obtained from the World Wide Web (WWW), using the locator given in the
third column in the table.

Table E.1 Commercial SPLD products.

Manufacturer SPLD Products WWW Locator

Altera Classic http://www.altera.com

Atmel PAL http://www.atmel.com

Cypress PAL http://www.cypress.com

Lattice ispGAL http://www.latticesemi.com

E.1.1 The 22V10 PAL Device

PAL devices are among the most commonly used SPLDs. They are offered in a range of
sizes and are identified by a part number of the form NNXMM−S. The digits NN specify
the total number of input and output pins; the digits MM give the number of pins that can
be used as outputs. The letter X gives additional information, such as whether the PAL
contains flip-flops. The final digit, S, specifies the speed grade. This value represents the
propagation delay from an input pin on the PAL to an output pin, assuming that the flip-flop,
if present, is bypassed.

An example of a commonly used PAL is the 22V10 [1], which is depicted in Figure
E.1. There are 11 input pins that feed the AND plane, and an additional input that can also
serve as a clock input. The OR gates are of variable size, ranging from 8 to 16 inputs. Each
output pin has a tri-state buffer, which allows the pin to optionally be used as an input pin.

We said in section 3.6.2 that the circuitry between an OR gate and an output in a PAL
is usually called a macrocell. Figure E.2 shows one of the macrocells in the 22V10 PAL.
It connects the OR gate shown to one input on an XOR gate, which feeds a D flip-flop.

June 12, 2002 13:00 vra23151_ape Sheet number 4 Page number 823 black

E.1 Simple PLDs 823

In/outMacrocell

8

#1

Inputs
11

In/outMacrocell

10

#2

In/outMacrocell

12

#3

In/outMacrocell

8

#10

Preset

Reset

Clock

AND plane

Figure E.1 The 22V10 PAL device.

Since the other input to the XOR gate can be programmed to be 0 or 1, it can be used to
complement the OR-gate output. A 2-to-1 multiplexer allows bypassing of the flip-flop, and
the tri-state buffer can be either permanently enabled or connected to a product term from
the AND plane. Either the Q output from the flip-flop or the output of the tri-state buffer
can be connected to the AND plane. If the tri-state buffer is disabled, the corresponding
pin can be used as an input.

June 12, 2002 13:00 vra23151_ape Sheet number 5 Page number 824 black

824 A P P E N D I X E • Commercial Devices

To

D Q

Clock

0/1

0/1

Q
R

P

Preset

Reset

Pin

0/1

0/1

AND plane

From
AND plane

1

8

Figure E.2 The 22V10 macrocell.

E.2 Complex PLDs

The names of several manufacturers of Complex PLDs (CPLDs), products they offer, and
the corresponding WWW locators are listed in Table E.2. An example of a widely used
CPLD family, the Altera MAX 7000 [2], is described in the next section.

Table E.2 Commercial CPLD products.

Manufacturer CPLD Products WWW Locator

Altera MAX 3000, 7000 and 9000 http://www.altera.com

Atmel ATF, ATV http://www.atmel.com

Cypress Delta39K, FLASH370 http://www.cypress.com

Lattice ispLSI, ispMACH http://www.latticesemi.com

Xilinx XC9500, CoolRunner http://www.xilinx.com

June 12, 2002 13:00 vra23151_ape Sheet number 6 Page number 825 black

E.2 Complex PLDs 825

E.2.1 Altera MAX 7000

The MAX 7000 CPLD family includes chips that range in size from the 7032, which has 32
macrocells, to the 7512, which has 512 macrocells. There are two main variants of these
chips, identified by the suffix S. If this letter is present in the chip name, as in 7128S, then
the chip is in-system programmable. But if the suffix is absent, as in 7128, then the chip
has to be programmed in a programming unit.

The overall structure of a MAX 7000 chip is illustrated in Figure E.3. There are four
dedicated input pins; two of these can be used as global clock inputs, and one can be used
as a global reset for all flip-flops. Each shaded box in the figure is called a logic array
block (LAB), which contains 16 macrocells. Each LAB is connected to an I/O control
block, which contains tri-state buffers that are connected to pins on the chip package; each
of these pins can be used as an input or output pin. Each LAB is also connected to the
programmable interconnect array (PIA). The PIA consists of a set of wires that span the
entire device. All connections between macrocells are made using the PIA.

Figure E.4 shows the structure of a MAX 7000 macrocell. There are five product
terms that can be connected through the product term select matrix to an OR gate. This OR
gate can be configured to use only the product terms needed for the logic function being
implemented in the macrocell. If more than five product terms are required, additional
product terms can be “shared” from other macrocells, as described below. The OR gate is
connected through an XOR gate to a flip-flop, which can be bypassed.

Figure E.3 MAX 7000 CPLD (courtesy of Altera).

June 12, 2002 13:00 vra23151_ape Sheet number 7 Page number 826 black

826 A P P E N D I X E • Commercial Devices

Figure E.4 MAX 7000 macrocell (courtesy of Altera).

Figure E.5 shows how product terms can be shared between macrocells. The OR gate
in a macrocell includes an extra input that can be connected to the output of the OR gate
in the macrocell above it. This feature is called parallel expanders and is used for logic
functions with up to 20 product terms. If even more product terms are needed, then a feature
called shared expanders is used. As shown in the lower shaded box in Figure E.4, one of
the product terms in a macrocell is inverted and fed back to the product term array. If the
inputs to this product terms are used in their complemented form, then using DeMorgan’s
theorem, a sum term is produced. A shared expander can be used by any macrocell in the
same LAB.

Each specific MAX 7000 device is available in a range of speed grades. These grades
specify the propagation delay from an input pin through the PIA and a macrocell to an
output pin. For example, the chip named 7128S-7 has a propagation delay of 7.5 ns. If
the logic function implemented uses parallel or shared expanders, the propagation delay is
increased.

E.3 Field-Programmable Gate Arrays

Table E.3 lists the names of FPGA manufacturers, their products, and their WWW locators.
This section describes examples of FPGAs produced by Altera and Xilinx.

June 12, 2002 13:00 vra23151_ape Sheet number 8 Page number 827 black

E.3 Field-Programmable Gate Arrays 827

Figure E.5 Parallel Expanders (courtesy of Altera).

Table E.3 Commercial FPGA products.

