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PREFACE

Here is a neat and concise book that explains the basics of the Verilog
hardware description language. The Verilog hardware description language,
commonly and henceforth referred to as Verilog HDL, can be used to model
digital designs at multiple levels of abstraction, ranging from the switch-level
to the algorithmic-level. The language offers a powerful set of primitives, in-
cluding logic gates and user-defined primitives, and a wide range of constructs
that can be used to model not only the concurrent behavior of hardware but
also its sequential nature and its structural composition. The language is also
extensible via a programming language interface (PLI). Verilog HDL is a sim-
ple language to use but strong enough to model multiple levels of abstraction.
The Verilog HDL language was standardized by the IEEE in 1995, called the
IEEE Std 1364-1995; this book is based on this standard.

The purpose of this book is to introduce the Verilog hardware descrip-
tion language to the reader by explaining its basic and important constructs
through examples. It is a primer. Each aspect of the language is described us-
ing clear, concise English so that it is easy to understand and not intimidating
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for a beginner. My hope is that this book can provide the very first step in
learning Verilog HDL.

The book provides a thorough understanding of the basics of the Ver-
ilog language, both from the features point of view and its usage in modeling.
A number of examples for each language construct is provided; in addition,
examples are provided to illustrate how collectively constructs can be used to
model hardware. The various modeling styles supported by Verilog HDL are
described in detail. The book explains how stimulus and control can also be
described using the same Verilog language, including response monitoring
and verification. The syntax of many of the constructs are shown in an easy to
read manner, sometimes although not complete. This is done purposely to
help explain the construct. The complete syntax of constructs of the Verilog
language is provided in an appendix for reference.

The book is not theoretical in nature and introduces the syntax and se-
mantics of the language using common terms, rather than the technical jargon
of the formal definition of the language. No attempt has been made to address
the entire language, for example, features such as the programming language
interface, switch-level modeling, and stochastic modeling are not described in
this book. The book restricts itself to the most useful and common features of
the language that are enough to model simple as well as complex devices.

This book is intended for hardware designers as well as others, includ-
ing circuit and system designers and software tool developers, interested in
learning to model hardware using Verilog HDL. The book can also be used as
an introductory text in a first university course on computer-aided design,
hardware modeling, or synthesis. It is well suited for working professionals as
well as for undergraduate and graduate study. Designers can use this book as a
way to get to know Verilog HDL and as a reference for work with Verilog
HDL. Students and professors will find this bock useful as a teaching tool for
hardware design and for hardware description languages.

The book assumes a basic knowledge of digital hardware design as well
as familiarity with a high-level programming language such as C.

Finally, I would like to comment that it is impractical to learn a lan-
guage by reading alone. Typing out examples from this book and compiling
and simulating them on a Verilog simulator is the best way to gain a complete
and thorough understanding of the language. Once you have mastered this
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book, look at the IEEE Standard Language Reference Manual (LRM) for
complete information on the Verilog HDL standard.

Book Organization

Chapter 1 provides a brief history of the language, describing its major
capabilities.

Chapter 2 provides a quick overview of the language, by demonstrating
the three main styles of describing a design: dataflow, behavioral, and structur-
al style.

Chapter 3 describes the basic elements, that is, the nuts and bolts, of the
language. It describes identifiers, comments, system tasks, compiler directives
and data types, amongst others.

Chapter 4 is devoted solely to expressions. An expression can be used in
many different places in a Verilog description, including delays. The chapter
also describes the various kinds of operators and operands that can be used to
form an expression.

Chapter 5 describes gate-level modeling, that is, modeling a design us-
ing built-in primitive gates. Gate delays are also explained. The concept of
time and delay scaling is also introduced.

Verilog HDL provides the capability of creating user-defined primitives,
that is, primitives in addition to the built-in primitives. This is the topic of
Chapter 6. Combinational and sequential user-defined primitives are described
with examples.

The dataflow modeling style is modeled using the continuous assign-
ments in Verilog HDL. Chapter 7 describes this assignment and explains its
execution semantics. Two kinds of delay, assignment delay and net delay, are
described.

Chapter 8 describes the behavioral modeling style. It describes the two
main procedural constructs: the initial statement and the always statement.
The chapter also describes procedural assignments in detail. Sequential and
parallel blocks are explained in detail with examples. High-level programming
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constructs such as conditional statement and loop statement are described in
this chapter.

The structural style of modeling is elaborated in Chapter 9. The concept
of hierarchy and matching of ports is examined in this chapter. Also included
in this chapter is how modules connect with each other via port associations.

Advanced topics are presented in Chapter 10. Topics such as specify
blocks, value change dump file, signal strengths are presented. This chapter
also includes tasks and functions.

Chapter 11 and 12 are the most practical chapters since they talk about
verification and modeling. Chapter 11 shows a number of test bench examples
that show waveform generation and response monitoring. Chapter 12 shows a
number of modeling examples that demonstrate the collective usage of Ver-
ilog language constructs.

Finally, Appendix A contains a complete syntax reference of the Ver-
ilog language. The grammar is described in Backus-Naur Form (BNF) and the
constructs are all arranged alphabetically for easier search.

In all the Verilog HDL descriptions that appear in this book, reserved
words, system tasks and system functions, and compiler directives are in
boldface. In syntax descriptions, operators and punctuation marks that are
part of the syntax are in boldface. Optional items in a grammar rule are indi-
cated by using non-bold square brackets ([...]). Non-bold curly braces ({...})
identify items that are repeated zero or more times. Occasionally ellipsis (. . .)
is used in Verilog HDL source to indicate code that is not relevant to that dis-
cussion. Certain words are written in Courier font to identify its Verilog
meaning rather than its English meaning such as in and gate.

All examples in this book have been verified using the VeriBest® Ver-
ilog simulator, Version 14.0.
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Chapter 1

INTRODUCTION

This chapter describes the history of the Verilog HDL language and it’s
major capabilities.

1.1  What s Verilog HDL?

Verilog HDL is a hardware description language that can be used to model
a digital system at many levels of abstraction ranging from the algorithmic-
level to the gate-level to the switch-level. The complexity of the digital system
being modeled could vary from that of a simple gate to a complete electronic
digital system, or anything in between. The digital system can be described
hierarchically and timing can be explicitly modeled within the same descrip-
tion.

The Verilog HDL language includes capabilities to describe the behavior-
al nature of a design, the dataflow nature of a design, a design’s structural
composition, delays and a waveform generation mechanism including aspects
of response monitoring and verification, all modeled using one single lan-
guage. In addition, the language provides a programming language interface



CHAPTER 1  Introduction

through which the internals of a design can be accessed during simulation in-
cluding the control of a simulation run.

The language not only defines the syntax but also defines very clear simu-
lation semantics for each language construct. Therefore, models written in
this language can be verified using a Verilog simulator. The language inherits
many of its operator symbols and constructs from the C programming lan-
guage. Verilog HDL provides an extensive range of modeling capabilities,
some of which are quite difficult to comprehend initially. However, a core
subset of the language is quite easy to learn and use. This is sufficient to mod-
el most applications. The complete language, however, has sufficient capabili-
ties to capture the descriptions from the most complex chips to a complete

. electronic system.

1.2  History

The Verilog HDL language was first developed by Gateway Design Auto-
mation! in 1983 as a hardware modeling language for their simulator product.
At that time it was a proprietary language. Because of the popularity of their
simulator product, Verilog HDL gained acceptance as a usable and practical
language by a number of designers. In an effort to increase the popularity of
the language, the language was placed in the public domain in 1990. Open
Verilog International (OVI) was formed to promote Verilog. In 1992, OVI de-
cided to pursue standardization of Verilog HDL as an IEEE standard. This ef-
fort was successful and the language became an IEEE standard in 1995. The
complete standard is described in the Verilog Hardware Description Language
Reference Manual. The standard is called IEEE Std 1364-1995.

1.3  Major Capabilities

Listed below are the major capabilities of the Verilog hardware descrip-
tion language:

1. Gateway Design Automation has since been acquired by Cadence Design Systems.
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Primitive logic gates, such as and, or and nand, are built-in into
the language.

Flexibility of creating a user-defined primitive (UDP). Such a
primitive could either be a combinational logic primitive or a se-
quential logic primitive.

Switch-level modeling primitive gates, such as pmes and nmes,
are also built-in into the language.

Explicit language constructs are provided for specifying pin-to-
pin delays, path delays and timing checks of a design.

A design can be modeled in three different styles or in a mixed
style. These styles are: behavioral style - modeled using procedur-
al constructs; dataflow style - modeled using continuous assign-
ments; and structural style - modeled using gate and module
instantiations.

There are two data types in Verilog HDL; the net data type and
the register data type. The net type represents a physical connec-
tion between structural elements while a register type represents
an abstract data storage element.

Hierarchical designs can be described, up to any level, using the
module instantiation construct.

A design can be of arbitrary size; the language does not impose a
limit.
Verilog HDL is non-proprietary and is an IEEE standard.

It is human and machine readable. Thus it can be used as an ex-
change language between tools and designers.

The capabilities of the Verilog HDL language can be further ex-
tended by using the programming language interface (PLI) mech-
anism. PLI is a collection of routines that allow foreign functions
to access information within a Verilog module and allows for de-
signer interaction with the simulator.

A design can be described in a wide range of levels, ranging from
switch-level, gate-level, register-transfer-level (RTL) to
algorithmic-level, including process and queuing-level.

A design can be modeled entirely at the switch-level using the
built-in switch-level primitives.
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The same single language can be used to generate stimulus for the
design and for specifying test constraints, such as specifying the
values of inputs.

Verilog HDL can be used to perform response monitoring of the
design under test, that is, the values of a design under test can be
monitored and displayed. These values can also be compared with
expected values, and in case of a mismatch, a report message can
be printed.

At the behavioral-level, Verilog HDL can be used to describe a
design not only at the RTL-level, but also at the architectural-level
and its algorithmic-level behavior.

At the structural-level, gate and module instantiations can be
used.

Figure 1-1 shows the mixed-level modeling capability of Verilog

HDL, that is, in one design, each module may be modeled at a
different level.

switch

algorithm ——>

gate switch —R

RTL gate

Figure 1-1 Mixed-level modeling.

Verilog HDL also has built-in logic functions such as & (bitwise-
and) and | (bitwise-or).

High-level programming language constructs such as condition-
als, case statements, and loops are available in the language.

Notion of concurrency and time can be explicitly modeled.
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* Powerful file read and write capabilities are provided.

* The language is non-deterministic under certain situations, that is,
a model may produce different results on different simulators; for
example, the ordering of events on an event queue is not defined
by the standard.

14 Exercises

1. In which year was Verilog HDL first standardized by the IEEE?
What are the three basic description styles supported by Verilog HDL?
Can timing of a design be described using Verilog HDL?

~ @ BN

What feature in the language can be used to describe parameterized de-
signs?

Can a test bench be written using Verilog HDL?
Verilog HDL was first developed by which company?
What are the two main data types in Verilog HDL?
What does UDP stand for?

W ® N o &

Name two switch-level modeling primitive gates.

10. Name two logic primitive gates.
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A TUTORIAL

This chapter provides a quick tutorial of the language.

2.1 A Module

The basic unit of description in Verilog is the module. A module describes
the functionality or structure of a design and also describes the ports through
which it communicates externally with other modules. The structure of a de-
sign is described using switch-level primitives, gate-level primitives and user-
defined primitives; dataflow behavior of a design is described using continu-
ous assignments; sequential behavior is described using procedural con-
structs. A module can also be instantiated inside another module.

Here is the basic syntax of a module.

module module name ( port_1list ) ;
Declarations:
reg, wire, parameter,
input, output, inout,
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function, task, . . .

Statements:

Initial statement

Always statement

Module instantiation

Gate instantiation

UDP instantiation

Continuous assignment
endmodule

Declarations are used to define the various items, such as registers and param-
eters, used within the module. Statements are used to define the functionality
or structure of the design. Declarations and statements can be interspersed
within a module; however, a declaration must appear before its use. For clarity
and readability it is best to put all declarations before any statements, and this
convention is followed in all examples in this book.

Here is a simple example of a module that models the half-adder circuit
shown in Figure 2-1. :

module HalfAdder (A, B, Sum, Carry);
input A, B;
output Sum, Carry;
assign #2 Sum= A * B;

assign #5 Carry = A & B;
endmodule

T
b C

Figure 2-1 A half-adder circuit.

The name of the module is HalfAdder. It has four ports; two input ports A and
B, and two output ports Sum and Carry. All ports are of size 1-bit since no
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range has been specified. Also, these four ports are of the net data type since
no declaration has been specified.

The module contains two continuous assignment statements that describe
the dataflow behavior of the half-adder. The statements are concurrent in the
sense that their order of appearance within the module is not important. Exe-
cution of each statement occurs based on events occurring on nets A and B.

Within a module, a design can be described in the following styles:

i. Dataflow style

ii. Behavioral style
iii. Structural style

iv. Any mix of above

The following sections describe these design styles with examples. But first, a
little explanation about delays in Verilog HDL.

2.2 Delays

All delays in a Verilog HDL model are specified in terms of time units.
Here is an example of a continuous assignment with a delay.

assign #2 Sum= A " B;

The #2 refers to 2 time units.

The association of a time unit with physical time is made using the
“timescale compiler directive. Such a directive is specified before a module
declaration. An example of such a directive is:

“timescale 1ns / 100ps

which says that one time unit is to be treated as 1ns and that the time precision
is to be 100ps (the time precision says that all delays must be rounded to
0.1ns). If this compiler directive is present in the module containing the above
continuous assignment, the #2 refers to 2ns.
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If no such compiler directive is specified, a Verilog HDL simulator may
default to a certain time unit; this default time unit is unspecified by the IEEE
Verilog HDL standard.

Describing in Dataflow Style

The basic mechanism used to model a design in the dataflow style is the
continuous assignment. In a continuous assignment, a value is assigned to a
net. The syntax of a continuous assignment is:

assign [ delay ] LHS net = RHS_expression;

Anytime the value of an operand used in the right-hand side expression
changes, the right-hand side expression is evaluated, and the value is assigned
to the left-hand side net after the specified delay. The delay specifies the time
duration between a change of operand on the right-hand side and the assign-
ment to the left-hand side. If no delay value is specified, the default is zero de-
lay.

Here is an example of a 2-to-4 decoder circuit, shown in Figure 2-2, mod-
eled using the dataflow style.

0 Z[0]

Ak %Abﬂr
N1 b Z[1]
Bbar 2
s 4ot 2

3 b Z[3]

;

iy

f

EN h—

Figure 2-2 A 2-to-4 decoder circuit.
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“timescale lns / 1lns

module Decoder2x4 (A, B, EN, Z);
input A, B, EN;
output [0:3] z;
wire Abar, Bbar;

assign #1 Abar = ~A; // Stmt 1.
assign #1 Bbar = ~B; // Stmt 2.
assign #2 Z([0) = ~ (Abar & Bbar & EN); // Stmt 3.
assign #2 Z[1] = ~ (Abar & B & EN); // Stmt 4.
assign #2 Z[2)] = ~ (A & Bbar & EN); // Stmt 5.
assign #2 Z[3] = ~ (A & B & EN); // Stmt 6.

endmodule

The first statement, the one that begins with a backquote, is an example of
a compiler directive. The compiler directive “timescale sets the time unit in
the module for all delays to be 1ns and the time precision to be 1ns. For exam-
ple, the delay values #1 and #2 in the continuous assignments correspond to
delay values of 1ns and 2ns respectively.

The module Decoder2x4 has three input ports and one 4-bit output port. A
net declaration declares the two wires Abar and Bbar (a wire is one of the net
types). In addition, the module contains six continuous assignment state-
ments.

See the waveforms in Figure 2-3. When EN changes at Sns, statements 3,
4, 5, and 6 are executed; this is because EN is an operand on the right-hand
side of each of these continuous assignments. Z[0] gets assigned to its new
value, which is 0, at time 7ns. When A changes at 15ns, statements 1, 5 and 6
execute. Execution of statements 5 and 6 do not affect the value of Z[0] and
Z[1]. Execution of statement 5 causes Z[2] to change to O at 17ns. Execution
of statement 1 causes Abar to get its new value at time 16ns. Since Abar
changes, this in turn causes Z[0] to change value to 1 at time 18ns.

Notice that the continuous assignments model dataflow behavior of the
circuit; the structure is implicit, not explicit. In addition, continuous assign-
ments execute concurrently, that is, they are order-independent.



Describing in Behavioral Style SECTION 2.4

EN _J

20 35

z10) I
z11] | |

28 38
Z[2) | |
17 23
Z[3] | |
0 22 27

Figure 2-3 Example of continuous assignments.

2.4  Describing in Behavioral Style

The behavior of a design is described using procedural constructs. These
are:
i. Initial statement: This statement executes only once.

ii. Always statement: This statement always executes in a loop, that
is, the statement is executed repeatedly.

Only a register data type can be assigned a value in either of these statements.
Such a data type retains its value until a new value is assigned. All initial
statements and always statements begin execution at time O concurrently.

Here is an example of an always statement used to model the behavior of a
1-bit full-adder circuit shown in Figure 2-4.

module FA Seq (A, B, Cin, Sum, Cout);
input A, B, Cin;
output Sum, Cout;

11
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\J s1
7 X2 )——p Sum

T3
Al
-
A3 T1 » 0 Cout

_— T2
A2

o~ ]
g

Cin

Figure 2-4 A 1-bit full-adder.

reg Sum, Cout;
reg T1, T2, T3;

always
@ (A or Bor Cin) begin
Sum = (A~ B) " Cin;

T1 = A & Cin;
T2 = B & Cin;
T3 = A & B;
Cout = (T1 | T2) | T3;
end
endmodule

The module FA_Seq has three inputs and two outputs. Sum, Cout, Tl, T2 and
T3 are declared to be of type reg (reg is one of the register data types) because
these are assigned values within the always statement. The always statement
has a sequential block (begin-end pair) associated with an event control (the
expression following the @ character). This means that whenever an event oc-
curs on A, B or Cin, the sequential block is executed. Statements within a se-
quential block execute sequentially and the execution suspends after the last
statement in the sequential block has executed. After the sequential block
completes execution, the always statement again waits for an event to occur
on A, B, or Cin.

The statements that appear within the sequential block are examples of
blocking procedural assignments. A blocking procedural assignment com-
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pletes execution before the next statement executes. A procedural assignment
may optionally have a delay.

Delays can be specified in two different forms:

i. Inter-statement delay: This is the delay by which a statement’s ex-
ecution is delayed.

ii. Intra-statement delay: This is the delay between computing the
value of the right-hand side expression and its assignment to the
left-hand side.

Here is an example of an inter-statement delay.

Sum = (A ~ B) * Cin;
#4 T1 = A & Cin;

The delay in the second statement specifies that the execution of the assign-
ment is to be delayed by 4 time units. That is, after the first statement exe-
cutes, wait for 4 time units, and then execute the second assignment. Here is
an example of intra-statement delay.

Sum = #3 (A~ B) ~ Cin;

The delay in this assignment means that the value of the right-hand side ex-
pression is to be computed first, wait for 3 time units, and then assign the val-
ue to Sum.

If no delays are specified in a procedural assignment, zero delay is the de-
fault, that is, assignment occurs instantaneously. More on this and other forms
of statements that can be specified in an always statement are discussed in
Chapter 8.

Here is an example of an initial statement.

‘timescale 1ns / 1lns
module Test (Pop, Pid);
output Pop, Pid;
reg Pop, Pid;

initial

begin
Pop = 0; // stmt 1
Pid = 0; // stmt 2

13
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Pop = #5 1; // stmt 3
Pid = #3 1; // Stmt 4
Pop = #6 0; // Stmt 5
pid = #2 0; // Stmt 6
end
endmodule

This module generates the waveforms shown in Figure 2-5. The initial state-
ment contains a sequential block which starts execution at time Ons and after it
completes executing all statements within the sequential block, the initial
statement suspends forever. This sequential block contains examples of block-
ing procedural assignments with intra-statement delays specified. Statements
1 and 2 execute at time Ons. The execution of the third statement, also at time
0, causes Pop to get assigned a value at time Sns. Statement 4 executes at Sns,
and Pid gets assigned the value at 8ns. Similarly, Pop gets the value O at 14ns
and Pid gets the value O at 16ns. After statement 6 executes, the initial state-
ment suspends forever. Chapter 8 describes initial statement in more detail.

Pop

5ns 14ns

Pid

8ns léns

Figure 2-5 Output of module Test.

2.5  Describing in Structural Style

Structure can be described in Verilog HDL using:
i. Built-in gate primitives (at the gate-level)
ii. Switch-level primitives (at the transistor-level)
iii. User-defined primitives (at the gate-level)
iv. Module instances (to create hierarchy)

14
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Interconnections are specified by using nets. Here is an example of a full-
adder circuit described in a structural fashion using built-in gate primitives
and based on the logic diagram shown in Figure 2-4.

module FA_Str (A, B, Cin, Sum, Cout);
input A, B, Cin;
output Sum, Cout;
wire S1, T1, T2, T3;

xor
X1 (S1, A, B),
X2 (Sum, S1, Cin);

and
Al (T3, A, B),
A2 (T2, B, Cin),
A3 (T1, A, Cin);

or
01 (Cout, T1, T2, T3);
endmodule

In this example, the module contains gate instantiations, that is, instances of
built-in gates xor, and, and or. The gate instances are interconnected by nets
S1, T1, T2, and T3. The gate instantiations can appear in any order since no
sequentiality is implied; pure structure is being shown; xor, and and or are
built-in gate primitives; X1, X2, Al, etc. are the instance names. The list of
signals following each gate are its interconnections; the first one is the output
of the gate and the rest are its inputs. For example, S1 is connected to the out-
put of the xor gate instance X1 while A and B are connected to its inputs.

A 4-bit full-adder can be described by instantiating four 1-bit full-adder
modules, the logic diagram of which is shown in Figure 2-6. The model of this
4-bit full-adder is shown next.

module FourBitFA (FA, FB, FCin, FSum, FCout);
parameter SIZE = 4;
input [SIZE:1] FA, FB:;
output (SIZE:1] FSum;
input FCin;
input FCout;
wire [1:SIZE-1] FTemp;

15
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FA_Str
FA1l (.A(FA[l]), .B(FB[1]), .Cin(FCin),
.Sum(FSum[1]), .Cout(FTemp[l])),
FA2 (.A(FA[2]), .B(FB[2]), .Cin(FTemp(1]),
.Sum(FSum[2]), .Cout(FTemp[2])),

FA3 (FA[3], FB{3], FTemp{2], FSum(3], FTemp[3]),
FA4 (FA[4), FB{4], FTemp(3],FSum[4], FCout);
endmodule

FA[4] FB[4] FA[3] FB[3] FA[2] FB[2] FA[1] FB[1]

L Ly Ly
FA4 A B FA3 A B A B FA1 4 B ‘
Cin |€ Cin Cin Cin e—ch
S K ] 3
55 5% 5 & 35
wy wy wy wy
[ L7 L] Lo
FCout FSuml[4] FSum(3] FSum(2] FSum[1]

Figure 2-6 A 4-bit full-adder.

In this example, module instantiations are used to model a 4-bit full-adder. In
a module instantiation, the ports can be associated by name or by position.
The first two instantiations FAI and FA2 use named associations, that is, the
name of the port and the net to which it is connected to are explicitly de-
scribed (each is of the form “. port_name ( net_name )”). The last two instan-
tiations, instances FA3 and FA4, associate ports with nets using positional
association. The order of the associations is important here, for example, in
instance FA4, the first one FA[4] is connected to port A of FA_Str, the second
one FB[4] is connected to port B of FA_Str, and so on.

2.6  Describing in Mixed-design Style
Within a module, structural and behavioral constructs can be mixed freely,

that is, a module can contain a mixture of gate instantiations, module instanti-
ations, continuous assignments, and always and initial statements, amongst

16
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others. Values from always statements and initial statements (remember only
a register data type can be assigned a value within these statements) can drive
gates or switches, while values from gates or continuous assignments (can
only drive nets) can in turn be used to trigger always statements and initial
statements.

Here is an example of a 1-bit full-adder in a mixed-design style.

module FA_Mix (A, B, Cin, Sum, Cout);
input A, B, Cin;
output Sum, Cout;

reg Cout;
reg T1, T2, T3;
wire S1;
xor X1 (S1, A, B); // Gate instantiation.
always
@ (Aor Bor Cin) begin // Always statement.
Tl = A & Cin;
T2 = B & Cin;
T3 = A & B;
Cout = (T1 | T2) | T3;
end
assign Sum = S1 * Cin; // Continuous assignment.
endmodule

Execution of the gate instantiation occurs whenever an event occurs on A
or B. The always statement executes whenever there is an event on A, B or
Cin, and the continuous assignment executes whenever there is an event on S7
or Cin.

).7  Simulating a Design

Verilog HDL provides capabilities not only to describe a design but also to
model stimulus, control, storing responses and verification, all using the same
language. Stimulus and control can be generated using initial statements. Re-
sponses from the design under test can be saved as “save on change” or as

17
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strobed data. Finally, verification can be performed by automatically compar-
ing with expected responses by writing appropriate statements in an initial
statement.

Here is an example of a test module Top that tests the module FA_Seq de-
scribed earlier in Section 2.3.

‘timescale 1lns/lns

module Top; // A module may have an empty port list.
reg PA, PB, PCi;
wire PCo, PSum;

// Instantiate module under test:
FA_Seq F1 (PA, PB, PCi, PSum, PCo); // Positional.

initial
begin: ONLY_ONCE
reg [3:0] Pal;
// Need 4 bits so that Pal can have the value 8.

for (Pal = 0; Pal < 8; Pal = Pal + 1)

begin
{PA, PB, PCi} = Pal;
#5 $display ("PA, PB, PCi=%b%b%b", PA, PB, PCi,

" ::: PCo, PSum=%b%b", PCo, PSum);
end
end
endmodule

The signals in the module instantiation are linked to the ports of the module
under test using positional association, that is, PA is connected to port A of
module FA_Seq, PB is connected to port B of module FA_Seq, and so on. No-
tice that a for-loop statement has been used in the initial statement to generate
a waveform on PA, PB and PCi. The target of the first assignment statement
within the for-loop represents a concatenated target. The appropriate bits on
the right-hand side are assigned to the left-hand side argument from right to
left. The initial statement also contains an example of a predefined system
task. The $display system task prints the specified argument values in the
specified format to the output.

The delay control in the $display system task call specifies that the $dis-
play task is to be executed after 5 time units. This 5 time units basically repre-
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sents the settling time for the logic, that is, the delay time between the
application of a vector and observing the module-under-test’s response.

There is yet another nuance to this model. Pal is declared locally within
the initial statement. To do this, the sequential block (begin-end) in the initial
statement has to be labeled. ONLY_ONCE is the block label in this case. The
block label is not necessary if there are no variables declared locally within
the block. Figure 2-7 shows the waveforms produced. Here is the output pro-

duced by the test module.
PA, PB, PCi =000 ::; PCo, PSum =00
PA, PB, PCi =001 ::: PCo, PSum =01
PA, PB, PCi =010 ::: PCo, PSum =01
PA, PB, PCi =011 ::: PCo, PSum =10
PA, PB, PCi =100 ::: PCo, PSum =01
PA, PB, PCi =101 ::: PCo, PSum =10
PA, PB, PCi=110:: PCo, PSum =10
PA, PB, PCi =111 ::: PCo, PSum =11
PCi
— ‘
5ns 10ns 5ns  20ns 25ns  30ns 35ns
PB
PA
PSum
PCo

Figure 2-7 Waveforms produced by executing test bench Top.

Here is another example of a test module that exercises the cross-coupled
nand gate module RS_FF shown in Figure 2-8.

19
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Qbar

Figure 2-8 Cross-coupled nand gates.

“timescale 10ns/1lns

module RS_FF (Q, Qbar, R, S):
output Q, Qbar;
input R, S;

nand #1 (Q, R, QObar);
nand #1 (Qbar, S, Q);
// Instance names are optional in gate instantiations.
endmodule

module Test;
reg TS, TR;
wire TQ, TQOb;

// Instantiate module under test:
RS_FF NSTA (.Q(TQ), .S{(TS), .R(TR), .Qbar(TQb)):
// Using named association.

// Apply stimulus:
initial
begin
TR = 0;
TS = 0;
#5 TS = 1;
#5 TS = 0;
TR=1;
#5 7S = 1;
TR = 0;
#5 TS = 0;
#5 TR = 1;
end

20
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// Display output:

initial
Smonitor (At time %t,", Stime,
" TR=%b, TS=%b, TO=%b, TQb=%b", TR, TS, TQ, TQb);
endmodule

Module RS_FF describes the structure of the design. Gate delays are used
in gate instantiations; for example, the gate delay for the first instantiation is 1
time unit. This gate delay implies that if R or Qbar changes at say time 7, then
Q gets the computed value at time T+1.

The module 7est is the test module. The design under test RS_FF is in-
stantiated and its ports are connected using named association. There are two
initial statements in this module. The first initial statement simply generates
the waveform on 7§ and TR. This initial statement contains blocking proce-
dural assignments with inter-statement delays.

The second initial statement is used to call the system task $monitor. This
task when called causes the specified string to be printed whenever a change
occurs in the specified variables in the argument list. Figure 2-9 shows the
waveforms produced. Here is the output produced by the test module. Notice
the effect produced by the “timescale directive on the delays.

TR
2501
TS
50 100 150 200

R x|[

10ns ‘

, 120 1160 260ns

T _I

Ons 60 110 170 210

Figure 2-9 Waveforms produced by module Zest.

At fime 0, TR=0, TS=0, TQ=x, TQb=x
At time 10, TR=0, TS=0, TQ=1, TQb=1
At time 50, TR=0, TS=1, TQ=1, TQb=1
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At time 60, TR=0, TS=1, TQ=1, TQb=0
Attime 100, TR=1, TS=0, TQ=1, TQb=0
At time 110, TR=1, TS=0, TQ=1, TQb=1
At time 120, TR=1, TS=0, TQ=0, TQb=1
At fime 150, TR=0, TS=1, TQ=0, TQb=1
At time 160, TR=0, TS=1, TQ=1, TQb=1
At time 170, TR=0, TS=1, TQ=1, TQb=0
At time 200, TR=0, TS=0, TQ=1, TQb=0
At time 210, TR=0, TS=0, TQ=1, TQb=1
Attime 250, TR=1, TS=0, TQ=1, TQb=1
Attime 260, TR=1, TS=0, TQ=0, TQb=1

The following chapters elaborate on these topics and more in greater de-
tail.

2.8 Exercises

1. What statement is used to describe a design in the dataflow style?

2. What is the purpose of the “timescale compiler directive? Give an exam-
ple.

3. What are the two kinds of delays that can be specified in a procedural as-
signment statement? Elaborate using an example.

4. Describe the 1-bit full-adder shown in Figure 2-4 using the dataflow style.

5. What is the key difference between an initial statement and an always
statement?

6. Generate the following waveform on a variable BullsEye using an initial
statement.

| I —

0 23 12 22 24 27 32

Figure 2-10 A waveform on variable BullsEye.

22



Exercises SECTION 2.8

7. Write a model, in structural style, for the 2-to-4 decoder shown in Figure

2-2.

8. Write a test bench to test the module Decoder2x4 described in Section

2.3.

9. Name two kinds of assignment statements that you can have in a Verilog

HDL model.

10. When is a label required to be specified in a sequential block?

11. Using the dataflow description style, write a Verilog HDL model for the
following exclusive-or logic. Use the specified delays.

T

Ins

Ins

Sns

4ns

Sns

Figure 2-11 Exclusive-or logic.

12. What is wrong with the following continuous assignment?

assign Reset = #2 ~ WriteBus;

23



Chapter 3

LANGUAGE ELEMENTS

This chapter describes the basic elements of Verilog HDL. It introduces
identifiers, comments, numbers, compiler directives, system tasks and system
functions. In addition, it introduces the two data types in the language.

3.1 Identifiers

An identifier in Verilog HDL is any sequence of letters, digits, the $ char-
acter, and the _ (underscore) character, with the restriction that the first char-
acter must be a letter or an underscore. In addition, identifiers are case-
sensitive. Here are some examples of identifiers.

Count

COUNT // Distinct from Count.
_R2_D2

R56_68

FIVES

24
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An escaped identifier provides a way of including any of the printable
ASCII characters in an identifier. An escaped identifier starts with a \ (back-
slash) character and ends with a white space (a white space is a space, tab or a
newline). Here are some examples of escaped identifiers.

\7400

\.*.§

\(******}

\~Q

\OutGate is same as OutGate

The last example explains the fact that, in an escaped identifier, the backslash
and the terminating space are not part of the identifier. Thus, identifier
\QutGate is identical to identifier QutGate.

Verilog HDL defines a list of reserved identifiers, called keywords, that
can only be used in certain contexts. Appendix A lists all the reserved words
in the language. Note that only the lower case keywords are reserved words.
For example, identifier always (which is a keyword) is distinct from the iden-
tifier ALWAYS (which is not a keyword).

In addition, an escaped keyword is not treated the same as the keyword.
Thus, identifier \initial is distinct from the identifier initial (which is a key-
word). Note that this convention is different from those of escaped identifiers.

3.2

Comments

There are two forms of comments in Verilog HDL.

/* First form: Can
extend across
many
lines */

// Second form: Ends at the end of this line.
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3.3 Format

Verilog HDL is case-sensitive. That is, identifiers differing only in their
case are distinct. In addition, Verilog HDL is free-format, that is, constructs
may be written across multiple lines, or on one line. White space (newline,
tab, and space characters) have no special significance. Here is an example
that illustrates this.

initial begin Top = 3'b001; #2 Top = 3'b011; end

is same as:
initial
begin
Top = 3'b001;
#2 Top = 3'b011;
end

3.4  System Tasks and Functions

An identifier beginning with a $ character is interpreted as a system task
or as a system function. A task provides a mechanism to encapsulate a behav-
ior that can be invoked from different parts of a design. A task can return zero
or more values. A function is like a task except that it can return only one val-
ue. In addition, a function executes in zero time, that is, no delays are allowed,
while a task can have delays.

$display ("Hi, you have reached LT today");
/* The $display system task displays the specified message
to output with a newline character. */

Stime
// This system function returns the current simulation time.

Tasks and functions are described in Chapter 10.

26



Compiler Directives SECTION 3.5

8.5 Compiler Directives

Certain identifiers that start with the * (backquote) character are compiler
directives. A compiler directive, when compiled, remains in effect through the
entire compilation process (which could span multiple files) until a different
compiler directive specifies otherwise. Here is a complete list of standard
compiler directives.

+ ‘“define, ‘undef
“ifdef, “else, “endif
* “default_nettype

¢ include

* ‘resetall

* “timescale

« “unconnected_drive, ‘nounconnected_drive
“celldefine, “endcelldefine

3.5.1 “define and ‘undef

The “define directive is used for text substitution and is very much like the
#define in the C programming language. Here is an example of this directive.

“define MAX BUS_SIZE 32

reg [ "MAX _BUS_SIZE- 1 : 0 ] AddReg;

Once the “define directive is compiled, the definition stays in effect through
the entire compilation. For example the usage of MAX_BUS_SIZE could be
across many different files with the “define directive in another file.

The “undef directive removes the definition of a previously defined text
macro. Here is an example.

‘define WORD 16 // Creates a macro for text substitution.
wire [ “WORD : 1 ] Bus;

‘undef WORD
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// The definition of WORD is no longer available
// after this ‘undef directive.

3.5.2 Cifdef, “else and “endif

These compiler directives are used for conditional compilation. Here is an
example.

*ifdef WINDOWS

parameter WORD SIZE = 16;
‘else

parameter WORD_SIZE = 32;
‘endif

During compilation, if the text macro name WINDOWS is defined, the first pa-
rameter declaration is selected, otherwise the second parameter declaration is
selected.

The “else directive is optional with the “ifdef directive.

3.5.3 “default_nettype

This directive is used to specify the net type for implicit net declarations,
that is, for nets that are not declared.

‘default_nettype wand
This example specifies the default net type to be a wand net. Therefore, if a

net is not declared in any module following this directive, the net is assumed
to be a wand net.

3.54 ‘Cinclude

The “include compiler directive can be used to include the contents of any
file in-line. The file can be specified either with a relative path name or with a
full path name.

‘include "../../primitives.v"
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Upon compilation, this line is replaced with the contents of the file *“../../prim-
itives.v”.

3.5.5 “resetall

This compiler directive resets all compiler directives to their default value.
‘resetall

For example, this directive causes the default net type to be wire.

3.5.6 “timescale

In a Verilog HDL model, all delays are expressed in terms of time units.
The association of time units with actual time is done using the “timescale
compiler directive. This directive is used to specify the time unit and time pre-
cision. The directive is of the form:

‘timescale time unit / time_ precision

where the time_unit and time_precision is made up of values from 1, 10, and
100 and units from s, ms, us, ns, ps and fs. Here is an example.

‘timescale 1ns / 100ps

indicates a time unit of Ins and a time precision of 100ps. The “timescale di-
rective appears outside of a module declaration and affects all delay values
that follow it. Here is an example.

‘timescale 1ns / 100ps
module AndFunc (Z, A, B);
output Z;
input A, B;

and #(5.22, 6.17) Al (Z, A, B);
// Rise and fall delay specified.
endmodule
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The directive specifies all delays to be in ns and delays are rounded to one-
tenth of a ns (100ps). Therefore, the delay value 5.22 becomes 5.2ns and the
delay value 6.17 becomes 6.2ns. If instead the following “timescale directive
is used in the above module,

‘timescale 10ns / 1ns

then 5.22 becomes 52ns, and 6.17 becomes 62ns.

The “timescale directive affects all delays in modules that follow this di-
rective in a compilation until another “timescale directive or “resetall direc-
tive is found. What happens if there is more than one module in a design each
having its own "timescale directive? In such a case, simulation always takes
place in the smallest time precision of all the modules and all delays are ap-
propriately scaled to this smallest time precision. Here is an example.

‘timescale 1ns / 100ps
module AndFunc (Z, A, B);
output Z;
input A, B;

and #(5.22, 6.17) Al (Z, A, B);
endmodule

‘timescale 10ns / lns
module TB;
reg PutA, PutB;
wire GetO;

initial

begin
Putd = 0;
PutB = 0;
#5.21 PutB = 1;
#10.4 PutA = 1;
#15 PutB = 0;

end

AndFunc AF1 (GetO, PutA, PutB);
endmodule
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In this example, each module has its own “timescale directive. The “timescale
directive is first applied to the delays. Therefore in the first module, 5.22 is
5.2ns, 6.17 is 6.2ns, and in the second module, 5.21 is 52ns, 10.4 is 104ns, and
15 is 150ns. If module 7B were simulated, the smallest time precision of all
modules in this design is 100ps. Therefore, all delays (especially the delays in
module TB) will be scaled to a precision of 100ps. Delay 52ns now becomes
520*100ps, 104ns becomes 1040*100ps, and 150ns becomes 1500*100ps.
More importantly, simulation occurs using a time precision of 100ps. If mod-
ule AndFunc were simulated, the “timescale directive of module 7B has no ef-
fect since module 7B is not a child module of module AndFunc.

3.5.7 “unconnected_drive and ‘nounconnected_drive

Any unconnected input ports in module instantiations that appear between
these two directives are either pulled up or pulled down.

‘unconnected_drive pulll
/* All unconnected input ports between these two directives

are pulled up (connected to 1). *
‘nounconnected_drive

‘unconnected_drive pulll
/* All unconnected input ports between these two directives

are pulled down (connected to 0). *
‘nounconnected_drive

3.5.8 “celldefine and “endcelldefine

These two directives are used to mark a module as a cell module. They
typically encompass a module definition, as shown in the following example.

‘celldefine
module FD1S3AX (D, CK, Z):

endmodule
‘endcelldefine
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Cell modules are used by some PLI routines.

3.6 Value Set

Verilog HDL has the following four basic values.
i. 0:logic-0 or false
ii. 1:logic-1 ortrue
iii. x:unknown
iv. z:high-impedance
Note that the interpretations of these four values are built-in into the language.
A zin a value always means a high-impedance, a 0 always means a logic-0,
and so on.

A z value at the input of a gate or in an expression is usually interpreted as
an x. Furthermore, the values x and z are case-insensitive, that is, the value
Ox1z is same as 0X1Z. A constant in Verilog HDL is made up of the above
four basic values.

There are three types of constants in Verilog HDL.

i. Integer
ii. Real
iii. String

An underscore ( _ ) character can be used in an integer or a real constant free-
ly; they are ignored in the number itself. They can be used to improve read-
ability; the only restriction is that the underscore character cannot be the first
character.

3.6.1 Integers

32

An integer number can be written in the following two forms.
i. Simple decimal
ii. Base format
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Simple Decimal Form

An integer in this form is specified as a sequence of digits with an optional
+ (unary) or a — (unary) operator. Here are some examples of integers in the
simple decimal form.

32 is decimal 32
- 15 is decimal -15

An integer value in this form represents a signed number. A negative number
is represented in two’s complement form. Thus 32 is 10000 in a 5-bit binary,
010000 in 6-bit binary; —15 is 10001 in 5-bit binary, and is 110001 in a 6-bit

binary.

Base Format Notation

The format of an integer in this form is:
[ size ] 'base value

where the size specifies the size of the constant in number of bits, base is one
of o or O (for octal), b or B (for binary), d or D (for decimal), h or H (for hexa-
decimal) and value is a sequence of digits that are values from the base. The
values x and z and the hexadecimal values a through f are case-insensitive.

Here are some examples.

5'037 5-bit octal

4'D2 4-bit decimal

4'B1x_01 4-bit binary

7 'Hx 7-bit x (x extended), that is, o000

4'hZ 4-bit z (z extended), that is, zzzz

4'd-4 Not legal: value cannot be negative

8 'h 2A Spaces are allowed between size and ' character

and between base and value
3' b001 Not legal: no space allowed between ' and base b
(2+3) 'd10 Not legal; size cannot be an expression
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Note that an x (or z) in a hexadecimal value represents four bits of x (or z), x
(or z) in octal represents three bits of x (or z), and x (or z) in binary represents
one bit of x (or z).

A number in base format notation is always an unsigned number. The size
specification is optional in an integer of this form. If no size is specified in an
integer, the size of the number is the number of bits specified in the value.
Here are some examples.

'0721 9-bit octal
'hAF 8-bit hex

If the size specified is larger than the size specified for the constant, the
number is padded to the left with 0’s except for the case where the leftmost bit
is a x or a z, in which case a x or a z respectively is used to pad to the left. For
example,

10'b10 Padded with 0 to the left, 0000000010
10 'bx0x1 Padded with x to the left, xxxxxxx0xl

If the size specified is smaller, then the leftmost bits are appropriately
truncated. For example,

3'b1001_0011 is same as 3'b011
5'HOFFF is same as 5'HIF

The ? character can be used as an alternate for value z in a number. It may
be used to improve readability in cases where the value z is interpreted as a
don’t-care value (see Chapter 8).

3.6.2 Reals
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A real number can be specified in one of the following two forms.
i. Decimal notation: Examples of numbers in this form are:

2.0
5.678
11572.12
0.1
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2. // Not legal: must have a digit
// on either side of decimal.

ii. Scientific notation: Examples of numbers in this form are:

23_5.1e2 The value 23510.0; underscores are ignored
3.6E2 360.0 (e is same as E)
5E-4 0.0005

Implicit conversion to integer is defined by the language. Real numbers
are converted to integers by rounding to the nearest integer.

42.446, 42.45 when converted to integer yields 42
92.5, 92.699 vyield 93 when converted into integer
-15.62 to integer gives -16

-26.22 to integer gives -26

3.6.3 Strings

A string is a sequence of characters within double quotes. A string may
not be split across lines. Here are examples of strings.

"INTERNAL ERROR"
"REACHED->HERE"

A character is represented by an 8-bit ASCII value which is treated as an un-
signed integer. Therefore a string is a sequence of 8-bit ASCII values. To store
the string "INTERNAL ERROR", a variable of size 8*14 is needed.

reg [ 1 : 8*14 ] Message;

Message = "INTERNAL ERROR";

The \ (backslash) character can be used to escape certain special charac-

ters.
\n newline character
\t tab
N\ the \ character itself
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the * character

character with octal value 206

3.7 Data Types

Verilog HDL has two groups of data types.

i

ii.

3.7.1 Net Types

Here are the different kinds of nets that belong to the net data type.

Net type:

A net type represents a physical connection between structural el-
ements. Its value is determined from the value of its drivers such
as a continuous assignment or a gate output. If no driver is con-

nected to a net, the net defaults to a value of z.

Register type:

A register type represents an abstract data storage element. It is
assigned values only within an always statement or an initial
statement, and its value is saved from one assignment to the next.
A register type has a default value of x.

wire

tri

wor
trior
wand
triand
trireg
tril

tri0
supply0
supplyl

A simple syntax for a net declaration is:

net_kind [ msb: 1sb | netl, net2, . .

36
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where net_kind is one of the nets listed above. msb and Isb are constant ex-
pressions that specify the range of the net; the range specification is optional;
if no range is specified, a net defaults to a size of one bit. Here are some exam-
ples of net declarations.

wire Rdy, Start; // Two l-bit wire nets.
wand (2:0) Addr; // Addr is a 3-bit vector wand net.

The various nets behave differently when there exists more than one driver
for a net, that is, when there are multiple assignments to a net. For example,

wor Rde;
assign Rde = BIt & Wyl;
assign Rde = Kbl | Kip;

In this example, Rde has two drivers, one from each of the continuous assign-
ments. Since it is a wor net, the effective value of Rde is determined from a
wor table (see following section on wor nets) using the values of the drivers
(the values of the right-hand side expressions).

Wire and Tri Nets

This is the most common type of net which is used to connect elements. A
wire net and a tri net are identical in syntax and semantics; the tri net may be
used to describe a net where multiple drivers drive a net, and has no other spe-
cial significance.

wire Reset;
wire [(3:2] Cla, Pla, Sla;
tri [MSB-1 : LSB+1) Art;

If multiple drivers drive a wire (or a tri) net, the effective value of the net
is determined by using the following table.

wire (or tri) 0 1 X z

0 0 X X 0
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wire (or tri) 0 1 X z
1 X 1 X 1
X X X X X
z 0 1 X z

Here is an example.

assign Cla = Pla & Sla;

assign Cla = Pla " Sla;

In this example, Cla has two drivers. The values of the two drivers (the values
of the right-hand side expressions) is used to index in the above table to deter-
mine the effective value of Cla. Since Cla is a vector, each bit position is eval-
uated independently. For example, if the first right-hand side expression has
the value 01x and the second right-hand side expression has the value 11z, the
effective value of Cla is x1Ix (the first bits O and 1 index into the table to give
an x, the second bits 1 and 1 index into the table to give a 1, the third bits x and
z index into the table to give an x).

Wor and Trior Nets

This is a wired-or net, that is, if any one of the drivers is a 1, the value on
the net is also a 1. Both wor and trior nets are identical in their syntax and
functionality.

wor [MSB : LSB] Art;
trior (MAX-1 : MIN-1] Rdx, Sdx, Bdx;

If multiple drivers drive this net, the effective value of the net is deter-
mined by using the following table.

wor (or trior) 0 1 X z

0 0 1 X 0
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wor (or trior) 0 1 X z
1 1 1 1 1
X X 1 X X
z 0 1 X z
Wand and Triand Nets

This net is a wired-and net, that is, if any of the drivers is a 0, the value of
the net is a 0. Both wand and triand nets are identical in their syntax and func-
tionality.

wand [-7:0] Dbus;
triand Reset, Clk;

If multiple drivers drive a wand net, the following table is used to deter-
mine the effective value.

wand (or triand) 0 1 X z
0 0 0 0 0
1 0 1 X 1
X 0 X X X
z 0 1 X z

Trireg Net
This net stores a value (like a register) and is used to model a capacitive
node. When all drivers to a trireg net are at high-impedance, that is, have the

value z, the trireg net retains the last value on the net. In addition, the default
initial value for a trireg net is an x.

trireg [1:8] Dbus, Abus;
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Tri0 and Tril Nets

These nets also model wired-logic nets, that is, a net with more than one
driver. The particular characteristic of a tri0 (tril) net is that if no driver is
driving this net, its value is O (1 for tril).

tri0 [-3:3) GndBus;
tril [0:-5] OtBus, ItBus;

The following table shows the effective value for a tri0 or a tril net that
has more than one driver.

tri0 (tril) 0 1 X z
0 0 X X 0
1 X 1 X 1
X X X X X
b4 0 1 X o1
Supply0 and Supplyl Nets

The supplyO net is used to model ground, that is, the value O, and the
supply!l net is used to model a power net, that is, the value 1.

supply0 Gnd, ClkGnd;
supplyl (2:0] Vcc;

Undeclared Nets

In Verilog HDL, it is possible not to declare a net. In such a case, the net
defaults to a 1-bit wire net.

This implicit net declaration can be changed by using the
“default_nettype compiler directive. It is of the form:

‘default_nettype net_kind

For example, with the compiler directive:
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‘default_nettype wand

any undeclared net defaults to a 1-bit wand net.

7.3  Vectored and Scalared Nets

The keywords, scalared or vectored, can optionally be specified for a
vector net. If a net is declared with the keyword vectored, then bit-selects and
part-selects of this vector net are not allowed; in other words, the entire net
has to be assigned (bit-selects and part-selects are described in the next chap-
ter). Here is an example of such a declaration.

wire vectored (3:1] Grb;
// Bit-select Grb[2] and part-select Grb[3:2]
// are NOT allowed.

wor scalared [4:0] Best;
// Same as:
// wor [4:0] Best;
// Bit-select Best[2] and part-select Best[3:1]
// are allowed.

If no such keyword is specified, then the default is scalared.

3.7.4 Register Types

There are five different kinds of register types.

* reg

* integer

e time

e real

* realtime
Reg Register

The reg kind of register data type is the one most commonly used. A reg is
declared by using a reg declaration, which is of the form:
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reg [msb: lsb ] regl ,reg2,. . ., regN;

where msb and Isb specify the range and are constant-valued expressions. The
range specification is optional; if no range is specified, it defaults to a 1-bit
register. Here are some examples.

reg [3:0] Sat; // Sat is a 4-bit register.
reg Cnt; // A 1l-bit register.
reg [1:32) Kisp, Pisp, Lisp;

A register can be of any size. A value in a register is always interpreted as
an unsigned number.

reg [1:4] Comb;

Comb = -2; // Comb has 14 (1110), the two’s complement of 2.
Comb =5; // Combhas 5 (0101).

Memories

A memory is an array of registers. It is declared using a reg declaration of
the form:

reg [ msb: 1sb | memoryl [upperl : lowerl ],
memory2 [upper2 : lower2 1, . . . ;

Here is an example of a memory declaration.

reg [0:3) MyMem [0:63];

// MyMem is an array of sixty-four 4-bit registers.
reg Bog[l:5];

// Bog is an array of five 1-bit registers.

MyMem and Bog are memories. Arrays with more than two dimensions are
not allowed. Notice that a memory belongs to the register data type. There is
no such equivalent for the net data type.

A single reg declaration can be used to declare both registers and memo-
ries.
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parameter ADDR_SIZE = 16, WORD_SIZE = 8;
reg [1:WORD_SIZE] RamPar [ADDR_SIZE-1 : 0], DataReg;

RamPar is a memory, an array of sixteen 8-bit registers, while DataReg is a 8-
bit register.

A word of caution in assignments. A memory cannot be assigned a value
in one assignment, but a register can. Therefore an index needs to be specified
for a memory when it is being assigned. Let’s look at this difference. In the
following assignment,

reg [1:5] Dig; // Dig is a 5-bit register.
D1g= 5'b11011;
is okay, but the following assignment:
reg Bog [1:5]; // Bog is a memory of five 1-bit registers.
éo'g': 5'b11011;

is not. One way to assign to a memory is to assign a value to each word of a
memory individually. For example,

reg [(0:3) Xrom [1:4];

Xrom([1]

= 4'hA;
Xrom([2] = 4'h8;
Xrom(3] = 4'hF;
Xrom(4] = 4'h2;

An alternate way to assign values to a memory is by using the system
tasks:

i. $readmemb (loads binary values)
ii. $readmemh (loads hexadecimal values)

These system tasks read and load data from a specified text file into a memory.
The text file must contain the appropriate form of numbers, either binary or
hexadecimal. Here is an example.
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reg [1:4) RomB [7:1);
Sreadmemb ("ram.patt", RomB);

RomB is a memory. The file “ram.patt” must contain binary values. The file
may also contain white spaces and comments. Here is an example of what
may be in the file.

1101
1100
1000
0111
0000
1001
0011

The system task $readmemb causes the values to be read in starting from in-
dex 7, the leftmost word index of RomB. If only a part of the memory is to be
loaded, the range can be explicitly specified in the $readmemb task, such as:

Sreadmemb ("ram.patt®”, RomB, 5, 3);

in which case only RomB[5], RomB[4], and RomB[3] words are read from the
file beginning at the top. The values read are 1101, 1100 and 1000.

The file may also contain explicit addresses of the form:
@hex_address value
such as in this example:

@5 11001
Q2 11010

in which case the values are read into the specified addresses of the memory.

When only a start value is specified, read continues until the right-hand in-
dex bound of the memory is reached. For example,

$readmemb ("rom.patt", RomB, 6);
// Starts from address 6 and continues until 1.
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$readmemb ("rom.patt", RomB, 6, 4);
// Reads from addresses 6 through 4.

Integer Register

An integer register contains integer values. It can be used as a general pur-
pose register, typically for modeling high-level behavior. It is declared using
an integer declaration of the form:

integer integerl , integer2,. . ., integerN[ msb: 1sb ];

msb and Isb are constant-valued expressions that specify the range of an inte-
ger array; the array range specification is optional. Notice that no bit range is
allowed. An integer holds a minimum of 32 bits; however, an implementation
may provide more. Here are some examples of integer declarations.

integer A, B, C; // Three integer registers.
integer Hist[3:6]; // An array of four integers.

An integer register holds signed quantities and arithmetic operations pro-
vide two’s complement arithmetic results.

An integer cannot be accessed as a bit-vector. For example, given the
above declaration for integer B, B[6] and B[20:10] are not allowed. One way
to extract a bit-value of an integer is to assign it to a reg register and then se-
lect the bits from the reg register. Here is an example.

reg (31:0] Breg:
integer Bint;

// Bint[6) and Bint[20:10] are not allowed.
Breg = Bint;
/* At this point, Breg[6] and Breg[20:10) are allowed and

give the corresponding bit-values from the
integer Bint */

This example shows that converting an integer to a bit-vector can be accom-
plished by simply using an assignment. Type conversion is automatic. No spe-
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cial functions are necessary. Converting from a bit-vector to an integer can
also be accomplished by using an assignment. Here are some examples.

integer J;
reg [3:0] Bceg;

J=6; // J has the value 32'b0000...00110.
Bcg = J; // Bcg has the value 4'b0110.

Bcg = 4'b0101;

J = Begq; /// J has value 32'b0000...00101.
J = -6; // J has the value 32'b1111...11010.
Bcqg = J; // Bcqg has the value 4'b1010.

Note that the assignment always takes place from the rightmost bit to the left-
most bit; any extra bits are truncated. It is easy to think of type conversion if
you can remember that integers are represented as two’s complement bit-
vectors.

Time Register

A time register is used to store and manipulate time values. It is declared
using a time declaration of the form:

time time_idl, time_id2,. . ., time_idN[msb: 1sb];
where msb and Isb are constant-valued expressions that indicate the range of
indices. If no range is specified, each identifier stores one time value which is

at least 64 bits. A time register holds only an unsigned quantity. Here are ex-
amples of time declarations.

time Events[0:31); // Array of time values.
time CurrTime; // CurrTime holds one time value.

Real and Realtime Register

A real register (or a realtime register) can be declared using the following
form.
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// Real declaration:

real real_regl , real_reg2,. . ., real_regN;
// Realtime declaration:
realtime realtime_regl , realtime_reg2, . . .,

realtime_regN ;

A realtime register is exactly identical to a real register. Here are some exam-
ples.

real Swing, Top;
realtime CurrTime;

The default value of a real register is 0. No range, bit range or word range,
is allowed for declaring a real register.

When assigning values x and z to a real register, these values are treated as
a0

real RamCnt;

RamCnt = 'b01x17Z;

RamCnt has the value 'b01010 after the assignment.

.8 Parameters

A parameter is a constant. It is often used to specify delays and widths of
variables. A parameter can be assigned a value only once, using a parameter
declaration. A parameter declaration is of the form:

parameter paraml = const_exprl , param2 = const_exp2, . . .,
paramN = const_exprN ;

Here are some examples.

parameter LINELENGTH = 132, ALL X S = 16'bx;
parameter BIT = 1, BYTE = 8, PI = 3.14;
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parameter STROBE _DELAY = (BYTE + BIT) / 2;
parameter TQ FILE = "/home/bhasker/TEST/add.tqg";

A parameter value can also be changed at compile time. This is done by

using a defparam statement or by specifying the parameter value in the mod-
ule instantiation statement (these two mechanisms are described in Chapter

9).

3.9 Exercises

o N

10.
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Identify the legal and illegal identifiers:
COunT, 1_2Many,\**1 , Real?, \wait , Initial

What first character identifies a system task or a system function?
Explain the text substitution compiler directive using an example.
Is there a Boolean type in Verilog HDL?

What are the bit patterns for the following:
7'044, 'Bx0, 5'bx110, 'hA0, 10'd2, 'hzF

What is the bit pattern stored in Qpr after the assignment?
reg [l : 8*2] Qpr;
Qpr - Ilmll ;

If a net Bngq is declared but no assignment is made to it, what is its default
value?

Verilog HDL allows a net not to be explicitly declared. If so, how is the
net kind determined?

What is wrong with the following?
integer [0:3] Ripple;

Write a system task to load a 32 by 64 word memory from a data file “me-
mA data”.
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11. State two ways by which you can override a parameter value at compile
time.
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EXPRESSIONS

This chapter describes the basics of how expressions are formed in
Verilog HDL.

An expression is formed using operands and operators. An expression can
be used wherever a value is expected.

4.1 Operands

An operand can be one of the following.

i. Constant
{i. Parameter
iii. Net

iv. Register

v. Bit-select

vi. Part-select

vii. Memory element
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viii, Function call

1.1  Constant

Constants were described in the previous chapter. Here are some exam-

ples.
256, 7 // Unsized decimal numbers
4'b10_11, 8'h0A // Sized integer constants
'bl, 'hFBA // Unsized integer constants
890.00006 // Real constant
"BOND" /* String constant; each character is stored

as a 8-bit ASCII value */

An integer value in an expression is interpreted as either a signed or an un-
signed number. If it is a decimal integer, for example, 12, then it is interpreted
as a signed number. If the integer is a based integer (unsized or sized), then it
is treated as an unsigned number. Here are some examples.

12 is 01100 in 5-bit vector form (signed)
-12 is 10100 in 5-bit vector form (signed)
5'b01100 is decimal 12 (unsigned)
5'b10100 is decimal 20 (unsigned)
4+d12 is decimal 12 (unsigned)

More important is the fact that a negative value of an integer is treated dif-
ferently for an integer with or without a base. The negative value of an integer
with no base specifier is treated as a signed value, while an integer with a base
specifier is treated as an unsigned value. Thus, —44 is treated different from
—6'054 (decimal 44 is octal 54) as shown in the next example.

integer Cone;

Cone=-44 / 4;
Cone = — 6'054 / 4;

Note that both ~44 and —6'054 are evaluated to the same bit pattern; however
~44 is treated as a signed number, while —6'054 is treated as an unsigned num-
ber. Thus Cone in the first assignment has the value —11, while Cone has the
value 1073741813 in the second assignment.
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4.1.2 Parameter

Parameters were described in the previous chapter. A parameter is like a
constant and is declared using a parameter declaration. Here is an example of
a parameter declaration.

parameter LOAD = 4'dl2, STORE = 4'dl0;

LOAD and STORE are examples of parameters that are declared to have the
values 12 and 10 respectively.

4.1.3 Net

Both scalar nets (1-bit) and vector nets (multi-bit) can be used in an ex-
pression. Here are examples of net declarations.

wire [0:3) Prt; // Prt is a 4-bit vector net.
wire Bbgq; // Bbg is a scalar net.

A value in a net is interpreted as an unsigned value. In the continuous as-
signment,

agsign Prt = - 3;

Prt has the bit-vector 1101 assigned which is in effect the decimal value 13. In
the following continuous assignment,

assign Prt = 4'HA;

Prt has the bit-vector 1010 assigned to it which is the decimal value 10.

4.14 Register

Scalar and vector registers can be used in an expression. A register is de-
clared using a register declaration. Here are some examples.
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integer TemA, TemB;
reg [1:5] State;
time Que [1:5];

A value in an integer register is interpreted as a signed two’s complement
number while a value in a reg register or a time register is interpreted as an un-
signed number. Values in real and realtime registers are interpreted as signed

floating point values.

TemA = — 10; // TemA has the bit-vector 10110, which
// is the two'’s complement of 10.
TemA = 'bl1011; // TemA has the decimal value 11.

State = - 10; // State has the bit-vector 10110,
// which is decimal 22.

State = 'bl1011; // State has the bit-vector 01011,
// which is the decimal value 11.

L1.5  Bit-select
A bit-select extracts a particular bit from a vector. It is of the form:
net_or_reg vector | bit_select_expr]
Here are examples of bit-selects used in expressions.

State[l] && State[4] // Register bit-select
Prt[0] | Bbg // Net bit-select

If the select expression evaluates to an x or a z or if it is out of bounds, the
value of the bit-select is an x, for example, Szate[x] is an x.

$.1.6 Part-select

In a part-select, a contiguous sequence of bits of a vector is selected. It is
of the formn:

net_or_reg_vector | msb_const_expr :1sb_const_expr]
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where the range expressions must be constant expressions. Here are some ex-
amples.

State [1:4]) // Register part-select
Prt [1:3) // Net part-select

If either of the range index is out of bounds or evaluates to an x or a z, the
part-select value is an x.

4.1.7 Memory Element

A memory element selects one word of a memory. It is of the form:
memory| word_address]
Here is an example.
reg [1:8] Ack, Dram[0:63];
ACk= Dram(60]; // 60th element of memory.
No part-select or bit-select of a memory is allowed. For example,

Dram(60] [2] is not allowed.
Dram([60] [2:4]) is also not allowed.

One approach to read a bit-select or a part-select of a word in memory is to as-

sign the memory element to a register and then use a part-select or a bit-select
of this register. For example, Ack[2] and Ack[2:4] are legal expressions.

4.1.8 Function Call

A function call can be used in an expression. It can either be a system
function call (starts with the $ character) or a user-defined function call.

Stime + SumOfEvents (A, B)
/* $time is a system function and SumOfEvents is a
user-defined function {defined elsewhere) */
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Functions are described in greater detail in Chapter 10.

.2 Operators

Operators in Verilog HDL are classified into the following categories.
i.  Arithmetic operators
ii. Relational operators
iii. Equality operators
iv. Logical operators
v. Bitwise operators
vi. Reduction operators
vii. Shift operators
viii. Conditional operators
ix. Concatenation and replication operators
The following table shows the precedence and names of all the operators.

The operators are listed from highest precedence (top row) to the lowest pre-
cedence (bottom row). Operators in the same row have identical precedence.

+ Unary plus

- Unary minus

! Unary logical negation
~ Unary bit-wise negation
& Reduction and

~& Reduction nand

A Reduction xor

A~ or ~A Reduction xnor

| Reduction or
~ Reduction nor

* Multiply

/ Divide

% Modulus

+ Binary plus

- Binary minus
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<< Left shift

>> Right shift

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Logical equality
I= Logical inequality
=== Case equality

== Case inequality

& Bit-wise and

A Bit-wise xor

A~ or ~A Bit-wise xnor

I Bit-wise or

&& Logical and

Il Logical or

IS Conditional operator

All operators associate left to right except for the conditional operator that
associates right to left. The expression:

A+B-C
is evaluated as:

(A+B)-C // Left to right
while the expression:

A?B:C?D: F
is evaluated as:

A?B: (C?D: F) // Right to left.
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Parentheses can be used to change the order of precedence, such as in the ex-
pression:

(A?B:C)?D:F

.2.1  Arithmetic Operators

The arithmetic operators are:
¢+ (unary and binary plus)
¢ - (unary and binary minus)
e *(multiply)
e /(divide)
* % (modulus)

Integer division truncates any fractional part. For example,
7/ 4 is 1

The % (modulus) operator gives the remainder with the sign of the first
operand.

7% 4 is 3
while:
-7%4 is -3

If any bit of an operand in an arithmetic operation is an x or a z, the entire
result is an x. For example,

'bl0x1 + 'b01111 is 'bxoox

Result Size

The size of the result of an arithmetic expression is determined by the size
of the largest operand. In case of an assignment, it is determined by the size of
the left-hand side target as well. Consider the following example.
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reg [(0:3) Arc, Bar, Crt;
reg [(0:5] Frx;

Arc = Bar + Crt;
Frx = Bar + Crt;

The result size of the first addition is determined by the size of Bar, Crr and
Arc which is four bits. The size of the second addition operation is decided
similarly by the size of Frx (largest of sizes Frx, Bar, Crt), which is six bits.
So in the first assignment, any overflow from the plus operation is discarded
while in the second assignment, any overflow bit is saved in the result bit
Frx[1].

In larger expressions, how are the sizes of the intermediate results deter-
mined? Verilog HDL defines a rule which states that all intermediate results of
an expression shall take the size of the largest operand (in case of an assign-
ment, this also includes the left-hand side target). Consider another example.

wire [4:1) Box, Drt;
wire [1:5] Cfg;
wire [1:6] Peg;
wire [1:8]) Adt;

assign Adt = (Box + Cfg) + (Drt + Peg);

The size of the largest operand in the right-hand side expression is 6, but in-
cluding the size of the left-hand side, the largest size is 8. So all additions are
performed using 8 bits. For example, adding Box and Cfg yields a result of
size 8.

Unsigned and Signed

When performing arithmetic operations and assignments, it is important
to note which operands are being treated as unsigned values and which are be-
ing treated as signed values. An unsigned value is stored in:

e anet
* aregregister
* an integer in base format notation
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A signed value is stored in:
* an integer register
¢ aninteger in decimal form

Here are some examples of assignments.

reg [0:5] Bar;
integer Tab;

Bar = - 4'dl12; // Reg Bar has the decimal value 52,
// which is the vector 110100.

Tab = — 4'd12; // Integer Tab has the value -12
// (bits 110100)

-4'd12 /7 4 // Result is 1073741821.
-12 7/ 4 // Result is -3.

Since Bar is a reg register, it stores only unsigned values. The value of the
right-hand side expression is 'b110100 (the two’s complement of 12). Thus
Bar holds the decimal value 52 after the assignment. In the second assign-
ment, the right-hand side expression is the same, whose value is 'b110100, but
this time it is being assigned to an integer register which holds signed quanti-
ties. Thus 7ab holds the decimal value —12 (the bit-vector 110100). Note that
in both cases, the same bit-vector is stored; however, in the first case, the vec-
tor is interpreted as an unsigned number and in the second case, it is interpret-
ed as a signed number.

Here are some more examples.

Bar = - 4'dl2 / 4;
Tab = - 4'4dl2 / 4;

Bar = - 12 / 4;
Tab=-12 / 4;

In the first assignment, Bar gets the decimal value 61 (bit-vector 111101),
while in the second assignment, Tab gets the decimal value 1073741821 (bit-
vector 0011...11101). Bar gets the same value in the third assignment as in the
first assignment. This is because Bar holds only unsigned values. In the fourth
assignment, Tab gets the decimal value -3.
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Here are some more examples.

Bar =4 - 6;
Tab =4 - 6;

Bar gets the decimal value 62 (two’s complement of —2), while Tab gets the
decimal value -2 (bit-vector 111110).

Here is another example.

Bar = -2 + (-4);
Tab = -2 + (-4);

Bar gets the decimal value 58 (bit-vector 111010), while Tab gets the decimal
value —6 (bit-vector 111010).

4.2.2 Relational Operators

The relational operators are:
* > (greater than)
¢ < (less than)
e >=(greater than or equal to)
¢ <= (less than or equal to)

The result of a relational operator is true (the value 1) or false (the value 0).
Result is an x if any bit in either of the operands is an x or a z. For example,

23 > 45
is false (value 0), while:
52 < 8'hxFF

is x. If operands are not of the same size, the smaller operand is zero-filled on
the most significant bit side (the left). For example,

'b1000 >= 'b01110

1s equivalent to:
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'b01000 >= 'b01110

which is false (value 0).

4.2.3 Equality Operators

The equality operators are:

» == (logical equality)
e !=(logical inequality)
o === (case equality)

e !==(case inequality)

The result is 0 if the comparison is false, else the result is a 1. In case compar-
isons, values x and z are compared strictly as values, that is, with no interpre-
tations, and the result can never be an unknown, while in logical comparisons,
values x and z have their usual meaning and the result may be unknown; that
is, for logical comparisons if either operand contains an x or a z, the result is
the unknown value (x).

Here is an example. Given:

Data = 'bl1x0;
Addr = 'bl1x0;

then:
Data == Addr

is unknown, that is, the value x, and:
Data === Addr

1s true, that is, the value 1.

If the operands are of unequal lengths, the smaller operand is zero-filled
on the most significant side, that is, on the left. For example,

2'b10 == 4'b0010

61



CHAPTER 4  Expressions

is same as:’
4'b0010 == 4'b0010

which is true (the value 1).

4.24 Logical Operators

The logical operators are:
e && (logical and)
¢ Il (logical or)
* ! (unary logical negation)

These operators operate on logical values 0 or 1. The result of a logical opera-
tion is a 0 or a 1. For example, given:

Crd = 'b0; // 0 is false.
Dgs = 'bl; // 1 is true.

then:
Crd && Dgs is 0 (false)
crd || Dgs is 1 (true)
! Dgs is 0 (false)

For vector operands, a non-zero vector is treated as a 1. For example, giv-

en:

A_Bus = 'b0110;

B_Bus = 'b0100;
then:

A_Bus || B_Bus is 1

A Bus && B _Bus is also 1
and:

62



Operators SECTION 4.2

! A_Bus is same as ! B_Bus

which is 0.

If a bit in any of the operands is an x, the result is also an x.

Ix is x

1.2.5 Bit-wise Operators

The bit-wise operators are:
*  ~ (unary negation)
* & (binary and)
¢ | (binary or)
e A (binary exclusive-or)
e ~A A~ (binary exclusive-nor)
These operators operate bit-by-bit, on corresponding bits of the input oper-

ands and produce a vector result. The following tables show the result of the
bit-by-bit operation for the various operators.

& (and) 0 1 X z | (or) 0 1 X z
0 0 0 0 0 0 0 1 X X
1 0 1 X X 1 1 1 1 1
X 0 X X X X X 1 X X
z 0 X X X z X 1 X X
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A (xor) 0 1 X z A~ (xnor) 0 1 X z
] ] 1 X X ] 1 0 X X
1 1 0 X X 1 0 1 X X
X X X X X X X X X X
z X X X X z X X X X
~ (negation) I 0 1 X z
l 1 0 X X

Here is an example. Given,

A= 'b0110;
B = 'b0100;
then:
A|B is 0110
A& B is 0100

If the operands are unequal in length, the smaller operand is zero-filled on the
most significant side. For example,

'b0110 ~ 'b10000
is same as:
'b00110 ~ 'b10000

which is 'b10110.
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2.6 Reduction Operators

The reduction operators operate on all bits of a single operand and pro-
duce a 1-bit result. The operators are:

& (reduction and):
If any bit is 0, the result is 0, else if any bit is an x or a z, the result
is an x, else the result is a 1.

~& (reduction nand):
Invert of & reduction operator.

| (reduction or):

If any bit is a 1, the result is 1, else if any bit is an x or a z, the re-
sult is an x, else the result is 0.

~| (reduction nor):

Invert of | reduction operator.

A (reduction xor):

If any bit is an x or a z, the result is an x, else if there are even
number of 1’s in the operand, the result is 0, else the result is 1.

~" (reduction xnor):
Invert of » reduction operator.

Here are some examples. Given,

A ="'b0110;

then:

|
&

= 'b0100;

is 1
is 0

~~ A is 1

The reduction xor operator can be used to determine if any bit of a vector
is an x. Given,

MyReg = 4'b01x0;

then:
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“MyReg is an x
This can be checked using an if statement such as:

if ("MyReg === 1'bx)
$display ("There is an unknown in the vector MyReg!");

Note that the logical equality (==) operator cannot be used for comparison;
the logical equality operator comparison will only yield the result x. The case
equality operator yields the value 1 which is the desired result.

4.2.7  Shift Operators

66

The shift operators are:
* << (left-shift)
e >> (right-shift)

The shift operation shifts the left operand by the right operand number of
times. It is a logical shift. The vacated bits are filled with 0. If the right oper-
and evaluates to an x or a z, the result of the shift operation is an x. Here is an
example. Given:

reg [0:7] Qreg;
Qreg = 4'b0111;
then:
Qreg >> 2 is 8'b0000_0001
Verilog HDL has no exponentiation operator. However, the shift operator
can be used to support this partly. For example, if you are interested in com-
puting 2Y“nBits  this can be achieved by using the shift operator, such as:
32'bl << NumBits // NumBits must be less than 32.

In a similar vein, a 2-to-4 decoder can be modeled using a shift operator.

wire [0:3) DecodeCut = 4'dl << Address([0:1];
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Address[0:1] can have values 0, 1, 2, and 3. Correspondingly, DecodeQOut has
the values 4'b0001, 450010, 4'b0100, and 4'b1000, thereby modeling a decod-
er.

1.2.8 Conditional Operator

The conditional operator selects an expression based on the value of the
condition expression and it is of the form:

cond_expr ? exprl : expr2
If cond_expr is true (that is, has value 1), exprl is selected, if cond_expr is
false (value 0), expr2 is selected. If cond_expr is an x or a z, the result is a bit-

wise operation on exprl and expr2 with the following logic: 0 with 0 gives 0,
1 with 1 gives 1, rest are x.

Here is an example.
wire [0:2] Student = Marks > 18 ? Grade_A : Grade_C;

The expression Marks > 18 1s computed; if true, Grade_A is assigned to
Student, if Marks is <= 18, Grade_C is assigned to Student.