Manufacturer FPGA Products WWW Locator

Actel Act 1, 2 and 3, MX, SX http://www.actel.com

Altera FLEX 6000, 8000 and 10K, Mercury http://www.altera.com
APEX 20K, APEX II, Excalibur, Stratix

Atmel AT6000, AT40K http://www.atmel.com

Lattice ORCA http://www.latticesemi.com

QuickLogic pASIC http://www.quicklogic.com

Xilinx XC3000, XC4000, Spartan http://www.xilinx.com
Virtex, Virtex II (Pro)

E.3.1 Altera FLEX 10K

Figure E.6 shows the structure of the FLEX 10K chip [3]. It contains a collection of logic
array blocks (LABs), where each LAB comprises eight logic elements based on lookup
tables (LUTs). In addition to LABs, the chip also contains embedded array blocks (EABs),

June 12, 2002 13:00 vra23151_ape Sheet number 9 Page number 828 black

828 A P P E N D I X E • Commercial Devices

Figure E.6 FLEX 10K FPGA (courtesy of Altera).

which are SRAM blocks that can be configured to provide memory blocks of various aspect
ratios (see section 10.1.3). The LABs and EABs can be interconnected using the row and
column interconnect wires. These wires also provide connections to the input and output
pins on the chip package.

Figure E.7 shows the contents of a LAB. It has a number of inputs that are provided
from the adjacent row interconnect wires to a set of local interconnect wires inside the
LAB. These local wires are used to make connections to the inputs of the logic elements,
and the logic element outputs also feed back to the local wires. Logic element outputs also
connect to the adjacent row and column wires. The structure of a logic element is depicted
in Figure E.8. The element has a four-input LUT and a flip-flop that can be bypassed.
For implementation of arithmetic adders, the four-input LUT can be used to implement 2
three-input functions, namely, the sum and carry functions in a full-adder.

The structure of an EAB is depicted in Figure E.9. It contains 2048 SRAM cells, which
can be used to provide memory blocks that have a range of aspect ratios: 256 × 8, 512
× 4, 1024 × 2, and 2048 ×1 bits. The address and data inputs to the memory block are
provided from a set of local interconnect wires. These inputs, as well as a write enable for
the memory block, can optionally be stored in flip-flops. Figure E.9 shows that the number
of address and data inputs connected to the memory block varies depending on the aspect

June 12, 2002 13:00 vra23151_ape Sheet number 10 Page number 829 black

E.3 Field-Programmable Gate Arrays 829

Figure E.7 FLEX 10K logic array block (courtesy of Altera).

ratio being used. The data outputs can also optionally be stored in flip-flops. For large
memory blocks it is possible to combine multiple EABs.

Configuration of EABs is done using predesigned modules, such as those in the LPM
library. For example, the module named lpm_ram_dq can be used to specify an SRAM
block, and lpm_rom can be used for a ROM block. These modules can be imported into a
schematic or instantiated in code using a language such as Verilog. It is possible to specify
initial data to be loaded into the memory block when the FPGA chip is programmed. This is
done by creating a special type of file, called a memory initialization file, that is associated
with the lpm_ram_dq or lpm_rom module. Complete details on using these modules can
be found in the MAX+plusII documentation.

FLEX 10K chips are available in sizes ranging from the 10K10 to 10K250, which offer
about 10,000 and 250,000 equivalent logic gates, respectively. Specific chips are available
in various speeds, indicated using a suffix letter, such as A, as in 10K10A, and a speed

June 12, 2002 13:00 vra23151_ape Sheet number 11 Page number 830 black

830 A P P E N D I X E • Commercial Devices

Figure E.8 FLEX 10K logic element (courtesy of Altera).

grade, as in 10K10A-1. Unlike PALs and CPLDs, the speed grade for an FPGA does not
specify an actual propagation delay in nanoseconds. Instead, it represents a relative speed
within the device family. For instance, the 10K10-1 is a faster chip than the 10K10-2. The
actual propagation delays in implemented circuits can be examined using a timing simulator
CAD tool.

E.3.2 Xilinx XC4000

The structure of a Xilinx XC4000 chip [4] is similar to the FPGA structure shown in
Figure 3.35. It has a two-dimensional array of configurable logic blocks (CLBs) that can
be interconnected using the vertical and horizontal routing channels. Chips range in size
from the XC4002 to XC40250, which have about 2000 and 250,000 equivalent logic gates,
respectively. As shown in Figure E.10, a CLB contains 2 four-input LUTs; hence it can
implement any two logic functions of up to four variables. The output of each of these
LUTs can optionally be stored in a flip-flop. The CLB also contains a three-input LUT
connected to the 2 four-input LUTs, which allows implementation of functions with five or
more variables.

Similar to the logic elements in the FLEX 10K FPGAs described in section E.3.1, the
CLB can be configured for efficient implementation of adder modules. In this mode each
four-input LUT in the CLB implements both the sum and carry functions of a full-adder.
Also, instead of implementing logic functions, the CLB can be used as a memory module.
Each four-input LUT can serve as a 16 × 1 memory block, or both four-LUTs can be
combined into a 32 × 1 memory block. Multiple CLBs can be combined to form larger
memory blocks.

June 12, 2002 13:00 vra23151_ape Sheet number 12 Page number 831 black

E.3 Field-Programmable Gate Arrays 831

Figure E.9 Embedded array block (courtesy of Altera).

The CLBs are interconnected using the wires in the routing channels. Wires of various
lengths are provided, from wires that span a single CLB to wires that span the entire device.
The number of wires in a routing channel varies for each specific chip.

E.3.3 Altera APEX 20K

The Altera APEX 20K [5] family is the next generation product following the FLEX 10K.
The logic element (LE), which is an optimized version of the one depicted in Figure E.8,
contains a four-input LUT and a flip-flop. Chips range in sizes from 1200 to 51,840 LEs.

June 12, 2002 13:00 vra23151_ape Sheet number 13 Page number 832 black

832 A P P E N D I X E • Commercial Devices

Figure E.10 XC4000 configurable logic block (courtesy of Xilinx).

Each APEX device contains logic elements (LUTs), memory blocks, and IO cells. The
LEs are arranged into LABs similar, to the structure depicted in Figure E.7, with ten LEs per
LAB. The LABs are further grouped into MegaLABs, with up to 24 LABs in a MegaLAB.
As shown in Figure E.11, the MegaLAB contains wires to interconect the LABs, and it also
contains a memory block, called the embedded system block (ESB). Similar to the EAB
shown in Figure E.9, the ESB supports memory blocks with various aspect ratios. AnAPEX
device comprises either two or four columns of MegaLABs; the number of MegaLABs per
column varies for each device.