Here is another example.

always
#5 Ctr = (Ctr '=25) ? (Cer+ 1) : 5;

The expression in the procedural assignment says that if Ctr is not equal to 25,
increment Ctr, else if Ctr becomes 25, reset it to 5.

4.2.9 Concatenation and Replication

Concatenation is the operation of joining bits from smaller expressions to
form larger expressions. It is of the form:

{ exprl, expr2,. . ., exprN}

Here are some examples.
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wire [7:0] Dbus;
wire [11:0] Abus;

assign Dbus([7:4] = {Dbus[0], Dbus([1l], Dbus[2], Dbus([31};
// Assign lower four bits in reverse order to upper
// four bits.

assign Dbus = {Dbus[3:0], Dbus(7:41};
// Swap lower and upper four bits.

Concatenation of unsized constant numbers is not allowed as the size of
these numbers are not known. For example,

{Dbus, 5} // Unsized constant in concatenation is not
// allowed.

is not legal.

Replication is performed by specifying a repetition number. It is of the
form:

{ repetition_number { exprl , expr2,. . ., exprN}}
Here are some examples.

Abus
Abus

{3{4'b1011}}; // The bit-vector 12'b1011_1011_1011
{{4 {Dbus(71}}, Dbus}; /* Sign extension */

{3{1'b1}} is 111
{3{Ack}} is same as {Ack, Ack, Ack}

4.3

Kinds of Expressions

A constant expression is an expression that evaluates to a constant value at
compile time. More specifically, a constant expression can be made up of:

i. constant literals, such as 'b10 and 326

ii. parameter names, such as RED from the parameter declaration:
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parameter RED = 4'b1110;

A scalar expression is an expression that evaluates to a 1-bit result. If a
scalar result is expected but the expression produces a vector result, the least
significant bit of the vector is used (the rightmost bit).

1.4 Exercises

1. Declare a parameter GATE_DELAY with a value of 5.

2. Given a memory of size 64 words, with 8 bits per word, write Verilog
code to swap the contents of memory in reverse order, that is, transfer
word at 0 to word at 63, word 1 to word 62, and so on.

3. Given a 32-bit bus, Address_Bus, write an expression that computes the
reduction nand of bits 11 through 20.

4. Given one bus, Control_Bus[15:0], write an assignment statement that
will split the bus into two buses, Abus[0:9] and Bbus[6:1].

5. Write an expression that performs the arithmetic shift of a 8-bit signed
number contained in Qparity.

6. Using a conditional operator, write an assignment statement that selects
the value of NextState. If CurrentState is RESET, then NextState is GO, if
CurrentState is GO, NextState is BUSY, if CurrentState is BUSY, NextState
is RESET.

7. Model the behavior of the 2-to-4 decoder circuit shown in Figure 2-2 us-
ing a single continuous assignment statement. [Hint: Use shift operator,
conditional operator and the concatenation operator].

8. How would you generate a bus, BusQ[0:3], from four scalar variables, A,
B, C, and D?
How would you form a new bus, BusR[10:1], from two buses, BusA[0:3]
and BusY[20:15]?
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This chapter describes the gate-level modeling capability of Verilog HDL.
It describes the available built-in primitive gates and how these can be used to
describe hardware.

5.1 The Built-in Primitive Gates

The following built-in primitive gates are available in Verilog HDL.
i.  Multiple-input gates:
and, nand, or, nor, xor, xnor
ii. Multiple-output gates:
buf, not
iii. Tristate gates:
bufif0, bufifl, notif0, notifl

iv. Pull gates:
pullup, pulldown
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v. MOS switches:
Ccmos, NMos, pmoes, rcmoes, rmmos, rpmos

vi. Bidirectional switches:
tran, tranif0, tranifl, rtran, rtranif0, rtranifl

A gate can be used in a design using a gate instantiation. Here is a simple for-
mat of a gate instantiation.

gate_type [ instance _name ] ( terml , term2,. . ., termN);

Note that the inszance_name is optional; gate_type is one the gates listed ear-
lier. The terms specify the nets and registers connected to the terminals of the
gate.

Multiple instances of the same gate type can be specified in one construct.
The syntax for this is the following.

gate_type
[ instance_namel | ( termll, terml2, . . ., termlN),
[ instance_name2 ] ( term21, term22,. . ., term2N),
[ instance_nameM | ( termMl , termM2, . . . , termMN );

5.2  Multiple-input Gates

The multiple-input built-in gates are:
and nand nor or xor xnor

These logic gates have only one output and one or more inputs. Here is the
syntax of a multiple-input gate instantiation.

multiple_input_gate_type
[ instance_name ] ( Outputd, Inputl , Input2,. . ., InputN);

The first terminal is the output and all others are the inputs. See Figure 5-1.

Here are some examples. The logic diagrams are shown in Figure 5-2.
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Inputl
Input2 . .

p ___> MUIngpaI::mPUt OutputA
InputN - |

Figure 5-1 Multiple-input gate.
and Al (Outl, Inl, In2);
and RBX (Sty, Rib, Bro, Qit, Fix);
xor (Bar, Bud[0], Bud[ll, Bud(2}]),

(Car, Cut(0], cut[l]),
(Sar, Sut[2], Sut(1ll, Sut[0], Sut(3]));

Rib
In2 — Qit — —
Fix — |

Bud[0]

Bud[1] E%)D_B“’ Cut{0] Car
Sut[2]

Sut[1] 3 Sar

Sut[0]}

Sut{3]

Figure 5-2 Multiple-input gate examples.

The first gate instantiation is a 2-input and gate with instance name A1, out-
put Outl and with two inputs, In/ and In2. The second gate instantiation is a
4-input and gate with instance name RBX, output Sty and four inputs, Rib,
Bro, Qit and Fix. The third gate instantiation is an example of an xor gate with
no instance name. Its output is Bar and it has three inputs, Bud[0], Bud{1] and
Budf2]. Also, this instantiation has two additional instances of the same type.
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The truth tables for these gates are shown next. Notice that a value z at an
input is handled like an x; additionally, the output of a multiple-input gate can
never be a z.

nand 0 1 X z and 0 1 X z
0 1 1 1 1 0 0 0 0 0
1 1 0 X X 1 0 1 X X
X 1 X X X X 0 X X X
z 1 X X X z 0 X X X

or 0 1 X z nor 0 1 X z
0 0 1 X X 0 1 0 X X
1 1 1 1 1 1 0 0 0 0
X X 1 X X X X 0 X X
z X 1 X X z X 0 X X

xor 0 1 X z xnor 0 1 X z

0 0 1 X X 0 1 0 X X
1 1 0 X X 1 0 1 X X
X X X X X X X X X X
z X X X X z X X X X
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5.3  Multiple-output Gates

The multiple-output gates are:
buf not

These gates have only one input and one or more outputs. See Figure 5-3. The
basic syntax for this gate instantiation is:

multiple output_gate_ type
[ instance_name ] (Qutl, Out2,. . ., OutN, Inputd);

The last terminal is the input, all remaining terminals are the outputs.

Outl Outl
Out2 Out2
InputA . InputA .
not OutN buf OutN

Figure 5-3 Multiple-output gates.

Here are some examples.

buf Bl (Fan([01, Fan[l], Fan(2], Fan[3}, Clk);
not NI (PhA, PhB, Ready);

In the first gate instance, Clk is the input to the buf gate; this gate instance has
four outputs, Fan[0] through Fan[3]. In the second gate instance, Ready is the
only input to the not gate. This instance has two outputs, PhA and PhB.

The truth table for these gates are shown next.

buf |

I 0 1 X z
1

0 not
(output) ] 0 1 X X (output)j
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Tristate Gates

The tristate gates are:
bufif0 bufifl notif0 notifl

These gates model three-state drivers. These gates have one output, one data
input and one control input. Here is the basic syntax of a tristate gate instanti-
ation.

tristate_gate [ instance_name ] ( OutputA, InputB, ControlC);

The first terminal OQusputA is the output, the second terminal InputB is the data
input, and the control input is ControlC. See Figure 5-4. Depending on the
control input, the output can be driven to the high-impedance state, that is, to
value z. For a bufif0 gate, the output is z if control is 1, else data is transferred
to output. For a bufif1 gate, output is a z if control is 0. For a notifO gate, out-
put is at z if control is at 1 else output is the invert of the input data value. For
notif1 gate, output is at z if control is at 0.

notifl bufifi
InputB OutputA InputB E OutputA
ControlC ControlC
notif0 bufifo

InputB OutputA InputB OutputA
ControlC ControlC i

Figure 5-4 Tristate gates.

Here are some examples.

bufifl BF1 (Dbus, MemData, Strobe);
notif0 NT2 (Addr, Abus, Probe);
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The bufifl gate BFI drives the output Dbus to high-impedance state when
Strobe is 0, else MemData is transferred to Dbus. In the second instantiation,
when Probe is 1, Addr is in high-impedance state, else Addr gets the inverted

value of Abus.

The truth table for these gates are shown next. Some entries in the table
indicate alternate entries. For example, 0/z indicates that the output can either
be a 0 or a z depending on the strengths of the data and control values;
strengths are discussed in Chapter 10.

bufifd Control bufifl Control
0 1 X z 1 X z
0 0 z 0z O0/z 0 0 0z 0Oz
Data 1 1 z Vz 1z paa| 1 1 Vz 1/z
b X z X b X X X X
z X z X X z X X X
notif) Control notifl Control
0 1 X z 1 X z
0 1 z 1z 1/z 0 1 1/z 1/2
Data 1 0 z 0z 0/z Data 1 0 ¥z Oz
b X z X X X X X X
z X z X X z X X X
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5.5 Pull Gates

The pull gates are:
pullup pulldown

These gates have only one output with no inputs. A pullup gate places a 1 on
its output. A pulldown gate places a 0 on its output. A gate instantiation is of
the form:

pull_gate [ instance_name ] ( Outputd);

The terminal list of this gate instantiation contains only one output.

Here is an example.
pullup PUP (Pwr);

This pullup gate has instance name PUP with output Pwr tied to 1.

5.6 MOS Switches

The MOS switches are:
Cmos PmMOS nNmMOS rcmos Ypmos rnmos

These gates model unidirectional switches, that is, data flows from input to
output and the data flow can be turned off by appropriately setting the control
input(s).

The pmos (p-type MOS transistor), nmos (n-type MOS transistor), rnmos
(‘r’ stands for resistive) and rpmos switches have one output, one input and
one control input. The basic syntax for an instantiation is;

gate_type [ instance_name ) ( Outputd , InputB, ControlC);
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The first terminal is the output, the second terminal is the input and the last
terminal is the control. If control is 0 for nmos and mmos switches and 1 for
pmos and rpmos switches, the switch is turned off, that is, output has value z;
if control is 1, data at input passes to output; see Figure 5-5. The resistive
switches (rnmos and rpmos) have a higher impedance (resistance) between
the input and output terminals as compared to the non-resistive switches
(nmos and pmos). Thus when data passes from input to output, a reduction in
strength occurs for resistive switches; strengths are described in Chapter 10.

InputB OutputA InputB OutputA
ControlC ControlC
nmos switch pmos switch

Figure 5-5 Nmos and pmos switches.

Here are some examples.

pmos Pl (BigBus, SmallBus, GateControl);
ramos8 RN1 (ControlBit, ReadyBit, Hold);

The first instance instantiates a pmos switch with instance name PI. The input
to the switch is SmallBus and the output is BigBus and the control signal is
GateControl.

The truth tables for these switches are shown next. Some entries in the ta-
ble indicate alternate entries. For example, 1/z indicates that the output can be
either 1 or z depending on the input and control.
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pmos Control nmos Control
rpmos nmos
0 1 X z 0 1 X z
0 0 z 0/z 0o z 0 z 0 0z 0/z
Data 1 ) z 1/z 1/z Data 1 z 1 1/z 1/z
X X z X X X z X X X
z z z z z z z z z z

The cmos (complimentary MOS) and rcmos (resistive version of cmos)
switches have one data output, one data input and two control inputs. The syn-

tax for instantiating these two switches is of the form:

(r)cmos [ instance_name }

( OutputA, InputB, NControl , PControl );

The first terminal is the output, the second is the input, the third is the n-
channel control input and the fourth terminal is the p-channel control input. A
cmos (rcmos) switch behaves exactly like a combination of a pmos (rpmos)
and an nmos (rnmos) switch with common outputs and common inputs; see

Figure 5-6.

! PControl

I

’ NControl

‘ OutputA

Figure 5-6 (r)cmos switch.
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5.7

Bidirectional Switches

The bidirectional switches are:
tran rtran tranif0 rtranif0 tranifl rtranifl

These switches are bidirectional, that is, data flows both ways and there is no
delay when data propagates through the switches. The last four switches can
be turned off by setting a control signal appropriately. The tran and rtran
switches cannot be turned off.

The syntax for instantiating a tran or a rtran (resistive version of tran)
switch is:

(r)tran | instance_name | ( SignalA, SignalB);

The terminal list has only two terminals and data flows unconditionally both
ways, that is, from SignalA to SignalB and vice versa.

The syntax for instantiating the other bidirectional switches is:
gate_type [ instance name ] ( SignalA, SignalB, ControlC);

The first two terminals are the bidirectional terminals, that is, data flows from
SignalA to SignalB and vice versa. The third terminal is the control signal. If
ControlC is 1 for tranifQ and rtranif0, and O for tranif1 and rtranif1, the bidi-
rectional data flow is disabled. For the resistive switches (rtran, rtranifO and
rtranif1), the strength of the signal reduces when it passes through the switch;
strengths are discussed in Chapter 10.

5.8
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Gate Delays

The signal propagation delay from any gate input to the gate output can be
specified using a gate delay. The gate delay can be specified in the gate instan-
tiation itself. Here is the syntax of a gate instantiation with the delay specifica-
tion.
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gate_type [ delay ] | instance_name ] ( terminal_list );

The delay specifies the gate delay, that is, the propagation delay from any gate
input to the output. When no gate delay is specified, the default delay is zero.
A gate delay can be comprised of up to three values:
i. rise delay
ii. fall delay
iii. turn-off delay
A delay specification may contain zero, one, two, or all three values specified.

The following table shows the values that are used for a delay based on the
number of specified values.

No 1 value 2 values 3 values
delay (d) (d1, d2) (dA, dB, dC)
Rise 0 d dl dA
Fall 0 d d2 dB
To_x 0 d min® (d1,d2) | min(dA, dB, dC)
Turn-off 0 d min (d1, d2) dc

a. min: minimum

Notice that the transition to x delay (to_x) cannot be explicitly specified but is
determined from the other specified values.

Here are some examples. Note that all delays in a Verilog HDL model are
expressed in terms of time units. The association of time units with actual
time is done using the “timescale compiler directive. In the following instanti-
ation,

not NI (Qbar, Q);
the gate delay is O since no delay has been specified. In the gate instantiation,

nand #6 (Out, Inl, In2);
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all delays are 6, that is, the rise delay and fall delay are both 6. Turn-off delay
does not apply to a nand gate since the output never goes into high-
impedance. The transition to x delay is also 6.

and #(3, 5) (out, Inl, In2, In3);

In this gate instantiation, the rise delay has been specified to be 3, the fall de-
lay is 5 and the transition to x delay is the minimum of 3 and 5, which is 3. In
the following gate instance,

notifl #(2, 8, 6) (Dout, Dinl, Din2);

the rise delay is 2, the fall delay is 8, the turn-off delay is 6 and the transition
to x delay is the minimum of 2, 8 and 6, which is 2.

Multiple-input gates, such as and and or, and multiple-output gates (buf
and not) can have only up to two delays specified (since output never goes to
z). Tristate gates can have up to three delays and the pull gates cannot have
any delays.

Min:typ:max Delay Form

A delay for a gate (including all other delays such as in continuous assign-
ments) can also be specified in a min:typ:max form. The form is:

minimum: typical : maximum

The minimum, typical and maximum values must be constant expressions.
Here is an example of a delay in this form used in a gate instantiation.

nand #(2:3:4, 5:6:7) (Pout, Pinl, Pin2);

The selection of which delay to use is usually made as an option during a sim-
ulation run. For example, if maximum delay simulation is performed, a rise
delay of 4 and a fall delay of 7 is used for the nand gate instance.

A specify block can also be used to specify gate delays. Specify blocks are
discussed in Chapter 10.
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9 Array of Instances

When repetitive instances are required, a range specification can optional-
ly be specified in a gate instantiation (a range specification can also be used in
a module instantiation). The syntax of a gate instantiation in this case is:

gate type [ delay ] instance_name [ leftbound : rightbound ]
(list _of_ terminal_names );

The leftbound and rightbound values are any two constant expressions. It is
not necessary for the left bound to be greater than the right bound and either
of the bounds is not restricted to be a 0. Here is an example.

wire [3:0] Out, InA, InB;

nand Gang [3 : 0] (Out, InA, InB);
This instantiation with the range specification is same as:

nand
Gang3 (outl[3], InAl[3], InB[3]),
Gang2 (outl2], InAl2), InB[2]),
Gangl (out[l], InAl[l], InB[1l]),
Gang0 (out[0], InAlO0}, InB[0]);

Note that the instance name is not optional when specifying an array of in-
stances.

10  Implicit Nets

If a net is not declared in a Verilog HDL model, by default, it is implicitly
declared as a 1-bit wire. However the “default_nettype compiler directive can
be used to override the default net type. This compiler directive is of the form:

‘default_nettype net_type
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Here is an example.
‘default_nettype wand

With this directive, all subsequent undeclared nets are of type wand.

The “default_nettype compiler directive occurs outside of a module defi-
nition and stays in effect until the next same directive is reached or a “resetall

directive is found.

5.11 A Simple Example
Here is a gate-level description of a 4-to-1 multiplexer circuit shown in
Figure 5-7. Note that no instance names are specified in the gate instantiations

as these are optional (except when used in an array of instances).

module MUX4x1 (Z, DO, D1, D2, D3, S0, S1};

output Z;
input DO, D1, D2, D3, S0, S1;

and (T0, DO, SObar, Slbar),
(11, D1, SObar, S1),
(T2, D2, S0, Slbar),
(T3, D3, S0, S1);

not (SObar, SO0),
(Slbar, S1);

or (Z, TO, T1, T2, T3);
endmodule

What if the instantiation for the or gate was replaced by the following in-

stantiation?

or z (z, T0, T1, T2, T3); // Not legal Verilog HDL.
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D3 > T3
B

D1

z
D2 T2
Do : TO

S0
SObar

Figure 5-7 A 4-to-1 multiplexer.

Notice that the instance name is also Z and the net connected to the output of
the gate is also Z. This is not allowed in Verilog HDL. An instance name can-
not be the same as a net name within one module.

A 2-to-4 Decoder Example

Here is a gate-level description of a 2-to-4 decoder circuit shown in Figure
5-8.

module DEC2x4 (A, B, Enable, Z);
input A, B, Enable;
output [0:3] Z;
wire Abar, Bbar;

not # (1, 2)
V0 (Abar, A),
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NO Z[0)

%0
A N Z[1]
N2 Z[2)
—"—{ v So——
B
Bbar

I

N3 Z[3]
Enable
Figure 5-8 A 2-to-4 decoder circuit.
V1 (Bbar, B);
nand #(4, 3)

NO (Z[0), Enable, Abar, Bbar),

N1 (Z[1), Enable, Abar, B),

N2 (Z[2]), Enable, A, Bbar),

N3 (Z[3), Enable, A, B);
endmodule

5.13
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A Master-slave Flip-flop Example

Here is a gate-level description of a master-slave D-type flip-flop shown in
Figure 5-9.

module MSDFF (D, C, Q. Obar);
input D, C;
output Q, Qbar;

not
NT1 (NotD, D),
NT2 (NotC, C),
NT3 (NotY, Y);
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Figure 5-9 A master-slave flip-flop.

nand

ND1 (D1, D, C),

ND2 (D2, C, NotD),
ND3 (Y, D1, Ybar),
ND4 (Ybar, Y, D2},
ND5 (Y1, Y, Not(C),
ND6 (Y2, NotY, NotC),
ND7 (Q, Qbar, Y1},
ND8 (Qbar, Y2, Q);

endmodule

.14 A Parity Circuit

A gate-level model for a 9-bit parity generator, shown in Figure 5-10, is
described next.

module Parity 9 Bit (D, Even, 0dd);
input [0:8] D;
output Even, 0dd;

xor #(5, 4)
XEO (EO, D[0], D[1]),
XE1l (E1, D[2], D[3]),
XE2 (E2, D[4], DI[5]),
XE3 (E3, D[6], D[7]),
XF0 (FO, EO, E1),
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Figure 5-10 A parity generator.

XFl (Fll E2I E3)l
XHO (HO, FO, F1),
XEVEN (Even, D[8], HO);

not #2
XODD (0dd, Even);
endmodule

5.15 Exercises
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1.

Model the circuit shown in Figure 5-11 using primitive gates. Write a test
bench to test out the circuit. Exercise the circuit with all possible values of
inputs.

Model the circuit of a priority encoder shown in Figure 5-12 using primi-
tive gates. Output Valid is O when all inputs are 0, otherwise it is a 1.
Write a test bench and verify that the model behaves as a priority encoder.
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A[0]
B[0]

A[l]
B[1
(1] 0
A[2)
) -
Al3)
B[3]) ‘
Figure 5-11 Logic for A not equals B.
Data(3] Encode[0]
Data[2] -1r—l>o———j_r i
1 } ) Encode[1]
Data{1]
Valid
Data[0]

Figure 5-12 Priority encoder.
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USER-DEFINED PRIMITIVES

In the previous chapter, we looked at the built-in primitive gates provided
by Verilog HDL. This chapter describes the Verilog HDL capability of speci-
fying user-defined primitives (UDP).

A UDP is instantiated exactly the same way as a primitive gate, that is, the
syntax for an UDP instantiation is identical to that of a gate instantiation.

6.1  Defining a UDP

A UDP is defined using a UDP declaration which has the following syn-
tax.

primitive UDP_name ( OutputName , List_of_inputs );
Output_declaration
List_of input_declarations
[ Reg _declaration ]
[ Initial_statement ]
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table
List_of _table_entries
endtable
endprimitive

A UDP definition does not depend on a module definition and thus ap-
pears outside of a module definition. A UDP definition can also be in a sepa-
rate text file.

A UDP can have only one output and may have one or more inputs. The
first port must be the output port. In addition, the output can have the value O,
1 or x (z is not allowed). If a value z appears on the input, it is treated as an x.
The behavior of a UDP is described in the form of a table.

The following two kinds of behavior can be described in an UDP.

i.  Combinational.
ii. Sequential (edge-triggered and level-sensitive).

W2 Combinational UDP

In a combinational UDP, the table specifies the various input combina-
tions and their corresponding output values. Any combination that is not spec-
ified is an x for the output. Here is an example of a 2-to-1 multiplexer.

primitive MUX2x1 (Z, Hab, Bay, Sel);
output Z;
input Hab, Bay, Sel;

table
//Hab Bay Sel Z Note: This line is only a comment.

0 ? 1 0 ;
1 ? 1 : 1 ;
? 0 0 : 0 ;
? 1 0 1;
0 0 X 0 ;
1 1 X 1;

endtable

endprinitive
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The ? character represents a don’t-care value, that is, it could either be a 0, 1
or x. The order of the input ports must match the order of entries in the table,
that is, the first column in the table corresponds to the first input in the module
port list (which is Hab), second column is Bay and the third column is Sel. In
the table for the multiplexer, there is no table entry for one input combination
01x (there are others as well); in this case, the output defaults to an x (as also
for other unspecified entries),

Here is an example of a 4-to-1 multiplexer, shown in Figure 6-1, formed
using 2-to-1 multiplexer primitives.

A B c D
I |

Sel[1] MUX2x1 MUXﬁI/L Sel[1]

z

Figure 6-1 A 4-to-1 multiplexer built using UDPs.

module MUX4x1 (Z, A, B, C, D, Sel);
input A, B, C, D;
input [2:1] Sel;
output Z;
parameter tRISE = 2, tFALL = 3;

MUX2x1 # (tRISE, tFALL)

(TL, A, B, Sell[l]),

(tp, C, D, Sell[ll),

(Zz, TL, TP, Sel(2]);
endmodule

In case of a UDP instantiation, up to two delays can be specified as shown
in the above example. This is because the output of an UDP can either get a
value O or a value 1, or the value x (there is no turn-off delay).
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»3  Sequential UDP

In a sequential UDP, the internal state is described using a 1-bit register.
The value of this register is the output of the sequential UDP.

There are two different kinds of sequential UDP, one that models level-
sensitive behavior and another that models edge-sensitive behavior.

A sequential UDP uses the current value of the register and the input val-
ues to determine the next value of the register (and consequently the output).

».3.1 Initializing the State Register

The state of a sequential UDP can be initialized by using an initial state-
ment that has one procedural assignment statement. This is of the form:

initial reg name =0, 1 or x;

This initial statement appears within the UDP definition.

5.3.2 Level-sensitive Sequential UDP

Here is an example of a level-sensitive sequential UDP that models a
D-type latch. As long as the clock is 0, data passes from the input to the out-
put, else the value remains latched.

primitive Latch (Q, Clk, D);
output Q;

reg Q;
input Clk, D;

table
// Clk D Q (state) Q(next)
0 1 : ? : 1;
0 0 : ? : 0;
1 ? 2 ? =
endtable
endprimitive
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The — character implies a “no change”. Note that the state of the UDP is
stored in register Q.

6.3.3 Edge-triggered Sequential UDP

Here is an example of a D-type edge-triggered flip-flop modeled as a
edge-triggered sequential UDP. An initial statement is used to initialize the

state of the flip-flop.

primitive D Edge FF (Q, Clk, Data);
output Q;

reg Q;
input Data, Clk;

initial 0= 0;

table
// Clk Data Q (state) Q(next)

(01) 0 ? : 0 ;
{01) 1 : ? : 1 ;
(0x) 1 : 1 : 1;
(0x) 0 : 0 0
// Ignore negative edge of clock:
(?0) ? : ? : =
// Ignore data changes on steady clock:
? (??): ? r =

endtable

endprimitive

The table entry (01) indicates a transition from O to 1, the entry (0Ox) indicates
a transition from O to x, the entry (?0) indicates a transition from any value (0,
1, or x) to 0, and the entry (??) indicates any transition. For any unspecified
transition, the output defaults to an x.

Given the UDP definition of the D_Edge_FF, it can now be instantiated in
a module just like a primitive gate as shown in the following example of a 4-
bit register.
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module Reg4 (Clk, Din, Dout);
input Clk;
input [0:3] Din;
output [0:3] Dout;

D_Edge_FF

DLABO (Dout[0]1, Clk, Din[0]),
DLAB1 (Dout[l], Clk, Din[1]),
DLAB2 {Dout[2], Clk, Din[2]),
DLAB3 (Dout[3]1, Clk, Din([3]):

endmodule

3.3.4 Mixing Edge-triggered and Level-sensitive Behavior

SECTION 6.3

It is possible to mix level-sensitive entries and edge-triggered entries in
one table. In such a case, the edge transitions are processed before the level-
sensitive ones are processed, that is, the level-sensitive entries override the

edge-triggered entries.

Here is an example of a D-type flip-flop with an asynchronous clear.

primitive D Async_FF (Q, Clk, Clr, Data);

output Q;
reg Q;
input Clr, Data, Clk;

table
// Clk <Clr Data Q(state)

(01) 0 0o : 2
(01) 0 1 2
(0x) 0 1 1
(0x) 0 0 : 0
// Ignore negative edge of
(20) 0 200 ?
(??) 1 ? : ?
? 1 ? 0 ?

endtable

endprimitive

Q(next)
(VI
1;
1;
0 ;
clock:
0;
0;

95



CHAPTER 6  User-Defined Primitives

6.4  Another Example

Here is a UDP description of a 3-bit majority circuit. The output is 1 if the
input vector has two or more 1’s.

primitive Majority3 (Z, A, B, C);
input A4, B, C;

output Z;
table
//A B C Z
0 0 2 0;
0 2 0 0;
? 0 O 0;
1 1 2 1;
1 ? 01 1;
?7 01 1 1;
endtable
endprimitive

6.5 Summary of Table Entries

For sake of completion, listed in the table below are all the possible values
that could be used in a table entry.

Symbol Meaning
0 logic 0
1 logic 1
X unknown
? anyof 0, 1, orx
b any of O or 1
- no change

(AB) value change from A to B
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Symbol Meaning
* same as (77)
r same as (01)
f same as (10)
p any of (01), (0x), (x1)
n any of (10), (1x), (x0)

3.6

Exercises

1.

2
3.
4

How is a combinational UDP different from a sequential UDP?
A UDP can have one or more outputs. True or False?
Can an initial statement be used to initialize a combinational UDP?

Write a UDP description for the priority encoder circuit shown in Figure
5-12. Verify the model using a test bench.

Write a UDP description for a toggle-type flip-flop. In a toggle flip-flop, if
data input is O, output does not change. If data input is a 1, then on every
clock edge, the output toggles. Assume that the triggering clock edge is a
negative clock edge. Verify the model using a test bench.

Model a rising-edge triggered JK flip-flop as a UDP. If both inputs, J and
K, are 0, output does not change. If J is 0 and K is a 1, then output is O. If
Jis 1 and K is O, then output is 1. If J and K are both 1, output toggles.
Verify the model using a test bench.
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This chapter describes the continuous assignment feature of Verilog HDL.
Continuous assignments model dataflow behavior; in contrast, procedural as-
signments (the topic of next chapter) model sequential behavior. Combina-
tional logic behavior can be best modeled using continuous assignments.

7.1 Continuous Assignment

A continuous assignment assigns a value to a net (it cannot be used to as-
sign a value to a register). It has the following form (a simple form):

assign LHS target = RHS expression;
For example,

wire [3:0] Z, Preset, Clear; // Net declaration.

assign Z = Preset & Clear; // Continuous assignment.
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The target of the continuous assignment is Z and the right-hand side expres-
sion is “Preset & Clear”. Note the presence of the keyword assign in the con-
tinuous assignment.

When does a continuous assignment execute? Whenever an event (an
event is a change of value) occurs on an operand used in the right-hand side
expression, the expression is evaluated and if the result value is different, it is
then assigned to the left-hand side target.

In the above example, if either Preset or Clear change, the entire right-
hand side expression is evaluated. If this results in a change of value, then the
resultant value is assigned to the net Z.

The target in a continuous assignment can be one of the following.
i. Scalar net
ii. Vector net
iii. Constant bit-select of a vector
iv. Constant part-select of a vector
v. Concatenation of any of the above

Here are more examples of continuous assignments.
assign BusErr = Parity | (One & OP);
assign Z=~ (A | BY & (C | D) & (E| F);

The last continuous assignment executes whenever there is a change of value
in A, B, C, D, E or F, in which case, the entire right-hand side expression is
evaluated and the result is then assigned to the target Z.

In the next example, the target is a concatenation of a scalar net and a vec-
tor net.

wire Cout, Cin;
wire [3:0] Sum, A, B;

assign {Cout, Sum} = A + B + Cin;
Since A and B are 4-bits wide, the result of addition can produce a maximum

of a 5-bit result. The left-hand side is specified to be five bits (one bit for Cout
and 4 bits of Sum). The assignment therefore causes the rightmost four bits of
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the right-hand side expression result to be assigned to Sum and the fifth bit
(the carry bit) to Cout.

The next example shows how multiple assignments can be written in one
continuous statement.

assign Mux = (S==0) ? 4 : 'bz,

Mux = (S==1) ? B: 'bz,
Mux = (S==2) 2 C: 'bz,
Mux = (S==3) ? D: 'bz;

This is a short form of writing the following four separate continuous assign-

ments.
assign Mux = (S==0) ? 2 : 'bz;
assign Mux = (S==1) ? B: 'bz;
assign Mux = (S ==2) ?2 C: 'bz;
assign Mux = (S 3) ?D: 'bz;

7.2 An Example

Here is an example of a 1-bit full-adder described using the dataflow style.

module FA_Df (A, B, Cin, Sum, Cout);
input A, B, Cin;
output Sum, Cout;

assign Sum=A "~ B " Cin;
assign Cout = (A & Cin) | (B& Cin) | (A & B);
endmodule

In this example, there are two continuous assignments. These assignments are
concurrent in the sense that they are order independent. These continuous as-
signments execute based on events that occur on operands used in the right-
hand side expression. If A changes, both the continuous assignments are eval-
uated, that is, the right-hand side expressions are evaluated and the results are
assigned to the left-hand side targets concurrently.
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7.3  Net Declaration Assignment

A continuous assignment can appear as part of a net declaration itself.
Such an assignment is called a net declaration assignment. Here is an exam-
ple.

wire [3:0] Sum = 4'b0;
wire Clear = 'bl;

wire A GT B=A>B, B GT_ A=B>A;
A net declaration assignment declares the net along with a continuous as-
signment. It is a convenient form of declaring a net and then writing a contin-

uous assignment. See the example below.

wire Clear;
assign Clear = 'bl;

is equivalent to the net declaration assignment:
wire Clear = 'bl;

Multiple net declaration assignments on the same net are not allowed. If
multiple assignments are necessary, continuous assignments must be used.

7.4  Delays

If no delay is specified in a continuous assignment, as in the previous ex-
amples, the assignment of the right-hand side expression to the left-hand side
target occurs with zero delay. A delay can be explicitly specified in a continu-
ous assignment as shown in the following example.

assign #6 Ask = Quiet || Late;
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The delay specified, #6, is the delay between the right-hand side and the left-
hand side. For example, if a change of value occurs on Late at time 5, then the
expression on the right-hand side of the assignment is evaluated at time 5 and
Ask will be assigned a new value at time 11 (= 5 + 6). The delay concept is il-
lustrated in Figure 7-1.

Quiet
10 20
Late
5 15
Ask R — 6 ) 6
‘ 11 26

Figure 7-1 Delay in a continuous assignment.

What happens if the right-hand side changes before it had a chance to
propagate to the left-hand side? In such a case, the latest value change is ap-
plied. Here is an example that shows this behavior.

assign #4 Cab = Drm;

Figure 7-2 shows the effect. The changes on the right-hand side that occur
within the delay interval are filtered out. For example, the rising edge on Drm
at 5 gets scheduled to appear on Cab at 9, however since Drm goes back to 0
at 8, the scheduled value on Cab is deleted. Similarly, the pulse on Drm occur-
ring between 18 and 20 gets filtered out. This corresponds to the inertial delay
behavior; that is, a value change on the right-hand side must hold steady for at
least the delay period before it can propagate to the left-hand side; if the value
on the right-hand side changes within the delay period, the former value does
not propagate to the output.

For each delay specification, up to three delay values can be specified.
i Rise delay
ii. Fall delay
tii. Turn-off delay
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Drm U

5 8 13 18 20 26
Cab . 4 5 ) 4

17 30

Figure 7-2 Values changing faster than delay interval.

Here is the syntax for specifying the three delays.
assign #( rise, fall, turn-off ) LHS_target = RHS_expression;

Here are some examples that show how delays are interpreted when zero to
three delay values are specified.

assign #4 Ask = Quiet || Late; // One delay value.
assign #(4, 8) Ask = Quick; // Two delay values.
assign #(4, 8, 6) Arb = & DataBus; // Three delay values.
assign Bus = MemAddr(7:4]; // No delay value.

In the first assignment statement, the rise delay, the fall delay and the turn-off
delay and the transition to x delay are the same, which is 4. In the second
statement, the rise delay is 4, the fall delay is 8 and the transition to x and z de-
lay are the same, which is the minimum of 4 and 8, which is 4. In the third as-
signment, the rise delay is 4, the fall delay is 8 and the turn-off delay is 6; the
transition to x delay is 4 (the minimum of 4, 8 and 6). In the last statement, all
delays are zero.

What does a rise delay mean for a vector net target? If the right-hand side
goes from a non-zero value to a zero vector, then fall delay is used. If right-
hand side value goes to z, then turn-off delay is used; else rise delay is used.
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7.5  Net Delays

A delay can also be specified in a net declaration, such as in the following
declaration.

wire #5 Arb;

This delay indicates the delay between a change of value of a driver for Arb
and the net Arb itself. Consider the following continuous assignment to the
net Arb.

assign #2 Arb = Bod & Cap;

An event on Bod, say at time 10, causes the right-hand side expression to be
evaluated. If the result is different, it is assigned to Arb after 2 time units, that
is, at time 12. However since Arb has a net delay specified, the actual assign-
ment to the net Arb occurs at time 17 (= 10 + 2 + 5). The waveforms in Figure
7-3 illustrates the different delays.

Cap
20 40
Bod
10 30
Arb 7 < 7 :—
17 47

Figure 7-3 Net delay with assignment delay.
The effect of a net delay is best described as shown in Figure 7-4. First the
assignment delay is used and then any net delay is added on.

If a delay is present in a net declaration assignment, then the delay is not a
net delay but an assignment delay. In the following net declaration assignment
for A, 2 time units is the assignment delay, not the net delay.
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wire #2 A =B - C; // Assignment delay.
Driver 1
Net target assign delay RHS expression
<—| Net delay
assign delay RHS expression
Driver 2

Figure 7-4 Effect of net delay.

.6  Examples

.6.1 Master-slave Flip-flop

Here is a Verilog HDL model for the master-slave flip-flop shown in Fig-
ure 5-9.

module MSDFF_DF (D, C, Q, Qbar);
input D, C;
output O, Qbar;
wire NotC, NotD, NotY, Y, D1, D2, Ybar, Y1, Y2;

asgign NotD = ~ D;
assign NotC = ~ C;
assign NotY = ~ Y;

asgign DI = ~ (D& C);
asgign D2 = ~ (C & NotD);
asgign Y = ~ (D1 & Ybar);
assign Ybar = ~ (Y & D2);
asgign Y = ~ (Y & NotC);
assign Y2 = ~ (NotY & NotC);
asgign Q = ~ (Qbar & Y1);
assign Qbar = ~ (Y2 & Q);
endmodule
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7.6.2 Magnitude Comparator

Here is a dataflow model for a 8-bit (parameterized) magnitude compara-
tor.

module MagnitudeComparator (A, B, AgtB, AeqB, AltB);
parameter BUS = 8;
parameter EQ DELAY = 5, LT DELAY = 8, GT_DELAY = 8;
input [1 : BUS] A, B;
output AgtB, AegB, AltB;

assign #£Q DELAY AegB = A == B;
assign #GT _DELAY AgtB = A > B;
assign #LT DELAY AltB= A< B;

endmodule

7.7 Exercises

1. Give an example of how turn-off delay is used in a continuous assign-
ment,

2. When there are two or more assignments to the same target, how is the ef-
fective value for the target determined?

3. Write a dataflow model for the parity generator circuit shown in Figure 5-

10. Use only two assignment statements. Specify rise and fall delays as
well.

4. Using continuous assignment statements, describe the behavior of the pri-
ority encoder circuit shown in Figure 5-12.

5. Given:
tri0 [4:0] Obus;
assign Obus = Shus;
assign Qbus = Pbus;

What is the value on Qbus if both Pbus and Sbus are all z’s.
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BEHAVIORAL MODELING

In previous chapters, we have examined gate-level modeling using gate
and UDP instantiations, and dataflow modeling using continuous assign-
ments. This chapter describes the third style of modeling in Verilog HDL,
which is, behavioral modeling. To use the full power of Verilog HDL, a model
may contain a mix of all the three styles of modeling.

3.1 Procedural Constructs

The primary mechanisms for modeling the behavior of a design are the
following two statements.

i. Initial statement
ii. Always statement
A module may contain an arbitrary number of initial or always statements.

These statements execute concurrently with respect to each other, that is, the
order of these statements in a module is not important. An execution of an ini-
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tial or an always statement starts a separate control flow. All initial and always
statements execute concurrently starting at time 0.

8.1.1 Initial Statement

An initial statement executes only once. It begins its execution at start of
simulation which is at time 0. The syntax for the initial statement is:

initial
[ timing_control | procedural_statement

where a procedural_statement is one of:

procedural_assignment (blocking or non-blocking)
procedural_continuous_assignment
conditional_statement
case_statement

loop_statement

walt_statement

disable statement

event_trigger

sequential block

parallel_block

task_enable (user or system)

The sequential block (begin...end) is the most commonly used procedural
statement. Here timing_control can be a delay control, that is, wait for a cer-
tain time, or an event control, that is, wait for an event to occur or a condition
to become true. The execution of an initial statement causes the procedural
statement to execute once. Note that an initial statement starts execution at
time 0. It may complete execution at a later time depending on any timing
controls present in the procedural statement.

Here is an example of an initial statement.

reg Yurt;

initial
Yurt = 2;
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The initial statement contains a procedural assignment with no timing control.
The initial statement executes at time 0, which causes Yurt to be assigned the
value 2 at time 0. Here is another example of an initial statement, this time
with a timing control.

reg Curt;

initial
#2 Curt = 1;

Register Curt gets assigned the value 1 at time 2. The initial statement starts
execution at time O but completes execution at time 2.

Here is an example of an initial statement with a sequential block.

parameter SIZE = 1024;
reg [7:0] RAM[0: SIZE-1];
reg RibReg;

initial
begin: SEQ BLK_A
integer Index;

RibReg = 0;
for (Index = 0; Index < SIZE; Index = Index + 1)
RAM[Index] = 0;
end

The sequential block, demarcated by the keywords begin...end, contains pro-
cedural statements that execute sequentially, as in a high-level programming
language such as C. SEQ_BLK_A is the label for the sequential block; this la-
bel is not required if no local declarations are present in the block, for exam-
ple, if the declaration for Index were outside the initial statement, no label
would be required. An integer /ndex has been locally declared within this
block. Furthermore, the sequential block contains one procedural assignment
followed by a for-loop statement. This initial statement, upon execution, ini-
tializes all memory locations with value 0.

Here is another example of an initial statement with a sequential block. In
this example, the sequential block contains procedural assignments with tim-
ing controls.
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// Waveform generation:

parameter APPLY DELAY = 5;

reg (0:7] Port_A;

initial
begin
Port_A = 'h20;

#APPLY DELAY Port_A
#APPLY_DELAY Port_A
#APPLY _DELAY Port_A

end

Upon execution, Port_A will get values as shown in Figure 8-1.

i

i

i

"hF2;
'hdl;
*hOA;

Port_A

'h20

'hF2

'h4l

'h0A

10

15

Figure 8-1 A waveform produced using an initial statement.

An initial statement is mainly used for initialization and waveform gener-

ation as shown in the examples above.

8.1.2 Always Statement

In contrast to the initial statement, an always statement executes repeated-
ly. Just like the initial statement, an always statement also begins execution at
time 0. The syntax for an always statement is:

always

[ timing control ]| procedural_statement

where procedural_statement and timing_control are as described in the previ-

ous section.

Here is an example of an always statement.
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always
Clk = ~ Clk;
// Will loop indefinitely.

This always statement has one procedural assignment. Since the always state-
ment executes repeatedly and there is no timing control specified, the proce-
dural assignment statement will loop indefinitely in zero time. Therefore, an
always statement must always have some sort of timing control.

Here is the same always statement, this time with a delay control.

always
#5 Cclk = ~ Clk;
// Waveform on Clk of period 10.

This always statement, upon execution, produces a waveform with a period of
10 time units.

Here is an example of an always statement with a sequential block that is
controlled by an event control.

reg (0:5] InstrReg;
reg (3:0] Accum;
wire ExecuteCycle;

always
@ (ExecuteCycle)
begin
case (InstrReg(0:1])
2'b00 : Store (Accum, InstrReg(2:5]);
2'bll : Load (Accum, InstrReg(2:5]);
2'b01 : Jump (InstrReg(2:5]):
2'bl0 : ;
endcase
end
// Store, Load and Jump are user-defined
// tasks defined elsewhere.

Statements within a sequential block (begin...end) execute sequentially with

respect to each other. This always statement implies that whenever an event
occurs on ExecuteCycle, that is, whenever it changes, execute the sequential
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block; execution of the sequential block implies executing all statements with-
in the block sequentially.

Here is another example. The model is that of a negative edge-triggered
D-type flip-flop with an asynchronous preset.

module DFF (Clk, D, Set, Q, Qbar);
input Clk, D, Set;
output Q, Qbar;
reg Q, Qbar;

always
wait (Set == 1)
begin
#3 0=1;
#2 QObar = 0;
wait (Set == 0);
end

always
@ (negedge CI1k)
begin
if (Set !=1)
begin
#5 0 = D;
#1 QObar = ~Q;
end
end
endmodule

This module has two always statements. The first always statement has a
level-sensitive event control with a sequential block. The second always state-
ment has an edge-triggered timing control with a sequential block.

8.1.3 In One Module

A module may contain multiple always statements and multiple initial
statements. Each statement starts a separate control flow. Each statement
starts execution at time 0.

Here is an example of a module with one initial statement and two always
statements.
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module TestXorBehavior;
reg Sa, Sb, Zeus;

initial
begin
Sa=0;
Sb=0;
#5 Sb = 1;
#5 Sa=1;
#5 Sb = 0;
end

always
@(Sa or Sb) Zeus = Sa ~ Sb;

always
@ (Zeus)
$display ("At time %$t, Sa = %d, Sb = %d, Zeus = %b",
$time, Sa, Sb, Zeus);
endmodule

The order of the three statements in the module is not important since they all
execute concurrently. The initial statement when executed causes the first
statement in the sequential block to execute, that is, Sa gets assigned 0; the
next statement executes immediately after zero delay. The #5 in the third line
of the initial statement indicates a “wait for 5 time units”. Thus Sb gets a | af-
ter S time units, Sa gets a 1 after another 5 time units and finally Sb gets a O af-
ter another 5 time units. After the last statement in the sequential block is
executed, the initial statement suspends forever.

The first always statement waits for an event to occur on Sa or Sb. When-
ever such an event occurs, the statement within the always statement is exe-
cuted and then the always statement again waits for an event to occur on Sa or
Sb. Notice that based on the values assigned to Sa and Sb in the initial state-
ment, the always statement will be executed at times 0, 5, 10 and 15 time
units.

Similarly the second always statement executes whenever an event occurs
on Zeus. In such a case, the $display system task is executed and then the al-
ways statement again waits for an event to occur on Zeus. Figure 8-2 shows
the waveforms produced on Sa, Sb and Zeus. Here is the output produced
when the module is simulated.
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At time 55a=0Sb=1,7eus=1
At time 10,Sa=1,Sb=1,7eus=0
At fime 15,50=1,50=0, Zeus = 1
Sa
Sb
Zeus
0 5 10 15

Figure 8-2 Waveforms produced on Sa, Sb and Zeus.

8.2  Timing Controls

A timing control may be associated with a procedural statement. Timing
control is of two forms:

i. Delay control.

ii. Event control.

8.2.1 Delay Control

A delay control is of the form:
#delay procedural_ statement
as in the example:

#2 Tx = Rx-5;
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A delay control specifies the time duration from the time the statement is ini-
tially encountered to the time the statement executes. Basically it means “wait
for delay” before executing the statement. In the above example, the procedur-
al assignment statement is executed two time units after the statement is
reached; it is equivalent to wait for 2 time units and then execute the assign-
ment.

Here is another example.

initial
begin
#3 Wave = 'b0111;
#6 Wave = 'b1100;
#7 Wave = 'b0000;
end

The initial statement executes at time O. First, wait for 3 time units, execute
the first assignment, wait for another 6 time units, execute the second state-
ment, wait for 7 more time units, execute the third statement and then suspend
indefinitely.

A delay control can also be specified in the form:
#delay ;

This statement causes a wait for the specified delay before the next statement
is executed. Here is an example of such an usage.

parametexr ON DELAY = 3, OFF_DELAY = 5;

always
begin
# ON_DELAY; // wait for ON_DELAY.
RefClk = 0;
# OFF_DELAY; // wait for OFF_DELAY.
RefClk = 1;
end

The delay in a delay control can be an arbitrary expression, that is, it need
not be restricted to a constant. See the following examples.

115



CHAPTER 8  Behavioral Modeling

#Strobe
Compare = Tx ~ Mask;

# (PERIOD / 2)
Clock = ~ Clock;

If the value of the delay expression is O, then it is called an explicit zero
delay.

#0; // Explicit zero delay.

An explicit zero delay causes a wait until all other events that are waiting to be
executed at the current simulation time are completed, before it resumes; the
simulation time does not advance.

If the value of a delay expression is an x or a z, it is the same as zero delay.
If the delay expression evaluates to a negative value, the two’s complement
signed integer value is used as the delay.

8.2.2 Event Control

With an event control, a statement executes based on events. There are
two kinds of event control.

i. Edge-triggered event control

ii. Level-sensitive event control
Edge-triggered Event Control
An edge-triggered event control is of the form:
@ event procedural statement
as in the example:

@ (posedge Clock)
Curr_State = Next_State;
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An event control with a procedural statement delays the execution of the state-
ment until the occurrence of the specified event. In the above example, if a
positive edge occurs on Clock the assignment statement executes, otherwise
execution is suspended until a positive edge occurs on Clock.

Here are some more examples.

@ (negedge Reset) Count = 0;
@Cla
Zoo = Foo;

In the first statement, the assignment statement executes only when a negative
edge occurs on Reser. In the second statement, Foo is assigned to Zoo when an
event occurs on Cla, that 1s, wait for an event to occur on Cla, when it does
occur, assign Foo to Zoo.

Event control can also be of the form:
@ event ;

This statement causes a wait until the specified event occurs. Here is an exam-
ple of such an usage in an initial statement that determines the on-period of a
clock.

time RiseEdge, OnDelay;

initial
begin
// Wait until positive edge on clock occurs:
@ (posedge ClockA);
RiseEdge = $time;
// Wait until negative edge on clock occurs:
@ (negedge ClockA);
OnDelay = Stime - RiseEdge;
$display ("The on-period of clock is %t.", OnDelay);
end

Events can also be or’ed to indicate “if any of the events occur”. This is
shown in the following examples.
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@ (posedge Clear or negedge Reset)
Q=20;

@ (Ctrl_A or Ctrl_B)
Dbus = 'bz;

Note that the keyword or does not imply a logical-or such as in an expression.

posedge and negedge are keywords in Verilog HDL that indicate a posi-
tive edge and a negative edge respectively. A negative edge is one of the fol-
lowing transitions:

1 ->x
1>z
1->0
x->0
z->0

A positive edge is one of the following transitions:

0 ->x
0>z
0->1
x->1
z->1

Level-sensitive Event Control
In a level-sensitive event control, the procedural statement is delayed until

a condition becomes true. This event control is written in the form:

wait (condition)
procedural_statement

The procedural statement executes only if the condition is true, else it waits
until the condition becomes true. If the condition is already true when the
statement is reached, then the procedural statement is executed immediately.

The procedural statement is optional.

Here are some examples.
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wait (Sum > 22)
Sum = 0;

wait (DataReady)
Data = Bus;

wait (Preset);

In the first statement, only when Sum becomes greater than 22 will the assign-
ment of 0 to Sum occur. In the second example, Bus is assigned to Data only if
DataReady is true, that is, DataReady has the value 1. In the last example, the
execution is simply delayed until Preset becomes true.

8.3 Block Statement

A block statement provides a mechanism to group two or more statements
to act syntactically like a single statement. There are two kinds of blocks in
Verilog HDL. These are:

i. Sequential block (begin...end): Statements are executed sequen-
tially in the given order.

ii. Parallel block (fork...join): Statements in this block execute con-
currently.

A block can be labeled optionally. If so labeled, registers can be declared lo-
cally within the block. Blocks can also be referenced; for example, a block
can be disabled using a disable statement. A block label, in addition, provides
a way to uniquely identify registers. However, there is one word of caution.
All local registers are static, that is, their values remain valid throughout the
entire simulation run.

8.3.1 Sequential Block

Statements in a sequential block execute in sequence. A delay value in
each statement is relative to the simulation time of the execution of the previ-
ous statement. Once a sequential block completes execution, execution con-
tinues with the next statement following the sequential block. Here is the
syntax of a sequential block.
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begin
[ : block_id { declarations } |
procedural_statement (s)

end

Here is an example of a sequential block.

// Waveform generation:

begin
#2 Stream
#5 Stream
#3 Stream
#4 Stream
#2 Stream
#5 Stream

end

L LS L I VR |
O P O O

Assume that the sequential block gets executed at 10 time units. The first
statement executes after 2 time units, that is at 12 time units. After this execu-
tion has completed, the next statement is executed at 17 time units (because of
the delay). Then the next statement is executed at 20 time units and so on.
Figure 8-3 shows the waveform produced due to the sequential execution be-
havior of this example.

Stream

10 12 17 20 24 26 31

Figure 8-3 Delays are cumulative in a sequential block.

Here is another example of a sequential block.

begin
Pat = Mask | Mat;
@ (negedge Clk)
FF = & Pat;
end
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In this example, the first statement executes first and then the second state-
ment executes. Of course, the assignment in the second statement occurs only
when a negative edge appears on Clk. Here is another example of a sequential
block.

begin: SEQ BLK
reg [0:3] Sat;

Sat = Mask & Data;
FF = ~ Sat;
end

In this example, the sequential block has a label SEQ_BLK and it has a local
register declared. Upon execution, the first statement is executed, then the sec-
ond statement is executed.

8.3.2 Parallel Block

A parallel block has the delimiters fork and join (a sequential block has
the delimiters begin and end). Statements in a parallel block execute concur-
rently. Delay values specified in each statement within a parallel block are rel-
ative to the time the block starts its execution. When the last activity in the
parallel block has completed execution (this need not be the last statement),
execution continues after the block statement. Stated another way, all state-
ments within the parallel block must complete execution before control passes
out of the block. Here is the syntax of a parallel block.

fork
[ : block_id { declarations } ]
procedural_statement (s)
join

Here is an example.

// Waveform generation:
fork

#2 Stream = 1;

#7 Stream = 0;

#10 Stream = 1;

#14 Stream = 0;
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#16 Stream= 1;
#21 Stream = 0;
join

If the parallel block gets executed at 10 time units, all statements execute con-
currently and all delay values are relative to 10. For example, the third assign-
ment executes at 20 time units, the fifth assignment executes at 26 time units,
and so on. Figure 8-4 shows the waveform produced.

Stream

10 12 17 20 24 26 31

Figure 8-4 Delays are relative in a parallel block.

Here is an example that uses a mix of sequential and parallel blocks to
emphasize their differences.

always
begin: SEQ A
#4 Dry = 5; // Sl
fork: PAR A // S2
#6 Cun = 7; // P1
begin: SEQ B // P2
Exe = Box; // S6
#5 Jap = Exe; // 87
end
#2 Dop = 3; // P3
#4 Gos = 2; // P4
#8 Pas = 4; // P5
join
#8 Bax = 1; // 83
#2 Zoom = 52; // 84
#6 Sstop; // S5
end

122



Procedural Assignments SECTION 8.4

Gos=2
Dop =3
Cun=7
¢ Dry=5
| sto
% Bax =1 $ P
|
% ? L
: 8 Lol
0 4 6 11% 12 Zgb §22 28
Exe = Box Pas =4 Zoor;1 =52
Jap =‘Exe

Figure 8-5 Delays due to a mix of sequential and parallel blocks.

The always statement contains a sequential block SEQ_A and all statements
within the sequential block (S1, S2, S3, S4, S5) execute sequentially. Since
the always statement executes at time O, Dry gets assigned 5 at 4 time units,
and the parallel block PAR_A begins its execution at 4 time units. All state-
ments within the parallel block (P1, P2, P3, P4, P5) execute concurrently, that
is, at 4 time units. Thus Cun gets assigned a value at 10 time units, Dop gets
assigned at 6, Gos gets assigned at 8, and Pas gets assigned at 12. The sequen-
tial block SEQ_B starts execution at 4 time units, causing statements S6 and
then S7 to execute. Jap gets its new value at 9. Since all statements within the
parallel block PAR_A complete execution at time 12, statement S3 is executed
at 12 time units, assignment to Bax occurs at 20, then statement S4 executes,
assignment to Zoom occurs at 22, then the next statement executes. Finally the
system task $stop executes at time 28. Figure 8-5 shows the events that occur
upon the execution of the always statement.

8.4  Procedural Assignments

A procedural assignment is an assignment within an initial statement or an
always statement. It is used to assign to only a register data type. The right-
hand side of the assignment can be any expression. Here is an example.
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reg [1:4) Enable, A, B;

#5 Enable = ~ A & ~ B;

Enable is a register. Due to the delay control, the assignment statement exe-
cutes 5 time units after the statement is initially encountered. The right-hand
side expression is then evaluated and its value is assigned to Enable.

A procedural assignment executes sequentially with respect to other state-
ments that appear around it. Here is an example of an always statement.

always
@ (Aor Bor Cor D)
begin: AOI

reg Templ, Temp2;

Templ = A & B;

Temp2 = C & D;

Templ = Templ | Temp2;

Z = ~ Templ;
end

/* It is possible to replace the above four statements with
one statement, such as:
Z=~((A&B) | (C&D));

However, it has been used here as such to illustrate the
sequential nature of the statements in a sequential
block */

The sequential block within the always statement starts execution when an
event occurs on A, B, C or D. The assignment to Temp] takes place first. Then
the second assignment occurs. The values of Temp! and Temp2 computed in
the previous assignment are used in the third assignment statement. The last
assignment uses the value of Temp! computed in the third statement.
There are two kinds of procedural assignments.

i.  Blocking.

ii. Non-blocking.
But before we discuss these, let us first briefly discuss the notion of
intra-statement delays.
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8.4.1 Intra-statement Delay

A delay appearing on the left of an expression in an assignment statement
is an intra-statement delay. It is the delay by which the right-hand side value is
delayed before it is applied to the left-hand side target. Here is an example.

Done = #5 'bl;
The important thing to note about this delay is that the right-hand side expres-
sion is evaluated before the delay, then the wait occurs and then the value is
assigned to the left-hand side target. To understand the difference between
inter-statement delays and intra-statement delays, here are some examples that
illustrate this.

Done = #5 'bl; // Intra-statement delay control.

// 1is the same as:

begin

Temp = 'bl;

#5 Done = Temp; // Inter-statement delay control.
end
Q = @(posedge Clk) D; // Intra-statement event control.

// is the same as:
begin
Temp = D;
@ (posedge Clk) // Inter-statement event control.
Q = Temp;
end

In addition to the two forms of timing controls (delay control and event
control) that can be specified for intra-statement delay, there is yet another
form called the repeat event control that can be used to specify intra-statement
delay. It is of the form:

repeat ( expression) @ ( event_expression )

This form of control is used to specify a delay that is based on the number
of occurrences of one or more events. Here is an example.
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Done = repeat (2) @ (negedge ClkA) A _Reg + B_Reg;

This statement when executed evaluates the value of the right-hand side, that
is, A_Reg + B_Reg, waits for two negative edges on clock CIkA and then as-
signs the value of the right-hand side to Done. The equivalent form of this re-
peat event control example is shown next.

begin
Temp = A_Reg + B_Reg;
@ {negedge ClkA);
@ (negedge ClkA);
Done = Temp;

end

This form of delay is useful in synchronizing assignments to certain edges
or with a count of edges.

8.4.2 Blocking Procedural Assignment

A procedural assignment in which the assignment operator is an “=" is a
g g p

blocking procedural assignment. For example,
RegA = 52;

is a blocking procedural assignment. A blocking procedural assignment is ex-
ecuted before any of the statements that follow it are executed, that is, the as-
signment statement is executed completely before the next statement is
executed. Here is another example.

always
@(A or Bor Cin)
begin: CARRY OUT
reg T1, T2, T3;

Tl =A & B;

T2 = B & Cin;

T3 =A & Cin;

Cout =TI | T2 | T3;
end
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The T1 assignment occurs first, 7/ is computed, then the second statement ex-
ecutes, 72 is assigned and then the third statement is executed and T3 is as-
signed, and so on.

Here is another example of a blocking procedural assignment using
intra-statement delays.

initial
begin
Clr = #5 0;
Clr=#41;
Clr = #10 0;
end

The first statement executes at time O and Clr gets assigned O after 5 time
units, then the second statement executes causing Clr to get assigned a | after
4 time units (9 time units from time Q), and then the third statement executes
causing Clr to get a 0 after 10 time units (19 time units from time 0). The
waveform produced on Clr is shown in Figure 8-6.

Cir X

0 .
0 5 9 19

Figure 8-6 Blocking procedural assignments with intra-statement delays.

Here is another example.

begin
Art = 0;
Art = 1;
end

In this case, Art gets assigned the value 1. This is because, first Art gets as-
signed O, then the next statement executes that causes Arr to get 1 after zero
delay. Therefore the assignment of O to Arz is lost.
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8.4.3 Non-blocking Procedural Assignment

128

In a non-blocking procedural assignment, the assignment symbol “<="is
used. Here are some examples of non-blocking procedural assignments.

begin
Load <= 32;
RegA <= Load;
RegB <= Store;
end

In a non-blocking procedural assignment, the assignment to the target is
not blocked (due to delays) but are scheduled to occur in the future (based on
the delays; if zero delay, then at the end of the current time step). When a non-
blocking procedural assignment is executed, the right-hand side expression is
evaluated and its value is scheduled to be assigned to the left-hand side target,
and execution continues with the next statement. The earliest an output would
be scheduled is at the end of the current time step; this case would occur if
there were no delay in the assignment statement. At the end of the current
time step or whenever the outputs are scheduled, the assignment to the left-
hand side target occurs.

In the above example, let us assume that the sequential block executes at
time 10. The first statement causes the value 32 to be assigned to Load at the
end of time 10, then the second statement executes, the old value of Load is
used (note that time has not advanced and Load in the first assignment has not
yet been assigned a new value); the assignment to RegA is scheduled at the
end of time step 10, the next statement executes and RegB is scheduled to be
assigned a value at the end of time 10. After all events at time 10 have oc-
curred, all scheduled assignments to the left-hand side target are made.

Here is another example that explains this further.

initial
begin
Clr <= #5 1;
Clr <= #4 0;
Clr <= #10 0;
end



Procedural Assignments SECTION 8.4

The execution of the first statement causes a 1 to be scheduled to appear on
Clr at 5 time units, the execution of the second statement causes Clr to get a
value O at 4 time units (4 time units from time 0), and finally the execution of
the third statement causes a O to be scheduled on Clr at 10 time units (10 time
units from 0). Note that all the three statements execute at time O. In addition,
notice that the order of execution of non-blocking assignments become irrele-
vant in this case. Figure 8-7 shows the waveform produced on Clr.

Clr

10

Figure 8-7 Non-blocking assignments with intra-statement delays.

Here is another example, but this time with zero delays.

initial
begin
Cbn <= 0;
Cbn <= 1;
end

The value of Chn after the initial statement executes is 1 since the Verilog
HDL standard specifies that all non-blocking assignments to a variable shall
occur in the order the assignment statements are executed. Thus, Cbn gets the
value O first and then 1.

Here is an example that uses both blocking and non-blocking assignments
and highlights their differences.

reg [0:2] Q State;

initial
begin
Q State = 3'b011;
Q State <= 3'b100;
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$display ("Current value of Q State is %$b", Q State);
#5; // Wait for some time.
$display ("The delayed value of Q_State is %b",
Q State);
end

The execution of the initial statement produces the result:

Current vailue of Q_State is 011
The delayed vaiue of Q_State is 100

The first blocking assignment causes Q_State to get the value of 3'b011. The
execution of the second assignment statement, which is a non-blocking one,
causes the value 3'b100 to be scheduled for Q_State at the end of the current
time step (which is 0). Therefore when the first $display task is executed,
Q_State still has the value from the first assignment, which is 3'b011. When
the #5 delay is executed, this causes the scheduled assignment of Q_State to
occur, Q_State gets updated with its new value, a delay of 5 time units occurs
and then the next $display task is executed, this time displaying the updated
value of Q_State.

8.4.4 Continuous Assignment vs Procedural Assignment

What are the differences between continuous assignments and procedural
assignments? Table 8-1 illustrates this.

Table 8-1 Difference between procedural and continuous assignment.

Procedural assignment Continuous assignment

Occurs inside an always statement or an ini- Occurs within a module.
tial statement.

Execution is with respect to other statements Executes concurrently with other state-
surrounding it. ments; executes whenever there is a
change of value in an operand on its
fight-hand side.

Drives registers. Drives nets.
Uses “=" or “<="" assignment symbol. Uses “=" assignment symbol.
No assign keyword (except in a procedural Uses assign keyword.

continuous assignment; see Sec. 8.8).
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Here is an example explaining this difference further.

module Procedural;
reg A, B, Z;

always
@(B) begin
Z =A;
A = B;
end
endmodule

module Continuous;
wire A, B, Z;

assign Z = A;
assign A = B;
endmodule

SECTION 8.5

Say that B has an event at time 10ns. In module Procedural, the two procedur-
al statements are executed sequentially and A gets the new value of B at 10ns.
Z does not get the value of B since the assignment to Z occurs before the as-
signment to A. In module Continuous, the second continuous assignment is
triggered since there is an event on B. This in turn causes an event on A, which
causes the first continuous assignment to be executed, which in turn causes Z
to get the value of A which is really B. However, if an event occurred on A, the
always statement in module Procedural does not execute since A is not in the
timing control event list for that always statement. However the first continu-
ous assignment in the module Continuous executes and Z gets the new value

of A.

8.5 Conditional Statement

The syntax of an if statement is:

if ( condition_1)
procedural_statement__1
{ else if ( condition_2)
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procedural_statement_2 }
[ else
procedural_statement_3 ]

If condition_1 evaluates to a non-zero known value, then the
procedural_statement_1 is executed. If condition_I evaluates to a value 0, x or
z, the procedural_statement_1 is not executed, and an else branch, if it ex-
ists, is executed. Here is an example.

if (Sum < 60)
begin
Grade = C;
Total C = Total _C+ 1;
end
elge if (Sum < 75)
begin
Grade = B;
Total B = Total B+ 1;
end
else
begin
Grade = A;
Total A = Total A + 1;
end

Note that the condition expression must always be within parenthesis.
Also there is a possibility for an ambiguity if an 1f-if-else form is used,
as shown in this example.

if (Clk)
if (Reset)
Q0=20;
else
Q=0D;

The question is to which i £ does the last else belong? Does it belong to the
first if condition (Clk) or to the second if condition (Reser)? This is re-
solved in Verilog HDL by associating the else with the closest i f that does
not have an else. In this example, the else is associated with the inner i £
statement.
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Here are some more examples of if statements.

if (Sum < 100)
Sum = Sum + 10;

if (Nickel_ In)
Deposit = 5;

else if (Dime_ In)
Deposit = 10;

else if (Quarter_ In)
Deposit = 25;

else
Deposit = ERROR;

if (Ctrl)
begin
if (~Ctri2)
Mux = 4'4d2;
else
Mux = 4'4l;
end
else
begin
if (~Ctri2)
Mux = 4'd8;
else
Mux = 4'd4;
end

Case Statement

A case statement is a multi-way conditional branch. It has the following
syntax:

case ( case_expr)
case_item expr {, case_item_expr } : procedural_statement
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[ default: procedural_statement ]
endcase

The case expression is evaluated first. Next the case item expressions are eval-
uated and compared in the order given. The set of statements that match the
first true condition is executed. Multiple case item expressions can be speci-
fied in one branch; these values need not be mutually-exclusive. The default
case covers all values that are not covered by the case item expressions.

Neither the case expression nor the case item expressions need be constant
expressions. In a case statement, the x and z values are compared as their liter-
al values. Here is an example of a case statement.

parameter
MON=0, TUE=1
THU = 3, FRI = 4,
SAT =5, SUN=6

reg [0:2] Day:

integer Pocket_Money;

case (Day)
TUE : Pocket_Money = 6; // Branch 1
MON,
WED : Pocket_Money = 2; // Branch 2
FRI,
SAT,
SUN : Pocket_Money = 7; // Branch 3
default : Pocket_Money = 0; // Branch 4
endcase

Branch 2 is chosen if Day has the value MON or WED. Branch 3 covers the
values FRI, SAT, SUN, while branch 4 covers the remaining values, THU and
the bit-vector 111. Here is another example of a case statement.

module ALU (A, B, OpCode, Z);
input [3:0] A, B;
input [1:2] OpCode;
output [7:0] Z;
reg (7:0] Z;
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parameter
ADD INSTR = 2'bl0,
SUB_INSTR = 2'bll,
MULT _INSTR = 2'b01,
DIV_INSTR = 2'b00;

always
@ (A or B or OpCode)
case (OpCode)

ADD INSTR: Z = A + B;
SUB_INSTR: Z = A - B;
MULT _INSTR: Z=A%*B;
DIV_INSTR: Z=A/ B;
endcase
endmodule

What happens if the case expression and the case item expressions are of
different lengths? In such a situation, all case expressions are made equal to
the largest size of any of these expressions before any comparisons are made.
Here is an example that illustrates this.

case (3'b101 << 2)
3'b100 : $display ("First branch taken!");
4'b0100 : s&isplay ("Second branch taken!");
5'b10100 : Sdisplay ("Third branch taken!");
default : $display ("Default branch taken!");
endcase

produces:

Third branch takent

Since the third case item expression is of size 5 bits, all case item expressions
and the case expression are made equal to size 5. So when 3'b101 << 2 is
computed, the result is 5'b10100, and the third branch is taken.
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8.6.1 Don’t-cares in Case

In the case statement described in the previous section, the values x and z
are interpreted literally, that is, as x and z values. There are two other forms of
case statements: casex and casez, that use a different interpretation for x and z
values. The syntax is exactly identical to that of a case statement except for
the keywords casex and casez.

In a casez statement, the value z that appears in the case expression and in
any case item expression is considered as a don’t-care, that is, that bit is ig-
nored (not compared).

In a casex statement, both the values x and z are considered as don’t-cares.
Here is an example of a casez statement.

casez (Mask)
4'b1??? : Dbus[4]
4'b01?? : Dbus[3]
4'b001? : Dbus[2]
4'b0001 : Dbus[1]
endcase

1]
o o O O

The ? character can be used instead of the character z to imply a don’t-care.
The casez statement example implies that if the first bit of Mask is 1 (other
bits of Mask are ignored), then 0 is assigned to Dbus[4], if first bit of Mask is
0 and the second bit is 1 (other bits are ignored), then Dbus[3] gets assigned
the value 0, and so on.

8.7  Loop Statement
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There are four kinds of loop statements. These are:
i. Forever-loop
ii. Repeat-loop
iti. While-loop
iv. For-loop
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7.1 Forever-loop Statement
The syntax for this form of loop statement is:

forever
procedural_statement

This loop statement continuously executes the procedural statement. Thus to
get out of such a loop, a disable statement may be used with the procedural
statement. Also, some form of timing controls must be used in the procedural
statement, otherwise the forever-loop will loop forever in zero delay.

Here is an example of this form of loop statement.

initial
begin
Clock = 0;
#5 forever
# 10 Clock = ~ Clock:;
end

This example generates a clock waveform; Clock first gets initialized to O and
stays at O until 5 time units. After that Clock toggles every 10 time units.

7.2  Repeat-loop Statement

This form of loop statement has the form:

repeat ( loop_count )
procedural_statement

It executes the procedural statement the specified number of times. If loop

count expression is an x or a z, then the loop count is treated as a 0. Here are
some examples.

repeat (Count)
Sum = Sum + 10;

repeat (ShiftBy)
P_Reg = P_Reg << 1;
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The repeat-loop statement differs from repeat event control. Consider,

repeat (Count) // Repeat-loop statement.
@ (posedge Clk) Sum = Sum + 1;

which means for Count times, wait for positive edge of Clk and when this oc-
curs, increment Sum. Whereas,

Sum = repeat (Count) @ (posedge Clk) Sum + 1;
// Repeat event control

means to compute Sum + 1 first, then wait for Count positive edges on Clk,
then assign to left-hand side.

What does the following mean?
repeat (NUM_OF _TIMES) @(negedge ClockZ);

It means to wait for NUM_OF_TIMES negative clock edges before executing
the statement following the repeat statement.

8.7.3  While-loop Statement

The syntax of this form of loop statement is:

while ( condition)
procedural_statement

This loop executes the procedural statement until the specified condition be-
comes false. If the expression is false to begin with, then the procedural state-
ment is never executed. If the condition is an x or a z, it is treated as a O (false).
Here are some exarmples.

while (By > 0)

begin
Acc = Acc << 1;
By =By -1;
end
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7.4 For-loop Statement

This loop statement is of the form:

for ( initial_assignment ; condition ; step_assignment )
procedural_statement

A for-loop statement repeats the execution of the procedural statement a cer-
tain number of times. The initial_assignment specifies the initial value of the
loop index. The condition specifies the condition when loop execution must
stop. As long as the condition is true, the statements in the loop are executed.
The step_assignment specifies the assignment to modify, typically to incre-
ment or decrement, the step count.

integer K;

for (K=0; K< MAX RANGE; K=K+ 1)
begin
if (Abus{K] == 0)
Abus[K] = 1;
elge if (Abus[K] == 1)
Abus[K] = 0;
else
¢display ("Abus[K] is an X or a z");
end

3.8  Procedural Continuous Assignment

A procedural continuous assignment is a procedural assignment, that is, it
can appear within an always statement or an initial statement. This assignment
can override all other assignments to a net or a register. It allows the expres-
sion in the assignment to be driven continuously into a register or a net. Note,
this is not a continuous assignment; a continuous assignment occurs outside
of an initial or an always statement.

There are two kinds of procedural continuous assignments.

i. assign and deassign procedural statements: these assign to regis-
ters.
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ii. force and release procedural statements: these assign primarily to
nets, though they can also be used for registers.

The assign and force statements are *“‘continuous” in the sense that any change
of operand in the right-hand side expression causes the assignment to be re-
done while the assign or force is in effect.

The target of a procedural continuous assignment cannot be a part-select
or a bit-select of a register.

8.8.1  Assign - deassign
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An assign procedural statement overrides all procedural assignments to a
register. The deassign procedural statement ends the continuous assignment to
a register. The value in the register is retained until assigned again.

module DFF (D, Clr, Clk, Q);
input D, Clr, Clk;
output Q;
reg Q;

always
@(Clr) begin
if (! Clr)
assign 0= 0; // D has no effect on Q.
else
deassign Q;
end

always
@ (negedge Clk) Q = D;
endmodule

If Clr is 0O, the assign procedural statement causes Q to be stuck at 0 irrespec-
tive of any clock edges, that is, Clk and D have no effect on Q. If Clr becomes
1, the deassign statement is executed; this causes the override to be removed,
so that in the future Clk can effect Q.