E.3.4 Altera Stratix

Stratix [6] is Altera’s FPGA product that supercedes the APEX family. Figure E.12 shows
the architecture of a Stratix device. Each chip comprises columns of resources of various
types. The LAB columns house logic elements arranged into LABs that have ten LEs per
LAB. Each LE contains a four-input LUT and a register, and can be configured in a variety
of modes, including a fast arithmetic mode. There are a number of types of wiring resources
in a Stratix chip. Connections within a LAB are made using fast local resources, such as a
carry chain that runs downward in each column. For connections from one LAB to other
resources there exist short nearest-neighbour connections, wires that span four columns or
rows, and longer wires.

June 12, 2002 13:00 vra23151_ape Sheet number 14 Page number 833 black

E.3 Field-Programmable Gate Arrays 833

Figure E.11 APEX 20K MegaLAB (courtesy of Altera).

Figure E.12 Stratix LAB, DSP, and memory blocks (courtesy of Altera).

June 12, 2002 13:00 vra23151_ape Sheet number 15 Page number 834 black

834 A P P E N D I X E • Commercial Devices

In addition to LAB columns, Stratix devices contain three other types of columns. The
M512 columns consist of memory blocks with 512 bits each, and the M4K columns contain
larger memory blocks with 4K bits per block. Each of the M512 and M4K blocks support
implementations of memories with various aspect ratios. Stratix devices also include very
large memory blocks called MegaRAMs, each of which contains 512K bits of memory.

Finally, there are columns that comprise Digital Signal Processing (DSP) blocks. Each
of these blocks includes hardware multiplier and adder circuits that allow fast multiplication
and accumulation (summing) of data. These blocks provide efficient implementation of the
types of circuits used in digital signal processing applications.

E.3.5 Xilinx Virtex

The Xilinx Virtex [7] FPGAs are the next generation family following the XC4000. As
indicated in Figure E.13, each Virtex chip comprises logic resources called CLBs, and
memory resources called Block RAMs (BRAMs). The CLB is an enhanced version of the
XC4000 CLB shown in Figure E.10. As indicated in Figure E.14, the Virtex CLB is divided
into two halves; each half is called a slice. Each slice contains two four-input LUTs, two
registers, and dedicated arithmetic (carry chain) logic.

The BRAM blocks contain 4K bits of memory, and can be configured to support aspect
ratios from 4096× 1 to 256× 16. The CLB and BRAM blocks can be interconnected by
wires that span a single CLB, or longer distances. Virtex devices are available in sizes from
256 to 46,592 CLB slices.

Figure E.13 Virtex FPGA (courtesy of Xilinx).

June 12, 2002 13:00 vra23151_ape Sheet number 16 Page number 835 black

E.4 Transistor-Transistor Logic 835

Figure E.14 Virtex logic block (courtesy of Xilinx).

E.4 Transistor-Transistor Logic

Before the emergence of CMOS, the dominant technology was transistor-transistor logic,
commonly referred to as TTL. Most digital systems built in the 1970s and 1980s were based
on this technology. TTL circuits are available in relatively small sizes, known as small-
scale integration (SSI) and medium-scale integration (MSI), as explained in section 3.5. A
typical SSI chip contains just a few logic gates, with their inputs and outputs available on
the pins of the package. An MSI chip may comprise a somewhat larger circuit, such as a
four-bit arithmetic and logic unit (ALU).

TTL technology is not as suitable for large-scale integration as CMOS technology,
which has led to TTL’s demise. However, its impact was so large that some aspects are still
important today. In this section we consider these aspects.

Voltage Levels
TTLcircuits use a 5-volt power supply. Any voltage in the range 0 to 0.8 V is interpreted

as a logic 0 when applied to an input pin. A voltage in the range 2 to 5 volts is interpreted
as a logic 1. Using the terminology from section 3.8, VIL = 0.8 V and VIH = 2 V. The
maximum output voltage produced for logic 0 is VOL = 0.4 V, and the minimum voltage
produced for logic 1 is VOH = 2.4 V. These parameters lead to the noise margins NML =
NMH = 0.4 V. Typical output voltages generated by a TTL circuit are 0.2 V for logic 0 and
3.6 V for logic 1.

When a new digital circuit is designed, it is often intended for use in an existing digital
system. If different technologies are used to implement different parts of a system, it
is essential to ensure that compatible voltage levels are used for signals in the interfaces

June 12, 2002 13:00 vra23151_ape Sheet number 17 Page number 836 black

836 A P P E N D I X E • Commercial Devices

between the different parts. While CMOS voltage levels are normally different from TTL
levels, some CMOS chips, such as PLDs, can be configured to use TTL-compatible voltage
levels on their input and output pins.

Input Connections
In CMOS circuits all inputs to a gate must always be driven to either logic value 0 or

1. Otherwise, the gate’s output will have an unknown (usually tri-state) value. In the case
of TTL circuits, an unconnected input behaves as if it were connected to a constant 1.

E.4.1 TTL Circuit Families

TTL circuits are available in several designs that have different propagation speeds and
power consumption. They have the same functional characteristics, defined by the speci-
fications for the type of circuits known as the 7400 series, which is introduced in section
3.5. Actually, the 7400 label denotes a chip that comprises 4 two-input NAND gates. Other
chips that contain different logic elements have the same prefix 74, but are identified by
additional digits. For example, 7421 denotes a chip that comprises 2 four-input AND gates.
Table E.4 presents the propagation delay and power dissipation characteristics of the various
TTL families.

Table E.4 TTL logic families.

Propagation Power
Name Designation Delay (ns) Dissipation (mW)

Standard 7400 9 10

Low power 74L00 33 1

High speed 74H00 6 22

Schottky 74S00 3 20

Low-power Schottky 74LS00 9 2

Advanced Schottky 74AS00 1.5 20

Advanced low-power Schottky 74ALS00 4 1

Fast 74F00 3 4

Standard TTL is based on the original specifications, and it was the first type of such cir-
cuits introduced in the 1960s. Subsequent versions provided various improvements. Faster
circuits were developed, trading off increased power consumption for shorter propagation
delays. Conversely, low-power circuits were developed, at the cost of longer propagation
delays. Table E.4 gives the typical values that can be expected under normal operating
conditions.

June 12, 2002 13:00 vra23151_ape Sheet number 18 Page number 837 black

References 837

The maximum fan-out in TTL circuits is 10 in most cases, but it can be as high as 20
for the low-power types. The fan-in is determined by the number of inputs provided on a
given chip.

TTL gates can have different output configurations. In addition to the normal output
configuration, there exist gates that have tri-state outputs or open-collector outputs. The
purpose of a tri-state output is discussed in section 3.8.8. Gates with open-collector outputs
are used when it is desirable to connect the outputs of two or more gates together directly.
These gates are not damaged by such a connection, because each gate either drives the
output to 0 or does not affect it at all. Connecting the outputs of several open-collector
gates through a pull-up resistor to +5 V results in a circuit where the voltage at the output
point is equal to +5 V if none of the gates produces an output of 0 and is equal to 0 if
one or more gates produce the output of 0. A similar approach can be used with CMOS
technology, resulting in open-drain gates.

We have not pursued TTLtechnology in any detail because of its diminished importance
in today’s design environment. An interested reader may consult numerous books that
provide a detailed explanation. A particularly thorough reference is [8].

References

1. Lattice Semiconductor, Simple PLDs Data Sheets, http://www.latticesemi.com

2. Altera Corporation, MAX 7000 CPLD Data Sheets, http://www.altera.com

3. Altera Corporation, FLEX 10K Data Sheets, http://www.altera.com

4. Xilinx Corporation, XC4000 FPGA Data Sheets, http://www.xilinx.com

5. Altera Corporation, APEX 20K Data Sheets, http://www.altera.com

6. Altera Corporation, Stratix FPGA Data Sheets, http://www.altera.com

7. Xilinx Corporation, Virtex FPGA Data Sheets, http://www.xilinx.com

8. A. S. Sedra and K. C. Smith, Microelectronic Circuits, 4th ed. (Oxford University
Press: New York, 1998).

June 25, 2002 11:57 vra23151_ndx Sheet number 1 Page number 838 black

838

I N D E X

A
Absorption property, 28
Accumulator, 398, 736
Actel Corporation, 344

Act 1 block, 344
Active clock edge, 446
Active-low signal, 124
Adder:

BCD, 287
carry lookahead, 255–262
full-adder, 237, 275, 705
half-adder, 234
in Verilog code, 265–275, 710, 716
propagation delay, 254, 259
ripple-carry, 239
serial, 477

Adder/subtractor, 248, 626
Addition, 234–239, 244–246

BCD, 285
carry, 234
generate function, 255
overflow, 253
propagate function, 255
sum, 234
Verilog, 271–275

Address, 316, 610
Aliasing problem in testing, 685
Algorithm, 612
Algorithmic state machine (ASM):

ASM charts, 516–519
ASM block, 519
conditional output box, 517
decision box, 516
implied timing, 613
state box, 516

Alphanumeric characters, 289
Altera Corporation, 13
Altera APEX 20K, 5, 831
Altera FLEX 10K, 827
Altera Hardware Description Language

(AHDL), 766, 803
Altera MAX 7000 CPLD, 825
Altera Stratix FPGA, 832
Altera UP-1 board, 789
Alternative (in Verilog case statement),

715
always block (Verilog), 59, 389, 711, 743

Analog circuit, 18
Analysis, 24, 184, 512, 531
AND gate (see Gates)
AND operator (Verilog), 704
AND plane (also AND array), 88, 133–135
Anode terminal, 429
Arbiter circuit, 505, 547
Arithmetic:

floating-point (see Floating point)
overflow, 253
(See also Addition; Division;

Multiplication; Subtraction)
Arithmetic and logic unit (ALU), 330
Arithmetic assignment (Verilog), 271,

704, 709
Array multiplier (see Multiplication)
ASCII code, 289
ASIC, 6, 104
ASM block, 519
ASM chart (see Algorithmic state

machine)
Aspect ratio, 610
assign (Verilog), 709
Assign menu, 780
Assignment & Configuration File (.acf),

775, 791
Associative property, 28
Asynchronous clear (reset), 364, 381
Asynchronous clear (in Verilog), 395
Asynchronous counter, 373
Asynchronous inputs, 656
Asynchronous sequential circuit

(see Sequential circuits)
Axioms of Boolean algebra, 27

B
Back-annotate project, 794
Barrel shifter, 623
Basic latch, 351, 368, 528
BCD (see Binary-coded decimal)
BCD-to-7-segment decoder, 319, 329
begin (Verilog), 712
begin-end block (Verilog), 712
Behavioral Verilog code, 58, 433, 712
BGA package, 100

BILBO (Built-in Logic Block Observer),
685

Binary-coded decimal (BCD), 284–289
addition, 285
counter, 382
digits, 285

Binary decoder (see Decoder)
Binary encoder (see Encoder)
Binary numbers, 231

in Verilog code, 275
Binary variable, 18
BIST (Built-in Self Test), 681–687
Bit, 231
Bit-counting circuit, 612
Bit-select (Verilog), 701
Bitwise operators (Verilog), 333, 704
Blocking assignment (Verilog), 390, 440,

712, 721, 734, 743
Body effect, 119
Boolean algebra, 27–34
Boundary scan, 688
Branching heuristic, 199, 206
Buffer, 85, 122, 431

tri-state, 85, 124, 406
Bus, 406, 650
Bus wires (MAX+plusII), 800, 811
Bypass capacitor, 689
Byte, 231
ByteBlaster, 789

C
CAD (see Computer aided design)
Canonical expressions:

canonical product-of-sums, 41
canonical sum-of-products, 38

Capacitance, 124
Carry, 234

carry-in, 234
carry-out, 236

Carry chain, 377
Carry lookahead adder, 255–262
Cascade chain, 830
case statement, 326, 714, 745
casex statement, 331, 717
casez statement, 331, 717
Cathode terminal, 429

June 25, 2002 11:57 vra23151_ndx Sheet number 2 Page number 839 black

Index 839

Channel (in MOSFET), 108
Character codes, 289
Characteristic impedance, 690
Chip configuration, 210
Clear input (see Reset input)
Clock, 355
Clock divider, 429
Clock enable, 606, 733
Clock network, 653
Clock skew, 408, 470, 653
Clock synchronization, 657
Clock-to-output time (tco), 388, 655
CMOS technology, 74–81, 117–120
Code:

BCD (see Binary-coded decimal)
binary, 231–234
converter, 318
decimal, 230
error-detecting, 289
Gray, 154

Cofactor, 307
Coincidence operation, 238
Column dominance, 197
Combinational circuits, 297–343
Combining property, 28,
Comment (Verilog), 57
Commutative property, 28
Comparator, 320, 337
Compatible states, 557
Compiler (MAX+plusII), 758
Complement:

diminished radix, 252
of a logic variable, 21
1’s, 242
radix, 249
2’s, 243

Complementary metal-oxide
semiconductor (see CMOS
technology)

Completely specified FSM, 493
Complex gate (CMOS), 79
Complex programmable logic device

(CPLD), 13, 94–98, 129–135, 824
Compressor circuit, 683
Computer-aided design (CAD), 2, 48–54,

209–215
chip configuration, 210
design entry, 48, 210
functional simulation, 52, 210
initial synthesis, 210
layout synthesis (physical design), 52,

211
logic synthesis (optimization), 51, 210
technology mapping, 52, 209
timing simulation, 52, 213

Concatenation (Verilog), 272, 338, 704

Concurrent statement, 708, 712, 743
Conditional operator (Verilog), 321, 704
Configurable logic block (CLB), 830
Consistency check, 671
Constant (in Verilog), 275
Context sensitive help, 751
Continuous assignment (Verilog), 58, 709
Control circuit, 606, 615
Controlling expression (Verilog), 715
Cost, 38, 160
Counter:

asynchronous, 373
asynchronous circuit design, 544
BCD, 382, 431
down, 373, 404
enable and clear capability, 375
Johnson, 384, 437
modulo-n, 379
parallel load of, 378, 403
reset of, 378, 380
ring, 383, 437
ripple, 373
synchronous, 495, 374, 376
up, 372, 402
up/down, 373, 405
Verilog code, 372, 735

Cover, 160
fault, 669
minimal, 161, 195, 206
table, 195

Critical path, 255
Crossbar, 301
Cross-coupled gates, 351
Crosstalk, 689
Cubical representation, 189–193
Current flow:

dynamic, 117
IOL, 429
short circuit, 117
static, 111

Custom chips, 6, 103
Cut-off region, 108
Cut set, 540

D
D flip-flop (see Flip-flop)
D-algorithm, 673
Data, 316
Datapath, 606
DC-set, 206
Debouncing, 657
Debugging, 763, 768
Decimal numbers, 230
Decoder, 311, 327, 333

tree, 311

Decomposition (see Functional
decomposition)

default case alternative (Verilog), 715
Default value (Verilog), 326
defparam (Verilog), 399, 414, 724,

743, 745
Delay, 115, 116, 255
Delay (in Verilog), 710
DeMorgan’s theorem, 28, 42, 165
Demultiplexer, 314
Design entry, 46, 210
Design for testability, 677–681
Design process, 6–13, 210
Development process, 7
Digital circuit, 18
Digital system, 606
Diminished radix complement, 252
DIP package, 85
Directory, 748
Disjoint decomposition, 179
Distributive property, 28, 32
Division, 282, 623
Don’t-care condition, 166

in Verilog code, 276, 329, 700
Double precision (see Floating point)
Down-counter, 373, 404
Download, 789
Drain (in MOSFET transistor), 69
Dual networks (CMOS), 75
Duality, 28, 75
Duty cycle, 662
Dynamic hazard, 585, 590

E
Edge (in signals), 359
Edge-triggered, 358, 362
Electrically-erasable programmable

read-only memory (EEPROM), 131
Embedded Array Blocks (EABs), 827
Enable input, 311, 353, 482, 606, 733
Encoder, 316, 414

binary, 316
priority, 317, 332

end (Verilog), 712
Enter Nodes from SNF, 760
Equivalence:

of logic expressions, 26
of states, 486

Equivalent-gates metric, 98
Erasable programmable read-only

memory (EPROM), 132
Errors in Verilog code, 742
Escaped identifier, 700
Espresso, 208
Essential prime implicant, 161, 195, 204

June 25, 2002 11:57 vra23151_ndx Sheet number 3 Page number 840 black

840 Index

Event control (Verilog), 712
Event expression (Verilog), 712
Excess-127 format, 283
Excess-1023 format, 284
Excitation table, 500, 531
Exclusive-NOR (XNOR) gate (see Gates)
Exclusive-OR (XOR) gate (see Gates)
Expansion theorem (Shannon’s), 304

F
Factoring, 172–175
Fall time, 115
Fan-in, 120, 172
Fan-out, 122, 837
Fault:

detection, 668
model, 666
propagation, 671
stuck-at, 666

Feedback, 351
Field-programmable gate array (FPGA),

5, 13, 98–103, 135, 826
Finite state machine (FSM), 446

incompletely specified, 493
summary of design procedure, 454

555 programmable timer chip, 662
Fixed-point numbers, 282
Flip-flop, 359, 368
Flip-flops:

clear and preset inputs, 362
configurable (in PLDs), 367
D, 359, 361, 389
edge-triggered, 361
JK, 498, 367
master-slave, 359, 532
SR, 435
T, 364
Verilog code for, 389, 730

Floating gate, 131
Floating point, 282

double precision, 284
exponent, 283
format, 283
IEEE standard, 283
mantissa, 283
normalized, 283
representation, 283
single precision, 283

Floorplan Editor, 212
Flowchart, 613
Flow table, 531

primitive, 555
state reduction, 553–568

Folder, 748
for loop statement, 269, 331, 717
forever loop statement, 717, 720

Fowler-Nordheim tunneling, 131
FPLA (see PLA)
FSM (see Finite state machine)
Full-adder, 237, 275, 705
function (Verilog), 727
Functional decomposition, 175–181
Functional equivalence, 26
Functional simulation, 12, 52, 210
Fundamental mode, 528
Fuse map, 93

G
Gate (in MOSFET transistor), 69
Gate array, 105, 145
Gate delay (see Propagation delay)
Gated D latch, 356, 358, 386, 388,

532, 730
Gated latch, 355, 368
Gated SR latch, 353, 368
Gates, 23

AND, 24, 76, 79, 120
NAND, 42, 73, 78
NOR, 42, 74, 79
NOT, 24, 72, 78, 111
OR, 24, 76
XNOR, 238
XOR, 127, 180, 236

Generate construct (Verilog), 238, 726
genvar (Verilog), 726
Glitch, 538, 584
Global signals, 654
Graphic Design File (.gdf), 754
Graphic Editor, 50
Gray code, 154
Group (MAX+plusII), 800