If an assign is applied to an already assigned register, it is deassigned first
before making the new procedural continuous assignment. Here is another ex-
ample.
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reg [3:0] Pest;
Pest = 0;
assign Pest = Hty ~ Mtu;

2; // Will deassign Pest and then assign.

assign Pest
deassign Pest; // Pest continues to have value 2.

assign Pest[2] = 1; /* Error: Bit-select of a register
cannot be a target of a procedural continuous
assignment */

The second assign statement will cause the first assign to be deassigned before
making the next assign. After the deassign is executed, Pest continues to keep
the value 2 until another assignment to the register occurs.

An assign statement is “continuous” in the sense that after the first assign
is executed and before the second assign gets executed, any change on Hty or
Mtu will cause the first assign statement to be reevaluated.

8.2 Force - release

The force and release procedural statements are very similar to assign and
deassign, except that force and release can be applied to nets as well as to reg-
isters.

The force statement, when applied to a register, causes the current value
of the register to be overridden by the value of the force expression. When a
release on the register is executed, the current value is held in the register un-
less a procedural continuous assignment was already in effect (at the time the
force statement was executed) in which case, the continuous assignment es-
tablishes the new value of the register.

A force procedural statement on a net overrides all the drivers for the net
until a release procedural statement is executed on that net.

wire Prt;

or #1 (Prt, Std, Dzx);
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initial
begin
force Prt = Dzx & Std;
#5; // Wait for 5 time units.
release Prt;
end

The execution of the force statement causes the value of Prt to override the
value from the or gate primitive until the release statement is executed, upon
which the driver of Prt from the or gate primitive takes back its effect. While
the force assignment is in effect (first 5 time units), any changes on Dzx and
Std cause the assignment to be executed again.

Here is another example.

reg [2:0] Colt;

Colt = 2;
force Colt = 1;

;'eie.ase Colt; // Colt retains value 1.
;s.si.gn Colt = 5;

fo.rc.e Colt = 3;

;'ei;ase Colt; // Colt gets the value 5.
fo.rc.e Colt [1:0] = 3; /* Error: target of a procedural

continuous assignment cannot be a part-select of a
register */

The first release of Colt causes the value of Colt to be retained (as 1). This is
because there was no procedural continuous assignment applied to the register
at the time force was applied. In the latter release statement, Colt gets back the
value 5 because the procedural continuous assignment on Colt becomes active
again.
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9 A Handshake Example

Always statements can be used to capture the behavior of interacting pro-
cesses, for example, that of interacting finite-state machines. These statements
within a module communicate with each other using registers that are visible
to all the always statements. It is not recommended to use registers declared
within an always statement to pass information between always statements
(this is possible through the use of hierarchical path names, described in
Chapter 10).

Consider the following example of two interacting processes: RX, a re-
ceiver, and MP, a microprocessor. The RX process reads the serial input data
and sends a signal Ready indicating that the data can be read into the MP pro-
cess. The MP process, after it assigns the data to the output, sends an ac-
knowledge signal, Ack, back to the RX process to begin reading new input
data. The block diagram for the two processes is shown in Figure 8-8.

Ready

Parallel Out

Serial_I
enatn 5| Process RX I_l-)ata_“ Process MP sty
Ack
Clk

Figure 8-8 Two interacting processes.

The behavior for these two interacting processes is expressed in the fol-
lowing design description.

‘timescale 1lns / 100ps

module Interacting (Serial_In, Clk, Parallel Out);
input Serial_In, Clk;
output [0:7] Parallel_Out;
reg [0:7] Parallel Out;

reg Ready, Ack;
wire [0:7] Data;

‘include "Read_Word.v" // Task Read _Word is defined in
// this file.
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always

begin: RX
Read_Word (Serial_In, Clk, Data);
// The task Read_Word reads the serial data on every
// clock cycle and converts to a parallel data in
// signal Data. It takes 10ns to do this.
Ready = 1;
wait (Ack);
Ready = 0;
#40;

end

always

begin: MP
#25;
Parallel_Out = Data;
Ack = 1;
#25 Ack = 0;
wait (Ready);

end

endmodule

The interaction of these two processes via registers Ready and Ack is
shown in the waveforms in Figure 8-9.

RX reading new serial data

e T e e

! ”
\ v N . W
Ready l E s
110 65 75 140 150ns
Ack
0 %5 50 100 125 175 200ns
. (R A+

Data output by MP

Figure 8-9 Handshaking protocol between the two processes.
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3,10 Exercises

10.

11.

Which statement executes repeatedly, initial or always statement?

What is the difference between a sequential block and a parallel block?
Explain using an example. Can a sequential block appear within a parallel
block?

When is a label required for a block?
Is it necessary to specify a delay in an always statement?

What is the difference between an intra-statement delay and an inter-
statement delay? Explain using an example.

How are blocking assignments different from non-blocking assignments?
How does the casex statement differ from the case statement?
Can a net type (for e.g. a wire) be assigned in an always statement?

Generate a clock waveform with an off-period of 5ns and an on-period of
10ns.

Express the following always statement using an initial statement and a
forever loop statement.

always
@ (Expected or Observed)
if (Expected !== Observed) begin

$display ("MISMATCH: Expected = %b, Observed = $b",
Expected, Observed);
$stop;
end

What are the values of NextStateA and NextStateB in the following two al-
ways statements under the following conditions: ClockP has a positive
edge at time Sns; CurrentState has a value of 5 prior to the clock edge and
changes 3ns after the clock edge to 77

always
@ (posedge ClockP)
#7 NextStateA = CurrentState;
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always
@ (posedge ClockP)
NextStateB = #7 CurrentState;

12. Write a model using the behavioral modeling style to describe the follow-
ing finite state machine.

Inp (Gak)  PresentState NextState Output (Zuk)
0 NO_ONE NO_ONE 0
1 NO_ONE ONE_ONE 0]
0 ONE_ONE NO_ONE 0]
1 ONE_ONE TWO_ONE 0
0] TWO_ONE NO_ONE 0
1 TWO_ONE THREE_ONE 1
0] THREE_ONE NO_ONE 0]
1 THREE_ONE  THREE_ONE 1

13. Describe the behavior of a JK flip-flop using an always statement.

14. Describe the behavior of a circuit that sets the output Asm to 1 if a pattern
1011 is found on the input Usg. The data on the input is checked on every
falling clock edge.

15. Describe the behavior of a majority circuit. The input is a 12-bit vector. If
the number of 1’s exceeds the number of 0’s, the output is set to 1. The in-
put data is checked only when Data_Ready is a 1.
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STRUCTURAL MODELING

This chapter describes the structural modeling style of Verilog HDL.
Structural modeling is described using:

e Gate instantiation
e UDP instantiation
e Module instantiation

Chapters 5 and 6 have discussed gate-level modeling and UDP modeling. This
chapter describes module instantiations.

Module

A module defines a basic unit in Verilog HDL. It is of the form:

module module name ( port_list);
Declarations_and_Statements
endmodule
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The port list gives the list of ports through which the module communicates
with the external modules.

| 9.2 Ports

A port can be declared as input, output or inout. A port by default is a net.
However, it can be explicitly declared as a net. An output or an inout port can
optionally be redeclared as a reg register. In either the net declaration or the
register declaration, the net or register must have the same size as the one
specified in the port declaration. Here are some examples of port declarations.

module Micro (PC, Instr, NextAddr);
// Port declarations:
input [3:1] PC;
output [1:8] Instr;
inout [16:1] NextAddr;

// Redeclarations:
wire [16:1] NextAddr; // Optional; but if specified must
// have same range as in its port declaration.

reg [1:8] Instr;

/* Instr has been redeclared as a reg so that it can be
assigned a value within an always statement or an initial
statement. */

endmodule

9.3 Module Instantiation

A module can be instantiated in another module, thus creating hierarchy.
A module instantiation statement is of the form:

module_name instance_name ( port_associations );
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Port associations can be by position or by name; however, associations cannot
be mixed. A port association is of the form:

port_expr // By position.
.PortName ( port_expr ) // By name.

where port_expr can be any of the following:
i. an identifier (a register or a net)
ii. abit-select
iii. a part-select
iv. a concatenation of the above
v. an expression (only for input ports)

In positional association, the port expressions connect to the ports of the mod-
ule in the specified order. In association by name, the connection between the
module port and the port expression is explicitly specified and thus the order
of port associations is not important. Here is an example of a full-adder built
using two half-adder modules; the logic diagram is shown in Figure 9-1.

module HA (A, B, S, C);
input A, B;
output S, C;
parameter AND DELAY = 1, XOR_DELAY = 2;

assign #XOR _DELAY S=A"B;
assign #AND_DELAY C=A&B;
endmodule

module FA (P, Q, Cin, Sum, Cout);
input P, Q, Cin;
output Sum, Cout;
parameter OR _DELAY = 1;
wire S1, C1, C2;

// Two module instantiations:

HA h1 (P, Q, S1, C1); // Associating by position.
HA h2 (.A(Cin), .S{Sum), .B(S1), .C(C2)); // Associating
// by name.
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// Gate instantiation:
or #OR_DELAY 01 (Cout, C1, C2);
endmodule

0 ]®
A B
hl
C
C1 T
T——
A B
h2
S
< |
01 Sum
Cout

Figure 9-1 A full-adder using half-adder modules.

In the first module instantiation, HA is the name of the module, A/ is the
instance name and ports are associated by position, that is, P is connected to
module (HA) port A, @ is connected to module port B, S7 to S and CI to mod-
ule port C. In the second instantiation, the port association is by name, that is,
the connections between the module (HA) ports and the port expressions are
specified explicitly.

Here is another example of a module instantiation that uses different
forms of port expression.

Micro M1 (UdIn[3:0), {WrN, RAN}, Status[0], Status[l],
& UdOut[0:7], TxData);

This instantiation shows that a port expression can be an identifier (TxData), a
bit-select (Status[0]), a part-select (UdIn[3:0]), a concatenation ({WrN,
RdN}), or an expression (& UdOut[0:7]); an expression can only be connected
to an input port.
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1.3.1 Unconnected Ports

Unconnected ports in an instantiation can be specified by leaving the port
expression blank, such as in the following example.

DFF dl (.Q(QS), .Qbar(), .Data(D),
.Preset(), .Clock(CK)); // By name.
DFF d2 (QSI . D, CK); // By position.

// Output Qbar is not connected.
// Input Preset is open and hence set to value z.

In both the instantiations, ports Qbar and Preset are not connected.

Unconnected module inputs are driven to value z. Unconnected module
outputs are simply unused.

.3.2  Different Port Lengths

When a port and the local port expression are of different lengths, port
matching is performed by (unsigned) right justification or truncation. Here is
an example of port matching.

module Child (Pba, Ppy);
input [5:0] Pba;
output [2:0] Ppy;

endmodule
module Top;

wire [1:2]) BdIl;
wire [2:6] Mpr;

Child C1 (Bdl, Mpr);
endmodule

In the module instantiation for Child, Bdl[2] is connected to Pba[0] and
BdI[1] is connected to Pba[1]. Remaining input ports, Pba[5], Pba[4], Pba[3]
are not connected and therefore have the value z. Similarly, Mpr[6] is connect-
ed to Ppy[0], Mpr[5] is connected to Ppy[1] and Mpr[4] is connected to
Ppy[2]. See Figure 9-2.
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Poa [5]af3]2]1]0] Ppy |2]1]0

Bar [1] 2] Mpr [2]3]4a]5]6]

Figure 9-2 Port matching,

9.3.3 Module Parameter Values

When a module is instantiated in another module, the higher level module
can change the value of the parameters in a lower level module. This can be
done in two ways.

i. Defparam statement
ii. Module instance parameter value assignment

Defparam Statement

A defparam statement is of the form:

defparam hier path_namel = valuel,
hier path_name2 = value2,. . . ;

The hierarchical path names of the parameters in a lower level module can be
explicitly set by using such a statement (hierarchical path names are described
in the next chapter). Here is an example. Modules FA and HA have been de-
clared previously in this section.

module TOP (NewA, NewB, NewS, NewC);
input NewA, NewB;
output NewS, NewC;
defparam Hal.XOR DELAY = 5,
// Parameter XOR_DELAY in instance Hal.
Hal.AND DELAY = 2;
// Parameter AND DELAY in instance Hal.

HA Hal (NewA, NewB, NewS, NewC);
endmodule
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module TOP2 (NewP, NewQ, NewCin, NewSum, NewCout);
input NewP, NewQ, NewCin;

output NewSum, NewCout;
defparam Fal.hl.XOR_DELAY = 2, // Parameter XOR_DELAY

// in instance hl of instance Fal.
Fal.hl.AND_DELAY = 3, // Parameter AND_DELAY

// in instance hl of instance Fal.
Fal.OR_DELAY = 3; // Parameter OR_DELAY

// in instance Fal.

FA Fal (NewP, New(Q, NewCin, NewSum, NewCout) ;
endmodule

Module Instance Parameter Value Assignment

In this method, the new parameter values are specified in the module in-
stantiation itself. Here are the same examples as shown in the previous sec-
tion, but this time, module instance parameter value assignment is used.

module TOP3 (NewA, NewB, NewS, NewC) ;
input NewA, NewB;
output NewS, NewC;

HA #(5, 2) Hal (NewA, NewB, NewS, NewC) ;
// First value, 5, is that for parameter AND DELAY,

// the first parameter declared in module HA.
// Second value, 2, is that for parameter XOR DELAY,
// the second parameter declared in module HA.

endmodule

module TOP4 (NewP, NewQ, NewCin, NewSum, NewCout);
input NewP, NewQ, NewCin;
output NewSum, NewCout;
defparam Fal.hl.XOR_DELAY = 2, // Parameter XOR DELAY
// in instance hl of instance Fal.
Fal.hl.AND DELAY = 3; // Parameter AND DELAY

// in instance hl of instance Fal.

FA #(3) Fal (NewP, NewQ, NewCin, NewSum, NewCout) ;
// Value 3 is the new value for parameter OR_DELAY.

endmodule
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The order of the parameter values in the instantiation must match the order of
parameters declared in the lower-level module. In the module TOP3,
AND_DEILAY has been set as 5 and XOR_DELAY has been set as 2.

The two modules, TOP3 and TOP4, illustrate the fact that module in-
stance parameter value assignment can be used only to pass parameter values
down one level of hierarchy (e.g. OR_DELAY), whereas the defparam state-
ment can be used to override parameter values at any level of the hierarchy.

Note that the notation for specifying parameter values appears identical to
that of a delay specified in a gate instantiation. This is no case for concern in a
module instantiation since delays cannot be specified for a module in the same
way as that for a gate instantiation.

Parameter values could also represent sizes. Here is an example that mod-
els a generic M-by-N multiplier.

module Multiplier (Opd_1, Opd_2, Result);
parameter EM = 4, EN = 2; // Default values.
input [EM:1] Opd_1;
input [EN:1] Opd_2;
output [EM+EN : 1] Result;

assign Result = Opd_1 * Opd_2;
endmodule

This parameterized multiplier can now be instantiated in another design. Here
is an instantiation of an 8-by-6 multiplier.

wire [1:8] Pipe Reg;
wire [1:6] Dbus;
wire [1:14) Addr_ Counter;

Multiplier #(8, 6) M1 (Pipe Reg, Dbus, Addr_Counter);

The first value 8 specifies a new value for parameter EM and the second value
6 specifies a new value for parameter EN.
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4 External Ports

In the module definition we have seen so far, the port list describes the list
of ports visible outside the module. For example,

module Scram A (Arb, Ctrl, Mem Blk, Byte);
input [0:3)] Arb;
input Ctrl;
input [8:0] Mem_Blk;
output [0:3] Byte;

endmodule

The module ports are Arb, Ctrl, Mem_Blk and Byte. These are also the exter-
nal ports, that is, in an instantiation, the external port names are used to speci-
fy the interconnections when associating ports by name. Here is an example
of an instantiation of module Scram_A.

Scram_A SX (.Byte(Bl), .Mem Blk(M1), .Ctrl(cl), .Arb(Al));

In module Scram_A, the external port names are implicitly specified. Ver-
ilog HDL provides an explicit way to specify external port names. This is
done by specifying a port of the form:

. external_port_name ( internal_ port_name)

Here is the same example, but this time the external ports are explicitly speci-
fied.

module Scram B (.Data(Arb), .Control(Ctrl),
.Mem_Word(Mem_Blk), .Addr(Byte));
input [0:3] Arb;
input Ctrl;
input [8:0] Mem Blk;
output [0:3] Byte;

endmodule
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The module Scram_B has external ports specified in this case which are Data,
Control, Mem_Word and Addr. The port list explicitly shows the connections
between the external ports and the internal ports. Note that the external ports
need not be declared whereas the internal ports of the module must be de-
clared. The external ports are not visible within the module but are used in a
module instantiation whereas internal ports must be declared within the mod-
ule since they are visible within the module. In a module instantiation, the ex-
ternal ports are used as shown in the following example.

Scram_B S1 (.Addr(Al), .Data(D1l), .Control(Cl),
.Mem Word(M1));

The two types of notation cannot be mixed in a port list for a module defini-
tion, that is, either all ports in a module definition must have explicit port
names specified or none of them must have explicit port names.

External port names are not used in module instantiations if module ports
are being connected by position.,

An internal port name can not only be an identifier, it can also be one of
the following.

* abit-select
*  apart-select
e aconcatenation of bit-select, part-select and identifier

Here is an example.

module Scram C (Arb[0:2], Ctrl,
{Mem_B1k[0], Mem Blk[1]}, Bytel[3]);
input [0:3] Arb;
input Ctri;
input [8:0] Mem_Blk;
output [0:3] Byte;

en;i.u;oéule
In the module definition for Scram_C, the port list contains a part-select
(Arb[0:2)), an identifier (Ctrl), a concatenation ({ Mem_BIk[0], Mem_BIk[1]})
and a bit-select (Byre[3]). In the case where the internal port is a bit-select,

part-select or a concatenation, no external port name is implicitly specified.
Consequently, in such a module instantiation, module ports must be connect-
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ed through positional associations. Here is an example of such an instantia-
tion.

Scram C SYA (L1[4:6], CL, MMY[1:0], BT);

In this instantiation, ports are connected by positional associations; thus,
L1[4:6] is connected to Arb[0:2], CL is connected to Ctrl, MMY[1] is connect-
ed to Mem_BIk[0], MMY[0] to Mem_BIk[1], and BT is connected to Byte[3].

To use association by name in this situation (where an internal port is not
an identifier), external port names must be explicitly specified for the ports in
the module. This is shown in the following module definition for Scram_D.

module Scram D (.Data(Arb[0:2]), .Control(Ctrl),
.Mem_Word({Mem Blk[0], Mem_Blk[1]}),
.Addr(Bytel3]));
input [0:3] Arb;
input Ctrl;
input [8:0] Mem_Blk;
output {0:3] Byte;

endmodule
In the instantiation for module Scram_D, ports can be connected by position

or by name, but not mixed. Here is an example of an instantiation where ports
are connected by name.

Scram D SZ (.Data(Ll[4:6]), .Control(CL),
Mem Word(MMY[1:0]), .Addr(BT));

It is possible for a module to have an external port with no internal port.
Here is an example of such a module.

module Scram E (.Data( ), .Control(Ctrl),
.Mem_Word({Mem Blk[0], Mem Blk[1]}),
JAdr( ) ;
input Ctrl;

input [8:0] Mem_Blk;

endmodule

157



CHAPTER 9  Structural Modeling

Module Scram_E has two external ports, Data and Addr, that are not connect-
ed to anything internal to the module.

Can an internal port be connected to more than one external port? Yes,
Verilog HDL allows this. Here is an example.

module FanOut (.A{(CtrlIn), .B(CondOut), .C(CondOut));
input CtrlIn;
output CondOut;

assign CondOut = CtrllIn;
endmodule

The internal port CondOut is connected to two external ports, B and C. So the
value on CondOut appears on both B and C.

9.5 Examples

Here is an example of a decade counter written in the structural style. The
logic diagram is shown in Figure 9-3.

ClOCk f 52
l JK1 JK2 JK3 JK4
I QM I Qrer/J Q—T ] QM
CcK L dck U dck _dek
xk Nd J_— kK NQ xk NQ k N
1 Z[0] Z{1] Zi{2] Z[3]

Figure 9-3 A decade counter.
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module Decade_Ctr (Clock, Z);
input Clock;
output [0:3] Z;
wire S1, S2;

and Al (S1, Z[2], Z[1]1);// Primitive gate instantiation.

// Four module instantiations:
JK_FF JK1 (.J(1'bl), .K(1'bl), .CK(Clock),

.0(z[0]), .NQQ)),

JK2 (.J(S2), .K(1l'bl), .CK(Z[0]),
.Q(2111), .NQO)),

JK3 (.J(1'bl), .K(1'bl), .CK(Z[1]),
.0(z[2]), .NQ()),

JK4 (.J(S1), .K(1'bl), .CK(Z[0]),
-Q(2[3]), .NQ(S2));

endmodule

Notice the usage of constants as values to input ports; also notice the uncon-
nected ports.

Here is another example, this one is that of a three-bit up-down counter
shown in Figure 9-4. The structural model follows.

Ql0]y ' QM | Q[2]

Cnt_Up

JK1 Al JK2 A3 JK3
] Q ] Q ] Q

Clk 52 sS4 s7 58
il [ p cK p CK
s3 S6
K ON K ON K ON

;
s1 S5

Cnt_Down

(J,K inputs of all flip-flops connected to 1)

Figure 9-4 A 3-bit up-down counter.
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module Up_Down (Clk, Cnt_Up, Cnt_Down, Q);
input Clk, Cnt_Up, Cnt_Down;
output [0:2] Q;
wire S1, S2, 53, S4, S5, S6, S7, S8;

JK_FF JK1 (1'bl, 1'bl, Clk, Q[0], S1),
JK2 (1'bl, 1'bl, S4, Q[1], S5),
JK3 (1'bl, 1'bl, S8, Q[21, );

and Al (S2, Cnt_Up, Q[0]),
A2 (83, S1, Cnt_Down),
A3 (87, Q[1], Cnt_Up),
A4 (S6, S5, Cnt_Down) ;

or 01 (54, S2, S3),
02 (S8, S7, S6);
endmodule

9.6
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Exercises

What is the difference between a gate instantiation and a module instanti-
ation?
What are the values of ports when they are left open, that is, they are not

connected?

Write a module that instantiates the module FA described in Section 9.3
with an OR_DELAY of 4, an XOR_DELAY of 7 and an AND_DELAY of 5.

Using the module FA described in this chapter, write a structural model
for a 4-bit ALU that performs addition and subtraction.

Using the module MUX4x1 described in Section 5.11, write a structural
model for a 16-to-1 multiplexer.

Describe a generic N-bit counter with asynchronous negative level reset.
Instantiate this generic counter as a 5-bit counter. Verify this 5-bit counter
using a test bench.



Chapter 10

OTHER TOPICS

This chapter describes miscellaneous topics such as functions, tasks, hier-
archy, value change dump file and compiler directives.

10.1 Tasks

A task is like a procedure, it provides the ability to execute common piec-
es of code from several different places in a description. This common piece
of code is written as a task (using a task definition) so that it can be called (by
a task call) from different places in a design description. A task can contain
timing controls, that is, delays, and it can call other tasks and functions as
well.

10.1.1 Task Definition

A task is defined using a task definition. It is of the form:
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task task_id;
[ declarations ]
procedural_statement
endtask

A task can have zero, one, or more arguments. Values are passed to and
from a task through arguments. In addition to input arguments (receive values
for a task), a task can have output arguments (return values from a task) and
inout arguments as well. A task definition is written within a module declara-
tion. Here is an example of a task definition.

module Has_Task;
parameter MAXBITS = 8;

task Reverse_Bits;
input [MAXBITS -1 : 0] Din;
output [MAXBITS -1 : 0] Dout;
integer K;

begin
for (K=0; K< MAXBITS; K=K+ 1)
Dout [MAXBITS -K] = Din [K];
end
endtask

endmodule

The inputs and outputs of a task are declared at the beginning of the task.
The order of these inputs and outputs specify the order to be used in a task
call. Here is another example of a task.

task Rotate Left;
inout [1:16] In_Arr;
input [0:3] Start_Bit, Stop_Bit, Rotate By;
reg Fill Value;
integer Macl, Mac3;

begin
for (Mac3 = 1; Mac3 <= Rotate By; Mac3 = Mac3 + 1)
begin
Fill Value = In_Arr [Stop Bit];
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for (Macl = Stop_Bit; Macl >= Start_Bit + 1;
Macl = Macl - 1)
In_Arr [Macl] = In Arr {(Macl - 1];

In Arr [Start_Bit] = Fill Value;
end
end
endtask

Fill_Value is a local register that is directly visible only within the task. The
first argument in this task is the inout array, In_Arr, followed by the three in-
puts, Start_Bit, Stop_Bit and Rotate_By.

In addition to the task arguments, a task can reference any variable defined
in the module in which the task is declared. An example is shown in the next
section.

0.1.2 Task Calling

A task is called (or enabled, as it is said in Verilog HDL) by a task enable
statement that specifies the argument values passed to the task and the vari-
ables that receive the results. A task enable statement is a procedural state-
ment and can thus appear within an always or an initial statement. It is of the
form:

task_id [ (exprl ,expr2,. . .,exprN) 1 ;

The list of arguments must match the order of input, output and inout declara-
tions in the task definition. In addition, arguments are passed by value, not by
reference. An important distinction between a task and a procedure in other
high-level programming languages such as Pascal is that a task can be called
more than once concurrently with each call having its own control. The big-
gest point to be careful is that a variable declared within a task is static, that is,
it never disappears or gets re-initialized. Thus one task call might modify a lo-
cal variable whose value may be read by another task call.

Here is an example of a task call for the task Reverse_Bits whose defini-
tion was given in the previous section.
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// Register declaration:
reg [MAXBITS -1 : 0] Reg_X, New_Reg;

Reverse_Bits (Reg_X, New_Regq); // Calling task.

The value of Reg_X is passed as the input value, that is, to Din. The output of
the task Dout is returned back to New_Reg. Note that because a task can con-
tain timing controls, a task may return a value later in time than when it was
called.

The output and inout arguments in a task call must be registers because a
task enable statement is a procedural statement. In the above example,
New_Reg must be declared as a register.

Here is an example of a task that references a variable that is not passed in
through its argument list. Even though referencing global variables is consid-
ered bad programming style, it is sometimes useful as shown in the following
example.

module Global_Var;
reg [0:7] RamQ [0:63];
integer Index;
reg CheckBit;

task GetParity;
input Address;
output ParityBit;

ParityBit = ~ RamQ [Address];
endtask

initial
for (Index = 0; Index <= 63; Index = Index + 1) begin
GetParity (Index, CheckBit);
$display ("Parity bit of memory word %4 is %b.",
Index, CheckBit);
end
endmodule

The address of the memory RamQ is passed as an argument and the memory
is referenced directly within the task.
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A task can have delays and or it can wait for certain events to occur. How-
ever, an assignment to an output argument is not passed to the calling argu-
ment until the task exits.

module TaskWait;
reg NoClock;

task GenerateWaveform;
output ClockQ;

begin
ClockQ = 1;
#2 ClockQ = 0;
#2 ClockQ = 1;
#2 ClockQ = 0;
end
endtask
initial
GenerateWaveform (NoClock) ;
endmodule

The assignments to ClockQ do not appear on NoClock, that is, no waveform
appears on NoClock; only the final assignment to ClockQ, which is O, appears
on NoClock after the task returns. One way to avoid this problem is to make
ClockQ as a global register, that is, declare it outside the task.

0.2 Functions

Functions, similar to tasks, also provide the capability to execute common
code from different places in a module. The difference from a task is that a
function can return only one value, it cannot contain any delays (must execute
in zero time) and it cannot call any other task. In addition, a function must
have at least one input. No output or inout declarations are allowed in a func-
tion. A function may call other functions.
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10.2.1 Function Definition

A function definition can appear anywhere in a module declaration. It is of
the form:

function [ range ] function_id;
input_declaration
other_declarations
procedural_statement
endfunction

An input to the function is declared using the input declaration. If no range is
specified with the function definition, then a 1-bit return value is assumed.
Here is an example of a function.

module Function_Example;
parameter MAXBITS = 8;

function [MAXBITS -1 : 0] Reverse_Bits;
input [MAXBITS -1 : 0] Din;
integer K;
begin
for (K=0; K< MAXBITS; K=K+ 1)
Reverse_Bits [MAXBITS —-K —-1] = Din [K];
end
endfunction

endmodule

The name of the function is Reverse_Bits. The function returns a vector of
size MAXBITS. The function has one input, Din. K is a local integer.

The function definition implicitly declares a register internal to the func-
tion, with the same name and range as the function. A function returns a value
by assigning a value to this register explicitly in the function definition. An as-
signment to this register must therefore be present within a function defini-
tion. Here is another example of a function.
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function Parity;
input [0:31] Sect;
reg [0:3] Ret;

integer J;
begin
Ret = 0;

for (U=0; g<=31; Jg=J0+1)
if (Set[J] == 1)
Ret = Ret + 1;

Parity = Ret % 2;

end
endfunction

In this function, Parity is the name of the function. Since no size has been
specified, the function returns a 1-bit value. Rer and J are local registers. Note
that the last procedural assignment assigns a value to the register which re-

turns the value from the function (a register with the same name as function is
implicitly declared within the function).

0.2.2 Function Call

A function call is part of an expression. It is of the form:
func_id ( exprl , expr2,. . ., exprN)
Here is an example of a function call.
reg [MAXBITS — 1 : 0] New_Reg, Reg_X; // Reg declaration.

New_Reg = Reverse_Bits(Reg_X);
// Function call in right-hand side expression.

Similar to a task, all local registers declared within a function definition

are static, that is, local registers within a function retain their values between
multiple invocations of the function.
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10.3 System Tasks and Functions

Verilog HDL provides built-in system tasks and system functions, that is,
tasks and functions that are predefined in the language. These are grouped as
follows:

i. Display tasks

ii. File /O tasks

iti. Timescale tasks

iv. Simulation control tasks

v. Timing check tasks

vi. PLA modeling tasks

vii. Stochastic modeling tasks

viii. Conversion functions for reals

ix. Probabilistic distribution functions

PLA modeling tasks and stochastic modeling tasks are outside the scope of
this book.

10.3.1 Display Tasks

The display system tasks are used for displaying and printing information.
These system tasks are further characterized into:

* Display and write tasks.
»  Strobed monitoring.
* Continuous monitoring.

Display and Write Tasks

The syntax is of the form:

task_name ( format_specificationl , argument_listl,
format_specification2 , argument_list2,

.
format_specificationN , argument_listN);
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where a rask_name is one of:

¢display $displayb S$displayh $displayo
Swrite Swriteb Swriteh Swriteo

The display task prints the specified information to standard output with a
end-of-line character, while the write task prints the specified information
without an end-of-line character. The following escape sequences can be used
for format specification.

$h or %$H : hexadecimal

%$d or %D : decimal

%0 or %0 : octal

%b or %B : binary

%c or %C : ASCII character

$v or %V : net signal strength
$m or $M  : hierarchical name
%s or %S : string

%t or &7 : current time format

If no format specification exists for an argument, then the default is:

decimal : for $display and Swrite
binary : for $displayb and Swriteb
octal : for $displayo and $writeo

hexadecimal : for $displayh and $writeh

Special characters can be printed using the following escape sequences.

\n newline

\t tab

A\ the \ character

\" the " character

\000 the character with octal value 000
%% the % character

Here are some examples.

$disgplay ("Simulation time is $t", $time);
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¢display ($time, " : R=%b, S=%b, Q=%b, QB=%b",
R, S, 0, OB); // Time is displayed in decimal since no
// format specification has been specified.

Swrite ("Simulation time is");
Swrite (" $t\n", Stime);

The following is what is displayed when above statements are executed
for some values of $time, R, S, Q and QB.

Simulation time is 10
10 : R=1, S=0, @=0, QB=1
Simulation time is 10

Strobe Tasks

The strobe tasks are:
$strobe $strobeb $strobeh $strobeo

These system tasks display the simulation data at the specified time but at the
end of the time step. “End of time step” implies that all events have been pro-
cessed for the specified time step.

always
@ (posedge Rst)
$strobe ("The flip-flop value is %b at time %t",
0, $time);

When Rst has a positive edge, the $strobe task prints the values of Q and the
current simulation time. Here is the output generated for some values of Q and
$time. Values are printed every time Rst has a positive edge.

The fiip-fiop value is 1 at fime 17
The fiip-flop value is O af fime 24
The flip-flop value is 1 at fime 26

Format specifications are same as that for display and write tasks.
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The strobe task differs from the display task in that the display task is exe-
cuted at the time the statement is encountered, while the execution of the
strobe task is postponed to the end of the time step. The following example
helps clarify this further.

integer Cool;

initial
begin
Cool =1;
$display ("After first assignment, Cool has value %d",
Cool);
$strobe ("When strobe is executed, Cool has value %d",
Cool);
Cool = 2;
$display ("After second assignment, Cool has value %4",
Cool);
end

The output produced is:

After first assignment, Cool has value 1
After second assignment, Cool has value 2
When strobe is executed, Cool has value 2

The first $display task prints the value of Cool as 1 (from the first assignment
to Cool). The second $display task prints the value of Cool as 2 (from the sec-
ond assignment to Cool). The $strobe task prints the value of Cool as 2, the
value it holds at the end of the time step.

Monitor Tasks

The monitor tasks are:
Smonitor S$monitorb Smonitorh $monitoro

These tasks monitor the specified arguments continuously. Whenever there is
a change of value in an argument in the argument list, the entire argument list
is displayed at the end of the time step. Here is an example.
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initial
Smonitor ("At %t, D= %d, Clk = %4 ",
Stime, D, Clk, "and Q is %b", Q);

When the monitor task is executed, a continuous monitor is set on D, Clk and
Q. If any of these change values, the entire argument list is displayed. Here is
a sample output for some changes on D, Clk and Q.

At 24,D=x, Clk=xondQis 0
At 25,D=x Clk=xaond Qis 1
At 30,D=0 Clk=xand Qis 1
At 35,D=0,Clk=1and Qis 1
At 37.D=0,Clk=0and Qis 1
At 43,D=1,Ck=0ond Qis 1

The format specification is the same as that for a display task. Only one
monitor can be active at any time for a particular variable.

Monitoring can be turned on and off by using the following two system
tasks.

$monitoroff; // Disables all monitors.
Smonitoron; // Enables all monitors.

These provide a mechanism to control dumping of value changes. The $mon-
itoroff task turns off all monitoring so that no more messages are displayed.
The $monitoron task is used to enable all monitoring.

10.3.2 File /O Tasks

Opening and Closing Files

A system function $fopen is available for opening a file.

integer file pointer = $fopen ( file name ) ;
// The $fopen system function returns an integer value
// (a pointer) to the file.
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while the following system task can be used to close a file.
$fclose (file pointer);
Here is an example of its usage.

integer Tq File;

initial
begin
Tqg File = $fopen ("~/jb/div.tg"};

$fclose (Tg File);
end

Writing out to a File

The display, write, strobe and monitor system tasks have a corresponding
counterpart that can be used to write information to a file. These are:

$fdisplay S$fdisplayb S$fdisplayh $fdisplayo
Sfwrite $fwriteb $fwriteh $fwriteo
$fstrobe Sfstrobeb $fstrobeh S$fstrobeo
$fmonitor S$fmonitorb S$fmonitorh S$fmonitoro

The first argument for all these tasks is a file pointer. Remaining arguments
for the task is a list of pairs of format specification followed by an argument
list. Here is an example that illustrates this.

integer Vec_File;

initial
begin
Vec_File = $fopen ("div.vec");

$fdisplay (Vec_File, "The simulation time is %t",
Stime) ;
// The first argument Vec_File is the file pointer.
$fclose (Vec_File);
end
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Upon execution of the $fdisplay task, the following statement appears in the
file “div.vec”.

The simulation time is 0

Reading from a File

There are two system tasks available for reading data from a file. These
tasks read data from a text file and load the data into memory. These system
tasks are:

$readmemb $readmemh

The text file can contain white spaces, comments and binary (for $read-
memb) or hexadecimal (for $readmemh) numbers. Each number is separated
by white space. When the system task is executed, each number read is as-
signed to an address in memory. The beginning address corresponds to the
leftmost index of the memory.

reg [0:3] Mem A [0:63];

initial
Sreadmemb ("ones_and_zeros.vec", Mem A);
// Each number read in is assigned to memory locations
// starting from 0 to 63.

Optionally an explicit address can also be specified in the system task call,
such as:

Sreadmemb ("rx.vec", Mem A, 15, 30);
// The first number read from the file “rx.vec” is stored
// in address 15, next one at 16, and so on until
// address 30.

An address may explicitly be given in the text file as well. The address is
of the form:

@address_in_hexadecimal
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In such a case, the system task reads the data into the specified address.
Subsequent numbers are loaded from that address onwards.