H
H tree, 654
Half-adder, 234, 704
Hamming distance, 568
Handshake signaling, 547
Hardware, 2
Hardware description language (HDL), 50
Hazard-free design, 587
Hazards, 532, 584–592

dynamic, 585, 590
static, 386, 585

Help (MAX+plusII), 751
Heuristic approach, 162
Hexadecimal numbers, 232
Hierarchical design, 49, 258
Hierarchical Verilog code, 723
Hierarchy Display, 775
High-level behavioral Verilog code, 433
High-impedance output, 124

Hold time, 358, 655
Huntington’s postulates, 28
Hypercube, 193

I
Identifier, 699
if-else statement, 59, 323, 713
IEEE, 50
IEEE standards (see Standards)
Implicant, 159
Implied memory (Verilog), 388, 715, 744
Incompletely specified FSM, 493
Incompletely specified functions, 166
Infer (Verilog), 709
initial block (Verilog), 711
Initial synthesis, 210
Input variable, 19
Instantiation (of Verilog gates), 706, 745
Instantiation (of Verilog modules), 267,

721, 743, 745
Instrumentation, 691
In-system programming (ISP), 94
Integer:

in Verilog, 702
signed, 240
unsigned, 230

Integrated circuit (IC), 2
Intersection, 32
Inversion, 21
Inverter, 73, 111, 112

J
JK flip-flop, 498, 367
Johnson counter, 384
JTAG port, 97

K
Karnaugh map, 150–158
k-cube, 193
k-successor, 486
Keyboard short-cuts, 750
Keywords (Verilog), 699

L
Label (in Verilog code), 718, 744
Large scale integration (LSI), 86
Latch:

basic SR, 368, 528
D, 368
gated D, 368, 386, 532
gated SR, 368
set-dominant SR, 435
Verilog code, 388, 730

June 25, 2002 11:57 vra23151_ndx Sheet number 4 Page number 841 black

Index 841

Layout synthesis, 52, 211
Leakage current, 112
Least-significant bit, 231
LED (Light emitting diode), 117, 429
Level-sensitive element, 358, 362
Level-sensitive scan design, 681
Libraries, 49
Library of Parameterized Modules (LPM),

263
lpm_add_sub, 263, 725, 803
lpm_counter, 437
lpm_ff, 396, 732
lpm_ram_dq, 637, 829
lpm_rom, 829
lpm_shiftreg, 399

Line inductance, 689
Linear feedback shift register (LFSR),

440, 682
Linear region (see Triode region)
Literal, 159
Logic analyzer, 691
Logic array block (LAB), 828
Logic circuit, 23
Logic expression, 19
Logic functions, 19

AND, 19, 32
minimization, 158–165, 193–208
NAND, 42
NOR, 42
NOT, 20
OR, 20, 32
synthesis, 35–41, 171–184, 287
XNOR, 238
XOR, 127

Logic gates:
drive capability, 122, 837
dynamic operation, 122
fall time, 115
fan-in, 120
fan-out, 122, 837
noise margin, 113
power dissipation, 117
propagation delay, 115
rise time, 114
transfer characteristic, 112
Verilog gates, 706, 745

Logic network, 23
Logic values, 18–19, 68
Logical operators (Verilog), 704
Logical product (AND), 34
Logical sum (OR), 34
Lookup table, 100
Loop statement (see for loop)

M
Macrocell, 91, 95, 822
Macrofunction, 262

Magnitude, 240
Majority function, 221, 305
Master (see Flip-flop, master-slave)
Master-slave (see Flip-flop)
MAX+plusII design tools, 13, 745
Maxterm, 40
Mealy FSM, 446, 462

Verilog code, 475, 739
Mealy output, 517
Mean operation, 631
Medium-scale integration (MSI), 86
Megafunction, 262
MegaWizard Plug-in Manager, 806
Memory, 135, 828

implied memory (Verilog), 388, 744
in Verilog, 703, 745
memory element, 350

Memory initialization file, 829
Merger diagram, 557
Merging, 555

procedure, 557
Metal-oxide semiconductor (see

MOSFET)
Metastability, 657
Minimization:

of logic functions, 158–165, 193–208
of states, 486

Minterm, 37, 152
Mixed logic, 83
Module (Verilog), 705
Moore FSM, 446

Verilog code, 467, 737
Moore output, 516
Moore’s law, 3
MOSFET transistor, 69–71, 106–110

on-resistance, 110
Most-significant bit, 231, 240
Multibit assignment (in Verilog), 709
Multilevel circuits, 171–189
Multiple-output circuits, 167–171
Multiplex (definition), 314
Multiplexer, 45, 125, 126, 128, 298–311,

322–324, 410
Multiplexer (Verilog code), 714, 716
Multiplication, 277–282

array implementation, 279
partial product, 277
sequential implementation, 278, 618
signed-operand, 279

Mutual exclusion element (ME), 553
Muxdff, 401

N
Named port connection, 399, 722
Names (Verilog), 699
NAND circuits, 41–43, 181

NAND gate (see Gates)
n-cube, 192
Negative edge, 359
Negative logic, 68, 82
Negative numbers, 240
negedge (Verilog), 389
Net (in Verilog), 699, 743
Network, 23
Next state, 449, 529
Nibble, 231
9’s complement, 249
NMOS technology, 71–76
NMOS transistor, 69
Node handle, 770
Node (MAX+plusII), 757

connecting by name, 809
connecting with wires, 756
naming, 809

Noise, 113
immunity, 113
margin, 113
power supply, 689

Non-blocking assignment (Verilog), 391,
394, 712, 721, 734, 743

Non-disjoint decomposition, 179
Non-volatile programming, 98
NOR gate (see Gates)
NOR circuits, 41–44, 181
NOR plane, 129
NOT operator (Verilog), 704
NOT gate (see Gates)
NUMAchine, 10
Number conversion, 231
Number representation:

binary coded decimal, 284
fixed-point, 282
floating-point, 282
hexadecimal, 232
octal, 232
1’s-complement, 242
positional notation, 230
sign and magnitude, 242
signed integer, 240
10’s-complement, 249
2’s-complement, 243, 704
in Verilog, 275, 702

Numbers (in Verilog), 700

O
Octal numbers, 232
Odd function, 236
One-hot encoding, 311, 383, 460, 582
1’s-complement representation, 242, 704
1149.1 Standard, 688
On-resistance, 110
ON-set, 206

June 25, 2002 11:57 vra23151_ndx Sheet number 5 Page number 842 black

842 Index

Open-collector, 837
Open-drain, 837
Operations (see Logic functions)
Operators (Verilog), 333, 703
Optimization (see Minimization)
OR gate (see Gates)
OR operator (Verilog), 704
OR plane, 88
Ordered port connection, 722
Ordering of statements, 714
Oscillations, 353
Oscilloscope, 691
Output delay time (tod), 655
Overflow (see Arithmetic overflow)
Override (in Verilog), 722, 745

P
Packages (physical):

ball grid array (BGA), 100
dual inline (DIP), 85
pin grid array (PGA), 99
plastic-leaded chip carrier (PLCC), 94
quad flat pack, 97
small-outline integrated circuit

(SOIC), 85
PAL, 90–94, 135, 822
Parallel expanders, 826
Parallel-to-series converter, 370
Parallel transfer, 370
parameter (Verilog), 269, 701, 710, 723
Parasitic capacitance, 114
Parity, 289
Part-select, 701
Partial product, 277
Pass transistor, 136
Path sensitizing, 669
PGA package, 99
Physical design, 12, 52, 211
Pin assignments, 790
Pinstub, 756
PLA, 87–90, 130–134
Placement, 211, 688
PLCC package, 94
PLD, 5, 87–103
PMOS transistor, 70, 110
Polysilicon, 108
posedge (Verilog), 389, 730, 743
Port (Verilog), 55, 705
Portability, 51
Positional number representation, 230
Positive logic, 68
Power dissipation, 117

dynamic, 118
in CMOS circuits, 117
in NMOS circuits, 117
static, 117

PRBSG, 683
Precedence of operations, 34, 704
Present state, 449, 529
Preset input, 355
Price/performance ratio, 254
Prime implicant, 159
Primitive flow table, 555
Primitives library, 754
Printed circuit board (PCB), 3, 10, 13,

688–692
Priority, 317

encoder, 317, 332
in Verilog code, 332, 334, 717

Procedural statements (Verilog), 59,
711–721

Process transconductance parameter,
109–110

Processor, 417
Product-of-sums form (POS), 41, 164
Programmable array logic (see PAL)
Programmable logic array (see PLA)
Programmable logic device (see PLD)
Programmable ROM (PROM), 316
Programmable switch, 5, 89, 131
Programming file, 93
Programming unit, 93
Project (MAX+plusII), 748
Project Name, 752
Project Save & Compile, 781
Propagation delay, 115–116, 254, 437, 529
Properties of Boolean algebra, 28
Pseudo-NMOS technology, 111, 142
Pseudorandom tests, 682
Pseudorandom binary sequence generator

(PRBSG), 683
Pull-down network, 75
Pull-up network, 75
Pull-up resistor, 72
Pulse mode, 528

Q
QFP package, 97
Quine-McCluskey method, 193–201

R
Race condition, 542
Radix, 230
Radix (in Verilog), 700
Radix complement, 249
RAM (see Static random access memory)
Random testing, 674–677
Range (Verilog), 699
Read-only memory (ROM), 315
Reduction operator (Verilog), 336, 704
Reflections, 689

reg (Verilog), 702
Register, 368, 400, 607, 733

used in Verilog texts, 702
Register delay time (trd), 655
Register-Transfer Level (RTL) code,

434, 742
Register transfers, 408
Relational operator (Verilog), 337, 704
Reliability, 691
repeat loop (Verilog), 717, 720
Replication operator (Verilog), 277, 338,

704, 742
Report file, 210
Reset input, 355
Reset state, 447, 690
Reset synchronization, 614
Resistance (transistor channel), 110
Ring counter, 383
Ring Oscillator, 438
Ripple-carry adder, 239
Ripple-carry adder (Verilog), 718
Ripple counter, 373
Rise time, 114
ROM (see Read only memory)
Routing, 212, 688

channel, 98, 104
Row dominance, 195

S
Saturation region, 109
Scalar (Verilog), 699
Scan path, 678
Schematic, 23
Schematic capture, 49
Sea-of-gates technology, 106
Selection tool, 756
Semi-custom chips, 6, 106
Sequence detector, 513
Sequential circuits, 446

analysis, 512, 531
asynchronous, 528–599
definition of, 350
finite state machine, 446
flow table, 531
formal model, 519
merger diagram, 557
state assignment, 449, 458, 496,

568–584
state assignment in Verilog, 474
state diagram, 448
state reduction, 486–493, 553–568
state table, 449
synchronous, 446–521
testing, 677–688
transition diagram, 571

Sequential statement (Verilog), 712
Sensitivity list (Verilog), 59, 395, 743

June 25, 2002 11:57 vra23151_ndx Sheet number 6 Page number 843 black

Index 843

Serial adder, 477
Serial parity generator, 540
Serial transfer, 370
Series-to-parallel converter, 370
Set input, 355
Setup time, 358, 399, 655
7400-series chips, 83–86
7-segment display, 319

BCD-to-7-segment decoder, 319
Verilog code, 722

Shannon’s expansion, 304
Sharp-operation (#-operation), 204
Shift operators (Verilog), 704
Shift register, 369

Verilog code, 401, 607, 734
SIA roadmap, 3
Sign bit, 240
Sign-and-magnitude representation, 242
Signal (in Verilog), 699, 700
Signature, 683
Signature analysis, 687
Sign extension, 277
Sign extension (in Verilog), 710
Signed numbers, 240
Silicon wafer, 2,
Simplification (see Minimization)
Simulation, 12, 52
Simulator, 759, 783
Single-pole single-throw switch, 657
Single-pole double-throw switch, 657
Single-precision (see Floating point)
SIS (Sequential Interactive Synthesis), 209
Skew (see Clock skew)
Slave (see Flip-flop, master-slave)
Small-scale integration (SSI), 86
Socket, 93
Sort operation, 641
Source (in MOSFET transistor), 69
Speed grade, 780, 826
SR latch (see Latch)
Stable state, 528
Standard cells, 104
Standard chips, 4, 83–86
Standards:

IEEE floating-point, 283
1149.1 (Testing), 688
Verilog 1364–1995, 54
Verilog 1364–2001, 54
VHDL, 50