).3.3 Timescale Tasks

The system task:
Sprinttimescale
displays the time unit and time precision for the specified module. The
$printtimescale task with no arguments specified prints the time unit and
time precision for the module that contains this task call. If a hierarchical path

name to a module is specified as its argument, this system task prints the time
unit and precision for the specified module.

Sprinttimescale;
$printtimescale ( hier_path_to_module );

Here is a sample output of what appears when these tasks are called.

Time scale of (C10)is 100ps / 100ps
Time scale of (C10.INSTY is 1us / 100ps

The system task:
Stimeformat

specifies how the %t format specification must report time information. The
task is of the form:

$timeformat ( units_number , precision,
suffix , numeric_field width);

where a units_number is:

0 forls
-1 for 100 ms

175



CHAPTER 10 Other Topics

-2 for 10 ms
-3 for 1 ms
-4 for 100 us
-5 for 10us
-6 for 1 us
-7 for 100 us
-8 for 10 ns
-9 for 1ns
-10 for 100 ps
-11 for 10 ps
-12 for 1 ps
-13 for 100 £s
-14 for 10 £s
-15for 1 £s

The system task call:

$timeformat (-4, 3, " ps", 5);
$display ("Current simulation time is %t", $time);

will display the %t specifier value in the $display task as:

Current simulation time is 0.051 ps

If no $timeformat is specified, %t prints in the smallest precision of all ti-
mescales in source.

10.3.4 Simulation Control Tasks

The system task:
$finish;

makes the simulator exit and return control back to the operating system.

The system task:
$stop;

causes the simulation to suspend. At this stage, interactive commands may be
issued to the simulator. Here is an example of its use.
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initial #500 $stop;

After 500 time units, the simulation stops.

0.3.5 Timing Check Tasks

The system task:
$setup ( data_event , reference_event , limit );
reports a timing violation if:
( time_of_reference event — time_of_data_event ) < limit
An example of this task call is:
$setup (D, posedge Ck, 1.0);
The system task:
$hold ( reference_event , data_event , limit );
reports a violation if:
(time_of_data_event — time_of_reference_event) < limit
Here is an example.
$hold (posedge Ck, D, 0.1);
The following system task is a combination of the $setup and $hold tasks.

$setuphold ( reference_event , data_event , setup_limit,
hold limit);

The system task:

$width ( reference event , limit , threshold);
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reports a violation if:

threshold < ( time_of_data_event —
time_of_ reference event ) < limit

The data event is derived from the reference event: it is the reference event
with the opposite edge. Here is an example.

Swidth (negedge Ck, 0.0, 0);
The system task:
$period ( reference_event , limit );
reports a violation if:
( time_of_ data_event — time_of_reference_event ) < limit

The reference event must be an edge-triggered event. The data event is derived
from the reference event: it is the reference event with the same edge.

The system task:
$skew ( reference_event , data_event , limit);
reports a violation if’
time_of_data_event — time_of_ reference event > limit

If time of data_event is equal to the time of reference_event, no violation is
reported.

The system task:
Srecovery ( reference _event , data_event , limit );
reports a timing violation if:

( time_of_data_event — time_of_reference event ) < limit
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The reference event must be an edge-triggered event. This system task records
the new reference event time before performing the timing check; therefore if
the data event and the reference event both occur at the same simulation time,
a violation is reported.

The system task:

$nochange ( reference_event , data_event , start_edge offset,
end_edge_offset );

reports a timing violation if the data event occurs during the specified width of
the reference event. The reference event must be an edge-triggered event. The
start and stop offsets are relative to the reference event edge. For example,

$nochange (negedge Clear, Preset, 0, 0);

will report a violation if Preset changes while Clear is low.

Each of the above system tasks may optionally have a last argument
which is a notifier. A system task updates a notifier, when there is a timing vi-
olation, by changing its value according to the following case statement.

case ( notifier)
'bx : notifier = 'b0;

'b0 : notifier = 'bl;
'bl : notifier = 'b0;
'bz : notifier = 'bz;

end

A notifier can be used to provide information about the violation or propa-
gate an x to the output that reported the violation. Here is an example of a no-
tifier.

reg NotifyDin;
$setuphold (negedge Clock, Din, tSETUP, tHOLD, NotifyDin);
In this example, NorifyDin is the notifier. If a timing violation occurs, the reg-

ister NotifyDin changes value according to the case statement described earli-
er for a notifier.
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10.3.6 Simulation Time Functions

The following system functions return the simulation time.

« $time : Returns the time as an integer in 64 bits scaled to the time
unit of the module that invoked it.

e $stime : Returns time in 32 bits.

e  $realtime : Returns time as a real number scaled to the time unit
of the module that invokes it.

Here is an example.

“timescale 10ns / 1lns
module TB;

initial
$monitor ("Put_A=%d Put_B=%d", Put_A, Put_B,
" Get_0=%d4", Get_0, "at time %t", Stime);
endmodule

Here is the output it produces.

Put_A=0 Put_B=0 Get_O=0 at time 0
Put_A=0 Put_B=1 Get_O=0 at time 5
Put_A=0 Put_B=0 Get_0O=0 af time 16

The value returned by $time is scaled to the time unit of the module 7B and
then rounded. Note that $timeformat decides how the time value is to be
printed. Here is another example with its output.

initial
Smonitor ("Put_A=%d Put_B=%d", Put_A, Put_B,
" Get_0=%d", Get_0, "at time %t", $realtime);

Put_A=0 Put_B=1 Get_0O=0 at time 5.2
Put_A=0 Put_B=0 Get_0O=0 af time 15.6
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10.3.7 Conversion Functions

The following system functions are utility functions that convert between
number types.

*  $rtoi (real_value) : Converts a real number to an integer by trun-
cating the decimal value.

»  Sitor (integer_value) : Converts integer to real.

e Srealtobits (real_value) : Converts a real into 64-bit vector repre-
sentation of the real number (IEEE 754 representation of the real
number).

« S$bitstoreal (bir_value) : Converts a bit pattern into a real number
(opposite of $realtobits).

10.3.8 Probabilistic Distribution Functions

The function:
$random [ ( seed) }

returns a random number as a 32-bit signed integer based on the value of the
seed. The seed (must be a reg, integer or a time register) controls the number
that the function returns, that is, a different seed will generate a different ran-
dom number. If no seed is specified, a random number is generated every time
$random function is called based on a default seed.

Here is an example.

integer Seed, Rnum;
wire Clk;

initial Seed = 12;

always
@ (Clk) Rnum = Srandom (Seed) ;

On eVery edge of Clk, $random is called which returns a 32-bit signed integer
random number.

If a number within a range, say —10 to +10 is desired, the modulus opera-
tor can be used to generate such a number as shown in the following example.
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Rnum = Srandom (Seed) % 11;
Here is an example where the seed is not explicitly specified.
Rnum = Srandom / 2; // Seed is optional.
Note that the sequence of numbers generated is a pseudo-random se-

quence, that is, the same sequence of numbers is generated for a starting seed
value.

The following expression:
{$random} % 11

returns a random number in the range 0 to 10. The concatenation ({ }) operator
interprets the signed integer returned by the $random function as an unsigned
number.

The following functions generate pseudo-random numbers according to
the probabilistic function specified in the function name.

¢$dist_uniform ( seed, start, end)

$dist_normal ( seed, mean, standard _deviation , upper)
$dist_exponential ( seed, mean )

$dist_poisson ( seed , mean)

$dist_chi_square ( seed , degree of_freedom)

$dist_t ( seed, degree of_freedom)

$dist_erlang ( seed, k_stage, mean)

All parameters to these functions must be integer values.
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10.4 Disable Statement

A disable statement is a procedural statement (hence it can only appear
within an always or an initial statement). A disable statement can be used to
terminate a task or a block (sequential or parallel) before it completes execut-
ing all its statements. It can be used to model hardware interrupts and global
resets. It is of the form:

disable task_id;
disable block_id;

After a disable statement is executed, execution continues with the next
statement following the task call or the block being disabled.

begin: BLK A
// Stmtl.
// Stmt2.
disable BLK_A;
// Stmt3.
// Stmt4.

end

// Stmt5.

Statements 3 and 4 are never executed. After the disable statement is execut-
ed, statement 5 is executed. Here is another example.

task Bit_Task;
begin
// stmt 6.
disable Bit_Task;
// Stmt 7.
end
endtask

// Stmt 8.

Bit_Task; // Task call.
// Stmt 9.
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When the disable statement is executed, the task is aborted, that is, statement
7 is never executed. Execution continues with the next statement following the
task call which in this example is statement 9.

Disabling a task is not recommended, especially if the task returns output
values. This is because the language specifies that the values of the output and
inout arguments are indeterminate when a task is disabled. A better approach
is to disable the sequential block, if any, within the task. For example,

task Example;
output [0:3] Count;
begin: LOCAL_BLK
// Stmt 10.
Count = 10;
disable LOCAL_BLK;
// stmt 11.
end
endtask

When the disable statement gets executed, it causes the sequential block
LOCAL_BLK to exit. Since this is the only statement in the task, the task exits
gracefully and Count has its assigned value of 10. If the disable statement
were replaced with:

disable Example;

then after the disable statement gets executed, the value of Count is indetermi-
nate.

10.5 Named Events

Consider the following two always statements.

reg Ready, Done;
// Get the always statements interacting:
initial

begin
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Done = 0;
#0 Done = 1;
end
always

@ (Done) begin

// Finished processing this always statement.
// Trigger the next always statement.
// Create an event on Ready:

Ready = 0;
#0 Ready = 1;
end
always

@ (Ready) begin

// Finished processing this always statement.
// Create event to trigger previous always statement:

Done = 0;
#0 Done = 1;
end

The two assignments in each always statement are needed to ensure that an
event is created on Ready and Done. It appears that the purpose of Ready and
Done are to act only as handshake signals between the two always statements.

Verilog HDL provides an alternate mechanism to achieve this - using
named events. A named event is yet another data type (the two other data
types in the language are the register and the net data types). A named event
must be declared before it is used. An example of its declaration is:

event Ready, Done;
The event declaration declares two named events, Ready and Done. Having
declared a named event, an event can be created using the event trigger state-

ment. Examples of such statements are:

-> Ready;
-> Done;
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Events on named events can be monitored just like events on variables,
that is, using the @ mechanism, such as:

@ (Done) <do_something>

So whenever the event trigger statement for Done is executed, an event is said
to occur on Done, which causes <do_something> to execute.

Our simple example of the two always statements can be rewritten using
named events as follows.

event Ready, Done;

initial
-> Done;

always
@ (Done) begin

// Trigger the next always statement.
// Create an event on Ready:
-> Ready;

end

always
@ (Ready) begin

// Create event to trigger previous always statement:
-> Done;
end

A state machine can also be described using events. Here is an example of
an asynchronous state machine.

event Statel, State2, State3;

// Reset state:
initial
begin
// Reset state logic here.
-> Statel;
end
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always
@ (Statel) begin
// Statel logic here.
-> StateZ; // Create event on StateZ.
end

always
Q@ (State2) begin
// State2 logic here.
-> State3; // Create event on State3.
end

always
@ (State3) begin
// State3 logic here. It can have statements such as:

if (InputA)
-> StateZ; // Create event on StateZ.
else
-> Statel; // Create event on Statel.
end

The initial statement describes the reset logic. Upon completion, it triggers the
second always statement. The execution of the last statement in this always
statement causes an event to occur on State2; this causes the third always
statement to execute and subsequently the fourth always statement executes.
In the last always statement, an event is made to occur either on State2 or on
Statel depending on the value of InputA.

0.6 Mixing Structure with Behavior

In previous chapters, we discussed the various forms of modeling. Verilog
HDL allows all these modeling styles to be combined in a single module. The
syntax of a module is:

module module_name ( port_list );
Declarations:
Input, output and inout declarations.
Net declarations.
Reg declarations.
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Parameter declarations.

Initial statement.

Gate instantiation statement.

Module instantiation statement.

UDP instantiation statement.

Always statement.

Continuous assignment.
endmodule

Here is an example of a mixed style description.

module MUXZ2x1 (Ctrl, A, B, Ena, Z2);
// Input declaration:
input Cctrl, A, B, Ena;
// Output declaration:
output Z;
// Wire declaration:
wire Mot, Not_Ctrl;
// Net declaration assignment:
wire Z = Ena == 1 ? Mot : 'bz;

// Gate instantiations:
not (Not_Ctrl, Ctrl);
or (Mot, Ta, Th);

// Continuous assignments:

assign Ta = A & Ctrl;

assign Tb = B & Not_Ctrl;
endmodule

The module contains a mix of built-in logic gates (structural components) and
continuous assignments (dataflow behavior).

10.7 Hierarchical Path Name

Every identifier in Verilog HDL has a unique hierarchical path name. This
hierarchical path name is formed by using names separated by a period (.)
character. A new hierarchy is defined by:
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i. Module instantiation.
ii. Task definition.
iii. Function definition.
iv. Named block.
The complete path name of any identifier starts with the top-level module
(a module that is not instantiated by anybody else). This path name can be

used in any level in a description. Here is an example. Figure 10-1 shows the
hierarchy.

module Top wire Sbus

function Func

C1: module Chil task Proc
reg Art reg Art
block BLA
integer Dot
block BLB
reg Art, Cit

Figure 10-1 Module hierarchy.

module Top;
wire Shus;

function Func . . .
en;if.uz'xction
task Proc

x.'e.g .}-lrt;

begin: BLA
integer Dot;
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end
begin: BLB
reg Art, Cit;

end
endtask

Chil C1 (. . .); // A module instantiation.
endmodule // Module Top.

module Chil;
reg Art;

endmodule
The hierarchical names in this example are:

Top.Cl.Art
Top.Proc.Art
Top.Proc.BLB.Art
Top.Proc.BLA.Dot
Top.Proc.BLB.Cit
Top. Shus

These hierarchical names allow free data access to any item from any lev-
el in the hierarchy. The value can not only be read, but can also be updated
from any level of the hierarchy.

A lower level module can reference an item in a module above it (called
upward referencing) or below it (downward referencing) in its hierarchy by
qualifying the variable with the module instance name. This is of the form:

module_instance name . variable_name

For downward path referencing, the model instance must be at the same
level as the lower-level module. Here is an example.
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module Top;
wire Shus;

ChilcCcl (. . .); // A module instantiation.

$display (Cl1.Art); // Downward referencing.
endmodule

module Chil;
reg Art;

endmodule

10.8 Sharing Tasks and Functions

One approach to share tasks and functions among different modules is to
write the definitions of the shared tasks and functions in a text file, and then
include these in the required module using the “include compiler directive.
Assume that we have the following function and task definitions in a file
“share.h”.

function SignedPlus;
en;iéux;ction

function SignedMinus;
en;if'ux'xction

task PresetClear;
en‘dt.as.k

Here is how the file can be used in a module.
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module SignedAlu (A, B, Operation, Z);
input [0:3] A4, B;
input Operation;
output [0:3] Z;
reg [0:3] Z;

// Include the definitions of the shared functions.
‘include "share.h"

always
@ (A or B or Operation)
if (Operation)
Z = SignedPlus (A, B);
else
Z = SignedMinus (A, B);
endmodule

Note that the “include directive must be present within the module declaration
since the task and function definitions in the file “share.h” are not bounded by
a module declaration.

An alternate way to share functions and tasks is to define the shared tasks
and functions within a module. And then refer to the required task or function
in a different module using a hierarchical name. Here is the same example as
above, but this time the task and function definitions appear within a module
declaration.

module Share;
function SignedPlus;

en;if'ux‘xction
function SignedMinus;
en;iéux;ction
task PresetClear;
en;it‘as‘k

endmodule

Here is how the shared functions can be referenced in a different module.
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module SignedAluZ2 (A, B, Operation, Z);
input [0:3] A4, B;
input Operation;
output [(0:3] Z;
reg [0:3] Z;

always
@ (A or B or Operation)
if (Operation)
Z = Share.SignedPlus (A, B);
else
Z = Share.SignedMinus (A, B);
endmodule

0.9 Value Change Dump (VCD) File

A value change dump (VCD) file contains information about value chang-
es on specified variables in design. Its main purpose is to provide information
for other post-processing tools.

The following system tasks are provided to create and direct information
into a VCD file.

i. $dumpfile : This system task specifies the name of the dump file.
For example,

$dumpfile ("uart.dump");

ii. $dumpvars : This system task specifies the variables whose val-
ue changes are to be dumped into the dump file.

Sdumpvars;
// With no arguments, it specifies to dump all

// variables in the design.

$dumpvars (leyel, module_name) ;
// Dumps variables in specified module and in all
// modules the specified number of levels below.
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Sdumpvars (1, UART):;
// Dumps variables only in UART module.

$dumpvars (2, UART);
// All variables in UART and in all modules one
// level below.

Sdumpvars (0, UART);
// Level 0 causes all variables in UART and all
// variables in all module instances below UART.

Sdumpvars (0, P_State, N_State);
// Dumps info about P_State and N_State variables.
// The level number is not relevant in this case, but
// must be given.

Sdumpvars (3, Div.Clk, UART);
// The level number applies only to modules, in this
// case, only to UART, that is, all variables in UART

// and two levelsg below. Also dumps value changes on
// variable Div.Clk.

iii. $dumpoff : This system task causes the dumping tasks to be sus-
pended.

Sdumpoff;

iv. $dumpon : This system task causes all dumping tasks to resume.
The syntax is:

$dumpon ;

v. $dumpall : This system tasks dumps the values of all specified
variables at that time, that is at the time it is executed. The syntax
is:

Sdumpall;
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vi. $dumplimit : This system task specifies the maximum size (in
bytes) for a VCD file. Dumping stops when this limit is reached.
For example,

$dumplimit (1024); // VCD file is of maximum
// 1024 bytes.

vii. $dumpflush : This system task flushes data in the operating sys-
tem VCD file buffer to be stored in the VCD file. After the execu-
tion of the system task, dumping resumes as before.

Sdumpflush;

0.9.1 An Example

Here is an example of an up-down counter that counts between 5 and 12.

module CountUpDown (Clk, Count, Up_Down) ;
input Clk, Up_Down;
output [0:3] Count;
reg [0:3] Count;

initial Count = 'd5;

always
@ (posedge Clk) begin
if (Up_Down)
begin
Count = Count + 1;

if (Count > 12)
Count = 12;
end
else
begin
Count = Count - 1;

if (Count < 5)

Count = 5;
end
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end
endmodule

module Test;
reg Clock, UpDn;
wire [0:3] Cnt_Out;
parameter ON_DELAY = 1, OFF_DELAY = 2;

CountUpDown C1 (Clock, Cnt_Out, UpDn);

always
begin
Clock =1;
$#ON_DELAY;
Clock = 0;
#OFF_DELAY;
end

initial
begin
UpDn = 0;
#50 Upbn = 1;
#100 $dumpflush;
$stop; // Stops the simulation.
end

~ initial
. begin
Sdumpfile ("count.dump");
Sdumplimit (4096);
Sdumpvars (0, Test);
$dumpvars (0, Cl.Count, Cl1.Clk, Cl.Up_Down);
end
endmodule

10.9.2 Format of VCD File

The VCD file is an ASCII file. It has the following information:

* Header information: Gives date, simulator version and timescale
unit.
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* Node information: Definition of the scope and type of variables

being dumped.

. Value changes: Actual value changes with time. Absolute simula-

tion times are recorded.

The VCD file produced is shown in Figure 10-2.

Sdate

Fri Sep 27 16:23:58 1996

Send

Sversion

Verilog HDL Simulator 1.0

Send

Stimescale

100ps

Send

Sscope module Test Send

Svar parameter 32 { ON_DELAY
Send

Svar parameter 32 * OFF_DELAY
Send

Svarreg 1 # Clock Send
Svarreg 1 $ UpDn $Send

Svar wire 1 % Cnt_Out (0) Send
Svar wire 1 & Cnt_Out (1) Send
Svar wire 1 * Cnt_Out (2) Send
Svar wire 1 (Cnt_Out (3) Send
$scope module C1 $end

Svar wire 1) Clk Send

Svar wire 1 * Up_Down $end
Svarreg 4 + Count (0:3) Send
Svar wire 1) Clk $Send

Svar wire 1 * Up_Down Send
Supscope Send

Supscope Send
Senddefinitions Send

#0

(continued next column)

Sdumpvars
1#

0s$

bl !

10"

101 +

1(
o
1&

()]

Oﬁ
Send
#10
O#

0)]

#30

1#

()]
100 +
101 +
#40
o#

o)

#60

1#

()]
100 +
101 +
#70
o#

Figure 10-2 A VCD file.
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10.10 Specify Block

The delays that we have discussed so far such as gate delays and net de-
lays are distributed delays. Delays for paths in a module, called module path
delays, can be specified using a specify block. In general, a specify block can
be used for the following.

. To declare paths between a source and a destination.
ii. To assign delay to these paths.
iii. To perform timing checks for the module.

A specify block appears within a module declaration. It is of the form:

specify
spec_param _declarations
path_declarations
system_timing checks
endspecify

A specparam (or a specify parameter) declaration declares a parameter for use
within the specify block. Here is an example.

specparam tSETUP = 20, tHOLD = 25;

Three kinds of module paths can be described within a specify block.
These are:

* Simple path.
» Edge-sensitive path.
» State-dependent path.

A simple path is declared using one of the following two forms.

source *> destination
// Specifies a full connection: each bit in source
// connects to all bits in destination.

source => destination
// Specifies a parallel connection: every bit in source
// connects to exactly one bit in destination.
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Here are some examples.

input Clock;
input [7:4] D;
output [4:1] Q:

(Clock => Q[1]1) =5;
// Delay from input Clock to Q[1] is 5.

(D *> Q) = (tRISE, tFALL);
/* Paths are:
D[7] to Q[4]
D[7] to Q[3]
D[7] to Q[2]
D[7] to Q[1]
D[6] to Q[4]

D[4] to Q[1]
*/

In an edge-sensitive path, the path is described with respect to an edge on the
source. For example,

(posedge Clock => (Qb +: Da)) = (2:3:2);
/* The path delay is from the positive edge of Clock to Qb.
The data path is from Da to Qb and Da does not get
inverted as it propagates to Qb. */

A state-dependent path specifies a path delay under some condition when it is
true. For example,

if (Clear)
(D=>9Q) = (2.1, 4.2);
// Only if Clear is true, use the delay for the
// specified path.

Here is a list of timing check system tasks that can be used within a speci-
fy block.
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$setup $hold
$setuphold Speriod
Sskew $recovery
Swidth $nochange

Here is an example of a specify block.

specify

' // Specify parameters:

specparam tCLK_Q = (5:4:6);
specparam tSETUP = 2.8, tHOLD = 4.4;

// Path delays with path specifications:
(Clock *> Q) = tCLK_Q;

(Data *> Q) = 12;

(Clear, Preset *> Q) = (4, 5);

// Timing check:

$setuphold (negedge Clock, Data, tSETUP, tHOLD);
endspecify

Along a module path, only pulses that are longer than the path delay prop-
agate to the output. However, this can additionally be controlled by using a
special specify block parameter called PATHPULSES. In addition to specify-
ing the pulse width range for which a pulse is rejected, it can also be used to
specify a pulse width range that will cause an x to appear at the end of the
path. A simple form of this parameter specification is:

PATHPULSES = ( reject_limit, [ , error_limit ]);

If a pulse width is less than the reject_limit, the pulse does not propagate to
output. If a pulse width is less than the error_limit (same as reject_limit if not

specified) but greater than the reject_limit, an x is generated at the target of the
path.

A pulse limit can be specified for a specific path as well by using a modi-
fied PATHPULSES parameter of the form:

PATHPULSES input_terminal$output_terminal

Here is an example of a specify block.
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specify
specparam PATHPULSES = (1, 2);
// Reject limit = 1, Error limit = 2.
specparam PATHPULSESDatas$Q = 6;
// Reject limit = Error limit = 6, on path from Data to Q.
endspecify

0.11 Strengths

In addition to the four basic values in Verilog HDL, 0, 1, x and z, addition-
al attributes to these values such as drive strength and charge strength can be
specified.

.0.11.1 Drive Strength

A drive strength can be specified for the following:
i. Anetin a net declaration assignment.
ii. Output terminal of a primitive gate instance.
iii. In a continuous assignment.

A drive strength specification has two values, one is the strength value
when the net is assigned a value 1, the second is the strength value when the
net is assigned a value 0. It is of the form:

( strength_for 1, strength_for 0)

The order of the values is not important. For an assignment of value 1, only
the following strengths are allowed.

* supplyl
* strongl
* pulll

* weakl

» highz1l (not allowed for gate primitives)
For an assignment of value 0, the following strengths are allowed.
* supply0
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* strongl
pull0
weak0

highz0 (not allowed for gate primitives)
The default strength specification is (strong0, strongl).

Here are some examples.

// Strength for a net:

wire (pulll, weak0) #(2, 4) Lrk = Pol && Ord;
// Strengths can be specified only for scalar nets of type:
// wire, wand, wor, tri, triand, trior, trireg,
// tri0, tril.

// Strength for an output terminal of a gate primitive:

nand (pulll, strong0) #(3:4:4) Al (Mout, MinA, MinB, MinC);
// Drive strengths can only be specified for the following
// gate primitives: and, or, xor, nand, nor, xnor, buf,
// bufif0, bufifl, not, notif0, notifl, pulldown, pullup.

// Strength in a continuous assignment:
assign (weakl, pulll) #2.56 Wrt = Ctrl;

The strength of a net can be printed using the %v format specification in a
display task. For example,

$display ("Prq is %v", Prq);

produces:

Prgis Wel

10.11.2 Charge Strength

A trireg net can optionally have a charge strength specified as well. This
charge strength specifies the relative size of the capacitance associated with
the net. It is one of:

e small
* medium (default, if not specified)
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¢ large
In addition, a charge decay time can be specified for a trireg net. Here is
an example.

trireg (small) #(5, 4, 20) Tro;

The trireg net Tro has a small capacitance. The rise delay is 5 time units, the
fall delay is 4 time units and the charge decay time (the charge decays when
the net is in high-impedance) is 20 time units.

0.12 Race Condition

If a delay is not used in a continuous assignment or in an always state-
ment, a race condition can occur due to zero delay. This is because Verilog
HDL does not define how events, which occur at the same time, are ordered
for simulation.

Here is a simple example that illustrates this fact about zero delays using
non-blocking assignments.

begin
Start <= 0;
Start <= 1;
end

Both values 0 and 1 get scheduled to be assigned to Starrt at the end of the time
step. Depending on how the events are ordered (internal to a simulator), the
result on Start may beaQora 1.

Here is another example that shows a race condition due to event ordering.

initial
begin
Pal = 0;
Ctrl =1;
#5 Pa
Ctrl
end

1;

=~

0;
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always
@ (Cot or Ctrl) begin
$display ("The value of Cot at time", $time, " is ",
Cot) ;
end

assign Cot = Pal;

When Pal and Ctrl are assigned values in the initial statement at time 0, the
continuous assignment and the always statement are both ready for execution.
Which one should be executed first? The Verilog language does not define this
order. If the continuous assignment executes first, Cot will get 0, which in turn
will trigger the always statement. But since it is already ready for execution,
nothing is done. The always statement gets executed which displays the value
of 0 for Cor.

If we assume that the always statement executes first, the current value of
Cot is printed (the continuous assignment has not yet been executed), and then
the continuous assignment gets executed which updates the value of Cot.

Therefore be careful when dealing with zero delay assignments. Here is
another example of a race condition.

always @ (posedge GlobalClk)
RegB = RedA;

always @ (posedge GlobalClk)
RegC = RegB;

The language does not define which always statement is to be executed first
when there is a positive edge on GlobalClk. If the first always statement is ex-
ecuted, RegB will get the value of RegA immediately. Subsequently when the
second always statement executes, RegC will get the latest value of RegB (the
one assigned in the first always statement).

If the second always statement executes first, RegC will get the old value
of RegB (RegB has not yet been assigned), and subsequently RegB will be as-
signed the value of RegA. So depending on which always statement executes
first, RegC will have a different value. The problem occurs because the proce-
dural assignment occurs instantaneously, that is, without any delay. One way
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to avoid the problem is to insert intra-statement delays. A better approach is to
use non-blocking assignment statements. This is shown next.

always @ (posedge GlobalClk)
RegB <= RegA;

always @ (posedge GlobalClk)
RegC <= RegB;

When communicating information via variables from one always statement to
another, use non-blocking assignments when assigning to the variables to
avoid race conditions.

0.13 Exercises

1.

2
3
4,
5
6

10.

11.

Can a function call a task?

Can a task have delays?

Can a function have zero input parameters?

What is the difference between $display and $write system tasks?
What is the difference between $strobe and $monitor system tasks?

Write a function that performs a BCD (binary coded decimal) to 7-
segment decoding.

Write a function that converts a four-character string that contains only
decimal digits to an integer value. For example, if MyBuffer contains the
string "4298", convert it to an integer Myint that has the value 4298.

Does Verilog HDL have a capability to read files other than using the $re-
admemb and $readmembh system tasks?

What is the difference between $stop and $finish system tasks?

Write a task that dumps the contents of a memory starting from a speci-
fied begin and end locations.

What is a notifier? Give an example of its use.
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12,

13.

14.
15.
16.
17.
18.

19.

How would you load a memory from locations O through 15. Hexadeci-
mal values are read from a text file "ram.txt".

Write a task that models the behavior of an asynchronous preset clear pos-
itive edge triggered counter.

What statement can be used to return from a task?

What system task impacts how the $time value is to be printed?
What mechanism is used to specify a pulse rejection limit?

Write a function that performs an arithmetic shift of a 10-bit vector.

Show how a disable statement can be used to emulate the behavior of the
“continue” and “break” statements of the C programming language.

Given an absolute UNIX path name of a file, say of form /D1/D2/D3/
fileA, write the following functions:

- GetDirectoryName: returns the directory of file (i.e. /D1/D2/D3)

- GetBaseName: returns the name of file (i.e. fileA)

Assume that the maximum number of characters in the path name can be
at most 512 characters.



Chapter 11

VERIFICATION

This chapter describes techniques for writing test benches. A test bench is
a program used for exercising and verifying the correctness of a design.
Verilog HDL provides powerful constructs that can be used to describe test
benches.

1.1  Writing a Test Bench

A test bench has three main purposes.
i. To generate stimulus for simulation (waveforms).

ii. 'To apply this stimulus to the module under test and collect output
responses.

iti. To compare output responses with expected values.

Verilog HDL provides a large number of ways to write a test bench. In this
chapter, we explore some of these. A typical test bench is of the form:
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module Test_Bench;
// A test bench typically has no inputs and outputs.
Local_reg_and_net_declarations
Generate_waveforms_using initial_é&_ always_statements
Instantiate_module_under_test
Monitor_ output_and_compare with_expected_values
endmodule

Stimulus is automatically applied to the module under test by instantiating
it in the testbench module.

11.2 Waveform Generation

There are two main approaches to generate stimulus values.

i. Create waveforms and apply stimulus at certain discrete time in-
tervals.

ii. Generate stimulus based on the state of the module, that is, based
on the output response of the module.

Two types of waveforms are typically needed. One is a repetitive pattern,
for example, a clock, and the other is a specified set of values.

11.2.1 A Sequence of Values

The best way to generate a sequence of values is to use an initial state-
ment. Here is an example.

initial
begin
Reset = 0;
#100 Reset = 1;
#80 Reset = 0;
#30 Reset = 1;
end

The waveform generated is shown in Figure 11-1. The assignment statements
in the initial statement use delay controls to generate a waveform. Alternately,
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Reset

0 100 180 210

Figure 11-1 Waveform generated using initial statement.

intra-statement delays can also be used to generate a waveform as shown in
the following example.

initial
begin
Reset = 0;
Reset = #100 1;
Reset = #80 0;
Reset = #30 1;
end

Since blocking procedural assignments are used, the delays in the above state-
ments are relative delays. If absolute delays are preferred to be used, non-
blocking procedural assignments can be used with intra-statement delays, as
shown in the following example.

initial
begin
Reset <= 0;
Reset <= #100 1;
Reset <= #180 0;
Reset <= #210 1;
end

The waveforms produced for all the three initial statements are identical to the
one shown in Figure 11-1.

To repeat a sequence of values, use an always statement instead of an ini-
tial statement; this is because an initial statement executes only once while an
always statement executes repeatedly. Figure 11-2 shows the waveform creat-
ed for the following example with an always statement.
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parameter REPEAT DELAY = 35;
integer CoinValue;

always

begin
CoinValue = 0;
#7 CoinValue = 25;
#2 CoinValue = 5;
#8 CoinValue = 10;
#6 CoinValue = 5;
#REPEAT DELAY;

end

CoinValue

0 |25 5 10 5 0 25| 5 10
0 7 9 17 23 58 65 67 75

H
€———— onecycle ———-—>§
H

Figure 11-2 A repetitive sequence generated using an always statement.

11.2.2 Repetitive Patterns

It appears that a repetitive pattern can simply be created by having a con-
tinuous assignment of the form:

assign #(PERIOD/2) C(Clock = ~ Clock;

But this is not completely correct. The problem is that since Clock is a net
(only a net can be assigned in a continuous assignment), its initial value is an z
and ~zis xand ~x is x. Therefore the Clock gets stuck at the value x forever.

What is needed is a way to initialize the Clock. This can be done using an
initial statement.

initial
Clock = 0;
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But now Clock has to be a register data type (since only register data types can
be assigned values in an initial statement), and therefore the continuous as-
signment needs to be changed to an always statement. Here is a complete
clock generator module.

module Gen Clk_A (Clk_A);
output Clk_A;
reg Clk_A;
parameter tPERIOD = 10;

initial
Clk_A = 0;
always

# (tPERIOD/2) Clk_A =~ Clk_A;
endmodule

The waveform produced is shown in Figure 11-3.

Clk_A

0 5 10 15 20 25 30

Figure 11-3 Periodic clock.

An alternate way of generating a clock is shown next.

module Gen_Clk_B (Clk_B);
output Cik_B;
reg Start;

initial
begin
Start = 1;

#5 Start = 0;
end

nor #2 (Clk_B, Start, Clk_B);
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endmodule
// Generates a clock with on-off width of 2.

The initial statement sets Start to 1, which forces the output of the nor gate to
be a 0 (gets out of x value). After 5 time units, when Start goes to 0, the inver-
sion of the nor gate produces the clock with an on-off period of 4 time units.
The waveform produced is shown in Figure 11-4.

Start
Clk_B ’

Figure 11-4 A controlled clock.

If a clock with different on-off duration is required, this can be modeled
using an always statement as shown in the next model.

module Gen Clk_C (Clk_C);
parameter tON = 5, tOFF = 10;
output Clk C;
reg Clk_C;

always
begin
#tON Clk _C=0;
#tOFF Clk_C=1;
end
endmodule

No initialization is necessary in this case since the values 0 and 1 are being ex-
plicitly assigned. Figure 11-5 shows the waveform generated for this module.

To generate a varying on-off period clock after a start-up delay, a forever
loop in an initial statement can be used.
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Cik_C 0
0 5 10 15 25 30

Figure 11-5 Varying on-off period.

module Gen_Clk_D (Clk_D);
output Clk D;
reg Clk_D;
parameter START DELAY = 5, LOW_TIME = 2, HIGH _TIME = 3;

initial
begin
Clk D = 0;
# START DELAY;

forever
begin
¥ LOW_TIME;
Clk_D=1;
¥ HIGH_TIME;
Clk_D = 0;
end
end
endmodule

Figure 11-6 shows the waveforms produced.

I

10 12 15 17 20 22 25

Clk_D

Figure 11-6 Clock with start-up delay.
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To generate a fixed number of clock pulses, a repeat loop can be used.
Here is a parameterized clock module that generates such a sequence of puls-
es. Even the on-off delays are parameterized.

module Gen_Clk E (Clk_E);
output Clk_E;
reg Clk _E;
parameter Thurst = 10, Ton = 2, Toff = 5;

initial
begin
Clk_E = 1'b0;

repeat (Tburst)
begin
# Toff Clk_E=1'bl;
¥ Ton Clk_E = 1'b0;
end
end
endmodule

Module Gen_Clk_E can be instantiated with different parameter values for
Tburst, Ton and Toff.

module Test;
wire Clk_Ea, Clk_Eb, Clk_Ec;

Gen_Clk_E G1 (Clk_Ea) ;
// Burst of 10 pulses, on-time of 2 and off-time of 5.

Gen_Clk E #(5, 1, 3) (Clk_Eb);
// Burst of 5 pulses, on-time of 1 and off-time of 3.

Gen_Clk_E #(25, 8, 10) (Clk_Ec);

// Burst of 25 pulses, on-time of 8 and off-time of 10.
endmodule

The waveforms on Clk_Eb is shown in Figure 11-7.

A clock that is phase-delayed from another clock can be generated by us-
ing a continuous assignment. Figure 11-8 shows the generated waveforms for
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LJLILIL

34 7 8 11121516 19 20

Clk_Eb

Figure 11-7 Fixed number of clock pulses.

the following module that generates two clocks, one of which is
phase-delayed from the other.

module Phase (Master_Clk, Slave_Clk);
output Master_Clk, Slave_Clk;
reg Master_ Clk;
wire Slave Clk;
parameter tON = 2, tOFF = 3, tPHASE_DELAY = 1;

always
begin
#tON Master_Clk = 0;
#tOFF Master_Clk =1;
end

assign #tPHASE DELAY Slave_Clk = Master_Clk;

endmodule
1
X |
_—I_g_ Master_Clock
2 5 7 10 12 15

z 1
—_L 0 Slave_Clock
0 3 6 8 11 13

Figure 11-8 Phase-delayed clocks.
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11.3 Testbench Examples

11.3.1 A Decoder

Here is a description of a 2-to-4 decoder and its test bench. Output is
printed any time there is a change of value on either the input or the output.

‘timescale 1ns / lns

module Dec2x4 (A, B, Enable, Z);
input A, B, Enable;
output [0:3] Z;
wire Abar, Bbar;

not # (1, 2)
V0 (Abar, A),
V1 (Bbar, B);

nand #(4, 3)
NO (Z[0), Enable, Abar, Bbar),
N1 (Z[1), Enable, Abar, B),
N2 (Z[2), Enable, A, Bbar),
N3 (Z[3), Enable, A, B);
endmodule

module Dec Test;
reg Da, Db, Dena;
wire [0:3] Dz;

// Module under test:
Dec2x4 D1 (Da, Db, Dena, Dz);

// Generate waveforms:
initial
begin
Dena = 0;
Da = 0;
Db =0;
#10 Dena = 1;
#10 Da = 1;
#10 Db = 1;
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#10 Da = 0;

#10 Db = 0;

#10 Sstop;
end

// Print results:
always
@ {Dena or Da or Db or Dz)
$display ("At time %t, input is %$b%b%b, output is %b",
$time, Da, Db, Dena, Dz);
endmodule

Here is the output produced when this test bench is executed.

At time 4, input is 000, outputis 1111

At time 10, input is 001, outputis 1111
At time 13, input is 001, outputis 0111
At time 20, input is 101, outputis 0111
At time 23, input is 101, output is 0101
At time 26, input is 101, outputis 1101
At time 30, inputis 111, outputis 1101
At time 33, input is 111, outputis 1100
At time 36, inputis 111, outputis 1110
At time 40, input is 011, outputis 1110
At time 44, input is 011, outputis 1011
At time 50, input is 001, outputis 1011
At time 54, input is 001, outputis 0111

(1.3.2 A Flip-flop

Here is a description of a master-slave D-type flip-flop and a testbench
that exercises it.

module MSDFF (D, C, Q, Qbar);
input D, C;
output Q, Qbar:

not
NT1 (NotD, D),
NT2 (NotC, C),
NT3 (NotY, Y);
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nand
ND1 (D1, D, C),
ND2 (D2, C, NotD),
ND3 (Y, D1, Ybar),
ND4 (Ybar, Y, D2),
ND5 (Y1, Y, Not(C),
ND6 (Y2, NotY, NotC),
«ND7 (Q, Qbar, Y1),
ND8 (Qbar, Y2, Q):
endmodule

module Test;
reg D, C;
wire Q, Qb;

MSDFF M1 (D, C, Q, OQb);:

always
#5 C = ~C;

initial

begin
D=0;
C=0;
#¥40 D= 1;
#40 D = 0;
#40 D= 1;
#40 D = 0;
$stop;

end

initial
$monitor ("Time=%t ::", $time, " C=%b, D=%b, Q=%b,
Qb=%b", C, D, Q, Qb);
endmodule

In this testbench, a monitor is set on the two inputs and the two outputs of the
flip-flop. Thus, anytime a value changes, the specified argument string is
printed out. Here is the output produced upon execution.

Time= 0 :: C=0, D=0, Q=x, Qb=x
Time= 5:C=1, D=0, Q=x, Qb=x
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Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=
Time=

Reading Vectors from a Text File

10
15
20::
25
30::
35
40 =
45 ::
50 ::
55
60 =
65 ;.
70 :
75
80 ::
85
Q0
@5
100
105 .
110
115
120 ::
125 ::
130 :
135:;
140 :
145 ::
180 :
185 :;

C=0, D=0, @=0, Qb=1
C=1, D=0, @=0, Qb=1
C=0, D=0, Q=0. Qb=1
C=1, D=0, @=0, Qb=1
C=0, D=0, @=0, Qb=1
C=1. D=0, @=0, Qb=1
C=0, D=1, Q=0. Qb=1
C=1, D=1, Q=0, Qb=1
C=0, D=1, Q=1, Qb=0
C=1.D=1,Q=1, Qb=0
C=0, D=1, Q=1, Qb=0
C=1, D=1, @=1, Qb=0
C=0, D=1, Q=1, Qb=0
C=1,D=1,Q=1, Qb=0
C=0, D=0, Q=1, Qb=0
C=1, D=0, Q=1, Qb=0
C=0, D=0, @=0, Qb=1
C=1, D=0, @=0, Qb=1
: C=0, D=0, Q=0, Qb=1
:C=1, D=0, Q=0, Qb=1
C=0, D=0, Q=0, Qb=1
C=1, D=0, @=0, Qb=1
C=0, D=1, @=0, Qb=1
C=1, D=1. @=0, Qb=1
C=0, D=1, @=1, Qb=0
C=1, D=1, @=1, Qb=0
C=0, D=1, @=1, Qb=0
C=1,D=1.Q=1, Qb=0
C=0, D=1, Q=1, Qb=0
C=1, D=1, Q=1, Qb=0

SECTION 11.4

11.4 Reading Vectors from a Text File

It is possible to read vectors (could contain stimulus and expected values)
from a text file using the $readmemb system task. Here is such an example of
testing a 3-bit full-adder circuit. Assume that file “test.vec” contains the fol-

lowing two vectors.
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A B g — Expected Sum

010,01d 0 100,0
01001111100

(.

Cin Expected Cout

The first three bits correspond to input A, next three bits are for input B, next
bit is the carry-in bit, eight to tenth bits are the expected sum result and the
last bit is the expected carry-out. Here is the full-adder module and its test-
bench.

module AdderlBit (A, B, Cin, Sum, Cout);
input A, B, Cin;
output Sum, Cout;

assign Sum= (A " B) ~ Cin;
assign Cout = (A& B) | (A& Cin) | (B& Cin);
endmodule

module Adder3Bit (First, Second, Carry_In,
Sum_Out, Carry_Out);
input [0:2] First, Second;
input Carry In;
output [0:2] Sum Out;
output Carry_Out;
wire [0:1] Car;

AdderlBit
Al (First[2]), Second[2], Carry_In,
Sum_Out[2], Car[l]),
A2 (First[l]), Second[l], Car(1l], Sum_Out[l], Car[0]),
A3 (First[0], Second[0], car[0],
Sum_Out[0]), Carry_Out);
endmodule
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module TestBench;
parameter BITS = 11, WORDS = 2;
reg [1:BITS] Vmem [1:WORDS];
reg [0:2]) A, B, Sum_Ex;
reg Cin, Cout_Ex;
integer J;
wire [0:2] Sum;
wire Cout;

// Instantiate the module under test.
Adder3Bit F1 (A, B, Cin, Sum, Cout);

initial
begin
Sreadmemb ("test.vec", Vmem);

for (J=1; J<= WORDS; J=J+ 1)
begin
(A, B, Cin, Sum_Ex, Cout_Ex) = Vmem [J];
#5; // Wait for 5 time units for circuit to settle.

if ((Sum !== Sum_Ex) || (Cout !== Cout_Ex))
$display ("****Mismatch on vector $b *****»,
Vmem [J]) ;
else
$display ("No mismatch on vector %b", Vmem [J]);
end
end
endmodule

A memory Vmem is first defined; the word size corresponds to the number of
bits in each vector and the number of words in memory corresponds to the
number of vectors in the file. The $readmemb system task reads the vectors
in the file “test.vec” into the memory Vmem. The for-loop goes through each
of the memory words, that is, each vector, applies these to the module under
test, waits for the module to be stable and probes the module outputs. A con-
ditional statement is used to compare expected output values and the moni-
tored output values. If any mismatch occurs, a message is printed to the
output. Here is the output produced when the above test bench is executed.
Since there are no errors in the model, no mismatches are reported.
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No mismatch on vector 01001001000
No mismatch on vector 01001111100

11.5 Writing Vectors to a Text File

In the previous section on testbench examples, we saw how values are
printed to output. Values of signals in a design can be printed to a file as well
by using the display system tasks that write to a file such as $fdisplay, $fmon-
itor and $fstrobe. Here is the same testbench example as is the previous sec-
tion, but in this case, the testbench prints out all the input vectors and
observed output vectors to a file “mon.out”.

module F_Test_Bench;
parameter BITS = 11, WORDS = 2;
reg [1:BITS] Vmem [1l:WORDS];
reg [0:2]) A, B, Sum_Ex;
reg Cin, Cout_Ex;
integer J;
wire [0:2] Sum;
wire Cout;

// Instantiate the module under test.
Adder3Bit F1 (A, B, Cin, Sum, Cout);

initial
begin: INIT LABEL
integer Mon_Out_File;

Mon_Out_File = $fopen ("mon.out");
Sreadmemb ("test.vec", Vmem) ;

for (J=1; J<= WORDS; J=J+1)
begin
(A, B, Cin, Sum_Ex, Cout_Ex) = Vmem[J];
#5; // Wait for 5 time units for circuit to settle.

if ((Su-m l== Sum_EX) I I (Cout == COUt_EX))
$digplay ("****Mismatch on vector %b *****»
Vmem[J]) ;
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else
$display ("No mismatch on vector %b", Vmem[J]):

// Write the input and output vectors to a file:
$fdisplay (Mon_Out_File,
"Input = $b%b%b, Output = %b%b",
A, B, Cin, Sum, Cout):;
end

S$fclose (Mon_Out_File);

end
endmodule

Here is what is contained in the file “mon.out” after simulation.

Input = 0100100, Output = 1000
Input = 0100111, Output = 1100

11.6 Some More Examples

11.6.1 A Clock Divider

A complete testbench that uses the waveform application method is
shown next. The module under test is called Div. The output responses are
written into a file for later comparison.

module Div (Ck, Reset, TestN, Ena);
input Ck, Reset, TestN;
output Ena;
reg [0:3] Counter;

always
@ (posedge Ck) begin
if (~Reset)
Counter = 0;
else
begin
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if (~ TestN)
Counter = 15;
else
Counter = Counter + 1;
end

end

assign Ena = (Counter == 15) 21 : 0;
endmodule

module Div_TB;
integer Out_File;
reg Clock, Reset, TestN;
wire Enable;

initial
Qut_File = Sfopen ("out.vec"):

always
begin
#5 Clock = 0;
#3 Clock =1;
end

Div D1 (Clock, Reset, TestN, Enable);

initial
begin
Reset = 0;
#50 Reset = 1;
end

initial
begin
TestN = 0;
#100 TestN = 1;
#50 TestN = 0;
#50 Sfclose (Out_File);
$finisgh; // Terminate simulation.
end

// For every event on the Enable output signal,
// write to file.
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initial

Sfmonitor (Out_File, "Enable changed to %b at time %t",

Enable, $time);
endmodule

Here is the output contained in the “out.vec” file.

[1.6.2 A Factorial De

Enable changed to x at time
Enable changed to 0 at time
Enable changed to 1 at time
Enable changed to 0 at time
Enable changed to 1 at time

sign

56
104
162

This example illustrates a different approach to stimulus generation; in
this case the stimulus value is generated based on the state of the module un-
der test. This approach is useful in testing a finite-state machine for which dif-
ferent input stimulus is applied based on the machine’s state. Consider a
design in which the objective is to compute the factorial of an input number.
The handshake mechanism between the module under test and the test bench
model is shown in Figure 11-9.

TEST
BENCH

> Reset —_—>
[——> Start ———7
> Clock EEE—
jre— )10 —
[ e—— e Oyt ——
| Q—— Exp_Out "_ﬂ

e De ———

Module
under
test

FACTORIAL

Figure 11-9 Handshake between test bench and entity under test.

The Reset input to the module resets the factorial model to an initial state.
The Start signal is set after the Data input is applied. When computation is
complete, the output Done is set to indicate that the computed result appears
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on the Fac_Out and Exp_Out outputs. The resulting factorial value is Fac_Out
x 2B Out The test bench model provides input data on Data starting from
values 1 to 20 in increments of one. It applies the data, sets the Start signal,
waits for the Done signal, and then applies the next input data. Error messages
are printed out if the values appearing at the output are not correct. The de-
scriptions for the module and the test bench follows.

timescale 1ns / 1ns
module FACTORIAL {Reset, StartSig, Clk, Data, Done,
FacOut, ExpOut);
input Reset, StartSig, Clk;
input [4:0] Data;
output Done;
output [7:0] FacOut, ExpQut;

reg Stop;

reg [4:0] InLatch;

reg [7:0] Exponent, Result;
integer I;

initial Stop = 1;

always
@ (posedge Clk) begin
if ((StartSig==1) && (Stop == 1) && (Reset == 1))
begin
Result = 1;
Exponent = 0;
InLatch = Data;
Stop = 0;
end
else
begin
if ((InLatch > 1) && (Stop == 0))
begin
Result = Result * InLatch;
InLatch = InLatch - 1;
end

if (InLatch < 1)
Stop = 1;
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// Normalization:
for (I=1; I<=5; I=1I+1)
if (Result > 256)
begin

Result = Result / 2;
Exponent = Exponent + 1;

~ end

end
end

assign Done = Stop;

assign FacOut = Result;

assign ExpOut = Exponent;
endmodule

"

module FAC_TB;
parameter IN MAX =5, OUT _MAX = 8;
parameter RESET ST = 0, START ST = 1, APPL_DATA_ST = 2,
WAIT RESULT ST = 3;
reg Clk, Reset, Start;
wire Done;
reg [IN_MAX-1 : 0] Data;
wire [OUT_MAX-1 : 0) Fac_Out, Exp_Out;
integer Next_State;
parameter MAX APPLY = 20;
integer Num_Applied;

initial
Num_Applied = 1;

always
begin: CLK_P
#6 Clk = 1;
#4 Clk = 0;
end

always
@ (negedge Clk) // Falling edge transition.
case (Next_State)

RESET ST:
begin
Reset = 1;
Start = 0;
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Next_State = APPL,_ DATA ST;
end
APPL_DATA_ST:
begin
Data = Num_Applied;
Next_State = START ST;

end
START ST :
begin
Start = 1;
Next_State = WAIT RESULT ST;
end
WAIT RESULT ST:
begin
Reset = 0;
Start = 0;
wait (Done == 1);

if (Num_Applied ==
Fac_oOut * ('h0001 << Exp_oOut))
$display ("Incorrect result from factorial",
" model for input value %d", Data);

Num_Applied = Num Applied + 1;

if (Num_Applied < MAX_APPLY)
Next_State = APPL_DATA_ST;
else
begin
$display ("Test completed successfully");
$finish; // Terminate simulation.
end
end
default :
Next_State = START ST;
endcase

// Apply to module under test:
FACTORIAL F1 (Reset, Start, Clk, Data, Done,
Fac_Out, Exp_Out);
endmodule
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1.6.3 A Sequence Detector

Here is a model for a sequence detector. The model checks for a sequence
of three consecutive one’s on the data line. Data is checked on every falling
edge of clock. Figure 11-10 shows the state diagram. Here is the model with
its test bench.

module Count3_1s (Data, Clock, Detect3_1s);
input Data, Clock;
output Detect3_l1s;
integer Count;
reg Detect3_1s;

initial
begin
Count = 0;
Detect3_1s = 0;
end

always
@ (negedge Clock) begin
if (Data == 1)
Count = Count + 1;
else
Count = 0;

if (Count >= 3)
Detect3_l1s =1;
else
Detect3_1s = 0;
end
endmodule

module Top;
reg Data, Clock;
integer Out_File;

// Instantiate module under test;
Count3_1s F1 (Data, Clock, Detect);

initial
begin
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Clock = 0;

forever
#5 Clock = ~Clock;
end

initial

begin
Data = 0;
#5 Data =1;
#40 Data
#10 Data
#40 Data
#20 $stop; // Stop simulation.

end

H

I
[ i« B

1]

initial
begin
// Save monitor information in file.
Out_File = $fopen ("results.vectors");
$fmonitor (OQut_File,
"Clock = %$b, Data = %b, Detect = %b",
Clock, Data, Detect);
end
endmodule

COUNTO

Figure 11-10 A sequence detector.

230



Exercises SECTION 11.7

1.7 Exercises

1.

Generate a clock with an on-period and an off-period of 3ns and 10ns re-
spectively.

Write a Verilog HDL model that generates the waveform shown in Figure
11-11.

UL

00 2 5 10 15 1617 222 27  30ns
3

Figure 11-11 A waveform.

Generate a clock ClockV that is phase-delayed from the clock Clk_D de-
scribed in module Gen_CIlk_D (Figure 11-6). The phase-delay is 15ns.
[Hint: Using a continuous assignment statement may not be appropriate].

Write a test bench that tests a sequence detector. The detector checks an
input data stream on every positive clock edge for a pattern 10010. If such
a pattern is found, the output is set to a 1, else it is set to a 0.

Write a module that generates two clocks, ClockA and ClockB. ClockA
starts with a delay of 10ns while ClockB starts with a delay of 40ns. Both
clocks have the same on-off period, on-period is 1ns while the off-period
is 2ns. ClockB is synchronized with the edges of ClockA but has opposite
polarity.

Describe a behavioral model for a 4-bit adder / subtracter. Exercise this
model with a test bench. All input values and expected values are de-
scribed within the test bench itself. Dump the input values, expected val-
ues and monitored output values to a text file.

Describe an ALU that performs all the relational operations (<, <=, >, >=)
on two 4-bit operands. Write a test bench that reads the test patterns and
the expected result from a text file.
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232

10.

11.

12.

13.

Write a module that performs an arithmetic shift of an input vector. Spec-
ify the size of the input as a parameter with a default value of 32. Also
specify the amount of shift as a parameter with a default value of 1. Write
a test bench that tests such a module which performs an arithmetic shift
on a 12-bit vector and shifts 8 times.

Write a model for an N times clock multiplier. The input is a reference
clock of an unknown frequency. The output should be synchronized with
every positive edge of the reference clock. [Hint: Determine the clock pe-
riod of the reference clock].

Write a model that displays the time whenever a O to 1 transition occurs
on an input clock.

Write a model for a counter that counts the number of clock pulses (posi-
tive edges) that occur during the period Count_Flag is 1. If count exceeds
MAX_COUNT, the OverFlow output is set and counter stays at the
MAX_COUNT limit. The rising edge of Count_Flag causes the counter to
reset to 0 and start counting again. Write a test bench to test this model.

Write a model for a parameterized Gray code counter. Default it to a size
of 3. The counter gets asynchronously reset when the variable Reset is 0.
The counter transitions on every negative edge of a clock. Then instantiate
a 4-bit Gray code counter in a test bench and test the model.

Write a behavioral model for an asynchronous reset toggle flip-flop. If
toggle is 1, the output toggles between 0 and 1. If toggle is 0, output stays
in previous state. Then, using the specify block, specify a setup time of
2ns and a hold time of 3ns. Verify the model using a test bench.



Chapter 12

MODELING EXAMPLES

This chapter provides a number of hardware modeling examples using
Verilog HDL.

2.1 Modeling Simple Elements

A basic hardware element is a wire. A wire can be modeled in Verilog
HDL as a net data type. Consider a 4-bit and gate, the behavior of which is
described next.

“timescale Ilns / lns
module And4 (A, B, C);
input (3:0] B, C;

output [3:0] A;

assign #5 A= B & C;
endmodule

233



CHAPTER 12 Modeling Examples

The delay for the & (and) logic is specified to be Sns. The hardware repre-
sented by this model is shown in Figure 12-1.

B[3] C[3] BI[2] C[2] B[1] C[1] B[0] C[O]

b @ @ @ gate delay = 5ns

Al3] Al2] Al] Al0]

Figure 12-1 A 4-bit and gate.

This example and the one following show that Boolean equations can be
modeled as expressions in continuous assignment statements. Wires can be
modeled as net data types. For example, in the following description, F repre-
sents a wire that connects the output of the ~ (not) operator to the input of the
A (xor) operator. Figure 12-2 shows the circuit represented by the module.

module Boolean Ex (D, G, E);
input G, E;
output D;
wire F;

assign F= ~ E;
assign D= F " G;
endmodule

I

Figure 12-2 A combinational circuit.

Consider the following behavior and its corresponding hardware represen-
tation as shown in Figure 12-3.
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module Asynchronous;
wire A, B, C, D;

assign C= A | D;
assign A=~ (B& C);
endmodule

Figure 12-3 An asynchronous loop.

This circuit has an asynchronous loop. If the model were simulated with a cer-
tain set of values (B = 1, D = 0), simulation time would never advance because
the simulator would always be iterating between the two assignments. The it-
eration time would be two zero delays. Therefore, extra caution must be exer-
cised when values are assigned to nets using continuous assignment that have
zero delay and when these same net values are used in expressions.

In certain cases, it is desirable to have such an asynchronous loop. An ex-
ample of such an asynchronous loop is shown next; the statement represents a
periodic waveform with a cycle of 20ns. Its hardware representation is shown
in Figure 12-4. Note that such an always statement needs an initial statement
that initializes the register to either a 0 or a 1, else the register will be stuck at
the value x.

always
#10 Ace = ~ Ace;

Elements of a vector net or a register can be accessed, as either a single el-
ement called bit-select, or a slice called part-select. For example,
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A
Ce—L—'>o—B—— Ace

Figure 12-4 A clock generator.

reg A;
reg (0:4] C;
reg [5:0] B, D;

always
begin

D[4:0] = B[5:1] | C;
// D[4:0] and B[5:1] are part-selects.
D[5] = A & B[5]; // D[5] and B[5] are bit-selects.
end

The first procedural assignment implies:

D[4]
D[3]

B[5] | c[0];
B[4] | cI1];

Bit-selects, part-selects and vectors can be concatenated to form larger
vectors. For example,

wire [7:0] C, CC;
wire CX;

assign C = {CX, CC[6:01};

It is also possible to refer to an element of a vector whose index value is
computable only at runtime. For example,

Adf = Plb [K];
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implies a decoder whose output is Adf, and K specifies the selection address.
PIb is a vector; it models the behavior of the decoder.

Shift operations can be performed using the predefined shift operators. Al-
ternately, shift operations can be modeled using the concatenation operator.
For example,

wire [0:7] A, Z;

assign 7z = {A[1:7], A[0]}; // A left-rotate operation.
assign Z = {A[7], A[0:6]}; // A right-rotate operation.
assign Z = {(A[1:7], 1'b0}; // A left-shift operation.

Subfields of a vector, called part-select, can also be used in expressions.
For example, consider a 32-bit instruction register, Instr_Reg, in which the
first 16 bits denote the address, next 8 bits represent the opcode, and the re-
maining 8 bits represent the index. Given the following declarations,

reg [31:0] Memory [0:1023];
wire [31:0] Instr_Reg;
wire [15:0] Address;

wire [7:0] Op_Code, Index;
wire [0:9] Prog Ctr;

wire Read Ctl;

one way to read the subfield information from the Instr_Reg is to use three
continuous assignment statements. The part-selects of the instruction register
are assigned to specific wires.

assign Instr Reg = Memory [Prog Ctr];

assign Address = Instr_Reg[31:16];
assign Op Code = Instr_Regl[15:8];
assign Index = Instr_Reg[7:0];
always
@ (posedge Read Ctl)
Task_Call (Address, Op_Code, Index);

A tristate gate can be modeled behaviorally using a continuous assign-
ment statement. An example is:
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wire TriOut = Enable ? Triln : 1'bz;

When Enable is 1, TriOut gets the value of Triln. When Enable is 0, TriOut
has a high impedance value.

12.2 Different Styles of Modeling

This section gives examples of the three different modeling styles provid-
ed by the language: datafiow, behavioral, and structural. Consider the circuit
shown in Figure 12-5, which saves the value of the input A into a register and
then multiplies it with input C.

CikB -

A —1>|Register

8 | R 8 7z
12

S1

I
4

Figure 12-5 A buffered multiplier.

The first modeling style is the datafiow style in which continuous assign-
ment statements are used to model the circuit.

module Save Mult_Df (A, C, ClkB, Z);
input [0:7] A;
input [0:3] C;
input CIkB;
output [0:11] Z;
wire S1;

assign Z =51 * C;

assign S1 =ClkB ? A : S1;
endmodule
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This representation does not directly imply any structure, but implicitly de-
scribes it. However, its functionality is very clear. The register has been mod-
eled using a clock control.

The second way to describe the circuit is to model it as a sequential pro-
gram using an always statement with a sequential block.

module Save Mult Seqg (A, C, ClkB, Z);
input [0:7] A;
input [0:3] C;
input ClkB;
output [0:11] Z;
reg [0:11] Z;

always
@(A or C or ClkB)
begin: SEQ
// The block is labeled so that a local register S1
// can be declared.
reg (0:7] SI;

if (ClkB)
S1 = A;

Z=S81%x¢C;
end
endmodule

This model also describes the behavior, but does not imply any structure, ei-
ther explicitly or implicitly. In this case, the register has been modeled using
an if statement.

The third way to describe the Save_Mult circuit is to model it as a netlist
assuming the existence of an 8-bit register and an 8-bit multiplier.

module Save Mult_ Netlist (A, C, ClkB, Z);
input [0:7] A;
input [0:3] C;
input ClkB;
output [0:11] Z;
wire [0:7] S1, S3;
wire [0:15] S2;
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Reg8 R1 (.Din(A), .Clk(ClkB), .Dout{(S1l));
Mult8 M1 (.A(S1l), .B({4'b0000, C}), .Z2(2Z));
endmodule

This description explicitly describes the structure, but the behavior is un-
known. This is because the Reg8 and Mult8 module nanies are arbitrary, and
they could have any behavior associated with them.

Of these three different modeling styles, the behavioral style of modeling
is generally the fastest to simulate.

12.3 Modeling Delays

240

Consider a 3-input nor gate. Its behavior can be modeled using a contin-
uous assignment, such as shown in the following example.

assign #12 Gate Out =~ (A | B | C);

This statement models the nor gate with a delay of 12 time units. This delay
represents the time from an event on signal A, B, or C until the result value ap-
pears on signal Gate_QOut. An event could be any value change, for example, x
>z,x->0,0r1->0.

If the rise time and the fall time were to be explicitly modeled, use two de-
lays in the assignment, such as:

assign #(12, 14) Zoom=~ (A | B| C);
/* 12 is the rise delay, 14 is the fall delay and
min(l2, 14) = 12 is the transition to x delay */

In case of logic that can be assigned the value z, a third delay value, which
is the turn-off delay, can also be specified, such as:

assign #(12, 14, 10) Zoom=A> B ? C : 'bz;
// Rise delay ig 12, fall delay is 14, transition to xdelay
// is min(12, 14, 10), and turn-off delay is 10.
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Each of the delay values can also be represented using min:typ.max nota-
tion, such as in the following example.

assign #(9:10:11, 11:12:13, 13:14:15)Zoom=A> B ? C : 'bz;

A delay value could in general be an expression.

Delays in primitive gate instances and UDPs can be modeled by specify-
ing the delay values in the instantiation. Here is an example of a 5-input prim-
itive and gate.

and #(2, 3) Al (Ot, Inl, In2, In3, In4, In5);

The output rise delay has been specified as 2 time units and the output fall de-
lay has been specified as 3 time units.

Delays in a module at port boundaries can be specified using a specify
block. For example, here is an example of a half-adder module.

module Half Adder (A, B, S, C);
input A, B;
output S, C;

specify

endspecify

assign S= A " B;
assign C = A | B;
endmodule

Instead of modeling the delays in the continuous assignments, the delays have
been modeled using a specify block. Is there a way to specify the delays exter-
nal to the module? One option is to use the SDF! (Standard Delay Format)
and the backannotation mechanism possibly provided by a Verilog simulator.
If this information needs to be specified in the Verilog HDL model explicitly,

L3

1. See Bibliography.
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one approach is to create two dummy modules on top of the Half Adder mod-
ule each with a different set of delays.

module Half Adder (A, B, S, C);
input A, B;
output S, C;

assign S= A " B;

assign C= 4 | B;
endmodule

module Ha_Opt (A, B, S, C);

input A, B;

output S, C;

specify
(A=>58) =1(1.2, 0.8);
(B=>5) = (1.0, 0.6);
(A=>C)=1(1.2, 1.0);
(B=>C) = (1.2, 0.6);

endspecify

Half Adder H1 (A, B, S, C);
endmodule

module Ha_Pess (A, B, S, C);

input A, B;

output S, C;

specify
(A=>S5) = (0.6, 0.4);
(B=>S) = (0.5, 0.3);
(A=>C) =1(0.6, 0.5);
(B=>2C) = (0.6, 0.3);

endspecify

Half Adder H2 (A, B, S, C);
endmodule

With these modules, the module Half Adder is independent of any delays,
and depending on which delay mode that you would like to use, simulate the
appropriate top-level module Ha_Opt or Ha_Pess.
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Transport Delays

Delays specified in continuous assignments and gate-level primitives
model inertial delay. Transport delay can be modeled using a non-blocking as-
signment with an intra-statement delay. Here is an example.

module Transport (WaveA, DelayedWave);
parameter TRANSPORT DELAY = 500;
input WaveAa;
output DelayediWave;
reg DelayediWave;

always
@(WaveA) DelayedWave <= #TRANSPORT_DELAY Wavea;
endmodule

The always statement contains a non-blocking assignment with an intra-
statement delay. Any change on WaveA gets scheduled on DelayedWave
TRANSPORT_DELAY in the future. Consequently, a waveform that appears
on WaveA appears on DelayedWave delayed by TRANSPORT _DELAY, an ex-
ample of such a delayed waveform is shown in Figure 12-6.

| l I I WaveA Y

03 56 10 7

DelayedWave
bx

500 503 506 510

Figure 12-6 Transport delay example.
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12.4 Modeling Conditional Operations

Operations that occur under certain conditions can be modeled using ei-
ther a continuous assignment with a conditional operator, or using an if
statement or a case statement in an always statement. Let us consider an arith-
metic logic circuit. Its behavior can be modeled using a continuous assign-
ment as shown below.

module Simple ALU (A, B, C, PM, ALU);
input [0:3] A, B, C;
input PNM;
output (0:3] ALU;

assign ALU=PM? A+ B: A- B;
endmodule

A multiplexer can also be modeled using an always statement. The value
of the select lines are first determined and, based on this value, a case state-
ment selects the appropriate input that is to be assigned to the output.

‘timescale 1ns / lns
module Multiplexer (Sel, A, B, C, D, Mux_Out);
input [0:1] Sel;
input A, B, C, D;
output Mux Out;
reg Mux_Out;
reg Temp;
parameter MUX DELAY = 15;

always
@ (Sel or Aor Bor Cor D)
begin: Pl
case (Sel)
0: Temp = A;
1l: Temp = B;
2: Temp = C;
3: Temp = D;
endcase
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Mux_Out = #MUX_DELAY Temp;
end
endmodule

The multiplexer could also have been modeled using a continuous assignment
of the form:

assign #MUX_DELAY Mux Out = (Sel==0) ? A: (Sel==1) ? B:
(Sel ==2) ?2C: (Sel==3) ?2D: 1'bx;

2.5 Modeling Synchronous Logic

So far in this chapter, most of the examples that we have seen are combi-
national logic. For modeling synchronous logic, the register data type has
been provided in the language to model registers and memories. However not
every register data type infers synchronous logic. A common way to model
synchronous logic is by controlling the assignment.

Consider the following example, which shows how controlling a register
can model a synchronous edge-triggered D-type flip-fiop.

‘timescale 1ns / Ins

module D Flip Flop (D, Clock, Q);
input D, Clock;
output Q;
reg Q;

always
@ (posedge Clock)
Q= #5D;
endmodule

The semantics of the always statement indicates that when there is a rising
edge on Clock, Q will get the value of D after Sns, else the value of Q does not
change (a register retains its value until it is assigned a new value). The behav-
ior in the always statement expresses the semantics of a D-type flip-flop. Giv-
en this module, an 8-bit register can be modeled as follows.
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module Register8 (D, Q, Clock);
parameter START = 0, STOP = 17;
input [START : STOP] D;
input Clock;
output [START : STOP] Q;
wire [START : STOP] Cak;

D Flip Flop DFF0
[START : STOP] (.D(D), .Clock (Cak), .Q(Q));

buf Bl (Cak[0], cak[l], cak[2], cak[3], cak[4],
cak[5], Cak[6], Cak[7], Clock);
endmodule

Consider a gated cross-coupled latch circuit, as shown in Figure 12-7, and
its datafiow model.

S1 Q

S2 | Qbar

Figure 12-7 A gated latch.

module Gated FF (A, G, Q, Qbar);

input A4, G;

output Q, Qbar;

wire S1, S2;

assign 51 =~ (A& G);
assign S2 = ~ (Sl & G);

assign Q = ~ (Qbar & S1);
assign Qbar = ~ (Q & S2);
endmodule

In this example, the semantics of the continuous assignments implies a latch.
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A memory can be modeled as an array of registers. Here is an example.
ASIZE is the number of bits on the address port, and DSIZE is the number of
bits on the data port of the RAM.

module RAM Generic (Address, Data_lIn, Data_Out, RW);
parameter ASIZE = 6, DSIZE = 4;
input [ASIZE-1 : 0] Address;
input [DSIZE-1 : 0] Data_In;
input RW;
output [DSIZE-1 : 0] Data_Out;
reg [DSIZE-1 : 0] Data_Out;
reg [0 : DSIZE-1] Mem FF [0 : 63];

always
@ (Rw)
if (RW) // Read
Data_Out = Mem_FF [Address];
else
Mem FF [Address] = Data_In;
endmodule

Synchronous logic can also be modeled using level-sensitive or
edge-triggered controls. For example, a level-sensitive D flip-flop can be mod-
eled as follows.

module Level Sens FF (Strobe, D, Q, Qbar);
input Strobe, D;
output Q, Qbar;
reg O, Qbar;

always
begin
wait (Strobe == 1);
Q=D;
Qbar = ~D;
end
endmodule

When Strobe is 1, any events on D are transferred to Q, but when Strobe be-
comes 0, the values in Q and Qbar are retained, and any change in input D no
longer affects the values of Q and Qbar.

247



CHAPTER 12 Modeling Examples

It is important to understand the semantics of a procedural assignment to
determine the inference of synchronous logic. Consider the difference be-
tween the following two modules, Body! and Body2.

module Bodyl;
reg A;

initial A=0;

always A = ~A;
endmodule

module BodyZ;
wire Clock;
reg A;

initial A =0;
always
@ (Clock)
if (~ Clock)

A=~A4;
endmodule

Module Body! implies the circuit shown in Figure 12-8, while module Body2
implies the circuit shown in Figure 12-9.

A
—e — e

Figure 12-8 No flip-flop implied.

If Bodyl were simulated as is, simulation would go into an endless loop
due to the zero delay asynchronous loop (simulation time does not advance).
In module Body2, the value of A is latched only on the falling edge of the
Clock signal, and thereafter, any changes on A (input of flip-flop) do not affect
the output of flip-flop.
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A
— |
Flip-flop

Clock T

Figure 12-9 A flip-flop implied.

2.6 A Generic Shift Register

A generic serial-in, serial-out shift register can be modeled using a
for-loop with an always statement. The number of registers is specified as a
parameter so that it can be modified when the generic shift register is instanti-
ated in another design.

module Shift Reg (D, Clock, Z);
input D, Clock;
output z;
parameter NUM REG = 6;
reg [l : NUM_REG] Q;
integer P;

always
@ (negedge Clock) begin
// Shift register one bit right:
for (P=1; P< NUM_REG; P=P + 1)
Q[P+1] = Q[P];

// Push in the serial data:
Q1] = D;
end

// Get the output from the rightmost register:

assign Z = Q[NUM_REG];
endmodule
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Shift registers of varying sizes can be obtained by instantiating module
ShiftReg using different parameter values.

module Dummy;
wire Data, Clk, Za, Zb, Zc;

// 6-bit shift register:
Shift_Reg SRA (Data, Clk, Za);

// 4-bit shift register:
Shift_Reg #4 SRB (Data, Clk, Zb);

// 10-bit shift register:
Shift_Reg #10 SRC (Data, Clk, Zc);
endmodule

12.7 State Machine Modeling
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State machines can usually be modeled using a case statement with an al-
ways statement. The state information is stored in a register. The multiple
branches of the case statement contain the behavior for each state. Here is an
example of a simple multiplication algorithm represented as a state machine.
When the Reset signal is high, the accumulator Acc and the counter Count are
initialized. When Reset goes low, multiplication starts. If the bit of the multi-
plier Mplr in position Count is 1, the multiplicand Mcnd is added to the accu-
mulator. Next, the multiplicand is left-shifted by one bit, and the counter is
incremented. If Count is 16, multiplication is complete and the Done signal is
set high. If not, the Count bit of the multiplier Mplr is checked and the always
statement repeated. The state diagram is shown in Figure 12-10 and the corre-
sponding state machine model is shown next.

module Multiply {Mplr, Mcnd, Clock, Reset, Done, Acc);
// Mplr is multiplier, Mcnd is multiplicand.
input [15:0] Mplr, Mcnd;
input Clock, Reset;
output Done;
reg Done;
output [31:0] Acc;
reg [(31:0] Acc;
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If Mplr[Count] is 1 then
Add Mcnd to Acc.