Star-operation (∗-operation), 201
Starvation, 512
Starting state, 447
State, 446

assignment, 449, 458, 568–584
assignment in Verilog, 474
compatibility, 557
diagram, 448
equivalence, 486

minimization, 486–493, 553–568
definition of, 350
table, 449
variables, 449

State-adjacency diagram, 571
State-assigned table, 450
State machine (see Finite state machine)
Statement ordering, 714
Static hazard, 386, 585
Static random access memory (SRAM),

135, 609, 637, 828
Storing a bit value, 356
Structural Verilog code, 55
Stuck-at fault, 666
Subcircuit (in Verilog code), 721
Substrate, 69
Subtraction, 246, 626
Sum, 234
Sum-of-products form (SOP), 38
Swap, 408
Switch, 18, 69, 431
Synchronous clear (reset), 364, 380, 396
Synchronous counter, 374, 376
Synchronous sequential circuits (see

Sequential circuits)
Syntax (Verilog), 56
Synthesis, 24, 51

layout, 52
logic, 35–41, 51, 210, 303–310
multilevel, 171–184
technology independent, 209

T
T flip-flop, 364
task (Verilog), 729, 745
Technology mapping, 52, 209
10’s complement, 249
Template (Verilog), 745
Terminations, 690
Test, 666
Test generation, 667–677
Test set, 667
Test vectors (see Test generation)
Testing, 470, 666–692
Text Editor, 765
Theorems of Boolean algebra, 27
Three-state output (see Tri-state)
Three-way light control, 44
Threshold voltage, 68, 108, 119
Timer, 662
Timing Analyzer, 801, 813
Timing diagram, 26, 453
Timing simulation, 12, 52, 213
Toggling, 366
Traffic light, 662
Transfer characteristic, 112

Transistor:
EEPROM, 131
EPROM, 132
MOSFET, 69–71, 106–110
size, 114

Transistor-transistor logic (TTL), 836
Transition diagram, 571
Transition table (see Excitation table)
Transmission gate, 126
Transmission line effects, 690
Tree structure, 311, 673
Triode region, 108
tri (Verilog), 413, 702
Tri-state:

buffer, 85, 122, 406
Verilog code, 412, 707, 745

Truth table, 22
Truth table (in Verilog code), 716
Tunneling, 131
2’s-complement representation, 243
22V10 PAL, 822

U
Unary plus (+), 704
Union, 32
Unsigned numbers, 230
Unstable state, 538
Up-counter, 373, 402
Up/down-counter, 373, 405
User-programmable device (see PLD)
Universal shift register, 441

V
Valuation, 22
Variable, 19

in Verilog, 59, 271, 699, 743
Vector (Verilog), 268, 699
Vending machine controller, 489, 592
Venn diagram, 30–33
Verilog 2001, 712, 745
Verilog HDL, 54–60, 265–277, 320–342,

467–477, 698–746
assign statement, 709
asynchronous clear, 395, 731
always block, 59, 389, 711, 743
arithmetic assignment, 271
blocking assignment, 390, 440, 712,

721, 734, 743
begin, 712
begin-end block, 712, 742
bit-select, 701
case sensitivity, 700
case statement, 326, 714, 745
casex statement, 331, 717
casez statement, 331, 717

June 25, 2002 11:57 vra23151_ndx Sheet number 7 Page number 844 black

844 Index

Verilog HDL—Cont.
comment, 699
concatenation, 272, 338, 623, 704
concurrent statement, 708, 743
continuous assignment, 58, 709
default case alternative, 715
defparam, 399, 414, 724, 743, 745
don’t care, 700
end, 712
escaped identifier, 700
for loop, 269, 331, 717
forever loop, 717, 720
function, 340, 727
gate level primitives, 55, 265
generate, 726
genvar, 726
hierarchical code, 723
identifier, 699
if-else statement, 59, 323, 713
implied memory, 388, 744
initial block, 711
integer type, 271, 702
instantiation of gates, 706
instantiation of modules, 267, 721,

743, 745
label, 718, 744
logic gates, 706
logical operators (AND, OR, XOR),

704
memories, 703, 745
module, 55, 705
multibit assignment, 709
named port connection, 722

names, 699
negedge, 730
net, 271, 699, 743
non-blocking assignment, 391, 394,

712, 721, 734, 743
number representaton, 275
operators, 333, 703
ordered port connection, 722
parameter, 269, 701, 710, 723
parameter override, 722, 745
part-select, 701
posedge, 730, 743
precedence, 704
procedural statements, 59, 711–721
port, 55, 705, 722
reg type, 271
radix, 700
range, 699
reg, 702
reduction operator, 704
repeat loop, 717, 720
replication, 277, 338, 704, 742
scalar, 271, 699
sensitivity list, 59, 395, 743
shift operators, 704
sign extension, 710
signal, 699
style, 698
synchronous clear, 396, 732
syntax, 56
task, 339, 729, 745
tri type, 271, 702
truth tables, 717

variable, 59, 271, 699, 743
vector, 268, 699
while loop, 717, 720
white space, 699
wire type, 271, 701

Vertex, 189
Very large-scale integration (VLSI), 87
VHDL, 50
Via, 104
Volatile programming, 102
Voltage levels, 68, 111

substrate bias, 119
VOH and VOL, 111–114
VIH and VIL, 112–114

Voltage spikes, 689
Voltage transfer characteristic (VTC), 112

W
Waveform Editor, 49
while loop (Verilog), 717, 720
wire (Verilog), 701
Wiring complexity, 175
World Wide Web, 837

X
Xilinx Virtex FPGA, 5, 834
Xilinx XC4000 FPGA, 830
XNOR (Exclusive-NOR) gate (see Gates)
XOR (Exclusive-OR) gate (see Gates)
XOR and XNOR operators (Verilog), 704
XOR synthesis, 216

	chapter4 Optimized Implementation of Logic Functions
	chapter5 Number Representationand Arithmetic Circuits
	c h a p t e r6Combinational-Circuit BuildingBlocks
	c h a p t e r7Flip-Flops, Registers, Counters,and a Simple Processor
	c h a p t e r8Synchronous Sequential Circuits
	c h a p t e r9Asynchronous Sequential Circuits
	c h a p t e r10Digital System Design
	c h a p t e r11Testing of Logic Circuits
	a p p e n d i xAVerilog Reference
	a p p e n d i xB