Reset==

Reset Acc.
Initialize Count.

Reset==1 Increment Count.

Count==16 Left shift Mcnd.

Figure 12-10 State diagram for multiplier.

parameter INIT = 0, ADD =1, SHIFT = 2;
reg [0:1] Mpy_State;
reg [31:0] Mcnd _Temp;

« initial Mpy State = INIT; // Initial state is INIT.

always
@ (negedge Clock) begin: PROCESS
integer Count;

case (Mpy State)
INIT :
if (Reset)
Mpy_State = INIT;
/* The above statement is not really necessary
since Mpy State will retain its old value */
else
begin
Acc = 0;
Count = 0;
Mpy State = ADD;
Done = 0;
Mcnd Temp([15:0] = Mcnd;
Mcnd_Temp(31:16] = 16'd0;
end

ADD :

begin
if (Mplr[Count])
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Acc = Acc + Mcnd _Temp;

Mpy State = SHIFT;
end

SHIFT :
begin
// Left-shift Mcnd Temp:
Mcnd Temp = {Mcnd _Temp[30:0], 1'b0};
Count = Count + 1;

if (Count == 16)

begin
Mpy State = INIT;
Done = 1;

end

else
Mpy State = ADD;
end
endcase // case Mpy_State
end // sequential block PROCESS

endmodule

The register Mpy_State holds the state of the model. Initially, the model is
in state INIT and it stays in this state as long as Reset is true. When Reset is
false, the accumulator Acc is cleared, the counter Count is reset, the multipli-
cand Mcnd is loaded into a temporary variable Mcnd_Temp, and the model ad-
vances to state ADD. When model is in the ADD state, the multiplicand in
Mcnd_Temp is added to Acc only if the bit at the Count position of the multi-
plier is a 1 and then the model advances to state SHIFT. In this state, the mul-
tiplier is left-shifted once, the counter is incremented, and if the counter value
is 16, Done is set to true and the model returns to state INIT. At this time, Acc
contains the result of the multiplication. If the counter value was less than 16,
the model repeats itself going through states ADD and SHIFT until the
counter value becomes 16.

State transitions occur at every falling edge of the clock; this is specified
using the @(negedge Clock) timing control.
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12.8 Interacting State Machines

Interacting state machines can be described as separate always statements
communicating via common registers. Consider the state diagram shown in
Figure 12-11 for two interacting processes, 7X, a transmitter, and MP, a mi-
croprocessor. If process TX is not busy, process MP sets the data to be trans-
mitted on a data bus and sends a signal Load_TX to process TX to load the
data and begin transmitting. 7X_Busy is set by process TX during transmis-
sion to indicate that it is busy and cannot receive any further data from process
MP.

A skeleton model for these two interacting processes is shown. Only the
control signals and state transitions are shown. Data manipulation code is not
described.

(Load_TX==0)

(TX_Busy==0)

Load_TX=1
@—"“-\ TX_Busy=1

TX_Busy=0
Process TX

Process MP

Load_TX=0

(TX_Busy==1) (Note: Expressions in parentheses denote control)

Figure 12-11 State diagram of two interacting processes.

module Interacting_ FSM (Clock);
input Clock;

parameter M1 =0, M2 =1, M3 = 2;
parameter T1 =0, T2 =1, T3 =2, T4 = 3;
reg [0:1] MP_State;

reg [0:1] TX State;

reg Load TX, TX Busy;
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always
@ (negedge Clock) begin: MP
case (MP_State)
M1 // Load data on data bus.

begin
Load TX =1;
MP_State = M2;

end

M2 // Wait for acknowledgment.
if (TX_Busy)
begin
MP_State = M3;
Load TX = 0;
end

M3 // Wait for TX to finish.
if (~TX_Busy)
MP_State = M1;
endcase
end // End of sequential block MP

always
@ (negedge Clock) begin: TX
case (TX State)

T1 : // Wait for data to load.
if (Load TX)
begin
TX State = T2;
TX Busy = 1; // Read data from data bus.
end
T2 : // Sending leading flag.
TX_State = T3;
T3 :
TX State = T4; // Transmitting data.
T4 : // Sending trailing flag to end transmission.
begin
TX Busy = 0;
TX State = Tl;
end
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endcase
end // End of sequential block TX.
endmodule

The sequence of actions for this interacting finite-state machine is shown in
Figure 12-12.

Clock ﬂ
: ; : . . : ; -

MP_State | M1 M2 PoM3 Ml | M2

Load _TX ' ; § § 5

TX_State T1; T2 | T3 T4 i

TXBusy | ] ]

Figure 12-12 Sequence of actions for the two interacting processes.

Consider another example of two interacting processes, DIV, a clock di-
vider, and RX, a receiver. In this case, process DIV generates a new clock and
process RX goes through its sequence of states synchronized to this new
clock. The state diagram is shown in Figure 12-13.

New_Clock=0 @
@ Process DIV

New_Clock=1

Figure 12-13 DIV generates clock for RX.
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module Another_ Example FSM2 (Clock);
input Clock;

parameter DI = 1, D2 =2, D3 = 3;
parameter RI =1, R2 = 2;

reg [0:1] Div_State, RX_State;
reg New_Clock;

always
@ (posedge Clock) begin: DIV
case (Div_State)

D1 :
begin
Div_State = D2;
New_Clock = 0;
end
D2 :

Div_State = D3;

D3 :

begin
New_Clock = 1;
Div_State = DI;

end

endcase
end // Sequential block DIV
always

@ (negedge New_Clock) begin: RX
case (RX State)
R1 : RX_State = R2;

R2 : RX State = R1;
endcase
end // Sequential block RX
endmodule

Sequential block DIV generates a new clock New_Clock as it goes through
its sequence of states. The state transitions in this process occur on the rising
edge of Clock. Sequential block RX is executed every time a falling edge on
New_Clock occurs. The sequence of waveforms for these interacting state ma-

chines is shown in Figure 12-14.
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Clock l l l_
Div_State D1| D2 [ D3 D1 D2 | D3 D1 D2 |D3
New_Clock
RX_ State R1 R2 R1

Figure 12-14 Interaction between processes RX and DIV.

129 Modeling a Moore FSM

The output of a Moore finite state machine (FSM) depends only on the
state and not on its inputs. This type of behavior can be modeled using an al-
ways statement with a case statement that switches on the state value. An ex-
ample of a state transition diagram for a Moore finite state machine is shown
in Figure 12-15 and its corresponding behavior model appears next.

Figure 12-15 State diagram of a Moore machine.
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module Moore FSM (A, Clock, Z);
input A, Clock;
output Z;
reg Z;

parameter ST0 =0, ST1 =1, ST2 =2, ST3 = 3;

reg [0:1] Moore_State;

always
@ (negedge Clock)
case (Moore_State)
STO:
begin
zZ=1;
if (A)
Moore_State = ST2;
end

ST1 :
begin
Z=20;
if (4)
Moore_State = ST3;
end

ST2:
begin
Z=20;
if (~A4)
Moore_State
else
Moore_State
end

ST1;

ST3;

ST3:
begin
zZ=1;
if (4)
Moore_State
end
endcase
endmodule

I

STO;
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2.10 Modeling a Mealy FSM

In a Mealy finite state machine, the outputs not only depend on the state of
the machine but also on its inputs. This type of finite state machine can be
modeled in a style similar to that of the Moore FSM, that is, using a single al-
ways statement. To show the variety of the language, a different style is used
to model a Mealy machine. In this case we use two always statements, one
that models the synchronous aspect of the finite state machine and one that
models the combinational part of the finite state machine. Here is an example
of a state transition table shown in Figure 12-16 and its corresponding behav-

ior model.

Input A

(Entries in table are
next state and output Z)

sTo | STO ST3
ST1 | ST1 STO
sT2 | ST2 ST1 f
sT3 | ST2 5T1 0

Present state

Figure 12-16 State transition table for a Mealy machine.

module Mealy FSM (A, Clock, Z);

input A, Clock;

output Z;
reg Z;

parameter ST0 =0, ST1 =1, ST2 =12, ST3 = 3;
reg [1:2] P_State, N_State;

always

@ (negedge Clock)

// Synchronous part.
P_State = N_State;
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always
@(P_State or A) begin: COMB_PART
case (P_State)
STO:
if (4)
begin
Z=1;
N_State = ST3;
end
else
= 0;

ST1
if (A)
begin
Z=0;
N_State = STO;
end
else
zZ=1;

ST2
if (~4)
Z=20;
else
begin
Z=1;
N_State = STI1;
end

ST3 :
begin
= 0;
if (~4)
N_State = ST2;
else
N_State = ST1;
end
endcase
end // Sequential block COMB_PART
endmodule
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In this type of finite state machine, it is important to put the input signals
in the event list for the combinational part sequential block since the outputs
may directly depend on the inputs independent of the clock. Such a condition
does not occur in a Moore finite state machine since outputs depend only on
states and state changes occur synchronously on clock.

2.11 A Simplified Blackjack Program

This section presents a state machine description of a simplified blackjack
program. The blackjack program is played with a deck of cards. Cards 2 to 10
have values equal to their face value, and an ace has a value of either 1 or 11.
The object of the game is to accept a number of random cards such that the to-
tal score (sumn of values of all cards) is as close as possible to 21 without ex-
ceeding 21.

When a new card is inserted, Card_Rdy is true and Card_Value has the
value of the card. Request_Card indicates when the program is ready to accept
a new card. If a sequence of cards is accepted such that the total exceeds 21,
Lost is set to true indicating that it has lost; otherwise Won is set to true indi-
cating that the game has been won. The state sequencing is controlled by
Clock. The input and outputs of the blackjack program are shown in Figure

12-17.
Card_Rdy
L 5 Request_Card
Card_Value
Blackjack ———> Lost
Clock Won

Figure 12-17 External view of blackjack program.

The behavior of the program is described in the following module declara-
tion. The program accepts cards until its score is at least 17. The first ace is
counted as a 11 unless the score exceeds 21, in which case 10 is subtracted so
that the value of 1 is used for an ace. Three registers are used to store the val-
ues of the program: Total to hold the sum, Current_Card_Value to hold the
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value of the card read (which could be 1 through 10), and Ace_As_11 to re-
member whether an ace was counted as a 11 instead of a 1. The state of the
blackjack program is stored in register BJ_State.

module Blackjack (Card_Rdy, Card_Value,
Request_Card, Won, Lost, Clock);
input Card Rdy, Clock;
input [0:3] Card _Value;
output Request_Card, Lost, Won;
reg Request_Card, Lost, Won;

parameter INITIAL ST = 0, GETCARD ST =1,
REMCARD ST = 2, ADD_ST = 3, CHECK_ST = 4,
WIN_ST = 5, BACKUP_ST = 6, LOSE_ST = 7;

reg (0:2] BJ_State;

reg [0:3] Current_Card_Value;

reg [0:4] Total;

reg Ace_As_11;

always
@ (negedge Clock)
case (BJ_State)
INITIAL_ ST :
begin
Total = 0;
Ace_As 11 =0;
Won = 0;
Lost = 0;
BJ_State = GETCARD_ST;
end

GETCARD_ST :
begin
Request_Card = 1;

if (Card_Rdy)
begin
Current_Card_Value = Card_Value;
BJ_State = REMCARD_ST;
end // Else stay in GETCARD_ST state.
end
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REMCARD_ST : // Wait for card to be removed.
if (Card_Rdy)
Request_Card = 0;
else
BJ_State = ADD_ST;

ADD_ST :
begin
if (~Ace_As_11 && Current_Card_Value)
begin
Current_Card Value = 11;
Ace As_11=1;
end

Total = Total + Current_Card_Value;
BJ_State = CHECK_ST;
end

CHECK_ST :
if (Total < 17)
BJ_State = GETCARD_ST;
else
begin
if (Total < 22)
BJ_State = WIN_ST;
else
BJ_State = BACKUP_ST;
end

BACKUP_ST :
if (Ace_As 11)
begin
Total = Total — 10;
Ace As_11 =0;
BJ_State = CHECK_ST;
end
else
BJ_State = LOSE_ST;

LOSE_ST :
begin
Lost = 1;
Request_Card = 1;
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if (Card_Rdy)
BJ_State = INITIAL ST;
// Else stay in this state.
end

WIN_ST :
begin
Won = 1;
Request_Card = 1;

if (Card_Rdy)
BJ_State = INITIAL_ST;
// Else stay in this state.
end
endcase
endmodule // Blackjack

12.12 Exercises
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1.

Write a Verilog HDL model for a mango juice drink machine. The ma-
chine dispenses a can of mango juice that costs 15 cents. Only nickels and
dimes are accepted. Any change must be returned. Test the model using a
test bench.

Write a model that describes the behavior of a flip-flop with synchronous
preset and clear.

Write a model for a 4-bit shift register with serial-in data, parallel-in data,
a clock and parallel-out data. Test the model using a test bench.

Describe a D-type flip-flop using behavioral constructs. Then using this
module, write a model for a 8-bit register.

Write a test bench that tests the blackjack model described in Section
12.11.

Using the shift operator, describe a decoder module and then test it with a
test bench. The number of inputs to the decoder is specified as:



10.

1.
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‘define NUM_INPUTS 4
[ Hint: Use the shift operator to figure out the number of
outputs of decoder]

Write a model for a 8-bit parallel to serial converter. The input is a 8-bit
vector. Send the bits out, one bit at a time, starting from the most signifi-
cant bit on the rising edge of a clock. Read the next input only after all the
bits of the previous input vector have been sent out.

Write a model for a 8-bit serial to parallel converter that does the opposite
of Exercise 7. Sample the input stream after a small delay from the posi-
tive edge of clock to account for transmission delay. Connect the models
written in this exercise and the one in Exercise 7 using a top level module
and test it out using a test bench.

Write a model for a N-bit counter with a hold control. If the hold is a 1,
the counter holds its value, when hold goes to 0, the counter is reset to 0
and starts counting again. Write a test bench to test this model.

Write a model for a generic queue, size of word in queue is N and number
of words in queue in M. InputData is the word that gets written into the
queue; the word is added to the queue when input AddWordisa 1. A word
that is read from the queue is stored in QutputData; the word is read from
the queue when input ReadWord is a 1. Flags Empty and Full are set ap-
propriately. All transactions occur at the falling edge of clock ClockA.
Write a test bench to test out the model.

Write a model for a parameterizable clock divider. The period of the out-
put clock is 2*N times that of the input clock. The output clock is syn-
chronized to the rising edge of the input clock. Write a test bench and test
the model.
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SYNTAX REFERENCE

This appendix presents the complete syntax1 of the Verilog HDL lan-
guage.

A.1  Keywords

Following are the keywords of the Verilog HDL language. Note that only
lower case names are keywords.

always and assign

begin buf bufif0 bufifl
case casex casez cmos
deassign default defparam disable

1. Reprinted here from IEEE Std 1364-1995, Copyright © 1995, IEEE, All rights reserved.
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edge
endfunction
event

for

highz0

if
integer

Jjoin
large
macromodule

nand
notifQ

or

parameter
pulll

rcmos
repeat

rtranifl

scalared
strongl

table
tranifl
trior

vectored

wait
wire

xnor

else
endprimitive
force

highz1

ifnone

medium

negedge
notifl

output

pmos
pullup

real
rnmos

small
supply0

task
tri
trireg

wand
wor

xor

end
endspecify

forever

initial

module

nmos

posedge
pulldown

realtime
rpmos
specify
supplyl

time
tri0

weak(0

Keywords

endcase
endtable

fork

inout

nor

primitive

reg
rtran

specparam

tran

tril

weak1

SECTION A.1

endmodule
endtask

function

input

not

pulld

release
rtranifQ

strong(

tranifQ
triand

while
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A.2  Syntax Conventions
The following conventions are used in describing the syntax, which is de-
scribed using the Backus-Naur Form (BNF).

i. The syntax rules are organized in an alphabetical order by their
left-hand nonterminal name.

ii. Reserved words, operators and punctuation marks that are part of
the syntax appear in boldface.

iti. A name in italics prefixed to a nonterminal name represents the
semantic meaning associated with that nonterminal name.

iv. The vertical bar symbol, non-bold, (I) separates alternative items.

v. Square brackets, non-bold, ([ . . . ]) denote optional items.

vi. Curly braces, non-bold, ({ . .. }) identify an item that is repeated
Zero or more times.

vii. Square brackets, parentheses, and curly braces and other charac-
ters (such as , ;) appearing in bold ([ ... }, (...), { ... }) indicate
characters that are part of the syntax.

viii. The starting nonterminal name is “source_text”.

ix. The terminal names used in this grammar appear in upper case.

A.3  The Syntax
always_construct ::=
always
statement
binary_base ::=

'bl'B

binary_digit ::=
xIX1z1Z1011
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binary_number ::=
[ size ] binary_base binary_digit { __| binary_digit }

binary_operator ::=
+1-1*1/1%
| ==ll=l===1l==1&&I| |l I<l<=1>I>=
| &I TIAIA~] ~AI>>] <<



The Syntax

block_item_declaration ::=
parameter_declaration

| reg_declaration
| integer_declaration
| real_declaration
I time_declaration
| realtime_declaration
| event_declaration

blocking_assignment ::=
reg_Ivalue = [ delay_or_event_control ] expression

case_item ::=
expression { , expression } : statement_or_null
| default [ ;] statement_or_null

case_statement ;=
case ( expression ) case_item { case_item } endcase
| casez ( expression ) case_item { case_item } endcase
| casex ( expression ) case_item { case_item } endcase

charge_strength ::=
(small)
I (medium)
I (large)

cmos_switch_instance ::=

[ name_of_gate_instance ] ( output_terminal , input_terminal ,

ncontrol_terminal , pcontrol_terminal )

cmos_switchtype 1=
cmos | rcmos
combinational_body ::=
table
combinational_entry { combinational_entry }
endtable

combinational_entry ::=
level_input_list : output_symbol ;

comment :;=
short_comment
I long_comment

comment_text ;.=
{ ANY_ASCII_CHARACTER }

concatenation ::=
{ expression { , expression } }

conditional_statement ::=

if ( expression ) statement_or_null [ else statement_or_null ]

SECTION A.3
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constant_expression ::=
constant_primary
I unary_operator constant_primary
| constant_expression binary_operator constant_expression
I constant_expression ? constant_expression : constant_expression
| string

constant_mintypmax_expression ::=
constant_expression
| constant_expression : constant_expression : constant_expression

constant_primary ::=
number
| parameter_identifier
| constant_concatenation
| constant_multiple_concatenation

continuous_assign ::=
assign [ drive_strength ] [ delay3 ] list_of_net_assignments ;

controlled_timing_check_event ::=
timing_check_event_control specify_terminal_descriptor
[ &&& timing_check_condition ]

current_state ::=
level_symbol

data_source_expression ::=
expression

decimal_base ::=
'dl'D

decimal_digit ::=
0111213141516171819

decimal_number ::=
[ sign ] unsigned_number
| [ size ] decimal_base unsigned_number
delay?2 ::=
# delay_value
| #(delay_value [, delay_value ])
delay3 =
# delay_value
| #(delay_value [, delay_value [, delay_value ]])

delay_control ::=
# delay_value
| # ( mintypmax_expression )

delay_or_event_control ::=
delay_control



The Syntax

| event_control
| repeat ( expression ) event_control

delay_value ::=
unsigned_number
| parameter_identifier
I constant_mintypmax_expression

description ::=
module_declaration
| udp_declaration

disable_statement ::=
disable task_identifier ;
| disable block_identifier ;

drive_strength ::=
( strengthQ , strength1 )
| (strength1, strength0)
| (strength0, highz1)
| (strength1, highz0)
| (highz1, strengthQ )
| (highz0, strength1)

edge_control_specifier ::=

edge [ edge_descriptor [, edge_descriptor ] ]
edge_descriptor ::=

01

I 10
I Ox
I x1
I 1x
| x0

edge_identifier ::=

posedge | negedge
edge_indicator ::=

(level_symbol level_symbol )

| edge_symbol
edge_input_list ::=

{ level_symbol } edge_indicator { level_symbol }
edge_sensitive_path_declaration ::=

parallel_edge_sensitive_path_description = path_delay_value

| full_edge_sensitive_path_description = path_delay_value
edge_symbol ::=

rIRIfIFIpIPInINI*
enable_gate_instance ::=

[ name_of_gate_instance ] ( output_terminal , input_terminal,
enable_terminal )

SECTION A.3
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enable_gate_type ::=
bufif0 | bufif1 | notif0 | notif1

enable_terminal ::=
scalar_expression

escaped_identifier ::=
\ { ANY_ASCI|_CHARACTER_EXCEPT_WHITE_SPACE } white_space

event_control ::=
@ event_identifier
| @ (event_expression )

event_declaration ::=
event event_identifier { , event_identifier } ;

event_expression =
expression

| event_identifier

| posedge expression

| negedge expression

| event_expression or event_expression
event_trigger ::=

-> event_identifier ;

expression ;=
primary

| unary_operator primary

| expression binary_operator expression

| expression ? expression : expression

I string

full_edge_sensitive_path_description ::=
([ edge_identifier ] list_of _path_inputs *> list_of_path_outputs
[ polarity_operator ] : data_source_expression )

full_path_description ::=
(list_of _path_inputs [ polarity_operator ] *> list_of_path_outputs )

function_call ::=
function_identifier ( expression { , expression })
I name_of_system_function [ ( expression {, expression }) ]

function_declaration ::=
function [ range_or_type ] function_identifier ;
function_item_declaration { function_item_declaration }
statement
endfunction

function_item_declaration ::=
block_item_declaration
| input_declaration
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gate_instantiation ::=
n_input_gatetype [ drive_strength ] [ delay2 ] n_input_gate_instance

{,n_input_gate_instance };

| n_output_gatetype [ drive_strength ] [ delay2 ] n_output_gate_instance
{, n_output_gate_instance } ;

| enable_gatetype [ drive_strength ] [ delay3 ] enable_gate_instance
{,enable_gate_instance };

I mos_switchtype [ delay3 ] mos_switch_instance
{, mos_switch_instance } ;

| pass_switchtype pass_switch_instance {, pass_switch_instance } ;

| pass_en_switchtype [ delay3 ] pass_en_switch_instance
{, pass_en_switch_instance };

| cmos_switchtype [ delay3 ] cmos_switch_instance
{ ,cmos_switch_instance } ;

I pullup [ pullup_strength ] pull_gate_instance {, pull_gate_instance } ;

| pulldown [ pulldown_strength ] pull_gate_instance
{,pull_gate_instance } ;

hex_base ::=
'hi'H
hex_digit ::=
x|1X1zl2Z
1 0111213141516171819
| alblclidlelflAIBICIDIEIF

hex_number ::=
[ size ] hex_base hex_digit { _ | hex_digit }
identifier ;=
IDENTIFIER [ {. IDENTIFIER }]
/* The period may not be followed or preceded by a space */

IDENTIFIER ::=
simple_identifier
| escaped_identifier
init_val ::=
1b011'b1 [ 1'bx 1 1bX 11'BOI1 1'B111'Bx | 1'BX 1110
initial_construct ::=
initial
statement
inout_declaration ::=
inout [ range ] list_of_port_identifiers ;
inout_terminal ::=
terminal_identifier
| terminal_identifier [ constant_expression ]
input_declaration ::=
input [ range ] list_of_port_identifiers ;
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input_identifier ::=
input_port_identifier
| inout_port_identifier

input_terminal ::=
scalar_expression

integer_declaration ::=
integer list_of_register_identifiers ;

level_input_list ::=
level_symbol { level _symbol }

level_symbol ::=
0l1IxIXI?IbIB

limit_value ::=
constant_mintypmax_expression

list_of_module_connections ::=
ordered_port_connection { , ordered_port_connection }
I named_port_connection { , named_port_connection }

list_of_net_assignments ::=
net_assignment { , net_assignment }

list_of_net_decl_assignments ::=
net_decl_assignment {, net_decl_assignment }

list_of_net_identifiers ::=
net_identifier {, net_identifier }

list_of_param_assignments ::=
param_assignment { , param_assignment }

list_of_path_delay_expressions ::=
t_path_delay_expression

| trise_path_delay_expression , tfall_path_delay_expression

| trise_path_delay_expression , tfall_path_delay_expression,
1z_path_delay_expression

| t071_path_delay_expression, t10_path_delay_expression,
t0z_path_delay_expression , tz1_path_delay_expression ,
t1z_path_delay_expression , tz0_path_delay_expression

| t01_path_delay_expression , t10_path_delay_expression,
10z_path_delay_expression , tz1_path_delay_expression,
t1z_path_delay_expression , tz0_path_delay_expression,
10x_path_delay_expression , tx1_path_delay_expression,
t1x_path_delay_expression , tx0_path_delay_expression,
txz_path_delay_expression , tzx_path_delay_expression

list_of_path_inputs ::=

specify_input_terminal_descriptor { , specify_input_terminal_descriptor }
list_of_path_outputs ::=

specify_output_terminal_descriptor { , specify_output_terminal_descriptor }
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list_of_port_identifiers ::=
port_identifer { , port_identifier }

list_of_ports =
(port{,port})

list_of_real_identifiers ::=
real_identifier { , real_identifier }

list_of_register_identifiers ::=
register_name {, register_name }

list_of_specparam_assignments ::=
specparam_assignment { , specparam_assignment }

long_comment ::=
¥ comment_text */

loop_statement ::=
forever statement
| repeat ( expression ) statement
| while ( expression ) statement
| for (reg_assignment ; expression ; reg_assignment ) statement

mintypmax_expression ::=
expression
| expression : expression : expression

module_declaration ::=
module_keyword module_identifier [ list_of_ports ] ;
{ module_item }
endmodule

module_instance ::=
name_of_instance ([ list_of_module_connections ])

module_instantiation ::=
module_identifier [ parameter_value_assignment ] module_instance
{,module_instance };

module_item ::=
module_item_declaration
| parameter_override
| continuous_assign
| gate_instantiation
| udp_instantiation
I module_instantiation
| specify_block
| initial_construct
| always_construct
module_item_declaration ::=
parameter_declaration
| input_declaration
| output_declaration
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| inout_declaration

| net_declaration

| reg_declaration

| integer_declaration
| real_declaration

| time_declaration

| realtime_declaration
| event_declaration

| task_declaration

| function_declaration

module_keyword ::=
module | macromodule

mos_switch_instance ::=
[ name_of_gate_instance ] ( output_terminal , input_terminal ,
enable_terminal )

mos_switchtype ::=
nmos | pmos | rnmos | rpmos

multiple_concatenation ::=
{ expression { expression {, expression } }}

n__input_gate._instance =
[ name_of_gate_instance ] ( output_terminal , input_terminal
{,input_terminal })
n_input_gatetype ::=
and | nand | or | nor | xor | xnor
n_output_gate_instance ::=
[ name_of_gate_instance ] { output_terminal { , output_terminal },
input_terminal )
n_output_gatetype ::=
buf | not
name_of_gate_instance ;=
gate_instance_identifier [ range ]
name_of_instance ::=
module_instance_identifier [ range ]
name_of_system_function ::=
$identifier
name_of_udp_instance ::=
udp_instance_identifier [ range ]
named_port_connection ::=
. port_identifier ([ expression ])

ncontrol_terminal ::=
scalar_expression



The Syntax SECTION A.3

net_assignment ::=
net_lvalue = expression

net_decl_assignment ;=
net_identifier = expression

net_declaration ::=
net_type [ vectored | scalared ] [ range ] [ delay3 ] list_of_net_identifiers ;
| trireg [ vectored | scalared ] [ charge_strength ] [ range ] [ delay3 ]
list_of_net_identifiers ;
I net_type [ vectored | scalared ] [ drive_strength ] [ range ] [ delay3 ]
list_of_net_decl_assignments ;

net_lvalue ::=
net_identifier
| net_identifier [ expression ]
| net_identifier [ msb_constant_expression : /sb_constant_expression ]
| net_concatenation

net_type 1=
wire | tri | tri1 | supply0 | wand | triand | tri0 | supply1 | wor | trior

next_state ;=
output_symbol | -

non_blocking_assignment ::=

reg_lvalue <=[ delay_or_event_control ] expression
notify_register ::=

register_identifier
number ::=

decimal_number

I octal_number

| binary_number

| hex_number

I real_number
octal_base ::=

'ol'0
octal_digit ::=

xIX1z1ZI1011121314151617
octal_number ::=

[ size ] octal_base octal_digit { _ | octal_digit }

ordered_port_connection .=
[ expression ]
output_declaration ::=
output [ range ] list_of_port_identifiers ;
output_identifier ::=
output_port_identifier
| inout_port_identifier
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output_symbol ::=
0l1IxIX

output_terminal ;=
terminal_identifier
| terminal_identifier [ constant_expression ]

par_block ::=
fork
[ : block_identifier
{ block_item_declaration } ]
{ statement }
join
parallel_edge_sensitive_path_description ::=
([ edge_identifier ] specify_input_terminal_descriptor =>
specify_output_terminal_descriptor [ polarity_operator ] :
data_source_expression )

parallel_path_description ::=
( specify_input_terminal_descriptor [ polarity_operator ] =>
specify_output_terminal_descriptor )

param_assignment ::=
parameter_identifier = constant_expression

parameter_declaration ;:=
parameter list_of_param_assignments ;

parameter_override ::=
defparam list_of_param_assignments ;

parameter_value_assignment ::=
# ( expression {, expression })

pass_en_switchtype ::=
tranif0 | tranif1 | rtranif1 | rtranif0

pass_en_switch_instance ::=
[ name_of_gate_instance ] (inout_terminal , inout_terminal ,
enable_terminal )

pass_switch_instance ::=

[ name_of_gate_instance ] (inout_terminal , inout_terminal )
pass_switchtype ::=

tran | rtran
path_declaration ::=

simple_path_declaration ;

| edge_sensitive_path_declaration ;

| state_dependent_path_declaration ;
path_delay_expression ::i=

constant_mintypmax_expression
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path_delay_value ::=
list_of_path_delay_expressions
| (list_of_path_delay_expressions )

pcontrol_terminal ::=
scalar_expression

polarity_operator ::=
+1-

port ::=
[ port_expression ]
| . port_identifier ( [ port_expression ] )

port_expression ;=
port_reference
| { port_reference {, port_reference } }

port_reference ::=
port_identifier
| port_identifier [ constant_expression ]
| port_identifier [ msb_constant_expression : Isb_constant_expression ]

primary ::=
number

| identifier

| identifier [ expression ]

| identifier [ msb_constant_expression : /sb_constant_expression ]

| concatenation

| multiple_concatenation

I function_call

I ( mintypmax_expression )

procedural_continuous_assignment ::=
assign reg_assignment ;
| deassign reg_lvalue ;
| force reg_assignment ;
| force net_assignment;
| release reg_lvalue;
| release net_lvalue;

procedural_timing_control_statement ::=
delay_or_event_control statement_or_null

pull_gate_instance ::=
[ name_of_gate_instance ] ( output_terminal )

pulldown_strength ::=
( strengthQ , strength1 )
I (strength1, strengthQ)
| (strengthQ)

pullup_strength ::=
( strengthQ, strength1)
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| (strength1, strengthQ)
| (strength1)

pulse_control_specparam ::=
PATHPULSES = ( reject_limit_value [, error_limit_value ]);
| PATHPULSES$specify_input_terminal_descriptor /*no space; continue®/
$specify_output_terminal_descriptor = ( reject_limit_value
[, error_limit_value ] ) ;!
range ::=
[ msb_constant_expression : Isb_constant_expression ]

range_or_type ::=
range | integer | real | realtime | time

real_declaration ::=
real list_of_real_identifiers ;

real_number ::=
[ sign ] unsigned_number . unsigned_number
I [ sign ] unsigned_number [ . unsigned_number ] e[ sign ]
unsigned_number
I [ sign ] unsigned_number [ . unsigned_number ] E[ sign ]
unsigned_number

realtime_declaration ::=
realtime list_of_real_identifiers ;

reg_assignment ::=
reg_lIvalue = expression

reg_declaration ::=
reg [ range ] list_of_register_identifiers ;

reg_lvalue ::=
reg_identifier
| reg_identifier [ expression ]
| reg_identifier [ msb_constant_expression : Isb_constant_expression ]
| reg_concatenation

register_name ::=
register_identifier
| memory_identifier [ upper_limit_constant_expression :
lower_limit_constant_expression ]

scalar_constant ::=
1b011b111'B0OI1'B11'b0I'b11'BOI'B11110

scalar_timing_check_condition ::=
expression
|~ expression
| expression == scalar_constant

1. For example, PATHPULSE$CLK$Q = (5, 3);
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| expression === scalar_constant
| expression != scalar_constant
| expression !== scalar_constant

seq_block ::=
begin
[ : block_identifier
{ block_item_declaration } ]
{ statement }
end

seq_input_list ::=
level_input_list | edge_input_list

sequential_body ::=
[ udp_initial_statement ]
table
sequential_entry
{ sequential_entry }
endtable

sequential_entry ::=
seq_input_list : current_state : next_state ;

short_comment ::=
/ comment_text \n
sign =
+1-
simple_identifier ::=
[a-zA-Z][a-zA-Z_$0-9]
simple_path_declaration ::=
parallel_path_description = path_delay_value
I full_path_description = path_delay_value
size ;.=
unsigned_number

source_text ;=
{ description }

specify_block ::=
specify
{ specify_item }
endspecify
specify_input_terminal_descriptor ::=
input_identifier
| input_identifier [ constant_expression ]

SECTION A.3

| input_identifier [ msb_constant_expression : Isb_constant_expression ]

specify_item ::=
specparam_declaration
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| path_declaration
I system_timing_check

specify_output_terminal_descriptor ::=
output_identifier
| output_identifier [ constant_expression ]
| output_identifier [ msb_constant_expression : Isb_constant_expression ]

specify_terminal_descriptor ::=
specify_input_terminal _descriptor
| specify_output_terminal_descriptor

specparam_assignment ::=
specparam_identifier = constant_expression
| pulse_control_specparam

specparam_declaration ::=
specparam list_of_specparam_assignments ;

state_dependent_path_declaration ::=
if ( conditional_expression ) simple_path_declaration
| if ( conditional_expression ) edge_sensitive_path_declaration
| ifnone simple_path_declaration

statement ;=
blocking_assignment ;

I non_blocking_assignment ;
| procedural_continuous_assignment ;
| procedural_timing_control_statement
I conditional_statement
| case_statement
| loop_statement
| wait_statement
| disable_statement
| event_trigger
| seq_block
| par_block
| task_enable

| system_task_enable

statement_or_null ::=
statement | ;

strengthQ ;.=
supply0 | strong0 | pull0 | weak0

strength1 ::=
supply1 | strong1 | pull1 | weak1

string ::=
"{ ANY_ASCII_CHARACTERS_EXCEPT_NEWLINE } "

system_task_enable ;.=
system_task_name [ ( expression { , expression })];
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system_task_name ::=
$identifier
/* The $ cannot be followed by a space */
system_timing_check ::=
$setup ( timing_check_event, timing_check_event , timing_check_limit
[, notify_register ]);
I $hold ( timing_check_event , timing_check_event, timing_check_limit
[, notify_register ] ) ;
| $period ( controlled_timing_check_event , timing_check_limit
[, notify_register 1) ;
| $width ( controlled_timing_check_event, timing_check_limit,
constant_expression [, notify_register]);
| $skew (timing_check_event, timing_check_event , timing_check_limit
[, notify_register 1) ;
| $recovery ( controlled_timing_check_event , timing_check_event,
timing_check_limit [, notify_tegister]);
| $setuphold (timing_check_event , timing_check_event,
timing_check_limit , timing_check_limit [, notify_register]);

task_declaration ::=
task task_identifier ;
{ task_item_declaration }
statement_or_null
endtask

task_enable ;=
task_identifier [ ( expression {, expression})];

task_item_declaration ::=
block_item_declaration

| input_declaration

| output_declaration

| inout_declaration

time_declaration ::=
time list_of_register_identifiers ;

timing_check_condition ::=
scalar_timing_check_condition
| (scalar_timing_check_condition )

timing_check_event ::=
[ timing_check_event_control ] specify_terminal_descriptor
[ &&& timing_check_condition ]

timing_check_event_control ::=
posedge
| negedge

| edge_control_specifier

timing_check_limit ::=
expression
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udp_body ::=
combinational_body
| sequential_body

udp_declaration ::=
primitive udp_identifier (udp_port_list );
udp_port_declaration
{ udp_port_declaration }
udp_body
endprimitive

udp_initial_statement ::=
initial udp_output_port_identifier = init_val ;

udp_instance ::=
[ name_of _udp_instance ] ( output_port_connection , input_port_connection
{ ,input_port_connection })

udp_instantiation ::=
udp_identifier [ drive_strength ] [ delay2 ] udp_instance {, udp_instance } ;

udp_port_declaration ::=
output_declaration

| input_declaration

I reg_declaration

udp_port_list ::=
output_port_identifier , input_port_identifier { , input_port_identifier }
unary_operator ::=
+1-11~1&I~&I 11 ~11A]~A]AL
unsigned_number ::=
decimal_digit { __ | decimal_digit }
wait_statement ::=
wait ( expression ) statement_or_null
white_space ::=
space | tab | newline
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